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ABSTRACT 

Many consumer choice situations are characterized by the simultaneous demand for multiple 

alternatives that are imperfect substitutes for one another, along with a continuous quantity 

dimension for each chosen alternative. To model such multiple discrete-continuous choices, most 

multiple discrete-continuous models in the literature use an additively-separable utility function, 

with the assumption that the marginal utility of one good is independent of the consumption of 

another good. In this paper, we develop model formulations for multiple discrete-continuous 

choices that accommodate rich substitution structures and complementarity effects in the 

consumption patterns, and demonstrate an application of the model to transportation-related 

expenditures using data drawn from the 2002 Consumer Expenditure (CEX) Survey. 

 

Keywords: Discrete-continuous system, multiple discreteness, Karush-Kuhn-Tucker demand 

systems, random utility maximization, non-additively separable utility form, transportation 

expenditure. 
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1. INTRODUCTION 

Multiple discrete-continuous (MDC) choice situations are quite ubiquitous in consumer decision-

making, and constitute a generalization of the more classical single discrete-continuous choice 

situation. Examples of MDC contexts include the participation decision of individuals in 

different types of activities over the course of a day and the duration in the chosen activity types 

(see Bhat, 2005, Chikaraishi et al., 2010, and Wang and Li, 2011), household holdings of 

multiple vehicle body/fuel types and the annual vehicle miles of travel on each vehicle (Ahn et 

al., 2008), and consumer purchase of multiple brands within a product category and the quantity 

of purchase (Kim et al., 2002). 

To date, most MDC modeling frameworks, including Bhat’s (2005, 2008) MDCEV 

model, have considered the case of imperfect substitutes and perfect substitutes, but not the case 

of complementary goods (the case of imperfect as well as perfect substitutes can be handled 

through a nested MDC-SDC model, as in Bhat et al., 2009). However, complementary goods 

occur quite frequently in consumer choice situations. For example, in the consumer expenditure 

literature, consider the case of annual household expenditures on transportation and other 

commodities (such as housing, clothing, and food). Also, let the transportation expenditures be 

disaggregated into such categories as vehicle purchase, gasoline/oil, vehicle insurance, vehicle 

maintenance, and public transportation. Then, there are likely to be complementarity effects in 

the expenditures on gasoline, vehicle insurance, and vehicle maintenance, as well as strong 

substitution effects between these three categories of auto-related expenditures and public 

transportation expenditures. If the public transportation category is further broken down by rail 

or bus, it is possible that these two sub-categories are perfect substitutes in that there is 

expenditure on only one or the other of these two alternatives. This example context then is a 

case of alternatives that are complementary, imperfect substitutes, as well as perfect substitutes. 

Similarly, in the activity-based travel modeling and time-use literature, an analyst may be 

interested in daily non-work, non-sleep time-use patterns in such activities as relaxing, running 

indoors, running outdoors, and eating. Here, relaxing and eating may be complements, while 

relaxing and running outdoors may be imperfect substitutes, and running indoors and running 

outdoors may be perfect substitutes.   

The reason why most earlier MDC studies are unable to consider complementarity stems 

from the use of an additively separable utility function (ASUF) and the usual assumption of a 
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quasi-concave and increasing utility function with respect to the consumption of goods (see 

Deaton and Muellbauer, 1980, page 139). Besides, the additive utility structure makes it difficult 

to incorporate even rich imperfect substitution patterns across alternatives because the marginal 

rate of substitution between any pair of goods is dependent only on the quantities of the two 

goods in the pair, and independent of the quantity of other goods (see Pollak and Wales, 1992). 

Thus, back to the activity-based travel modeling and time-use fields, consider an individual 

living alone with three recreation activity options: watching TV at home, visiting friends, and 

going to the movies. Let this individual currently spend all her time watching TV at home. As 

she spends more and more time watching TV, the traditional utility formulation does recognize 

that there is satiation and that the marginal utility of an additional unit of time spent watching TV 

decreases. However, the additive utility formulation assumes that the utility of visiting friends is 

unaffected by the amount of time watching TV. But as the time spent watching TV increases, it 

may increase the marginal utility of visiting friends. If the latter is true, it would imply a higher 

likelihood to participate in visiting friends and a higher time investment in visiting friends, 

relative to the case when this interaction between the investment in one alternative and the utility 

of another is completely ignored (as in the additive utility function). Of course, whether such an 

interaction exists, and the direction of such an interaction, may be an empirical issue. This 

suggests that one should consider a richer non-additive utility function and then examine its 

performance against a traditional utility function. 

Overall, the additively separable assumption substantially reduces the ability of the utility 

function to accommodate rich and flexible substitution patterns, as well as to accommodate 

complementarity effects. At the same time, the literature on MDC models that adopt a non-

additively separable (NAS) utility function is very limited, and research in this area has arisen 

only in the past five years or so. Song and Chintagunta (2007) and Mehta (2007) accommodated 

complementarity and substitution effects in an MDC utility function to model purchase quantity 

decisions of house cleaning products. However, both studies use an indirect utility approach 

instead of a direct utility approach. As clearly articulated by Bunch (2009), the direct utility 

approach has the advantage of being closely tied to an underlying behavioral theory, so that 

interpretation of parameters in the context of consumer preferences is clear and straightforward. 

Further, the direct utility approach provides insights into identification issues. Later, Lee and 

Allenby (2009) proposed a direct utility approach that incorporates a NAS utility structure. For 
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this purpose, they grouped goods in categories assuming that goods in the same category are 

substitutes, while goods in different categories are complements. However, their modeling 

framework does not allow consumers to choose multiple goods within each category. Lee et al. 

(2010) proposed a direct utility model for measuring asymmetric complementarity. Their model 

formulation, however, was developed for the simple case of only two goods.  

Vásquez-Lavín and Hanemann (2008) or VH extended Bhat’s (2008) additively separable 

linear form allowing the marginal utility of each good to be dependent on the level of 

consumption of other goods. In this paper, we use the VH utility formulation (VHUF) as the 

starting point, but suppress a term used in the VHUF that can create interpretation and 

identification problems. The resulting utility forms remain flexible, while also being easy to 

estimate and expanding the range of local consistency of the utility function relative to the 

VHUF. We also develop several ways to introduce stochasticity in the utility specification. The 

stochastic forms we introduce essentially acknowledge two different sources of errors. The first 

source of errors arises when consumers make random “mistakes” in maximizing their utility 

function, and the second source of errors originates from the analyst’s inability to observe all 

factors relevant to the consumer’s utility formation. To our knowledge, this is the first time that 

such a distinction is being made between the two sources of errors in a NAS-MDC model. 

Basically, the first source assumes that the analyst knows exactly how consumers valuate goods 

(that is, the analyst knows the utility functions of consumers exactly), but the analyst also 

acknowledges that there may be a difference between the optimal consumptions as computed by 

the analyst based on the “exact” utilities and as actually observed to be made by the consumers. 

This may be because consumers do not go through a rigorous mathematical optimization process, 

and make random “mistakes” about (statistically speaking) what the actual consumption patterns 

must have been. This causes two consumers who are exactly the same, or the same consumer in 

exactly the same choice environment, to reveal different consumption patterns. We call this as 

the deterministic utility-random maximization (DU-RM) stochastic specification in the rest of 

this paper. The second source is the more traditional one used in the economic and transportation 

literature. Here the analyst introduces stochasticity directly in the utility function to acknowledge 

that the analyst does not know all the factors that is considered by the consumer in her/his 

valuation pattern for goods. However, the consumer is assumed to make a perfect optimization 

decision given her or his utility formation. We refer to this as the random utility-deterministic 
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maximization (RU-DM) stochastic specification.1 A third approach combines the random utility 

as well as the random maximization specifications in what may be considered the most realistic 

situation. We refer to this as the random utility-random maximization (RU-RM) stochastic 

specification. For each of the three proposed stochastic formulations, we are able to retain a 

relatively simple form for the model, and the structure of the Jacobian in the likelihood function 

is also relatively simple. The formulations are applied to the empirical context of household 

transportation expenditures.  

The rest of this paper is structured as follows. The next section formulates a functional 

form for the non-additive utility specification that enables the isolation of the role of different 

parameters in the specification. This section also identifies empirical identification 

considerations in estimating the parameters in the utility specification. Section 3 discusses 

alternative stochastic forms of the utility specification and the resulting general structures for the 

probability expressions. Section 4 provides an empirical demonstration of the model proposed in 

this paper. The final section concludes the paper. 

 

2. FUNCTIONAL FORM OF UTILITY SPECIFICATION 

The starting point for our utility functional form is Bhat (2008), who proposes a linear Box-Cox 

version of the constant elasticity of substitution (CES) direct utility function for MDC models: 
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where )(xU  is strictly quasi-concave, non-decreasing in all arguments and strictly increasing in 

at least one, and a continuously differentiable function with respect to the consumption quantity 

(K×1)-vector x  ( 0kx  for all k ). The k , k  and k  parameters are associated with good k. 

The reader will note that there is an assumption of additive separability of preferences in the 

utility form of Equation (1) (Bhat, 2008 discusses the many reasons for the use of the Box-Cox 

form of Equation (1) for MDC models; for ease in presentation, we will refer to Equation (1) as 

Bhat’s Additively Separable Utility function or the B-ASUF). The B-ASUF is a valid utility 

function if 0k , 0k , and 1k  for all k. For presentation ease, we assume temporarily 

that there is no “essential good” (that is, we present the case of “non-essential goods only”), so 

                                                 
1 Of course, many other interpretations may be provided for these two sources of error.  
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that corner solutions (i.e., zero consumptions) are allowed for all the goods k (this assumption is 

being made only to streamline the presentation and should not be construed as limiting in any 

way; in fact, as we will show later, the econometrics become much easier when there is an 

essential good for which there is always positive consumption).2 We also assume for now that 

the utility function is deterministic to focus on functional form issues (important modeling issues 

arise when we introduce stochasticity, which we discuss in Section 3). The possibility of corner 

solutions implies that the term k  in the B-ASUF, which is a translation parameter, should be 

greater than zero for all k.3  

Vásquez-Lavín and Hanemann or VH (2008) extended the ASUF and presented a 

quadratic version of it that relaxes the additively separable form, as below: 
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where 0k , 0k , and 1k  for all k (we will refer to Equation (2) as the VH-UF) The new 

interaction parameters km  allow quadratic effects as well as allow the marginal utility of good k 

to be dependent on the level of consumption of other goods. Positive interaction parameters 

accommodate complementarity effects, while negative interaction parameters accommodate 

substitution effects. Of course, if 0km  for all k and m, the utility function collapses to the B-

ASUF. Also, following Bhat (2008), it is very difficult to disentangle the k  and k  effects 

separately (as in the ASUF). Thus, for identification purposes, we either have to constrain k  to 

zero for all goods (technically, assume kk   0 ) and estimate the k  parameters (i.e., the 

- profile utility form), or constrain k  to 1 for all goods and estimate the k  parameters (i.e., 

the - profile utility form). 4 

                                                 
2 In general, utility specifications are structured so that, if present, there is a single essential good that is 
characterized as an “outside” good and not of primary interest to the analyst, but is included simply to make the total 
consumption on the goods of interest endogenous. The non-essential goods are typically characterized as the 
“inside” goods. For a detailed discussion of the notions of “inside “ and “outside” goods, the reader is referred to 
von Haefen (2010)  and Bhat et al. (2013).  
3 As illustrated in Kim et al. (2002) and Bhat (2005), the presence of the translation parameters makes the 
indifference curves strike the consumption axes at an angle (rather than being asymptotic to the consumption axes), 
thus allowing corner solutions. 
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The VH-UF, like the basic translog utility function and quadratic utility function, is a 

flexible functional form that has enough parameters to provide a second-order approximation to 

any true unknown direct twice-differentiable utility functional form at a local point (see Pollack 

and Wales, 1992, page 53, 60, and Sauer et al., 2006). It also is a non-additive functional form. 

Of course, because of the budget constraint, as in the additive, translog and quadratic utility 

forms, one must place a normalization on the k  values (see Wales and Woodland, 1983, 

Pollack and Wales, 1992, page 57, and Holt and Goodwin, 2009). Many earlier studies impose 

the identification condition that ,1 k
k

  though we will impose a different normalization 

during our estimations. Also, to adhere to the utility maximization principle that we use as the 

decision rule, one must impose symmetry of the interaction parameters; that is kmmkkm ,  

(see Jorgenson and Lau, 1975, and Holt and Goodwin, 2009). This guarantees the symmetry of 

the second derivatives (or Hessian) matrix of the utility function with respect to the consumption 

quantities. Additionally, there is another positivity condition that is needed to ensure that the 

utility function is increasing, as we discuss in Section 2.1.1. Finally, to ensure correct curvature 

(that is, the quasi-concavity of the utility function with respect to quantities, or the negative 

semi-definiteness of the Hessian matrix) at the consumption points represented in the empirical 

sample, one can reparameterize the interaction parameter matrix as LLθ  , where L  is a 

lower triangular Cholesky matrix (see Ryan and Wales, 1998 and Holt and Goodwin, 2009). 

However, we do not impose any homogeneity restrictions related to expenditure shares being 

invariant to expenditure level; that is, we do not impose the restriction that 0 km
m

 for each 

good k. 

As indicated earlier, the VH-UF form can provide a local approximation to any direct 

twice-differentiable utility function. The restrictions imposed above also help obtain local 

consistency of the utility function. In the next section, we clarify the role of parameters, present 

empirical identification considerations, and recommend a flexible form that is easier to estimate 

and expands the range of local consistency of the utility function relative to the VH-UF. 
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2.1. Role of Parameters in Non-Additively Separable Utility Specification 

2.1.1. Role of k  

The marginal utility of consumption with respect to good k can be written from the VH-UF as: 













































 





111
)(

1

1 mk

m

m
K

m m

m
kmk

k

k

k

xx

x

U






x

. (3) 

The difference between the above expression and the corresponding one in the B-ASUF is the 

presence of the second term in parenthesis, which includes the consumptions of other goods. 

Thus, the formulation is not additively separable, but one in which the marginal utility of a good 

is dependent on the consumption amounts of other goods. The marginal utility at zero 

consumption of good k (that is, the baseline utility of good k) collapses to: 
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From above, it is clear that k  is no longer the baseline (marginal) utility at the point at which 

good k has not been consumed (as it is in the B-ASUF).  Rather, in the VH-UF, it is the baseline 

(marginal) utility of good k at the point at which no good has been “consumed”; that is, when 

mxm   0  (no consumption decision has yet been made). This also indicates that, if prices of 

all goods are the same, then the good with the highest value of k  will definitely see some 

positive consumption.5 

Another important point to note from Equation (3) is that for the utility function to be 

increasing in ),...,2,1( Kkxk  , the following condition should be satisfied for all possible values 

of the consumption vector x: 
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This is in addition to the condition in the B-ASUF where kk   0 .  

 

                                                 
5 If there is price variation across goods, the good with the highest price-normalized marginal utility 

kk p  will 

definitely see some positive consumption (see Bhat, 2008 and Pinjari and Bhat, 2011 for discussions). Also, the 
reader will note that the idea that consumers start from a clean slate and then work their way to the optimal “basket” 
of consumption based on marginal utilities is consistent with the utility maximization principle, though it need not 
represent the way many consumers actually reach their optimal consumption point.  
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2.1.2. Role of k  

As in the B-ASUF, the k  parameter allows for corner solutions. In particular, the k  terms shift 

the position of the point at which the indifference curves are asymptotic to the axes from 

)0 ..., ,0 ,0 ,0(  to ) ..., , , ,( 321 K  , so that the indifference curves strike the positive 

orthant with a finite slope. This, combined with the consumption point corresponding to the 

location where the budget line is tangential to the indifference curve, results in the possibility of 

zero consumption of good k. In addition to allowing corner solutions, the k  terms also serve as 

satiation parameters. In general, the higher the value of k , the less is the satiation effect in the 

consumption of kx . However, unlike in the B-ASUF, k  affects satiation for good k in two 

ways. The first effect is through the first term on the right side of the VH-UF, and the second is 

through the second term on the right side of the VH-UF that generates quadratic effects. The 

overall effect depends on the sign and magnitude of the parameter kk  in the second term. If this 

term is negative, and particularly for high values of k , we can get an inappropriate parabolic 

shape for the contribution of alternative k to overall utility within the range of kx . In particular, 

beyond a certain point of consumption of alternative k, there is negative marginal utility. This is 

because of the violation of the condition in Equation (5). An illustration is provided in Figure 1, 

which plots the utility contribution of alternative k for 1k , 0k , 02.0kk , 

kmkm   0 , and different values of k  ( 1k , 10, and 30). As can be observed, for the k  

value of 30, we get a profile that peaks at about 110 units, and violates the requirement that the 

utility function be strictly increasing (this is also shown in Vásquez-Lavín and Hanemann, 2008). 

On the other hand, if kk  is positive and quite high in magnitude, it is possible that, for high k  

values, there is in fact an increase in the marginal utility effect at low values of kx  (essentially a 

violation of the strictly quasi-concave assumption of the utility function). This is because the left 

side of Equation (5) becomes an increasing function of kx  at low kx  values. Figure 2 illustrates 

such a case for 1k , 0k , 2.0kk , kmkm   0 , and different values of k  

( 1k , 10, and 30). For 10k , one can discern the increasing marginal utility until about 6.5 

units after which the shape becomes one of decreasing marginal utility. The increasing marginal 
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utility at low values is particularly pronounced for 30k , which continues until a value of 40 

units before starting to decrease in marginal utility. We will return to these issues in Section 2.2. 

The translation parameters m  of other goods also have an impact on the utility 

contribution of good k, through the influence on the baseline (marginal) utility of good k (see 

Equation (4)). Specifically, for a given value of mx , the baseline (marginal) utility for good k 

increases as m  increases for positive km  values and decreases as m  increases for negative km  

values. 

 

2.1.3. Role of k  

The express role of k  is to reduce the marginal utility with increasing consumption of good k; 

that is, it represents a satiation parameter. However, as in the case of the k  effect on 

consumption of good k, there are two effects of the k  parameter – one through the first term on 

the right side of the VH-UF and the second through the quadratic effect caused by the 

combination of the first and second terms on the right side of the VH-UF. The overall k  effect 

depends on the sign and magnitude of the parameter kk  in the second term. If this term is 

negative, and particularly for values of k  close to 1, we can get a “nonsensical” parabolic shape 

for the utility contribution of alternative k within the usual possible range of kx . An illustration 

is provided in Figure 3, which plots the utility contribution of alternative k for ,1k  1k , 

03.0kk , kmkm   0 , and different values of k . As can be observed, at the k  value 

of 0.6, we get a profile that peaks at about 150 units and decreases thereafter, violating the 

requirement that the utility function be strictly increasing. On the other hand, if kk  is positive 

and quite high in magnitude, it is possible that, for high k  values, there is in fact an increase in 

the marginal utility effect at some low values of kx . Figure 4 illustrates such a case for ,1k  

1k , 2.0kk , kmkm   0 , and different values of k . The non-conforming utility 

profile is obvious for the k  value of 0.8. 

The m  parameters for other goods also impact the baseline (marginal) utility of good k 

(see Equation (4)). For a given value of mx , the baseline (marginal) utility for good k decreases 
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as m  falls down from 1 for positive km  values and increases as m  falls down from 1 for 

negative km  values. 

 

2.2. Empirical Identification Issues Associated with Utility Form 

The total number of parameters in the flexible utility functional form of Equation (2) rises 

rapidly with the number of alternatives, especially in the km  terms ( ;,2,...,1 Kk   Km ,2,...,1 ). 

There are also empirical identification issues that arise with the utility form. In addition to the 

consideration that only one set of the k  and k  parameters are empirically identifiable, there is 

an additional empirical identification issue. This is because the kk  parameters in the quadratic 

utility functional form essentially also serve as “satiation” parameters by providing appropriate 

curvature to the utility function. However, empirically speaking, it is difficult to disentangle the 

kk  effects from the k  effects (for the - profile) and from the k  effects (for the - profile) as 

long as the kk  effects do not become that negative as to bring on a parabolic shape at even low 

to moderate consumption levels (this latter case would anyway be inappropriate to represent the 

utility function). In fact, a utility profile based on a combination of kk  and k  values for the 

- profile case can be closely approximated by a utility function based solely on k  values with 

0kk . Similarly, a utility profile based on a combination of kk  and k  values for the 

- profile case can be closely approximated by a utility function based solely on k  values with 

0kk . While a rigorous mathematical proof is not provided here, this may be illustrated as in 

Figure 5 for the - profile, with 1k  and kmkm   0 . The figure shows that alternative 

k’s contribution to utility based on a certain combination of k  and kk  values can be closely 

replicated by other combination values of k  and kk . In particular, the utility profiles 

corresponding to combinations of k  and kk  values can be replicated very closely by a profile 

that corresponds to 1k  and some specific kk  value, or by a profile that corresponds to 

0kk  and some specific k  value. Thus, in Figure 5, the utility profiles corresponding to 

45.7k  and 0kk , and 1k  and 3.1kk , are able to closely replicate all the other utility 

profiles. A similar situation may be observed from Figure 6 for the - profile, where the utility 
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profiles of different combinations of kk  and k  values can be approximated closely by the 

profile corresponding to 442.0k  and 0kk , and 0k  and 38.1kk . 

The discussion above suggests that, while one may be able to theoretically estimate the 

VH-UF by retaining k , k , and kk , this will be empirically difficult to estimate. Thus, without 

much loss of empirical generality, one should be able to normalize 1k  (and estimate kk ) or 

set 0kk  (and estimate k ) for each good k in the - profile case (the first normalization 

represents Christiansen et al.’s direct basic translog utility function, as should be obvious from 

imposing the normalization in the - profile utility function in footnote 4). In the - profile 

case, one can normalize 0k  (and estimate kk ) or set 0kk  (and estimate k ) for each 

good k in the utility function (the first normalization represents Wales and Woodland’s quadratic 

utility function, as can be observed from imposing the normalization in the - profile utility 

function in footnote 4). Unlike the implicit normalizations adopted by the earlier studies, we 

propose, apparently for the first time in the literature, to employ the second normalization in each 

of the cases just discussed. That is, we set 0kk  for each good, since this immediately removes 

the possibility of a parabolic shape for the utility contribution of good k. At the same time, along 

with the symmetry and local quasi-concavity restrictions discussed just before Section 2.1, we 

reduce the range of consumption bundles for which the utility function may not be consistent. 

The result is also improved clarity in the interpretation of the k  and k  parameters, which now 

have the same interpretation as satiation parameters corresponding to good k as in the B-ASUF. 

Besides, the baseline marginal utility of good k now remains unchanged with the consumption of 

good k, which is intuitive. Indeed, the alternative of including kk leads to the rather strange 

notion that the marginal valuation at the point of no consumption of a good varies with the 

consumption level of the good. Overall, the resulting modified form of the VH-UF with 0kk  

is much more general than the B-ASUF, while improving parameter interpretation compared to 

the VH-UF, allowing a more intuitive marginal utility structure, and removing the possibility of 

parabolic shapes and increasing marginal utilities. However, the restriction that the baseline 

marginal utility of all goods should be positive for all consumption bundles ( 0~ k , 

Kk ,2,...,1 ) still needs to be maintained. The only way this condition will hold globally is if 
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0km  for all k and m (see Equation (4)). The condition 0km  implies that the goods k and m 

are complements (since the consumption of good m would increase the baseline marginal utility 

of good k and therefore consumption of good k). But we would also like to allow rich 

substitution patterns in the utilities of goods by allowing 0km  for some pairs of goods (this 

refers to substitution patterns beyond that implied by the presence of a budget constraint). As we 

discuss later, our methodology accommodates this, while also recognizing the constraint 0~ k  

( Kk ,2,...,1 ) during estimation and ensuring that it holds in the range of consumptions 

observed in the data. 

To summarize, we propose the following general and modified formulation for the non-

additively separable utility form (or NASUF for short) when there are no essential goods: 
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Note that this is different from the VH-UF (Equation (2)) in the absence of the kk  terms. 

Further, as discussed earlier, the analyst will need to estimate the - profile or the - profile. 

The - profile of our NASUF takes the following form: 

,1ln1ln 
2

1
1ln)(

1 1
 
  





























K

k

K

k m

m

km k

k
mkkm

k

k
kk

xxx
U





x   (7) 

and the - profile takes the following form: 
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In the case that a - profile is estimated, the k  values need to be greater than zero, which can 

be maintained by reparameterizing k  as )exp( k . Additionally, the translation parameters can 

be allowed to vary across individuals by writing kkk wκ~ , where kw  is a vector of individual 

characteristics for the kth alternative, and kκ
~  is a corresponding vector of parameters. In the case 

when a - profile is estimated, the k  values need to be bounded from above at the value of 1. 

To enforce these conditions, k  can be parameterized as )]exp(1[ k , with k  being the 

parameter that is estimated. Further, to allow the satiation parameters (i.e., the k  values) to vary 
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across individuals, Bhat (2005) writes kkk yδ
~ , where ky  is a vector of individual 

characteristics impacting satiation for the kth alternative, and kδ
~

 is a corresponding vector of 

parameters. In actual application, it would behoove the analyst to estimate models based on both 

the estimable profiles above, and choose the one that provides a better statistical fit. In the rest of 

this paper, we will use the general form (that is, the NASUF of Equation (6)) for the “no-

essential good” case for ease in presentation. 

Thus far, the discussion has assumed that there is no essential good. If an essential 

(outside) good is present, label this essential good as the first good which now has a unit price of 

one (i.e., )11 p . This good, being an essential good, has no interaction term effects with the 

inside goods; i.e., )1( 01  mmm . Our NASUF utility functional form for this essential 

goods case takes the following structure: 
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           (9) 

In the above formula, we need 01  , while 0k  for 1k . Also, we need 011  x . The 

magnitude of 1  may be interpreted as the required lower bound (or a “subsistence value”) for 

consumption of the essential good. As in the “non-essential goods only” case, the analyst will 

have to use either an - profile or a - profile, though we will use the general form above for 

ease in presentation. For identification, we impose the condition that 11  . 

 

3. THE ECONOMETRIC MODEL 

We first consider the “no-essential” good setting, because the econometrics is more cumbersome 

in this case. When an essential (outside) good is also present, the econometrics simplify 

considerably. 
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3.1. Optimal Consumption Allocations 

The consumer maximizes utility )(xU  as provided by Equation (6) subject to the budget 

constraint that 



K

k
kk Exp

1

, where kp  is the unit price of good k and E is total expenditure 

across all goods. The analyst can solve for the optimal consumption allocations by forming the 

Lagrangian and applying the KKT conditions. The Lagrangian function for the problem is: 
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where   is the Lagrangian multiplier associated with the budget constraint (that is, it can be 

viewed as the marginal utility of total expenditure or income). The KKT first-order conditions 

for the optimal consumption allocations (the *
kx  values) are given by: 
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The precise form of the KKT conditions depends on how stochasticity is introduced in the 

model, and determines the model structure (note that the discussions in Section 2 were based on 

the assumption of a deterministic utility function).  

 

3.2. Introducing Stochasticity in the Additively Separable (AS) Case 

To complete the econometric model, the analyst needs to introduce stochasticity. This is an 

important component of the model formulation. In the B-ASUF (and in other restricted versions 

of this formulation), stochasticity is introduced using the following random specification: 
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where kz  is a set of attributes characterizing alternative k and the decision maker, and the k  

terms are independent and identically distributed (IID) across alternatives. k  captures 

idiosyncratic (unobserved) characteristics that impact the baseline utility for good k (the above 

stochastic utility form is equivalent to assuming a stochastic baseline (marginal) utility function 

given by ))exp(( kk  z ). The exponential form for the introduction of the random term 
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guarantees the positivity of the baseline marginal utility as long as 0)( kz . To ensure this 

latter condition, )( kz  is further parameterized as )exp( kzβ  , where β  is a vector of 

parameters. The KKT conditions corresponding to the random utility functional form of 

Equation (12) are thus stochastic and take the following form: 

,01))exp((
1*













k
k

k
kk p

x
k







z  if 0*
kx , Kk ,2,...,1  (13) 

,01))exp((

1













k
k

k
kk p

x
k





*

z  if 0*
kx , Kk ,2,...,1 . 

According to this approach, any stochasticity in the KKT conditions originates from the analyst’s 

inability to observe all factors relevant to the consumer’s utility formation. Individuals are 

assumed to know all relevant factors impacting choice, and make an error-free maximization of 

overall utility (subject to the budget constraint) to determine their consumption patterns (this is 

the random utility-deterministic maximization or RU-DM decision postulate, as already 

discussed).  

Note, however, that the stochastic KKT conditions above of the AS model could as well 

have been obtained using a deterministic utility specification (rather than a random utility 

specification) as follows (we will occasionally write )( kz  as k ): 
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The KKT conditions corresponding to the above form are also deterministic (the conditions are 

identical to Equation (13), without the presence of the term )exp( k ). But stochasticity can then 

be introduced explicitly in the KKT conditions in a multiplicative exponential form to once again 

obtain Equation (13). According to this view, not only is the consumer aware of all factors 

relevant to utility formation, but the analyst observes all of these factors too. However, 

consumers are assumed to make random mistakes (“errors”) in maximizing utility (subject to the 

budget constraint), which gets manifested in the form of stochasticity in the KKT conditions (this 

is the deterministic utility-random maximization or DU-RM decision postulate; though they do 

not characterize this perspective as the DU-RM postulate, Wales and Woodland explicitly 
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identify this alternative perspective for KKT models – see footnote 5 in their paper, page 268).6 

While the DU-RM postulate is seldom used for KKT models in the econometric literature, it 

certainly is a plausible one that should not be summarily dismissed. It also allows the usual 

computations of compensating variation for welfare analysis (a common reason for modeling 

consumer preferences) as does the RU-DM postulate. 

In the AS case, both the DU-RM and RU-DM decision postulates lead to exactly the 

same model (further, when the error terms k  are assumed to be extreme value and 

independently and identically distributed (IID) across alternatives, the resulting model collapses 

to the surprisingly simple MDCEV model after using a logarithm transformation on the KKT 

conditions of Equation (13), as illustrated by Bhat, 2008). Since the two postulates are 

empirically indistinguishable, one can use either postulate to motivate the model. However, this 

ceases to be the case when moving from the AS utility form to the non-additively separable 

(NAS) utility functional form. In the next two sections, we discuss the DU-RM and RU-DM 

formulations, and show how a formulation that combines these two formulations in a random 

utility-random maximization (RU-RM) decision postulate is particularly convenient and general 

for the NAS case. 

 

3.2.1 The DU-RM non-additively separable (NAS) utility formulation and model 

Consider the NASUF of Equation (6). For this deterministic utility form, the corresponding 

deterministic KKT conditions are: 
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6 In the DU-RM viewpoint, the introduction of stochasticity within the KKT conditions has nothing to do with the 
random utility structure in Equation (12), and can be technically done in many different ways as long as the values 
of the random elements are admissible. In this regard, the consideration of stochasticity in the KKT conditions by 
including )exp( k  in the leading term on the left side of Equation (13) (with 

k  spanning the real line) is helpful, 

because the KKT conditions can be rewritten in an equivalent logarithmic form with 
k  appearing linearly in the 

transformed  conditions. On the other hand, for example, including 
k  directly in the leading term on the left side of 

Equation (13) would result in a logarithm version of the KKT conditions that would involve )ln( k , which, if 
k  

spanned the real line, would result in inadmissible maximization errors. Thus, even in the subsequent NAS forms to 
be discussed later, we will maintain the exponential form of introduction of maximization errors in the KKT 
conditions.  
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where k~  is the baseline marginal utility as provided in Equation (4). Stochasticity may be 

introduced explicitly in the KKT conditions in the usual multiplicative exponential form as 

follows (again, other ways to introduce stochasticity in the KKT conditions): 

,01)exp(

1













k
k

k
kk p

x
k





*

~  if 0*
kx , Kk ,2,...,1  (16) 

,01)exp(~
1*













k
k

k
kk p

x
k







 if 0*
kx , Kk ,2,...,1 . 

Note that, unlike in the AS case, one cannot develop an analytic random utility specification that 

corresponds to the KKT stochastic conditions in the equation above. This is an important issue, 

because a random utility formulation should typically start from the introduction of stochasticity, 

conceptualized in a specific way. 

The optimal demand satisfies the conditions in Equation (16) plus the budget constraint. 

The structure is now exactly the same as the model of Bhat (2005, 2008). Specifically, consider 

an extreme value distribution for k  and assume that k  is independent of k , k , and k  

( Kk ,2,...,1 ). The k  terms are also assumed to be IID across alternatives with a scale 

parameter of   (  can be normalized to one if there is no variation in unit prices across goods; 

see Bhat, 2008 for a detailed discussion of identification issues). In this case, the probability 

expression collapses to the following MDCEV closed-form: 
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where the first alternative is an alternative to which the consumer allocates some non-zero 

budget amount (note that the consumer should allocate budget to at least one alternative, given 

that the total expenditure across all alternatives is a positive quantity). To write these Jacobian 

elements, define hizih    if  1 , and .  if  0 hizih   Also, define the following: 
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Then, the elements of the Jacobian can be derived to be:7 
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. Unfortunately, there is no concise form for the determinant of the 

Jacobian for 1M  (unlike the case of the additively separable case, where Bhat derived a 

simple form for any value of M). When 1M  (i.e., only one alternative is chosen) for all 

individuals, there are no satiation effects ( 1k  for all k), )(  , 0 mkmkkm   and the 

Jacobian term drops out (that is, the continuous component drops out, because all expenditure is 

allocated to good 1). Then, the model in Equation (17) collapses to the standard MNL model. 

In estimating the DU-RM model, as discussed in Section 2.1.1, we should ensure 0~ k  

for each good k. This is recognized in the logarithmic transformation of k~  appearing in kV . At 

the same time, we also require that 0k , which is ensured (as in the AS case) by writing 

)exp( kk zβ . Also, since only differences in the kV  from 1V  matters in the KKT conditions, a 

constant cannot be identified in the term for one of the K alternatives. Similarly, individual-

specific variables are introduced in the kV ’s for (K-1) alternatives, with the remaining alternative 

serving as the base (these are the equivalent of the identification condition of 1 k
k

  usually 

imposed in flexible function forms). The parameters in the DU-RM NAS-based model may be 

estimated in a straightforward way using the maximum likelihood inference approach. However, 

it is difficult to motivate generalized extreme value error structures and variable-specific random 

                                                 
7 The derivation is rather straightforward, but requires some cumbersome differentiation. Interested readers may 
obtain the derivation from the authors. 
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coefficients in the context of the DU-RM formulation. These extensions, however, are quite 

natural in the context of the RU-DM decision postulate, which we discuss in the next section. 

For the DU-RM formulation with an essential outside good, the econometrics simplify 

considerably. One can go through the same procedure as earlier by writing the KKT conditions 

and introducing stochasticity corresponding to the deterministic utility expression in Equation (9) 

instead of Equation (6). For the outside good (say, the first alternative), we have the following: 

.1 and  ,1  ,0 111  pzβ  The final expression for probability in this outside good case is the 

same as in Equation (17) with the following modifications to the kV  terms: 
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The Jacobian elements in this case simplify relative to Equation (20), with )1( 01  kmm . 

The elements now are given as follows: 
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3.2.2. The RU-DM non-additively separable (NAS) utility formulation and model 

Consider the following stochastic NASUF for the no-essential good case:  
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where k  is an IID (across alternatives) random error term with a scale parameter of   (  can 

be normalized to one if there is no variation in the unit prices across alternatives). k  captures 

idiosyncratic (unobserved) characteristics that impact the baseline (marginal) utility of good k at 

the point at which no expenditure outlays have yet been made on any alternative.8 The KKT 

conditions then are: 

                                                 
8 Vásquez-Lavín and Hanemann instead write the utility function as: 
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x , and use an error 

distribution for 
k  that spans the entire real line (specifically, a normal or an extreme value distribution). The 

problem with this structure is that it allows negative values for the baseline utility )( kk    at every consumption 

point, which is theoretically inappropriate since this term has to be positive for )(xU  to be a valid utility function. It 



20 

01

1













k
k

k
k p

x
k





*

, if 0*
kx , Kk ,2,...,1  (24) 

01

1













k
k

k
k p

x
k





*

, if 0*
kx , Kk ,2,...,1 ,  

where kkkk W )exp(  and 
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Define k  as in Equation (19). Let k
k

k WR 

 1

1  and )exp( kk zβ  , and let the first 

alternative be the one to which the consumer allocates some non-zero budget amount. Then, the 

KKT conditions may be simplified as follows: 
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Next, let )exp( kkζ  , and assume that (.)g  and (.)G  are the standardized versions of the 

probability density function and standard cumulative distribution function characterizing kζ . 

Then, the probability that the individual allocates expenditure to the first M of the K goods may 

be derived to be: 
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where (.)f  refers to the density function characterizing 1ζ , and 1|MJ  is the Jacobian whose 

elements are given by ( 1,2,...,1,  Mhi ): 

                                                                                                                                                             
is not at all clear to this author why they use this approach for the “no essentials good case”, but resort to the use of 
the exponential of k (as we do in Equation 23) for the case of the presence of an essential good. As we show, the 

derivation of the probability structure is feasible and tractable even in the case of the use of the more theoretically 
appropriate Equation (23). Further, we are able to obtain a conditionally closed-form expression for the Jacobian, 
which allows us to estimate the model very quickly (VH suggested that “there is no simple solution for the Jacobian 
that can be generalized to any consumption pattern”, which is not the case).  
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In the above expression, hizih    if  1 , and hizih    if  0  and 
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( Kk ,2,...,1 ). 

The probability expression in Equation (26) is a simple one-dimensional integral, which 

can be computed using quadrature techniques. Note that the distribution for k  can be any 

univariate distribution, though the normal distribution may be convenient if there are also 

random normal coefficients in the β  vector to capture unobserved individual heterogeneity (then 

the one-dimensional normal integral becomes simply a part of a multi-dimensional normal 

integration that can be evaluated using familiar simulation techniques). Such a random-

coefficients specification allows a flexible covariance structure between the elements of the β  

vector, and can also include covariances among the baseline utilities of alternatives (as in a 

mixed multinomial logit structure). The model may be estimated using traditional maximum 

likelihood techniques, as for the DU-RM formulation. Note, however, that the marginal utility of 

1any good at any point of consumption should be positive (for increasing utility functions). This 

condition is met by setting 0k   (see Equation (24)) for each good k. 

When an essential good is present, the econometrics again simplify considerably. For the 

essential good (say, the first alternative), we have the following: 01 W , 01 zβ , 11  , 

11 p , and )exp( 1111   ζ . The stochasticity is introduced here similar to VH (2008). The 

random utility function in this case originates from Equation (9) and takes the following form 

(again, this is not the same as the VH-UF, because the VH-UF retains the ),...,3,2( Kkkk   

terms, while our NASUF removes these terms for the reasons mentioned earlier): 
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The probability expression takes the same form as in Equation (26) with the following 

modifications to the k  terms: 
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The Jacobian elements again can be computed in closed form and are as follows 

( 1,...,2,1,  Mhi ): 
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3.2.3. The RU-RM non-additively separable (NAS) utility formulation and model 

Consider the random utility function of Equation (23) for the case with no essential good. The 

KKT conditions are given by Equation (24), but we now add stochasticity originating from 

consumer mistakes in the optimizing process. The KKT conditions take the form shown below: 

,01)exp(
1*













k
k

k
kk p

x
k







 if 0*
kx , Kk ,2,...,1  (31) 

,01)exp(

1













k
k

k
kk p

x
k





*

 if 0*
kx , Kk ,2,...,1 , 

where k  is as defined earlier in Equation (24) (and has the error term k  embedded within), and 

the k  terms are independent and identically (across alternatives) extreme value distributed. 

Recall that the k  terms represent stochasticity due to the analyst’s inability to capture consumer 

preferences, while the k  terms represent stochasticity due to consumer errors in utility 

maximization. Let ).,...2,1(  )/6()()( 22 KkVarVar kk   9 In the RU-RM formulation, we 

assume that the k  terms are normally distributed. This is particularly convenient when one 

wants to accommodate a flexible error covariance structure through a multivariate normal-

distributed coefficient vector β  and/or account for covariance in utilities across alternatives 

through the appropriate random multivariate specification for the k  terms. To develop the 

probability function for consumptions, let  )/6()( 222  kVar  and 

                                                 
9 As earlier, we will impose the normalization that 12   if there is no price variation across the alternatives.  
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)/6)(1()( 222  kVar  ),...,2,1( Kk  , where   is a parameter to be estimated ).10(    

Then, if ,0  and when there is no covariance among the k  terms across alternatives, the 

RU-RM formulation approaches the RU-DM formulation of Section 3.2.2 in which the scale 

parameter   is innocuously rescaled to   )6/( , so that the variance of the error terms k  in 

the RU-DM formulation is comparable to the variance of the corresponding terms in the RU-RM 

formulation. However, as ,1  the RU-RM formulation approaches the DU-RM formulation. 

Thus, the parameter   determines the extent of the mix of the RU-DM and DU-RM decision 

postulates leading up to the observed behavior of consumers. One can impose the constraint that 

10    through the use of a logistic transform ))exp(1/(1 *   and estimate the 

parameter .*  

The probability expression for consumptions in the RU-RM model formulation takes the 

following mixed MDCEV form: 
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, kkkk W )exp( , kW  is defined as earlier, 

and F  is the multivariate normal distribution of the random element vector ),...,,( 21 Kξ  

(each of whose elements has a variance of .) )/6)(1( 222   The elements of the Jacobian are 

given by: 
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When there is an essential outside good, the probability expression remains the same as 

in Equation (33), but with 







 1)ln1(ln)ln(

k

k
kkkk

x
pV




*

 ( )2k , 

))ln(1( 1111   *xV , )1( 01  mmm , 01 W , 01 zβ , 11  , 11 p , and 

)exp( 11   . The Jacobian elements in this case are given as follows: 
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Similar to the earlier two formulations, the theoretical condition that the marginal utility 

of consumption for any alternative should always be positive must be ensured during model 

estimation. Thus, we should ensure 0k   for each good k. 

 

4. EMPIRICAL DEMONSTRATION 

4.1. The Context  

In 2010, transportation expenses accounted for nearly 20% of total household expenses and 12-

15% of total household income (U.S. Bureau of Labor Statistics, 2012). In fact, this is the second 

largest family expense category after housing, with an average expenditure of $7,677 per year 

(or, equivalently, about $650 per month). It is little surprise, therefore, that the study of 

transportation expenditures has been of much interest in recent years (Gicheva et al., 2007, 

Cooper, 2005, Hughes et al., 2006, Thakuriah and Liao, 2006, Choo et al., 2007a,b, Sanchez et 

al., 2006). Several of these studies examine the factors that influence total household 

transportation expenditures and/or examine transportation expenditures in relation to 

expenditures on other commodities and services (such as in relation to housing, 

telecommunications, groceries, and eating out). But there has been relatively little research on 

identifying the many disaggregate-level components of transportation expenditures, with all 

transportation expenditures usually lumped into a single category. Besides, many of these earlier 

efforts use the almost ideal demand system (AIDS) proposed by Deaton and Muelbauer (1980), 

which assumes that all families expend their budgets in all possible expenditure categories (that 

is, the AIDS model does not allow corner solutions, as does our proposed model).  

In the current paper, we demonstrate the use of the proposed model for an empirical case 

of household transportation expenditures in six disaggregate categories: (1) Vehicle purchase, (2) 

Gasoline and motor oil (termed as gasoline in the rest of the document), (3) Vehicle insurance, 

(4) Vehicle operation and maintenance (labeled as vehicle maintenance from hereon), (5) Air 

travel, and (6) Public transportation. In addition, we consider all other household expenditures in 

a single “outside good” category that lumps all non-transportation expenditures, so that total 

transportation expenditure is endogenously determined. Households expend some positive 

amount on the “outside good” category, while expenditures can be zero for one or more 
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transportation categories for some households. A non-additively separable utility form is adopted 

to accommodate rich substitution patterns as well as to allow complementarity among the 

transportation expenditure categories.  

Data for the analysis is drawn from the 2002 Consumer Expenditure (CEX) Survey, 

which is a national level survey conducted by the U.S. Census Bureau for the Bureau of Labor 

Statistics (U.S. Bureau of Labor Statistics, 2003). This survey has been administered regularly 

since 1980 and is designed to collect information on incomes and expenditures/buying habits of 

households in the United States. In addition, information on individual and household socio-

economic, demographic, employment and vehicle characteristics is also collected. Details of the 

data and sample extraction process for the current analysis are available in Ferdous et al. (2010). 

Essentially, the 109 categories of expenditure and income defined by the CEX were 

consolidated, defining 17 broad categories of annual expenditures (including the six categories of 

transportation expenditures identified in the previous paragraph). Next, the 11 non-transportation 

categories were all grouped into a single “outside good” category, and the proportion of total 

expenditures (across the six transportation categories and the “outside good” category) spent in 

each of the six transportation categories and the “outside” non-transportation category were 

constructed as the dependent variables in the analysis. 

The final sample for analysis includes 4100 households. About one-quarter of the sample 

reports expenditures on vehicle purchase. 94% of the sample incurs expenditures on gasoline, 

and 90% of the sample indicates vehicle maintenance expenses (the association between these 

two numbers is not surprising, because almost all households that do not expend money in 

gasoline also do not expend money on vehicle maintenance; further, most of these same 

households have some positive expenditure in the public transportation category). About 80% of 

the sample has vehicle-insurance related expenses, suggesting that a sizeable number of 

households operate motor vehicles with no insurance or have insurance costs paid for them 

(possibly by an employer or self-employed business). About one-third of the sample reports 

spending money on each of the two categories of public transportation and air travel. Only 2.6% 

of the households expend no money in transportation-related expenses. These households may 

undertake trips using non-motorized modes, or rely on someone else to travel. Altogether, 

expenditures on transportation-related items account for about 15% of household income, a 

figure that is quite consistent with reported national figures. Of the 4100 households, a random 
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sample of 3600 households was used for model estimation and the remaining sample of 500 

households was held for out-of-sample validation. 

 

4.2 Model Specification and Estimation  

The additively separable (B-ASUF) and non-additively separable (NASUF) models were 

estimated using the GAUSS matrix programming language.10 We first estimated the best 

empirical specification for the MDCEV model (assuming the B-ASUF form) based on intuitive 

and statistical significance considerations, and then explored alternative specifications for the 

interaction parameters in the NASUF model for the three stochastic formulations proposed. The 

- profile of Equation (7) was used in all specifications, since it consistently provided a better 

model fit than the - profile (this - profile is similar to the translog-type utility form). Also, 

the 1  value for the essential good was set to zero for estimation stability. 

In the absence of interactions between the sub-utility functions of different alternatives, 

the DU-RM formulation collapses to the simple MDCEV model, while the RU-DM formulation 

collapses to an AS MDC model with IID normal (or probit) error terms (label this as the MDCP 

for MDC probit model). Thus, for model evaluation purposes, the analyst can compare the 

performance of the DU-RM model to its special case MDCEV and that of the RU-DM model to 

its special case MDCP. The RU-RM formulation utilizes a combination of extreme value error 

terms and normally distributed error terms for the consumer’s mistakes and the analyst’s errors, 

respectively. Thus, for this last formulation there is no direct B-ASUF-based model for 

comparison purposes. However, as discussed in Section 3.2.3, the RU-DM and DU-RM 

formulations are limiting case of the RU-RM formulation.  

The estimation of the three model formulations was undertaken to explicitly consider the 

constraint that the marginal utility of any good at any consumption point for each good k should 

always be positive. In the current empirical application, our attempts to use the constrained 

maximum likelihood module of GAUSS to estimate the models encountered estimation 

instability and convergence problems. Therefore, the models were estimated using the traditional 

maximum likelihood module of GAUSS, while checking for the positivity of the marginal utility 

at each iteration and heuristically updating parameters to cause the least departure from the 

                                                 
10 GaussTM, Aptech Systems Inc., Chandler, AZ, USA, http://www.aptech.com. 
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iteration-search parameters and still ensuring positivity if positivity was not maintained (in most 

iterations, positivity was maintained automatically). The DU-RM NAS model was estimated 

imposing 0~ k  for each good k (see Equation (6)), since the term k~  is inside a logarithmic 

function. For the RU-DM and RU-RM NAS models, the baseline marginal utility is given by 

1

1













k

k

k
k

x





*

. Because the term 

1

1













k

k

kx




*

is always positive, we have to constrain 0k . In 

the estimation of the RU-DM and RU-RM NAS model formulations, we imposed the more 

restrictive condition 0kW  to ensure that the condition is fulfilled for all values of k  ( k  is 

embedded in k ; see Equation (24)). Quadrature techniques for log-normally distributed 

variables were used to evaluate the integral in Equation (26) for the RU-DM NAS model 

formulation (details are available from the authors). To evaluate the multivariate integral of 

Equation (32) for the RU-RM NAS model, we used the Halton sequence to draw realizations for 

),...,,( 21 Kξ  from a normal distribution, assuming in the empirical analysis that these error 

terms are independent and identically distributed across alternatives. Details of the Halton 

sequence and the procedure to generate this sequence are available in Bhat (2000, 2001, 2003). 

We tested the sensitivity of parameter estimates with different numbers of Halton draws per 

observation, and found the results to be very stable with as few as 75 draws. In this analysis we 

used 100 draws per household in the estimation. 

 

4.3 Model Results  

The estimation results are provided in Table 1. At the outset, we should note that the intent of 

this empirical analysis is not to contribute in a substantive way to an analysis of household 

expenditures. Rather, the emphasis is on demonstrating the applicability of the three different 

NASUF formulations proposed in this paper, and showing the advantage of the NASUF 

formulations relative to the B-ASUF formulations. To that extent, the focus is on in-sample and 

out-of-sample data fits of the NASUF and B-ASUF formulations, as well as on demonstrating 

the significant presence of NAS interaction parameters in our NASUF models.  

Table 1 is organized in three main columns. The first main column provides the 

parameters estimates of the DU-RM NASUF model and its restrictive B-ASUF formulation (that 

is, the MDCEV formulation), while the second main column presents the results of the RU-DM 
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NAS model and its restrictive B-ASUF formulation (that is, the MDCP formulation). The third 

column provides the parameters estimates of the RU-RM NASUF model. As discussed in 

Section 3, one of the alternatives forms the base category for the introduction of the family-

specific variables in the baseline utility in Table 1. This base alternative is the essential outside 

good, which is the non-transportation good category in the current analysis. If, in addition, some 

transportation categories do not appear for a variable in Table 1, it implies that these 

transportation categories also constitute the base expenditure category along with the non-

transportation category. For example, for the effect of “Number of workers in the household”, 

the base categories include the non-transportation category as well as the air travel and public 

transportation categories. A positive (negative) coefficient for a certain variable-category 

combination implies that an increase in the explanatory variable increases (decreases) the 

likelihood of budget being allocated to that expenditure category relative to the base expenditure 

categories.  

Overall, the empirical results are intuitive. Also, while there are differences in the 

estimated coefficients between the AS and NAS models, the general pattern and direction of 

variable effects are similar. Regarding the baseline parameters ( β ), the alternative specific 

constants in the baseline utility for all the transportation categories are negative, indicating the 

generally higher baseline utility of the “outside” non-transportation good category relative to 

each transportation category (this is a reflection of the higher expenditure on the outside good 

than on the transportation categories). Similar to the results found by Thakuriah and Liao (2005), 

as the number of workers in the household increases, so does the proportion of income allocated 

to all vehicle-related transportation expenses, presumably to support the transportation needs of 

multi-worker households (an exception is in the RU-DM model, in which the coefficient 

associated with vehicle insurance is negative but statistically insignificant). The effect of income 

was considered in a continuous linear form, in a piecewise linear form to introduce non-

linearities, as well as in the form of dummy variables for specific income categories. At the end, 

a dummy variable specification with low income (less than 30K), mid-range income (30-70K), 

and high income (>70K) provided the best results. The effect of this discrete representation of 

income is incorporated with the low income category constituting the base category (and so the 

low income category does not appear in Table 1). The results indicate that, relative to families in 

the low income group, families in the middle and high income groups expend a higher proportion 
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of their income on vehicle purchases and air travel. These families also spend a lower proportion 

of their income on gasoline relative to the low income group, suggesting that gasoline 

expenditures constitute a particularly high proportion of the income budgets of low income 

families. A detailed discussion of this result from a social and environmental justice perspective 

can be found in Deka (2004). Households with more vehicles tend to allocate a larger proportion 

of their income to all the transportation categories, except on public transportation. Finally, non-

Caucasians, those residing in urban areas, and those living in the Northeast and West regions of 

the U.S. spend a higher proportion on public transportation than Caucasians, those residing in 

non-urban areas, and those living in the South and Midwest regions of the U.S, respectively. 

The satiation parameters ( k ) in Table 1 capture the variation in the extent of non-

linearity across different expenditure categories. The satiation parameter is highest for the 

vehicle purchase category, indicating that households are likely to allocate a large proportion of 

their budget to acquiring a vehicle, if they expend any money in this category. The satiation 

parameter is lowest for gasoline, indicating that households allocate a relatively small proportion 

of their overall budget in gasoline consumption.  

Several interaction parameters ( km ) are statistically significant in the final model 

specification presented in Table 1. Many of these effects are complementary effects. Thus, the 

interaction parameters of the DU-RM NASUF model indicate a significant complementary effect 

in vehicle purchase and gasoline expenditures, and in vehicle purchase and vehicle maintenance 

expenditures. Also, as expected, there are complementary effects in the expenditures on gasoline, 

vehicle insurance, and vehicle maintenance, as well as between air travel and public 

transportation expenditures. This last complementary effect perhaps reflects the use of public 

transportation to get to/from the airport and the use of public transportation at the non-home end. 

On the other hand, there are particularly sensitive substitution effects in gasoline and air 

transportation expenditures, presumably a reflection of the choice between auto travel and air 

transportation mode travel for long-distance trips. For the RU-DM NASUF model, only 

complementarity effects were statistically significant, which align with the results of the DU-RM 

NASUF models. The RU-RM model interaction parameters show significant complementarity 

effects similar to those from the DU-RM and RU-DM models, along with a strong substitution 

effect between vehicle purchase and public transportation expenditures. This latter substitution 
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effect is more intuitive than the complementary effect between vehicle purchase and public 

transportation expenditures, as implied by the RU-DM model.  

As mentioned in Section 3.2.3, the RU-RM NASUF combines the RU-DM and DU-RM 

postulates of consumer behavior via the parameter  . In the current empirical analysis, we 

obtained 379.0 . The parameter is statistically different from zero (with a t-stat of 58.51 as 

shown in Table 1) and statistically different from one (with a t-stat of 95.60). The   parameter 

is closer to zero than it is to one, indicating that the predominant source of stochasticity (62%) is 

due to the analyst’s errors in characterizing the consumer’s utility function. To a lesser extent 

(38%), stochasticity arises also from the random “mistakes” consumers make during utility 

maximization.  

  

4.4. Model Evaluation 

In this section, we compare the model performance of the B-ASUF and NASUF models, both in 

the estimation sample of 3600 households as well as a validation sample of 500 households.  

In terms of model fit in the estimation data, the log-likelihood value at convergence of the 

DU-RM NASUF model is -36,645, while that of the MDCEV model is -37,045. A likelihood 

ratio test between these two models returns a value of 799, which is larger than the chi-squared 

statistic value with 7 degrees of freedom at any reasonable level of significance, indicating the 

substantially superior fit of the DU-RM NASUF model compared to the MDCEV model. 

Similarly, the log-likelihood value at convergence of the RU-DM NASUF model is -35,086, 

while the same figure for the MDCP model is -35,269. The likelihood ratio test between the RU-

DM and MCDP models is 366, which again indicates a statistically significant difference in data 

fit between the models. The log-likelihood value at convergence of the RU-RM NASUF model 

is -34,168, which is considerably higher than the corresponding value for the MDCEV and 

MDCP models. The RU-RM model log-likelihood is also far superior to the log-likelihood 

values of the DU-RM and RU-DM models, underscoring the presence of stochasticity on the part 

of both the analyst and the consumer. Between the DU-RM and RU-DM models, the latter 

performs better than the former.  

To further compare the performance of the B-ASUF models (that is, the MDCEV and 

MDCP models) with the NASUF models, we computed an out-of-sample log-likelihood function 

(OSLLF) using the validation sample of 500 observations. The OSLLF is computed by 



31 

computing the predictive log-likelihood in the out-of-estimation (i.e., validation) sample. As 

indicated by Norwood et al. (2001), the model with the highest value of OSLLF is the preferred 

one, since it is most likely to generate the set of out-of-sample observations. Table 2 reports the 

OSLLF values for the entire validation sample (of 500 households) as well as for different socio-

demographic segments within the sample. As can be observed from the first row, the OSLLF 

value for the DU-RM model is better than for the MDCEV model, and the OSLLF value for the 

RU-DM model is better than for the MDCP model. This result is also maintained, in general, for 

all socio-demographic segments.  Also, in general, the RU-RM formulation outperforms all other 

formulations, except in a few isolated segments with few observations.  

In summary, the data fits of the NASUF models are superior to that of the B-ASUF 

models in both the estimation and validation samples. 

 

5. CONCLUSIONS 

Classical discrete and discrete-continuous models deal with situations where only one alternative 

is chosen from a set of mutually exclusive alternatives.  Such models assume that the alternatives 

are perfectly substitutable for each other. On the other hand, many consumer choice situations 

are characterized by the simultaneous demand for multiple alternatives that are imperfect 

substitutes or even complements for one another. Traditional MDC models developed in the 

literature assume that the marginal utility of a good is independent of the consumption amounts 

of other goods because of the use of an additively-separable utility form. This prevents the 

possibility of complementarity among goods and rich substitution patterns. The current paper 

develops model formulations that allow complementarity effects and richer substitution patterns 

than the traditional MDC models. The proposed formulations are easy to estimate and reduce 

inconsistency problems relative to the non-additive form used by Vásquez-Lavín and Hanemann 

(2008). An important consideration in such extended MDC models is the introduction of 

stochasticity. We introduce three different ways to incorporate stochasticity to develop three 

possible models for non-additively separable utility functions (NASUFs). In the first stochastic 

formulation, labeled as the deterministic utility–random maximization or DU-RM decision 

postulate, consumers are assumed to make random mistakes in maximizing utility. In the second 

stochastic formulation, labeled as the random utility-deterministic maximization or RU-DM 

decision postulate, consumers are assumed to know all relevant factors impacting their choices 
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and make an error-free maximization of overall utility, but the analyst is not aware of all the 

factors influencing consumer’s choice. The third stochastic formulation combines the two 

previous postulates into a random utility-random maximization (RU-RM) decision postulate.  

 The proposed model formulations should have several applications. In the current paper, 

we demonstrate the application of the formulations to the empirical case of household 

transportation expenditures in six disaggregate categories: (1) Vehicle purchase, (2) Gasoline and 

motor oil, (3) Vehicle insurance, (4) Vehicle operation and maintenance, (5) Air travel, and (6) 

Public transportation. In addition, we consider other household expenditures in a single “outside 

good” category that lumps all non-transportation expenditures, so that total transportation 

expenditure is endogenously determined. Households expend some positive amount on the 

“outside good” category, while expenditures can be zero for one or more transportation 

categories for some households. Data for the analysis is drawn from the 2002 Consumer 

Expenditure (CEX) Survey, which is a national level survey conducted by the US Census Bureau 

for the Bureau of Labor Statistics. The results of the DU-RM, RU-DM and RU-RM non-

additively separable formulations suggest statistically significant complementary and substitution 

effects in the utilities of selected pairs of transportation categories, and show the substantially 

superior data fit of the proposed formulations relative to ones that assume an additively separable 

utility structure. The proposed non-additive separable models performed better in a validation 

sample as well.  

In summary, the paper has successfully formulated and applied different forms of MDC 

models capable of handling complementarity and rich substitution patterns among alternatives. 

One area for further research is to develop more formal and rigorous methods to ensure the 

positivity of the marginal utility (the condition in equation 5) for each observation at each 

estimation iteration. Currently, we aided the estimation procedure by heuristically (and 

somewhat in an ad hoc manner) updating parameters to cause the least departure from the 

iteration-search parameters and still ensuring positivity (if positivity was not maintained 

automatically) of k~  for each good k in the DU-RM model and k  for each good in the RU-DM 

and RU-RM models. 
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Figure 6. Alternative Subutility Profiles (for Good k) with Different kk  and k  Values  
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Table 1. Model Estimation Results 

Variables 

MDCEV and DU-RM Models MDCP and RU-DM Models 
RU-RM NAS 

MDCEV DU-RM NAS MDCP RU-DM NAS 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Baseline Utility Parameters ( β )                     
Baseline Constants                     
  Veh. purchase  -7.126 -70.59  -8.059 -19.59  -5.865 -117.32  -5.279   -88.92  -5.926 -106.70 
  Gasoline/oil  -2.523 -37.62  -2.955 -38.11  -3.280   -79.61  -2.366   -56.75  -3.453 -100.43 
  Veh. insurance  -3.975 -72.08  -4.565 -28.01  -4.116 -106.60  -3.829   -84.00  -4.329 -120.54 
  Veh. maintenance  -3.446 -60.82  -4.247 -30.02  -3.893   -90.77  -3.486   -78.87  -4.169 -135.08 
  Air travel  -6.144 -72.87  -5.487 -50.12  -5.334 -125.56  -4.646 -101.04  -5.931   -76.82 
  Public transp.  -5.819 -42.16  -5.596 -52.95  -5.171   -78.27  -4.489   -52.26  -5.893   -38.35 
Number of workers in household                     
  Veh. purchase   0.182    4.41   0.194    3.59   0.085      3.70   0.060      1.94   0.079      3.62 
  Gasoline   0.209    7.74   0.264    5.78   0.175      8.40   0.184      6.64   0.165    10.64 
  Veh. Insurance   0.081    2.89   0.111    2.52   0.058      3.40  -0.003     -0.14   0.039      2.30 
  Veh. Maintenance   0.192    7.36   0.288    6.02   0.139      8.74   0.116      5.32   0.098      7.71 
Annual HH income 30-70K                      
  Veh. purchase   0.808    7.97   1.368    4.24   0.446       9.69   0.580      9.57   0.513    10.37 
  Gasoline  -0.284   -5.60  -0.337   -3.32  -0.198      -4.27  -0.346     -6.23  -0.219     -7.51 
  Air travel   0.756    8.80   0.414    7.26   0.400      9.10   0.511      9.97   0.330      4.43 
Annual HH income >70K                     
  Veh. purchase   0.805    6.34   1.395    4.07   0.430      6.28   0.525      6.10   0.509      7.88 
  Gasoline  -0.793 -10.89  -0.964   -5.51  -0.656     -8.26  -1.006   -11.18  -0.636   -13.91 
  Veh. insurance  -0.337   -5.26  -0.379   -2.94  -0.308     -5.18  -0.356     -4.66  -0.251     -5.34 
  Air travel   1.189  11.31   0.695    7.16   0.587      8.13   0.670      8.70   0.290      2.80 
Number of vehicles in household                     
  Veh. purchase   0.304  11.75   0.340  10.59   0.171    10.77   0.126      6.82   0.149    11.68 
  Gasoline   0.305  15.70   0.350  12.65   0.263    15.83   0.247    14.26   0.177    20.44 
  Veh. insurance   0.275  14.04   0.317  10.50   0.220    15.14   0.166      9.46   0.151    12.76 
  Veh. maintenance   0.269  13.62   0.326  11.86   0.198    14.87   0.141      9.25   0.105    11.96 
  Air travel   0.073    2.56   0.100    7.30   0.056      3.29   0.007      0.38  -0.030     -1.20 
  Public transp.  -0.122   -3.82  -0.555 -15.84  -0.051     -3.71  -0.131     -8.74  -0.698   -25.25 
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Table 1. Model Estimation Results (cont.)  

Variables 

MDCEV and DU-RM Models MDCP and RU-DM Models 
RU-RM NAS 

MDCEV DU-RM NAS MDCP RU-DM NAS 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Baseline Utility Parameters ( β )                     
Non-Caucasian HH – Public transp.   0.417    5.29   0.559    7.28   0.340    10.22   0.347      6.67   0.712      9.75 
Urban location – Public transp.   0.490    3.96   0.580    6.09   0.261      4.88   0.287      3.78   0.487      3.36 
North East Region – Public transp.   0.722    9.04   0.944  11.10   0.510    14.73   0.585    10.79   0.873    11.32 
Western Region – Public transp.   0.590    8.28   0.709    8.73   0.292      8.60   0.370      7.49   0.398      5.59 
Translation Parameters ( γk )                     
  Veh. purchase 20.888  15.31 21.429  10.95 70.739    12.20 66.645    10.86 80.185      9.82 
  Gasoline   0.196  17.49   0.179    9.57   0.510    17.73   0.348    33.50   0.744    18.24 
  Veh. insurance   0.613  27.13   0.607  17.58   1.176    26.99   1.791    29.67   1.568    26.30 
  Veh. maintenance   0.284  21.08   0.270   17.55   0.879    23.94   1.153    28.82   1.809    23.95 
  Air travel   0.677  19.58   0.500  14.43   1.879    22.90   1.280    20.05   8.314    16.48 
  Public transp.   0.237  19.64   0.160  17.47   0.918    30.57   0.577    26.02   1.330    18.33 
Interaction Parameters ( θkm )                              
   Veh. purchase and gasoline  ‐  ‐   1.278×10-3    3.23 ‐  ‐  1.126×10-3    37.29 -   - 
   Veh. purchase and veh. insurance ‐  ‐  - - ‐  ‐  0.406×10-3    22.78  0.300×10-4      4.36 
   Veh. purchase and veh. maintenance ‐  ‐   0.338×10-3    2.26 ‐  ‐  0.467×10-3    19.41  0.131×10-3      9.98 
  Veh. purchase and air travel ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. purchase and public transp. ‐  ‐  - - ‐  ‐  0.212×10-3      5.70 -0.890×10-4     -4.85 
   Gasoline and veh. insurance ‐  ‐   2.023×10-2    4.53 ‐  ‐  1.954×10-2    32.58  2.436×10-3    10.17 
   Gasoline and veh. maintenance ‐  ‐   5.095×10-2    7.00 ‐  ‐  2.151×10-2    37.93  0.909×10-3      4.95 
   Gasoline and air travel ‐  ‐  -5.023×10-3   -5.81 ‐  ‐  - - -   - 
   Gasoline and public transp. ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. insurance and veh. maintenance ‐  ‐   4.103×10-3    2.90 ‐  ‐  8.879×10-3    25.34  0.366×10-3      4.19 
   Veh. insurance and air travel ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. insurance and public transp. ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. maintenance and air travel ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. maintenance and public transp. ‐  ‐  - - ‐  ‐  - - -   - 
   Air travel and public transp. ‐  ‐   8.623×10-3  14.45 ‐  ‐  1.199×10-3      7.48  9.204×10-3    35.87 
 parameter ‐ ‐ ‐  ‐   0.379    58.51 
Number of parameters 33 40 33 41 40 
Log-likelihood at convergence -37,045 -36,645 -35,269 -35,086 -34,168 
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Table 2. Out-of-sample log-likelihood function (OSLLF) in the Validation Sample 

Sample details 
Number of 

observations 

MDCEV and DU-RM 
Models 

MDCP and RU-DM 
Models RU-RM 

NASUF 
MDCEV 

DU-RM 
NASUF 

MDCP 
RU-DM 
NASUF 

Full validation sample 500 -5575.23 -5518.59 -5271.59 -5263.30 -5179.57 
Number of workers in HH             

  0   14   -147.99   -148.82   -139.89   -142.17   -136.35 

  1 109 -1139.69 -1126.78 -1075.22 -1149.70 -1059.11 

  2 240 -2667.62 -2623.82 -2527.78 -2521.63 -2433.19 

  >2  137 -1619.94 -1619.16 -1528.63 -1520.63 -1515.07 
Household income 
($/year) 

        
    

  < 30K   10   -100.62   -101.93     -95.85     -95.28   -100.27 

  30K-70K 168 -1862.08 -1845.04 -1742.09 -1743.00 -1702.33 

  >70K 322 -3612.53 -3571.61 -3433.48 -3425.01 -3362.76 
Number of vehicles             

  0     9     -98.68     -98.00     -95.69     -96.03   -100.06 

  1   81   -854.90   -846.73   -805.70   -808.38   -783.27 

  2 173 -1763.61 -1746.95 -1671.01 -1689.54 -1690.87 

  More than 2 237 -2858.05 -2826.90 -2698.78 -2666.61 -2571.36 
Race             

  Non-Caucasian   47   -527.42   -520.27   -491.55   -483.70   -494.47 

  Caucasian 453 -5047.80 -4998.31 -4779.76 -4779.63 -4630.92 
Residential location             

  Urban 469 -5217.53 -5167.21 -4933.27 -4929.99 -4855.93 

  Rural   31   -357.72   -351.37   -337.88   -333.33   -321.51 

 

 


