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ABSTRACT 

Traditional multiple discrete-continuous (MDC) models generally predict the continuous 

consumption quantity component reasonably component well, but not necessarily the discrete 

choice component. In this paper, we propose, for the first time, a new flexible closed-form 

MDCEV model that breaks the tight linkage between the discrete and continuous choice 

dimensions of the traditional MDC models. We do so by (1) employing a linear utility function 

of consumption for the first outside good (which removes the continuous consumption quantity 

of the outside good from the discrete consumption decision, and also helps in forecasting), and 

(2) using separate baseline utilities for the discrete and continuous consumption decisions. In the 

process of proposing our new formulation, we also revisit two issues related to the traditional 

MDC model. The first relates to clarification regarding the identification of the scale parameter 

of the error terms, and the second relates to the probability of the discrete choice component of 

the traditional MDC model (that is, the multivariate probability of consumption or not of the 

alternatives). We show why the scale parameter of the error terms is indeed estimable when a  -

profile is used, as well as show how one may develop a closed-form expression for the discrete 

choice consumption probability. The latter contribution also presents a methodology to estimate 

pure multiple discrete choice models without the need for information on the continuous 

consumptions. Finally, we also develop forecasting procedures for our new MDC model 

structure. 

We demonstrate an application of the proposed model to the case of time-use of 

individuals. In a comparative empirical assessment of the fit from the proposed model and from 

the traditional MDCEV models, our proposed model performs better in terms of better predicting 

both the discrete outcome data as well as the continuous consumptions. 

 

Keywords: Multiple discrete-continuous choice models, multiple discrete-continuous extreme 
value model, utility theory, time use, consumer theory. 
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1. INTRODUCTION 

Many choice situations are characterized by the choice of multiple alternatives at the same time, 

as opposed to the choice of a single alternative. These situations have come to be labeled by the 

term “multiple discreteness” in the literature (see Hendel, 1999). In addition, in such situations, 

the consumer usually also decides on a continuous dimension (or quantity) of consumption, 

which has prompted the label “multiple discrete-continuous” (MDC) choice (see Bhat, 2005, 

2008). Specifically, an outcome is said to be of the MDC type if it exists in multiple states that 

can be jointly consumed to different continuous amounts. Earlier studies of MDC situations have 

included such choice contexts as (a) the participation decision of individuals in different types of 

activities over the course of a day and the duration in the chosen activity types, (b) household 

holdings of multiple vehicle body/fuel types and the annual vehicle miles of travel on each 

vehicle, and (c) consumer purchase of multiple brands within a product category and the quantity 

of purchase. In the recent literature, there is increasing attention on modeling these MDC 

situations based on a rigorous micro-economic utility maximization framework.  

The basic approach in a utility maximization framework for multiple discreteness hinges 

upon the use of a non-linear (but increasing and continuously differentiable) utility structure with 

decreasing marginal utility (or satiation). Doing so has the effect of introducing imperfect 

substitution in the mix, allowing the choice of multiple alternatives. The origins of utility-

maximizing MDC models may be traced back to the research of Wales and Woodland (1983) 

(see also Kim et al., 2002; von Haefen and Phaneuf, 2003; Bhat, 2005). More recently, Bhat 

(2008) proposed a Box-Cox utility function form that is quite general and subsumes earlier utility 

specifications as special cases, and that is consistent with the notion of weak complementarity 

(see Mäler, 1974), which implies that the consumer receives no utility from a non-essential 

good’s attributes if she/he does not consume it. Then, using a multiplicative log-extreme value 

error term in the baseline preference for each alternative, Bhat (2005, 2008) proposed and 

formulated the multiple discrete-continuous extreme value (MDCEV) model, which has a 

closed-form probability expression and collapses to the MNL in the case that each (and every) 

decision-maker chooses only one alternative. It also is equally applicable to cases with complete 

or incomplete demand systems (see Castro et al., 2012 for an extended discussion). The MDCEV 

model has now been applied in a wide variety of fields. Some recent examples include 

Yonezawa and Richards (2017) in the managerial economics field, Shin et al. (2015) in the 



2 

technological and social change field, and Wafa et al. (2015) in the regional science field. Of 

course, just as in the case of the traditional single choice models, advanced variants of the 

MDCEV such as the MDCGEV and random-coefficients MDCEV have also been introduced 

and applied (see, for example, Calastri et al., 2017; Bernardo et al., 2015; Pinjari, 2011; Pinjari 

and Bhat, 2010) In addition, some studies have considered the replacement of the log-extreme 

value error term in the baseline preference with a log-normal error term, along with random-

coefficients versions of the resulting MDC probit (MDCP) model (Bhat et al., 2016a; Khan and 

Machemehl, 2017).  

In all of the MDC formulations thus far, there is an implicit assumption that the same 

baseline utility preference influences both the choice of making a positive consumption of a good 

(the discrete choice) as well as constitutes the starting point for satiation effects (that impact the 

continuous choice). This has the effect of very tightly tying the discrete and continuous choices 

in terms of variable effects. However, there may be many reasons why the marginal utility that 

dictates the discrete consumption decision (that is, whether or not to invest in a particular good) 

may be different from the marginal utility once a consumption decision has actually been made. 

First, there may be a need for variety seeking that operates at the pure discrete level of 

consumption that may make a person’s valuation of the discrete consumption decision different 

from the one that forms the basis for the continuous consumption decision. For instance, a person 

may want a specific brand of yoghurt that is consumed in very small quantities simply as an 

occasional consumption break from another substantially consumed brand. Second, there may be 

a branding effect (that is, a prestige/image effect) that operates at the pure discrete level, but does 

not necessarily carry over with the same intensity to the continuous consumption decision. Thus, 

an individual may consume a premium brand simply to signal an exclusive, high-culture, 

sophisticated image, but purchase very little of that good. Third, for many goods, there may not 

be any value gained by investing in a single unit of that good. Indeed, this even brings up the 

question of how to define a unit of a good. More generally, the traditional MDC model assumes 

that consumers make continuous consumption choices of goods in a smooth fashion ranging 

from zero to large amounts of that good. In practice, value may be gained only if some sizeable 

non-zero amount of a good is consumed.   

The tightness maintained by the traditional MDC model can sometimes lead to a situation 

where the continuous consumption amount is predicted well, but not the discrete choice. This has 
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been observed by previous studies (see You et al., 2014; Lu et al., 2017). The reason for this 

situation is that a variable that increases the baseline preference in the traditional MDC model 

has the effect of simultaneously increasing both the probability of non-zero consumption as well 

as the continuous amount of the consumption. While the presence of a satiation effect in the 

traditional MDC model, especially when the satiation effect is allowed to vary across individuals 

based on exogenous variables, can partially account for a high probability of non-zero 

consumption and low continuous amount of consumption (or low probability of non-zero 

consumption and high continuous amount of consumption) for specific individuals, the overall 

utility profile is still constrained because the satiation starts from the same baseline preference 

that also determines the discrete consumption decision. In this paper, we propose, for the first 

time, a new MDC model that breaks this tight linkage between the discrete and continuous 

choice dimensions. We do so by allowing the utility that determines the discrete decision to be 

different from the baseline preference utility that determines the continuous choice.  

In the process of proposing a new formulation for the MDCEV model, we also revisit two 

issues related to traditional MDC models. The first relates to clarification regarding the 

identification of the scale parameter of the error terms in the absence of price variation, and the 

second relates to the probability of the discrete choice component of traditional MDC models 

(that is, the multivariate probability of consumption or not of the alternatives).  

The rest of the paper is structured as follows. Section 2 presents the model formulation 

and forecasting procedure. Section 3 illustrates an application of the proposed model for 

analyzing individual time use. The fourth and final section offers concluding thoughts and 

directions for further research. 

 

2. MODEL FORMULATION 

In this section, we first present Bhat’s (2008) traditional MDC model structure and present two 

important considerations related to this model that have not been discussed in the earlier 

literature. In the presentation, we consider the case of incomplete demand with an essential 

“numeraire” Hicksian outside good and multiple non-essential inside goods. We then proceed to 

the new proposed model formulation.  
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2.1. Traditional MDC Model Structure 

Assume without any loss of generality that the essential Hicksian composite outside good is the 

first good. Following Bhat (2008), the utility maximization problem in the traditional MDC 

model is written as: 
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where the utility function )(xU  is quasi-concave, increasing and continuously differentiable, 

0x  is the consumption quantity ( x  is a vector of dimension )1( K  with elements kx ), and 

k , k , and k  are parameters associated with good k.1  The constraint in Equation (1) is the 

linear budget constraint, where E is the total expenditure across all goods k (k = 1, 2,…, K) and 

0kp  is the unit price of good k (with 11 p  to represent the numeraire nature of the first 

essential good). The function )(xU  in Equation (1) is a valid utility function if 0k , 0k , 

and 1k  for all k. As discussed in detail in Bhat (2008), k  represents the baseline marginal 

utility, k  is the vehicle to introduce corner solutions (that is, zero consumption) for the inside 

goods (k = 2, 3,…, K), but also serves the role of a satiation parameter (higher values of k  

imply less satiation). There is no 1  term for the first good because it is, by definition, always 

consumed. Finally, the express role of k  is to capture satiation effects. When 1k  for all k, 

this represents the case of absence of satiation effects or, equivalently, the case of constant 

marginal utility (that is, the case of single discrete choice). As k  moves downward from the 

value of 1, the satiation effect for good k increases. When kk   0 , the utility function 

collapses to the linear expenditure system (LES) The reader will note that there is an assumption 

of additive separability of preferences in the utility form of Equation (1), which immediately 

implies that none of the goods are a priori inferior and all the goods are strictly Hicksian 

substitutes (see Deaton and Muellbauer, 1980; p. 139). Additionally, additive separability 

                                                 
1 The assumption of a quasi-concave utility function is simply a manifestation of requiring the indifference curves to 
be convex to the origin (see Deaton and Muellbauer, 1980, p. 30 for a rigorous definition of quasi-concavity). The 
assumption of an increasing utility function implies that U(x1) > U(x0) if x1 > x0. 
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implies that the marginal utility with respect to any good is independent of the levels of all other 

goods. While the assumption of additive separability can be relaxed (see Castro et al., 2012), we 

confine attention to the additive separability case in this paper.  

 

2.1.1. Identification of the Scale Parameter of the Error Term in the Baseline Marginal Utility 

Bhat observes that both k  
and k  influence satiation, though in quite different ways: k  

controls satiation by translating consumption quantity, while k  controls satiation by 

exponentiating consumption quantity. Empirically speaking, it is difficult to disentangle the 

effects of k  and k  separately, which leads to serious empirical identification problems and 

estimation breakdowns when one attempts to estimate both parameters for each good. Thus, Bhat 

suggests estimating a  -profile (in which 0k  for all alternatives, and the k  
terms are 

estimated) and an  -profile (in which the k  terms are normalized to the value of one for all 

alternatives, and the k  terms are estimated), and choose the profile that provides a better 

statistical fit. These two utility functions take the following forms: 
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Earlier studies have considered both the above functional forms, and it has been generally the 

case that that  -profile comes out to be superior to the  -profile (see, for example, Khan and 

Machemehl, 2017; Bhat et al., 2016a; Jian et al., 2017; Jäggi et al., 2013). Further, from a 

prediction standpoint, the  -profile provides a much easier mechanism for forecasting the 

consumption pattern, given the observed exogenous variates, as explained in Pinjari and Bhat 

(2011). Thus, in the rest of this paper, we will focus attention on the  -profile. Additionally, to 

ensure the non-negativity of the baseline marginal utility, while also allowing it to vary across 

individuals based on observed and unobserved characteristics, k  is usually parameterized as 

follows: 

 kkk   zβexp , , ,...,2 ,1 Kk   (3) 



6 

where kz  is a set of attributes that characterize alternative k and the decision maker (including a 

constant), and k  captures the idiosyncratic (unobserved) characteristics that impact the baseline 

utility of good k. Because of the budget constraint in Equation (1), only K–1 of the *

kx  values 

need to be estimated, since the quantity consumed of any one good is automatically determined 

from the quantity consumed of all the other goods. Thus, a constant cannot be identified in the β 

term for one of the K alternatives.  Similarly, individual-specific variables are introduced in the 

vector kz  for (K–1) alternatives, with the remaining alternative serving as the base. As a 

convention, we will not introduce a constant and individual-specific variables in the vector 1z  

corresponding to the first outside good.  

To find the optimal allocation of goods, the Lagrangian is constructed and the first order 

equations are derived based on the Karash-Kuhn-Tucker (KKT) conditions. The Lagrangian 

function for the model, when combined with the budget constraint, is: 
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where   is a Lagrangian multiplier for the constraint. The KKT first order conditions for 

optimal consumption allocations ( *
kx ) take the following form: 

kk VV  11  if consumption is equal to *

kx  (k = 2, 3,…, K), where 0* kx  

kk VV  11  if 0* kx  (k = 2, 3,…, K), where (5) 
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111 xV  zβ . 

The likelihood function for the observed consumption pattern depends on the stochastic 

assumptions made on the error terms k . If these error terms are considered identically and 

independently distributed (IID) across alternatives with a type 1 extreme-value distribution, Bhat 

showed that the resulting likelihood function takes a surprisingly simple closed-form expression, 

and he labels the resulting model as the multiple discrete-continuous extreme value (MDCEV) 

model. As correctly pointed out by Bhat (2008), in the MDCEV (or in any other model with IID 

error terms even if not type 1 extreme-value), when one uses the general utility profile of 

Equation (1), it is not possible to estimate the scale parameter   of the error terms k  when 

there is no price variation across the alternatives (equivalently, in more general non-IID error 
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models, a scaling is needed as a normalization). Using the same argument and proof as in Bhat 

(2008), it is easy to see that this same result holds for the case when the actually estimable α-

profile is used. Unfortunately, because Bhat develops the proof for the general case and not 

specific cases, his result appears to have been taken to imply that the scale parameter   is not 

estimable even for the  -profile case (with α fixed) unless there is price variation (all the  -

profile studies to date, as far as we know, have imposed the normalization of one for the error 

scale in the absence of price variation). This is, however, not the case, and the scale parameter is 

estimable for the  -profile with α fixed even if there is no price variation. To see this, in 

standardized form and without price variation, the KKT conditions of Equation (2) for the  -

profile may be written as: 
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The scale parameter is distinctly estimable here because it is essentially the coefficient on the 

natural logarithm term of the continuous consumption quantities in the expressions for *

kV  and 

*

1V  above. On the other hand, as shown in Section 3.2 of Bhat (2008), there is the coefficient 
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1x in the 1V  expression for the first good when the  -profile of Equation (2) is used. Thus, 

when standardizing by dividing kV  and 1V  by  , the   term in )1( k  and in the 

denominator cancel, leaving   inestimable and the *β  vector scaled up or scaled down.2 

                                                 
2 The same situation applies also to a third estimable utility profile in Bhat (2008) in which there is a common α  
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is estimable (though we have not seen this form used often in empirical studies), because the constant α parameter is 
obtaining a “pinning effect” from the satiation parameter for the outside good. Interestingly, but not surprisingly, in 
our test simulation cases, using the expression above or the  -profile with a standard deviation estimated for the 

error terms provided identical likelihood function values. That is, one can use the  -profile with an estimated 
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2.1.2. Multiple Choice Probability 

In earlier studies of the MDC model, the discrete choice probability of positive consumption has 

been typically estimated through a simulation technique where the error terms of alternatives are 

drawn multiple times, and the occurrence of non-zero consumptions of an alternative as a ratio of 

the total error realizations is declared as the probability of the discrete outcome of positive 

consumption (see, for example, Bhat et al., 2016b). However, missing in earlier studies is an 

expression that provides the discrete multivariate probability of consumption across all the 

goods. Here, we explicitly provide a probability expression for the discrete pattern of 

consumption, given the consumption in the outside good, and show that this takes a nice closed-

form expression for the MDCEV model. 

Consider the KKT conditions in Equation (5). However, we rewrite the conditions as 

follows:
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The difference between the KKT conditions as written above and those in Equation (5) is that we 
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standard deviation or the hybrid α and   profile above (but with an identical α value across all the goods), and both 

end up with essentially identical likelihood values, reinforcing the empirical identification problem between the α 
and   parameters discussed in Bhat (2008). We prefer to use the  -profile with an estimated standard deviation 

rather than the hybrid utility profile function above, because the hybrid includes two very different forms of satiation 
behavior and is more difficult to justify conceptually. For the same reason, we also prefer the  -profile with an 

estimated standard deviation to another hybrid variant in Bhat that uses a pure α-profile for the outside good 

combined with a  -profile for the inside goods as in 
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last utility functional form also can run into convergence problems when the scale of the error terms is left free for 
estimation. 
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formulation, we have   .1|)
~

(Prob 11  kkkk VV


  Focusing only on the discrete choice of 

consumption, from the KKT conditions, we can write:  
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*
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consumption of the outside good. Let kd  be a dummy variable that take a value 1 if good k (k = 

2, 3,…, K) is consumed, and zero otherwise. Then, the multivariate probability that the 

individual consumes a non-zero amount of the first M of the K–1 inside goods (that is, the goods 

2, 3,…, M+1) and zero amounts of the remaining K–1–M goods (that is, the goods M+2, M+3,…, 

K), given that the consumption in the outside good is *

1x , takes the following form that combines 

integrals capturing a combination of multivariate survival functions (for the non-zero 

consumption goods) and multivariate cumulative distribution functions (for the zero 

consumption goods): 
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where ),...,,( 32 Kf  represents the multivariate probability density function (pdf) of the 

random variates K ,...,, 32 . Based on the inclusion-exclusion probability law, and for all 

Fretchet class of multivariate distribution functions with given univariate margins, the 

probability expression above can be written purely as a function of multivariate cumulative 

distribution functions (CDFs) corresponding to the random variates as follows: 
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 
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(10)
 

where DF (.) is the multivariate CDF of dimension D, S represents a specific combination of the 

consumed goods (there are a total of 12),(...)3,()2,(  MMMCMCMCM  possible 
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combinations of the consumed goods), |S| is the cardinality of the specific combination S, and 

1,

~
SV  is a vector of utility elements drawn from }

~
,...

~
,

~
{ 1,11,31,2 MVVV  that belong to the specific 

combination S.  The key point to note is that the discrete probability of consumption now is 

solely a combination of CDFs corresponding to combinations of the elements of the random 

vector ),...,,( 32
 Kη  . Thus, for example, this discrete probability entails the evaluation of 

multivariate normal CDFs if the error terms k  in the baseline preference in Equation (3) of the 

MDC formulation are normally distributed (because the vector η of error differentials is then 

multivariate normally distributed). 

Interestingly, in the case of Bhat’s MDCEV model, there is a closed-form expression for 

the discrete probability in Equation (10), an important observation that has not appeared in the 

literature. Specifically, when the k  error terms in the baseline preference in Equation (10) are 

IID extreme value with a scale parameter of   (as assumed to obtain the MDCEV model), the η 

vector is multivariate logistic distributed (see Bhat, 2008). Specifically, the pdf and CDF of the η 

vector are:
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 (11)
 

The CDF of any subset of the η vector is readily obtained from the CDF expression above for the 

entire η vector. For example, the CDF of only the first two elements is: 

.1),(
1

3322

32










 

hh

eehhF            (12) 

Thus, by plugging the appropriate CDF functions in the expression of (10), one can obtain a 

closed-form expression for the probability of any pattern of discrete consumption of the many 

alternatives in the MDCEV model.  

The closed form expression for this multivariate discrete probability in the MDCEV 

model can aid in forecasting. In particular, once the parameters are estimated, one can compute 

the ),...,3 ,2(
~

1, KkVk   values using Equation (7) and determine the discrete choice probability of 

each of the possible )12( 1 K combinations of consumption of the goods. For each combination, 
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the continuous consumption quantities can be estimated (see Pinjari and Bhat, 2011). The 

consumption quantity of each good is then simply the weighted (based on the probability of each 

combination) sum of the estimation consumption of that good across all combinations. 

Alternatively, the analyst can sequence the many combinations of possible discrete consumptions 

and place the corresponding probabilities (as computed using Equation (10)) in the same 

sequence to span the 0-1 probability scale. The analyst can draw a random number between 0 to 

1 and, depending upon where this falls in the probability scale, one can identify the forecast 

discrete consumption pattern.  Once the discrete forecasting is done, the continuous consumption 

quantities can be computed. To do so, the analyst can draw extreme value error realizations for 

each consumed good (including the outside good) from  the extreme value distribution with 

location parameter of 0 and the scale parameter equal to the estimated   value (label this 

distribution as EV(0, )̂ ). For each set of error realizations for these consumed goods, the analyst 

can compute the consumption quantities using Equations (15) and (16) from Pinjari and Bhat 

(2011), and then take the mean of the consumption quantities across the many realizations.  

 There is one problem though when using the  -profile of Equation (2) with the 

forecasting approach above. In particular, the expressions for ),...,3 ,2(
~

1, KkVk   include *

1ln x , 

which implies that the prediction of the continuous value of the outside good needs to be known 

in computing the discrete probability expressions in Equation (10). But the value of *

1ln x  itself 

depends on which specific discrete combination of alternatives is consumed. Also, while *

1ln x  is 

available for the estimation sample, and the forecasting procedure above may be used to estimate 

the discrete choice probabilities for the estimation sample, *

1ln x  is not available outside the 

estimation sample. Indeed, *

1x  is part of what needs to be forecasted. In this regard, an alternative 

specification is needed where *

1ln x  does not appear in the expressions for 1,

~
kV if the forecasting 

procedure above is to be used. More generally, the presence of *

1ln x  is part of what creates the 

tight connection between the discrete and continuous consumptions of the MDC model, which 

can be relaxed with an alternative utility specification, as we discuss next. 
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2.2. A New Flexible MDC Model 

The traditional MDC model uses a single baseline utility k  that dictates both the discrete and 

consumption decisions, and has the continuous consumption of the outside good appear in the 

discrete consumption decision. This can compromise the ability of the traditional MDC model to 

predict the discrete decision well. This may also be clearly seen from the KKT conditions of the 

traditional model from revisiting Equation (7). Specifically, the probability that an individual 

consumes ),...,( *

1

*

3

*

2 Mxxx  of the first M of the K–1 inside goods, in addition to an amount *

1x of 

the first good, and does not consume the remaining K–1–M goods may be written as: 

, )
~

,...
~

,,...,
~

,...
~

(

|| )0,0,0,,,(

1,1,221,11121,11212

*
1

*
2

*
1

KKMMMMkMM

M

VVVVVVP

JxxxP













  (13) 

where | |J  is the determinant of the Jacobian matrix obtained from applying the change of 

variables calculus between the stochastic KKT conditions and the consumptions. The traditional 

MDC model recognizes, correctly, that 1 ,...,3 ,2for1)(|)
~

(Prob 11  MkVV kkkk


  (see 

earlier) and so writes the expression above equivalently as: 

. )
~

,...
~

,,...(

|| )0,0,0,,,(

1,111,221,1112

*
1

*
2

*
1









MMMMMMk

M

VVVVP

JxxxP





        (14) 

Thus, the traditional MDC model does not partition into distinct discrete choice and continuous 

choice components. Specifically, during estimation, the parameters associated with the 

consumed goods are estimated solely based on fitting to the equality conditions 

1,1112 ,....   MMk VV


 , with no regard to whether the multiple discrete choice condition is also 

fit well. Intuitively speaking, the traditional MDC model simultaneously estimates the baseline 

marginal utility and the k  parameters (that control satiation) for the consumed goods so that the 

level of consumption is generally fitted reasonably well (with zero consumption simply being 

one possible continuous consumption value). But, in doing so, for example, it can attribute a very 

high baseline utility for an alternative and adjust the satiation parameter for the alternative such 

that the continuous values are fitted nicely, but the high baseline utility (that determines the 

discrete choice consumption pattern) may imply a much higher than observed non-zero 

consumption for this alternative (and, correspondingly, much lower observed zero consumption 

for other alternatives). Alternatively, for a good that is consumed in very small quantities, the 
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traditional model may assign a low baseline utility, so it can fit the low continuous consumption 

values well with an appropriate satiation parameter, but it may then underestimate the discrete 

choice of consumption if this good is a specialty good with a positive branding effect that 

operates at the discrete choice level. The result is that the traditional MDC model generally 

predicts the continuous component quite well, but may not always do well in terms of predictions 

for the discrete choice component (though, in some empirical cases, the traditional MDC may 

predict both the continuous and discrete consumptions poorly, or both consumptions very well).  

In this paper, we untangle the strong interlinkage between the discrete and continuous 

consumption decisions by (1) employing a linear utility function of consumption for the first 

outside good (which removes the continuous consumption quantity of the outside good from the 

discrete consumption decision, and also helps in forecasting), and (2) using separate baseline 

utilities for the discrete and continuous consumption decisions. The model is still based on a 

theoretic utility-maximizing framework, except that we now assume that the marginal utility of a 

good at the point of zero consumption of the good is not the same as the marginal utility of the 

good at the point of an infinitesimally small amount of positive consumption of the good.  

 

2.2.1. The New Flexible MDC Model Formulation 

We propose a new utility function as follows: 

    
















 


 1ln)( )0(1)0(1

2
11

k

kx

ck

x

dkk

K

k

x
xU kk


x ,          (15) 

where we partition the original k  into two multiplicative components (both  ckdk  and  need 

to be positive for the overall utility function to be valid). The first component kd  corresponds to 

the baseline preference that determines whether or not good k will be consumed (we will refer to 

this preference as the discrete preference component, or simply the D-preference component; it 

represents the marginal utility at the point when good k is not consumed). kc , on the other hand, 

corresponds to the baseline preference if good k is consumed (we will refer to this preference as 

the continuous preference component, or simply the C-preference component; it represents the 

marginal utility at the point when an infinitesimally small unit of good k is already consumed). 
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)0(1 kx  in Equation (15) takes the value of 1 if 0kx  and 0 otherwise, and )0(1 kx in 

Equation (15) takes the value of 1 if 0kx  and the value of 0 otherwise.3   

To find the optimal allocation of goods, we construct the Lagrangian and derive the 

Karash-Kuhn-Tucker (KKT) conditions. For the modified utility of Equation (15), these 

conditions take the following form: 

 k
k

k
kckkd p

x
p 


 










1*

1)( and0  for  k = 2,…, K with consumption *
kx ( *

kx >0) 

0 kkd p   if 0* kx , Kk ,...,2  (16) 

 1 . 

Note that, in the KKT conditions above, the inequality 0 kkd p  is implicitly implied when 

*

kx >0, because 0* kx  otherwise (that is, 0 kkd p  if 0* kx ). For our purposes, we write 

0 kkd p  when *

kx >0 explicitly in the KKT conditions above. It is the addition of this 

explicit inequality, combined with different specifications for the D-preference and C-preference 

components (as discussed later), that differentiates the proposed model from the traditional MDC 

model.4  Substituting for   from the last equation into the earlier equations for the inside goods, 

and taking logarithms, we can rewrite the KKT conditions as: 

0ln)ln(1ln)ln(and0ln)ln()ln( 1

*

1 







 k

k

k
kckkd p

x
p 


   

 for k = 2,…, K with consumption *
kx ( *

kx >0) (17) 

0ln)ln()ln( 1  kkd p  if 0* kx , Kk ,...,2 . 

To ensure the positivity of the D-preference and the C-preference terms, we specify these two 

components for each inside good as follows: 

, )exp(and)exp( kkkckkkd   wθzβ  (18) 

                                                 

3 At 0,kx 
1

( )
1 .k

kd kd
k k

xU

x
 




 

     

x  At 0 ,kx 
1

0
lim 1 .k

kc kc
x

k

x 






 
  

 
 

4 In the traditional MDC, 
kkckd   , and it will be necessarily true that 0 kk p  as soon as 

  p
x

k

k
k 


 










1
*

1  if *

kx >0 because 
1

*

1













k

kx


is between 0 and 1 (

k >0). Thus, it would be redundant to have 

the condition 0 kk p , as discussed in Section 2.2. 
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where kz  and k  are as defined earlier, but now are specific to the D-preference component of 

good k, and kw  and k  are similarly defined for the C-preference component. The vectors kz  

and kw  can include some common attributes, but can also have different attributes. Using 

notations already defined earlier, the KKT conditions can be reframed as follows: 

1,

~
kk V  and 1,kk V


  if 0* kx  (k = 2, 3,…, K), 1  kk  and ,1  kk  

1,

~
kk V  if 0* kx  (k = 2, 3,…, K), where 

 
 kkk pV ln

~
11,  zβzβ , and  (19) 

  . 1lnln
*

11, 









k

k
kkk

x
pV


wθzβ


 

The important point to note is that the error terms k  (k = 2, 3,…, K)  and the error terms k  (k = 

2, 3,…, K) are jointly multivariate logistically distributed (with a fixed correlation of 0.5 across 

all pairings of these error terms), if we assume that the error terms k  (k = 1, 2,…, K) and the 

error terms k  (k = 2, 3,…, K) are all identically and independently Gumbel distributed with a 

scale parameter  . The positive correlation between k  and k  (for each k) is reasonable 

because we expect unobserved factors that increase the probability of consumption to also 

increase the amount of consumption. Then, we may write the following: 
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As defined earlier, 1,

~
SV  is a vector of utility elements )(

~
1, SiVi   drawn from }

~
,...,

~
,

~
{ 1,11,31,2 MVVV  

that belong to the specific combination S. The likelihood function, which is the same as the 

probability expression of Equation (20) written as a function of the parameter vector 

( σ ,,, γθβ  ) can be maximized in the usual fashion to estimate the parameters. The likelihood 

function takes a convenient closed-form expression.  

 

2.2.2. Forecasting 

A two-phase approach may be used in forecasting, where, given the parameters of the model, the 

multivariate discrete probability of consumption (or not) of each combination of the inside goods 

may be obtained using Equation (10), followed by the continuous consumptions for the 

consumed alternatives. Consider a specific combination corresponding to consumption of the 

first M inside goods. Then, for this combination, based on the KKT conditions in Equation (19), 

the following must be true:  

  kkkkkk WxV  1)|exp()exp(and
~

11,
*

1,1  for k = 2, 3,…, M+1,           (22) 

1,1

~
kk V   for  k = M+2, M+3,…, K, where  kkk pW ln| 1111,  wθzβ  . 

The forecasting procedure for each observation is as follows: 

 Step 1: Develop the discrete choice probability of each of the possible )12( 1 K combinations 

of consumption of the goods. That is, set M=1, develop all the possible C(K–1,1) 

combinations of a single inside good having positive consumption and form the probability 

of choice for each combination, then set M=2 develop all the possible C(K–1,2) combinations 

of two inside goods having positive consumption and form the probability of choice for each 
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combination, and continue the process until M=K–1. Index the many combinations across all 

the M values by l (l=1,2,…,L), where )12( 1  KL . Let lP  be the discrete choice probability 

for combination l. These probabilities are computed based on Equation (10) with 

1,

~
kV specified as in Equation (19).  

 Step 2: For each combination l, draw (K–1) independent realizations (one for each inside 

good) from the extreme value distribution with location parameter of 0 and the scale 

parameter equal to the estimated   value (label this distribution as EV(0, )̂ ). For each 

inside alternative, compute 1,1,

~
kkk VH    based on the estimated values and the 

corresponding extreme value draws. Then, identify the minimum of the 1,kH  values (say 

)1R across the consumed inside goods in combination l (there is no need to compute 1R  if the 

combination l corresponds to no inside good being consumed) and the maximum of the 

1,kH values (say )2R across the non-consumed goods in combination l (there is no need to 

compute 2R  if the combination l corresponds to all inside goods being consumed). For all 

combinations l corresponding to some goods being consumed and others not, if 12 RR  , 

STOP and return to Step 2. Otherwise, proceed to Step 3. For the combination corresponding 

to all inside goods being consumed, proceed to Step 3. For the combination corresponding to 

none of the inside goods being consumed, the continuous predictions for the inside goods are 

set to zero.  

 Step 3: For combinations of some goods being consumed and others not, draw a realization 

for the first outside alternative from the doubly truncated univariate extreme value 

distribution (again with the extreme value distribution being EV(0, )̂ ) such that 2R < l1 < 

.1R  For the combination corresponding to all of the inside goods being consumed, draw a 

realization for the first outside alternative from the singly truncated (from above) univariate 

extreme value distribution such that l1 < .1R   

 Step 4: For the consumed inside goods only, construct  kkllk pW ln| 1111,  wθzβ   

using the draw for l1  and the estimated values of β and θ. Then, one of two approaches can 

be used. In the first approach, draw another set of independent realizations for the consumed 

goods in combination l, one for each consumed inside good (that is, kl ), from EV(0, )̂ , and 
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predict the consumption levels for each consumed good in the combination for the specific 

realization as   1)|exp()exp( 11,

*  kkkl Wx . For the set of realizations for the consumed 

inside goods, check to ensure that the sum of consumption quantities across the inside goods 

is less than the budget constraint and that each consumption quantity is higher than zero. If 

these conditions are not achieved, reject the corresponding realization, and go back to Step 4. 

In the second approach, a more systematic truncation approach is used to ensure that the sum 

of consumption quantities across the inside goods is less than the budget constraint and that 

each consumption quantity is higher than zero. Specifically, first randomize the ordering of 

the consumed inside goods. Then, start from the first consumed inside good in the random 

ordering (label this as the second good, the first being the outside good).  Draw a realization 

for l2  from the doubly truncated univariate extreme value distribution EV(0, )̂  such that 

.1ln)|()|(
22

11,2211,2 




















p

E
WW lll  Using this realization for l2 , compute the 

consumption level for this alternative in the combination l being considered as 

  211,22

*

2 1)|exp()exp(   lll Wx . Next, if there are more than two inside goods consumed 

in the combination l, draw a realization for l3  from the doubly truncated univariate extreme 

value distribution EV(0, )̂  such that ,1ln)|()|(
33

*
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and compute   311,33

*

3 1)|exp()exp(   ll Wx . Continue this process for all consumed 

inside goods, drawing a realization from 
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  and computing 

  .1)|exp()exp( 11,

*

klkklkl Wx     

 Step 5: Continue Steps 2 through 4 for each combination l until a fixed number of full 

realizations are obtained, and take the mean (across realizations) of the consumption 

quantities for each consumed inside good to predict the continuous consumption value. 
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 Step 6: Forecast the continuous amount of consumption for each alternative k as 

.** 
l

kllk xPx  

The one issue with the forecasting approach above is that, for a given individual, it will 

always forecast a positive value of consumption for each and every alternative, because it 

considers all the possible combinations of consumption. In case a deterministic choice of 

alternatives is needed, such as in a micro-simulation framework, another possible approach, that 

may also be easier to implement and will forecast corner values, is to consider the discrete choice 

probabilities from the first step, then use the usual discrete probability-to-deterministic choice 

procedure (used in traditional simulation approaches) to determine the most likely market basket 

of consumption, and forecast the consumption quantities for this single market basket. 

Specifically, the procedure is as follows: 

 Step 1: Identical to Step 1 of the earlier forecasting procedure. 

 Step 2: Order the combinations from 1 to L in an arbitrary order (but retain this from hereon), 

and, for each combination l up to the penultimate combination (l=1,2,…L–1), obtain the 

cumulative probability from combination 1 to combination l as 



l

d
dl PCP

1

.  

 Step 3: Partition the 0-1 line into L segments (each corresponding to a specific combination l) 

using the (L–1) lCP  values. Draw a random uniformly distributed realization from {0,1} and 

superimpose this value over the 0-1 line with the L segments.  Identify the segment where the 

realization falls, and declare the combination corresponding to that line segment as the 

deterministic discrete event of consumption for the individual.  

 Step 4: Undertake Steps (2) through (6) from the previous forecasting procedure for the 

specific combination identified from Step (3) above. This provides the continuous 

consumption for the predicted discrete event of consumption from Step (3) above.  

A third forecasting procedure is perhaps the easiest to implement, and does not use a two-

step approach (in which the probabilities of the discrete choice are first computed followed by 

appropriate simulations). Rather, the simulations dictate even the discrete choice event. The 

procedure is as follows: 

 Step 1: Draw K independent realizations (one for each inside good and the outside good) 

from EV(0, )̂ .    



20 

 Step 2: If 1,1

~
kk V  , declare the inside good as being selected for consumption ( )1kd ; 

otherwise, declare the inside good as not being selected for consumption ( ).0kd  

 Step 3: Run through Steps (4) through (6) of the first forecasting procedure.  

 

3. EMPIRICAL APPLICATION 

3.1. Sample Description 

To demonstrate an application of the new proposed MDCEV model, we consider the case of 

time-use of individuals. This is a situation with no price variation. The data and sample used is 

the same as those in Bhat et al. (2016a), and is drawn from the Puget Sound household travel 

survey conducted during the spring (April–June) of 2014 in the four county PSRC planning 

region (the four counties are King, Kitsap, Pierce, and Snohomish) in the State of Washington. 

Survey administration and sampling details are provided in Bhat et al. (2016a). The sample used 

includes 3,637 households who had at least one worker employed in the household and with a 

work location outside the residential dwelling unit. The amount of time spent on a typical 

weekday across all individuals in the household on (a) in-home (IH) non-work, non-educational, 

and non-sleep activities and (b) out-of-home (OH) non-work non-educational pursuits is 

computed from the survey. In the analysis, the OH activities are classified into one of six types: 

(1) personal business (including family or personal obligations, going to day care, and medical 

appointments), (2) shopping (including buying food and goods), (3) recreation (including visiting 

cultural/arts centers, going to the movies, attending sports events, going to the gym, pursuing 

physical activities such as running, walking, swimming, and playing sports), (4) eating out, (5) 

social activities (including visiting friends or relatives and attending parties), and (6) “serve 

passenger”. In all, there are seven activity purposes (alternatives in the MDCEV), with the first 

in-home activity serving as the “outside good” in which all individuals participate. The discrete 

component corresponds to household-level participation in these different activity purposes, 

while the continuous component corresponds to the amount of household time invested in these 

activity purposes. The total household time budget in the MDC model corresponds to the sum 

across the seven activity purposes just listed. In the analysis, for convenience, we use the 

household-level participations and fractions of time investments in each activity purpose as the 

dependent variables (that is, we normalize the household time investments in each purpose by 

the total household budget, so that the continuous components correspond to fractions, and the 
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total budget is 1 for each household). The sociodemographic characteristics of the sample are 

available at 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCP_GHDM/online_supplement.pdf).   

 

3.2. Traditional MDCEV Model with  -profile 

Table 1 shows the estimation results for the traditional MDCEV model with a  -profile 

constraining the scale of the error terms to 1 (as has been done in earlier studies) and the same 

model releasing this constraint on the scale. We will refer to the first model as the TFIXED-

MDCEV (for the traditional MDCEV with fixed scale) and the second as the T-MDCEV (for the 

traditional MDCEV with freely estimated scale). While the intent of this paper is not to study 

time-use behavior per se (rather it is to demonstrate the value of the proposed new MDCEV 

model), we will note that the specification is based on a systematic process of rejecting 

statistically insignificant effects, combining effects when they made sense and did not degrade fit 

substantially, and, judgment and insights from earlier studies.  Also, while variables such as 

commute distance, residential location (whether living in a high density neighborhood or not, 

and accessibility to out-of-home activities), and household auto-ownership have been used as 

explanatory variables of time-use in the past, we avoid using these variables because Bhat et al. 

(2016a) show that these variables are endogenous (co-determined) with time-use.  

For completeness, we now briefly discuss the substantive results from the two models in 

Table 1, which are similar to each other. The coefficients on the exogenous variables 

corresponding to the baseline preference are not directly comparable, because the TFIXED-

MDCEV normalizes the error scale to one; however, one can notice that the coefficients in the T-

MDCEV model, when normalized by the estimated scale in that model of 0.4289, bring the 

coefficient estimates in that model to close to the magnitudes of the first model. 

The effects of the family structure variables are introduced with couple households and 

multi-adult households as the base category (we did not find any difference in time-use among 

these two family types; in any case, the fraction of multi-adult households in the sample was 

quite low). Table 1 indicates that single person households have the lowest preference of all 

household types for recreational, social, and serve passenger activities, and the highest 

preference for in-home activities (the base activity purpose). Nuclear families and single-parent 

families relative to other household types, have a clear higher baseline preference for serve 
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passenger activities (a reflection of child chauffeuring responsibilities), and nuclear families are 

the least likely to participate and spend time in shopping. 

The next set of variables relate to the fraction of part-time and non-workers in the 

household, with the fraction of full-time workers in the household constituting the base category. 

Overall, these coefficients indicate a pattern where households with a high fraction of part-time 

workers and non-workers are more likely than full-time workers to participate in non-work out-

of-home activities (particularly in personal business) and are less likely to spend time at home. 

This effect is particularly the case for households with a high fraction of non-workers.  

The baseline preference constants and satiation parameters in Table 1 are estimated for 

each activity purpose (except the IH activity purpose) to best replicate the continuous values of 

time-use in the different activities and the split between sole and joint participations with other 

activity purposes. Thus, they do not have any substantial interpretations. However, the baseline 

preference constants are all negative in the TFIXED-MDCEV, a reflection of the fact that most 

time is spent at home (across all individuals, the mean percentage of time spent at home in the 

sample is 78%). Also, the constants are highest for the shopping and personal-business activity 

purposes, and the lowest for the social and serve-passenger purposes. This is because, in trying to 

fit to the continuous values, the traditional MDCEV model is replicating the presence of a high 

fraction of non-zero values for the shopping and personal business purposes and a low fraction of 

non-zero values for the social and serve-passenger purposes (about 45% of households in the 

sample participate in each of shopping and personal business purposes; on the other hand, the 

percentage of households with a non-zero time investment in recreation and eating out is about 

30%, and the corresponding percentage for each of the social and serve passenger purposes is of 

the order of 20%). The baseline preference constants in the T-MDCEV model in Table 1 do not 

exactly follow the same trends as in the first model, and this is again because the sole purpose of 

the constants, in combination with the satiation parameters and now the scale parameter too, is to 

replicate the continuous values of time-use. However, among the out-of-home activities, the 

constants are again highest for the shopping and personal business purposes and lowest for the 

social and serve-passenger purposes.  

The satiation ( ) ,...,3 ,2( Kkk  ) parameters in Table 1 correspond to the  -profile. 

Satiation increases for purpose k as k  goes closer to zero. In the sample, the shopping, eating 

out, and serve passenger activity purposes, among the out-of-home activity purposes, have 
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relatively low durations of participation if non-zero (taking up between 5-8% of the total time 

budget), while the personal business, recreation, and social purposes have relatively high 

participation durations if non-zero (taking up between 13-20% of the total time budget). In both 

the first and second models in Table 1, these trends are reflected in the high satiation rates (lower 

values of k ) for the shopping, eating out, and serve passenger purposes, and low satiation rates 

(higher values of k ) for the personal business, recreation, and social purposes.  

The scale parameter, when freely estimated, shows that it is less than one and statistically 

significantly so. Thus, arbitrarily normalizing to one when using the  -profile, as done in earlier 

studies that apply the traditional MDCEV model (and, more broadly, traditional MDC models), 

is generally not appropriate, and will lead to an unnecessary degradation in fit. This is also 

noticeable in the log-likelihood values at convergence for the two models (see the row panel 

entitled “Data fit measures for continuous consumption” in Table 1). In fact, as indicated in the 

next row, the log-likelihood with only the constants in the baseline preference for the T-MDCEV 

model is superior to the log-likelihood at convergence for even the best specification with 

additional exogenous variables for the TFIXED-MDCEV model. Using the log-likelihood at 

constants for the TFIXED-MDCEV, the row entitled “Adjusted likelihood ratio index” (ADLRI) 

computes the rho-bar squared value for each of the models as   
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

 ,                         (23) 

where )ˆ(θ


 L  and )(c L  are the log-likelihood functions at convergence and at constants, 

respectively, and M is the number of parameters (not including the constants appearing in the 

baseline preference). The value of )(c L  used in Equation (23) is -4534.94, corresponding to the 

constant only log-likelihood value for the TFIXED-MDCEV model. The superiority of the T-

MDCEV model is apparent again.  A likelihood ratio test between the two models rejects the 

TFIXED-MDCEV model at any reasonable level of significance. To be noted here is that the 

discussion on data fit thus far corresponds to the continuous values of consumption, because the 

probability being maximized (as a function of parameters) in the traditional MDCEV is that of 

the continuous consumptions as in Equation (14) (with zero being one of the continuous values). 

Interestingly, when we compute a predictive likelihood for the discrete probability of 

consumption (based on Equation (10) and the actual discrete pattern of consumptions for each 
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individual), the corresponding predictive log-likelihood values are -13,143.75 for the TFIXED-

MDCEV and -13,931.32 for the T-MDCEV (see the entries in the row entitled “predictive log-

likelihood at convergence” under “Data fit measures for discrete consumption” in Table 1). That 

is, the traditional model normalizing the scale to one does better than the traditional model that 

leaves the scale free to be estimated (this is another indication that the traditional MDCEV model 

is based on improving the fit of the continuous consumption quantities, not necessarily the 

discrete consumption event). Indeed, as can be observed from the entries corresponding to the 

row “predictive log-likelihood at constants” under “Data fit measures for discrete consumption”, 

the TFIXED-MDCEV with baseline constants only performs better than the T-MDCEV model 

with variables included in the baseline preference (a reverse of the situation for the continuous 

consumptions). Using the predictive log-likelihood with constants only for the T-MDCEV model 

as the base, one can compute the predictive ADLRI values, which are presented in Table 1.  One 

can then use a predictive non-nested likelihood ratio test to compare the performances of the 

implied discrete predictions from the two models. In particular, if the difference in the indices is 

   )( 22

MDCEVTMDCEVTFIXED , then the probability that this difference could have occurred by 

chance is no larger than  5.0)]()(2[ MDCEVTMDCEVTFIXED MMc   L  in the asymptotic limit, 

where the value of )(cL for this test is -14,319.56, MDCEVTFIXEDM  =13, and .14MDCEVTM 5 A 

small value for the probability of chance occurrence indicates that the difference is statistically 

significant and that the model with the higher value for the adjusted likelihood ratio index is to 

be preferred. The non-nested adjusted likelihood ratio test returns a value of )72.39( , which 

is literally zero, clearly indicating that the TFIXED-MDCEV model (that does substantially 

worse than the T-MDCEV in terms of the continuous predictions) does statistically better than 

the T-MDCEV model in terms of the discrete event prediction.  

 

                                                 
5 The number of parameters for this predictive test correspond to the number of parameters estimated in the baseline 
parameters (excluding the constants) without considering the 

k  satiation parameters but including the scale 

parameter in the T-MDCEV model (the 
k   satiation parameters do not appear in the predictions for the discrete 

component; see Equation (10)). 
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3.3. Traditional MDCEV Model with a Linear-in-Consumption Profile for the Outside 

Good 

As discussed earlier, one of the reasons for the tight linkage between the discrete and continuous 

components in a traditional MDCEV model, which can compromise the ability of the traditional 

MDCEV to predict the discrete choices well even as it focuses on predicting the continuous 

choices well, is that the continuous consumption *

1x  of the outside good appears in the discrete 

consumption decision component (see Section 2.1.2). A better separation of the discrete 

component from the continuous component can be achieved by assuming a linear-in-

consumption utility. That is, instead of using the  -profile of Equation (2) in the traditional 

MDCEV model, we now consider the following profile that we label as the L -profile (for 

linear utility in the outside good, combined with a  -profile for the inside goods): 
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The above profile assumes that there is no satiation in the outside good. In doing so, and 

following the earlier derivations,  kkk pV ln
~

11,  zβzβ , and becomes independent of the 

consumption of the outside good.6 This allows the forecasting of the discrete event for any 

individual (given her or his associated exogenous vector of variables), whether or not the 

individual’s observed choices are available. As importantly, the use of the L -profile presents 

researchers with a utility-theoretic pure multiple discrete choice model that does not need any 

observations on the continuous consumptions. This is an important supplementary contribution 

of this paper. 

Table 2 provides the data fit statistics for this L -profile, similar to Table 1 for the  -

profile. Again, the TFIXED-MDCEV model is the one that constrains the scale to one and the T-

MDCEV model is the one that allows a free scale parameter.  In Table 2, we dispense with the 

presentation of the parameter estimates, and focus on data fit (the substantive interpretations of 

exogenous effects remain the same). The ordering of the data fit statistics in Table 2 is the same 

as in Table 1. As in the  -profile case, the model that leaves the scale free for estimation does 

                                                 
6 On the other hand, as discussed in Section 2.1.2, the term  kkk pxV lnln

~ *
111,  zβzβ  includes *

1ln x  in the 

 -profile utility form. 
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substantially better than the one that constrains the scale to one in the context of predicting the 

continuous consumptions. In fact, the constants only model (but with the scale free) easily 

surpasses even the best specification of exogenous variables when the scale is fixed to one. As 

importantly, a comparison of the log-likelihood values of the two models in Table 2 with the 

corresponding two models in Table 1 indicates that the models in Table 1 are doing much better 

for the predictions of the continuous consumptions. A non-nested likelihood test of the TFIXED-

MDCEV models across the two tables (using the constants only log-likelihood of the TFIXED-

MDCEV from Table 2 as the base) returns a probability value of )14.42( , which is literally 

zero. The corresponding probability value for the comparison of the T-MDCEV models across 

the two tables (using the constants only log-likelihood of the T-MDCEV model from Table 2 as 

the base) is )81.38( . These results are not surprising, since the models in Table 1 allow 

satiation in the utility for the outside good, while the L -profile does not. Again, it should be 

borne in mind that these log-likelihoods correspond to the continuous quantities of 

consumptions.  

However, the situation completely changes when the predictive likelihood for the discrete 

probability of consumption is considered. First, there is not much difference between the 

predictive likelihoods for the two models in Table 2. Using the constants only predictive log-

likelihood for discrete consumption from the T-MDCEV model of Table 1 as the base, the 

adjusted likelihood ratio index values can be computed for each of the models in Table 2, 

followed by a non-nested likelihood ratio test. As shown in Table 2, the result indicates that the 

TFIXED-MDCEV is statistically better than the T-MDCEV model, even though the ADLRI 

index difference is not much. But, much more importantly, the predictive log-likelihoods for the 

discrete consumption events from the models in Table 2 are far superior to those from Table 1. 

Again, using the constants only predictive log-likelihood for discrete consumption from the 

TFIXED-MDCEV model of Table 1 as the base, one can compute a non-nested likelihood ratio 

test between the TFIXED-MDCEV models in the two tables, and similarly a non-nested 

likelihood ratio test between the T-MDCEV models in the two tables. The results in Table 2 

clearly demonstrate the superiority of the L -profile models in Table 2 relative to those in Table 

1 in terms of discrete consumption predictions. Indeed, the predictive log-likelihoods for discrete 

consumptions from the constants only models in Table 2 are superior to those from the 

corresponding full models in Table 1.  
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There are three primary summary results from the previous two sections. First, traditional 

MDC models using the  -profile have unnecessarily constrained the scale parameter to one. 

Doing so can degrade the predictions of the continuous consumptions. Second, the  -profile 

does much better than a L -profile for the predictions of the continuous consumptions, but does 

much worse than the L -profile for predictions of the discrete consumptions. This latter result is 

because, given that the same baseline parameters drive both the discrete and continuous 

consumption predictions in the traditional MDCEV model, the  -profile uses satiation in the 

outside good as an additional instrument to fit the continuous consumption values well. But it 

also ties the discrete and continuous consumptions predictions very tightly through the presence 

of the *

1ln x  term in the discrete consumption predictions. The L -profile, on the other hand, 

completely removes any continuous consumption element presence from the discrete 

consumption predictions. While the use of the L -profile within the traditional MDCEV model 

also focuses expressly on maximizing the likelihood of the continuous consumptions, the 

optimization procedure essentially “realizes” that its effort is better spent on predicting the zero 

continuous consumption values of the outside goods well even as its goal is to fit all continuous 

consumptions well (because it has more limited ability to utilize the satiation in the outside good 

to fit the non-zero values well).7 Third, our new proposed model essentially provides the L -

profile more flexibility to focus on the zero predictions as well as the non-zero predictions by 

releasing the constraint of the same baseline parameters dictating the zero and the non-zero value 

predictions. As we will see next, doing so more than makes up for the steep penalty the L -

profile pays (because of assuming zero satiation in the outside good) in terms of the overall 

                                                 
7 We noticed this clearly by way of the closeness of the predictive log-likelihood for the discrete consumptions from 
the L -profile traditional MDCEV model estimation (that maximizes the continuous consumptions) and a discrete 

model estimation that expressly optimizes the discrete consumptions (using Equation (10) as the objective function, 
and setting the scale to one; note that the satiation parameters do not appear in this estimation). For the  -profile, 

the predictive log-likelihoods for the discrete consumption from the T-MDCEV model is -13931.32 as compared to 
the log-likelihood value of -13134.80 at convergence for the model that expressly maximizes the discrete log-
likelihood. For the L -profile, the predictive log-likelihood for the discrete consumption from the T-MDCEV 

model is -12743.95 as compared to the log-likelihood value of -12732.31 at convergence for the model that 
expressly maximizes the discrete log-likelihood. The closeness of the predictive discrete log-likelihoods and the 
actual discrete log-likelihood at convergence is clearly obvious for the L -profile. Of course, in some other 

empirical contexts, it is possible that the performance difference between the  -profile and L -profile MDCEV 

models in predicting the discrete consumptions will not be as substantial as found in this study.  
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continuous consumption predictions in the traditional MDCEV model that has a single set of 

baseline parameters driving both the zero and non-zero consumption predictions. 

 

3.4. The Proposed New Flexible MDCEV Model Results 

Table 3 provides the results for the proposed model, with separate baseline parameter estimates 

for the discrete and continuous components using the L -profile, and a free estimate for the 

error scale (the corresponding log-likelihood at convergence when the scale was constrained to 

one was -5041.5; a nested likelihood ratio test between this model and the one in Table 3 returns 

a value of 404.5, which implies the clear rejection of the scale-normalized model relative to 

when the scale is estimated freely). Interestingly, in comparing the baseline preference 

coefficients on exogenous variables from the T-MDCEV model in Table 1 with the 

corresponding D-preference coefficients in Table 3, these all have the same signs and substantive 

interpretations. Further, the scale-normalized coefficients from both these models are about 

exactly the same. The D-preference constants have the expected negative signs, because the 

participation rates in all the OH activities are lower than the 100% participation in in-home 

activities (unlike those in the T-MDCEV model in Table 1, because the constants in the T-

MDCEV model of Table 1 also have a role in the continuous consumption predictions). What is 

also important to note from the parameter estimates of the D-preference and C-preference 

variables in Table 3 is that the coefficients sometimes have the opposite signs in the two baseline 

preferences, as well as do not necessarily have the same set of variables. The C-preference 

coefficients in Table 3 are introduced as increments over the D-preference coefficients (for 

convenience in interpretation as well as to highlight statistically significant differences in 

coefficients on the same variable across the two preference baselines). For instance, from the 

standpoint of the D-preference (that is, discrete participation), single person households have the 

lowest preference of all household types for recreational, social, and serve passenger activities. 

However, conditional on participation, single person households have the highest baseline 

preference for long time investments in these same activities (note that the sum of the D-

preference and C-preference coefficients, which represent the effective coefficients for the 

continuous baseline component, are the most positive for single person households across all 

household types). Also, while single person households do not appear to be more likely than 

other households to participate in eating out activity (the variable does not appear in the D-
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preference), such households have a clear higher propensity for long durations of time 

investment in dining out conditional on participation (the variable has a clear and statistically 

significant positive coefficient in the C-preference, while other households have a negative 

coefficient on eating out or a zero effect for the base category of households). Many other 

variables in Table 3 similarly have differential directions of effects and/or affect only one of the 

discrete and continuous components of baseline preference. Other substantive results from Table 

3 include the higher propensity of nuclear and single parent households to invest time in personal 

business conditional on participation, as well as the lower propensity of such households, 

conditional on participation, to invest time in any other out-of-home activity purpose relative to 

other households (presumably because of child-rearing responsibilities, reinforcing time poverty 

and potential social exclusion considerations that parents with children face in society; see 

Bernardo et al., 2015). Also, while households with a high fraction of part-time workers and non-

workers are clearly more likely than households with a high fraction of full-time workers to 

participate in shopping and personal business, the differences among these households are 

substantially tempered in the context of duration of time investment conditional on participation.  

The satiation parameters are much lower than the corresponding values in the traditional 

models. That is, given the distinct baseline parameters for the continuous consumption (and the 

generally more positive magnitudes for these baseline parameters than the in the traditional 

models), the satiation parameters present much stronger satiation to fit the continuous 

consumptions well.  

  

3.5. Likelihood-Based Data Fit Measures 

The bottom row panel of Table 3 presents the likelihood-based data fit statistics for the proposed 

flexible MDCEV model and compares these with those from the traditional  -profile  MDCEV 

and the traditional L -profile MDCEV. The fit statistics for all models correspond to the case 

when the scale is estimated freely (the results for the two traditional models are reproduced from 

Tables 1 and 2).  The first row provides the log-likelihood at convergence for the full model, 

while the second row provides the log-likelihood with only the constants in the D-preference and 

C-preferences for the full model. Of course, these log-likelihoods for the proposed model cannot 

be directly compared to those from the traditional models (since our model includes the distinct 

modeling of both the discrete and continuous consumption events, while the traditional models 



30 

focus on the continuous consumption prediction).8 However, we are able to compute the 

predictive log-likelihoods implied by our model for the continuous component and the discrete 

component. The results in the table provide a positive log-likelihood value for the continuous 

consumption, as predicted by our new model. This shows that our model is vastly superior to the 

traditional models in terms of continuous consumption prediction (note that the predictive 

likelihood of the continuous consumption includes density functions, and is a full density 

function for the case when all goods are consumed; density functions are not constrained to be 

less than one, and thus a positive predictive likelihood for the continuous consumption is 

perfectly legitimate, and, in fact, shows the substantial superiority when the discrete and 

continuous consumptions are disentangled). The Akaike Information Criterion (AIC) 

[  MLLlog (# of model parameters)] and the Bayesian Information Criterion (BIC) values 

[ MLLlog + 0.5(# of model parameters) log(sample size)] for the three models are shown in 

Table 3.9 The AIC and BIC values reinforce the improved continuous consumption predictions 

from our proposed model relative to the two traditional models. The predictive log-likelihood for 

the discrete component is also better from our proposed model relative to the two traditional 

models. The rho bar-squared values, computed with respect to the log-likelihood at constants of 

the traditional  -profile MDCEV, is also provided for all three models in the table, as is the 

result of a non-nested predictive likelihood ratio test of each of the two traditional models with 

respect to our proposed full model. Again, the superiority of our proposed model is clear even for 

the discrete consumption component.  

 

                                                 
8 Our proposed model does not nest the traditional L -profile MDCEV model because that would require that 

,,,...,3 ,2 θβwz  Kkkk
 and cor( Kkkk ,...,3 ,21),   in the D-preference and C-preference 

specifications of Equation (18). The last of these conditions cannot be met by our proposed model, because the 
closed form is obtained by requiring that cor( Kkkk ,...,3 ,25.0),  . As we discuss in the last section, 

however, our proposed framework can be used to implement more flexible error forms for 
kk  and  that  allow 

testing whether the correlation between these error terms (for each k) approaches one. But allowing such flexible 
forms for the error terms will, of course, come at the expense of not having a nice closed-form probability structure 
as in our proposed model.  
9 Log LML refers to the log-likelihood value at convergence. Many measures have been suggested in the literature to 
evaluate model fit among non-nested models. Including the AIC, the BIC, and variants of these (see Fonseca, 2010 
for a listing and description of these information criteria). In general, the AIC tends to favor more complex models, 
leading to potential overfit. On the other hand, the BIC tends to favor simpler models, with an adjustment for sample 
size to avoid overfit. More simply speaking, the BIC-based measures demand a higher strength of evidence to add 
complexity than do the AIC-based measures, and thus the BIC-based measures favor more parsimonious models 
(see Neath and Cavanaugh, 2012). 
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3.6. Non-Likelihood Based Data Fit Measures  

The likelihood-based tests (for the comparison of the two traditional models and the proposed 

flexible MDCEV model) constitute disaggregate measures of fit that consider performance at the 

multivariate and disaggregate level, While the best data fit measures, these are not very intuitive. 

So, we also evaluate the performance of the three models intuitively and informally at a 

disaggregate and aggregate level. At the disaggregate level, we estimate the probability of the 

observed multivariate discrete outcome for each individual using Equation (10), and compute an 

average probability of correct prediction for the discrete consumption outcome. At the aggregate 

level, we design an informal heuristic diagnostic check of model fit by computing the predicted 

aggregate share of individuals for specific multivariate discrete outcomes (because it would be 

infeasible to provide this information for each possible multivariate outcome). In particular, we 

compare the aggregate marginal trivariate predictions (with the true sample values) for 

combinations of three of the most participated-in inside activity purposes: shopping, personal 

business, and eat-out (the outside activity is always participated in). That is, we first compute the 

probability of each individual participating in each of the following seven combination activity 

purposes (including in-home): (1) shopping only, (2) personal business only, (3) eat-out only, (4) 

shopping and personal business, (5) shopping and eat-out, (6) personal business and eat-out, and 

(7) shopping, personal business, and eat-out (these probabilities are computed using Step 1 of the 

first forecasting algorithm). The probabilities for each combination are averaged across 

individuals to obtain the predicted percentage of individuals falling into each combination 

category and compared with the actual percentage of individuals in each combination (using the 

weighted mean absolute percentage error (MAPE) statistic, which is the MAPE for each 

combination weighted by the actual percentage shares of individuals participating in each 

combination.  

For the continuous consumption predictions, to remove any effects of poor discrete 

choice predictions on the continuous prediction outcomes, we assume the observed multivariate 

discrete outcome, and predict the continuous consumptions for each individual using Steps (2) 

and (3) of the first forecasting algorithm (and its equivalent for the traditional models). In using 

this procedure, we use 1000 error vector replications per individual observation. We then 

compute the aggregate predicted continuous consumption values for each inside activity purpose 

across all individuals at the individual level (these are in the form of fractions of the time budget 
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invested in each activity participated in), and compare the predicted versus actual fractions of 

time budget invested in each inside good using the MAPE statistic (note that the time budget for 

the outside good is effectively obtained from the inside good consumptions).  

For the discrete consumptions, the average probability of correct prediction from the 

traditional  -profile MDCEV model, the traditional L -profile MDCEV model, and the 

proposed new flexible MDCEV model were 0.0451, 0.0695, and 0.0705, respectively. Table 4 

presents the aggregate prediction results. The top row panel provides the actual and predicted 

percentages of individuals participating in each of the seven specific combinations identified 

earlier. The weighted MAPE is about the same for the traditional L -profile model and the 

proposed flexible model, and is about 50% higher for the traditional  -profile MDCEV model. 

In the table, we also provide the weighted MAPE statistic for the number of inside alternatives 

chosen in the same, and here again the traditional L -profile model and the proposed flexible 

model perform much better than the traditional  -profile MDCEV model.  

The bottom row panel of Table 4 provides the aggregate continuous consumption values 

(as a percentage of total budget) for each of the six inside alternatives. The superior performance 

of the proposed model is clear here. Interestingly, while at the disaggregate-level, the traditional 

 -profile MDCEV model does better than the traditional L -profile MDCEV model, the latter 

outperforms the former in the context of the aggregate continuous predictions (though this is 

primarily because of the relatively poor aggregate prediction for the personal business activity 

from the traditional  -profile MDCEV model).  

 

4. CONCLUSIONS 

The traditional MDC models simultaneously estimate the baseline marginal utility and the 

satiation parameters so that the level of consumptions is fitted well (with zero consumption 

simply being one possible continuous consumption value). The result is that the traditional MDC 

models generally predict the continuous component well, but may not do as well in terms of 

predictions for the discrete choice component.  

In this paper, we propose, for the first time, a new flexible and also utility-theoretic MDC 

model that breaks the tight linkage between the discrete and continuous choice dimensions of the 

traditional MDC models. We do so by (1) employing a linear utility function of consumption for 
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the first outside good (which removes the continuous consumption quantity of the outside good 

from the discrete consumption decision, and also helps in forecasting), and (2) using separate 

baseline utilities for the discrete and continuous consumption decisions. In the process of 

proposing our new formulation, we also revisit two issues related to the traditional MDC model. 

The first relates to clarification regarding the identification of the scale parameter of the error 

terms, and the second relates to the probability of the discrete choice component of the 

traditional MDC model (that is, the multivariate probability of consumption or not of the 

alternatives). We show why the scale parameter of the error terms is indeed estimable when a  -

profile is used, as well as show how one may develop an expression for the discrete choice 

consumption probability.  

The paper then proposes a new utility functional form for modeling MDC choices. To 

introduce stochasticity in the model, we consider independent and identically distributed (IID) 

log-extreme-value error terms in the baseline utility preferences for the discrete component and 

for the continuous component. This stochastic specification results in a multivariate logistic 

distribution functional form for the error terms in the discrete and continuous baseline 

preferences, and leads to a closed form MDCEV model, as well as allows the discrete choice 

probabilities to be specified in closed form. The latter issue, when combined with our proposed 

L -profile, presents a methodology to estimate pure multiple discrete choice models without the 

need for information on the continuous consumptions. We also develop forecasting procedures 

for the proposed model that are easily implemented, thanks to the disentangling of the strong tie 

between the discrete and continuous components.  

To demonstrate an application of the proposed model, we consider the case of time-use of 

individuals. The data and sample used is drawn from the Puget Sound household travel survey 

conducted by the Puget Sound Regional Council (PSRC) in the spring (April–June) of 2014 in 

the four county PSRC planning region (the four counties are King, Kitsap, Pierce, and 

Snohomish) in the State of Washington. The participation decision and the amount of time spent 

on a typical weekday across all individuals in the household on (a) in-home (IH) non-work, non-

educational, and non-sleep activities and (b) out-of-home (OH) non-work non-educational 

pursuits are computed from the survey, and form the multiple discrete-continuous dependent 

variable. In a comparative empirical assessment of the fit from the proposed model and from the 
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traditional MDCEV models, our proposed model came out clearly as the winner in terms of 

better predicting both the discrete outcome data as well as the continuous consumptions. 

In summary, the proposed new flexible MDCEV formulation should be a valuable 

approach to model multiple discrete-continuous choices if one is willing to work with IID log 

extreme-value error terms across the baseline preferences, and accept a constant correlation of 

0.5 across the D-preference and C-preference error terms. Of course, the framework developed 

here can also form the basis for more general MDC models, such as introducing flexible forms of 

stochasticity through (a) the specification of multivariate error structures across the baseline 

preferences of alternatives (such as a multivariate normal error structure), (b) correlations across 

error terms in the D-preference and C-preference baselines, and (c) mixing error structures to 

accommodate unobserved heterogeneity in the responsiveness to exogenous variables. However, 

such more general stochastic formulations will also lead to more complicated model forms, with 

many of these having non-closed forms for the probability expressions. Also, while the proposed 

MDCEV model performs substantially better than the traditional MDCEV in our empirical 

context, it is important to bear in mind that the traditional MDCEV may perform almost as well 

as the proposed model in other empirical contexts where the discrete and continuous marginal 

utility functions are not very different. Similarly, in other empirical contexts, the traditional 

MDCEV model, which has much fewer parameters to estimate, may be able to predict both the 

discrete and continuous consumptions reasonably well. Thus, comparing the performance of the 

traditional parsimonious (in parameters) MDCEV with the proposed more flexible MDCEV 

model would always be helpful. Finally, this is the first foray into a flexible MDCEV 

formulation, and the properties of this model need to be examined carefully in future studies.  
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Table 1. Estimation Results for Traditional MDCEV Model with a  -profile 

Independent Variables/ 
Data Fit Measures 

TFIXED-MDCEV T-MDCEV 

Shop 
Pers. 
Bus. Recr. Dining Social Serve Shop 

Pers. 
Bus. Recr. Dining Social Serve 

Coeff 
(t-stat) 

Coeff 
(t-stat) 

Coeff 
(t-stat)

Coeff 
(t-stat) 

Coeff 
(t-stat) 

Coeff 
(t-stat) 

Coeff 
(t-stat)

Coeff 
(t-stat)

Coeff 
(t-stat) 

Coeff 
(t-stat) 

Coeff 
(t-stat) 

Coeff 
(t-stat) 

Family structurea              

  Single person HH -- -- 
-0.496 
(-5.67) 

-- 
-0.299 
(-2.72) 

-1.354 
(-7.74) 

-- -- 
-0.254 
(-6.70) 

-- -0.169 
(-3.59) 

-0.596 
(-7.80) 

  Nuclear family 
-0.230 
(-3.44) 

-- -- -- -- 
1.555 

(18.47) 
-0.032
(-1.09)

-- 
-- -- -- 0.728 

(18.86) 

  Single parent family -- -- -- -- -- 
0.982 

(4.07) 
-- -- 

-- -- -- 0.534 
(5.10) 

Fraction of adults by work status in HHb             

  Part-time workers 
0.365 
(3.09) 

0.651 
(5.58) 

-- -- 
0.406 
(2.37) 

0.373 
(2.18) 

0.178
(3.47)

0.292 
(5.74) 

-- -- 0.191 
(2.58) 

0.181 
(2.44) 

  Non-workers 
0.789 
(6.24) 

1.109 
(8.82) 

-- -- 
0.484 
(2.53) 

-- 
0.350

(6.35) 
0.481 
(8.72) 

-- -- 0.207 
(2.52) 

-- 

Baseline preference constants 
-0.082 
(-1.98) 

-0.312 
(-7.72) 

  -0.600
(-15.09)

-0.596 
(-16.91)

-1.266 
(-19.51) 

-1.439 
(-21.20) 

0.170
(9.14)

0.045 
(2.42) 

-0.034 
(-1.74) 

-0.041 
(-2.31) 

-0.321 
(-10.07) 

-0.417 
(-12.42) 

Satiation parameters 
0.027 

(24.44) 
0.103 

(20.74) 
0.089 

(18.52)
0.038 

(19.32) 
0.160 

(14.30) 
0.014 

(16.09) 
0.085

(23.03)
0.442 

(17.49)
0.281 

(17.83) 
0.128 

(18.85) 
0.514 

(13.64) 
0.047 

(16.61) 
Scale parameter Fixed to the value of 1.0 0.429 (t-stat of 62.08 with respect to the value of 1.0) 
Fit measures for continuous consumptions  
  Log-likelihood at convergence -4163.88 -3529.26 
  Log-likelihood at constants -4534.94 -3940.22 
  Number of parameters 19 20 
  Adjusted likelihood ratio index 0.0776 0.2174 

  Nested likelihood ratio test 
Test statistic [-2*(LLTFIXED-MDCEV-LLT-MDCEV)]=1269.24 > Chi-Squared statistics with 1 degree of freedom at any reasonable 

level of significance; Conclusion is that the T-MDCEV model is preferred 
Fit measures for discrete consumptions  
  Predictive log-likelihood at convergence -13143.75 -13931.32 
  Predictive log-likelihood at constants -13540.06 -14319.56 
  Number of parameters 13 14 
  Predictive adjusted likelihood ratio index 0.0821 0.0261 
  Predictive non-nested test   0001.072.39  ; Conclusion is that the TFIXED-MDCEV model is preferred 

--: Not significant 
a: base is couple family and multi-adult households  
b: base is full-time workers 
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Table 2. Estimation Results for Traditional MDCEV Model with a L -profile, and Comparison with the Traditional MDCEV 
Model with a  -profile 

Independent Variables/ 
Data Fit Measures 

TFIXED-MDCEV T-MDCEV 

Scale parameter Fixed to the value of 1.0 
0.121 (t-stat of 73.23 with respect to the 

value of 1.0) 

Data fit measures for continuous consumptions  

  Log-likelihood at convergence -5147.96 -4195.24 

  Log-likelihood at constants -5497.32 -4528.14 

  Number of parameters 19 20 

  Adjusted likelihood ratio index 0.0600 0.2332 

Nested likelihood ratio test between the TFIXED-MDCEV and T-
MDCEV models of this table 

Test statistic [-2*(LLTFIXED-MDCEV-LLT-MDCEV)]=1905.44 > Chi-Squared statistics with 1 
degree of freedom at any reasonable level of significance; Conclusion is that the T-

MDCEV model is preferred 

Non-nested likelihood ratio test between the TFIXED-MDCEV models 
from Tables 1 and 2 

  0001.014.42  ; Conclusion is that the 
TFIXED-MDCEV model from Table 1 is 

better 
Not applicable 

Non-nested likelihood ratio test between the T-MDCEV models from 
Tables 1 and 2 

Not applicable 
  0001.081.38  ; Conclusion is that the 

T-MDCEV model from Table 1 is better 

Data fit measures for discrete consumptions  

  Predictive log-likelihood at convergence -12738.40 -12743.95 

  Predictive log-likelihood at constants -13104.41 -13106.63 

  Number of parameters 13 14 

  Predictive adjusted likelihood ratio index 0.1095 0.1091 

Predictive non-nested likelihood ratio test between the TFIXED-
MDCEV and T-MDCEV models of this table  

  001.023.3  ; Conclusion is that the TFIXED-MDCEV model is preferred 

Predictive non-nested likelihood ratio test between the TFIXED-
MDCEV models from Table 1 and 2 

  0001.047.28  ; TFIXED-MDCEV 
model from Table 2 is better 

Not applicable 

Predictive non-nested likelihood ratio test between the T-MDCEV 
models from Table 1 and 2 

Not applicable 
  0001.076.48  ; T-MDCEV model 

from Table 2 is better 
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Table 3. Estimation Results for Proposed New Flexible MDCEV Model with a L -profile 

Independent Variables/ 
Data Fit Measures 

Discrete baseline preference (D-preference) Continuous baseline preference (C-preference) 
Shop P.Bus. Recr. Dining Social Serve Shop P. Bus. Recr. Dining Social Serve 
Coeff 

(t-stat) 
Coeff 

(t-stat) 
Coeff 

(t-stat)
Coeff 

(t-stat) 
Coeff 

(t-stat) 
Coeff 

(t-stat) 
Coeff 

(t-stat)
Coeff 

(t-stat) 
Coeff 

(t-stat) 
Coeff 

(t-stat) 
Coeff 

(t-stat) 
Coeff 

(t-stat) 
Family structurea              

  Single person HH -- -- 
-0.248 
(-5.22) 

-- 
-0.145 
(-2.54) 

-0.685 
(-7.20) 

0.436 
(10.43)

-- 
0.750 

(11.23) 
0.419 

(9.57) 
0.760 

(9.18) 
1.250 

(9.10) 

  Nuclear family 
-0.119 
(-3.19) 

-- -- -- -- 
0.815 

(14.94) 
-0.243 
(-4.89) 

0.692
(17.92) 

-0.225 
(-4.86) 

-0.403 
(-7.62) 

-0.353 
(-6.40) 

-0.935 
(-13.49) 

  Single parent family -- -- --- -- -- 
0.441 

(3.27) 
-0.432 
(-3.07) 

1.139 
(12.35) 

-0.232 
(-1.26) 

-0.373 
(-2.25) 

-0.170 
(-1.99) 

-0.538 
(-2.58) 

Fraction of adults by work status in HHb             

  Part-time workers 
0.222 
(3.51) 

0.348 
(5.60) 

-- -- 
0.130 
(1.80) 

0.129 
(1.81) 

-0.383 
(-4.60) 

-0.244 
(-2.94) 

-0.217 
(-2.67) 

-- -- -- 

  Non-workers 
0.410 
(6.13) 

0.601 
(8.73) 

- -- 
0.217 
(2.94) 

-- 
-0.169 
(-1.89) 

-0.695 
(-7.73) 

-- -- -- 0.170 
(1.69) 

Baseline preference constants 
-0.255 
(-9.64) 

-0.343 
(-12.93)

-0.509 
(-18.16)

-0.512 
(-18.91)

-0.844 
(-21.38) 

-0.947 
(-19.74) 

1.348 
(15.09)

0.914 
(15.34) 

1.534 
(18.50) 

1.372 
(17.05) 

1.824 
(19.90) 

1.747 
(14.89) 

Satiation parameters One set of satiation parameters as listed in next column 
0.013 
(8.52) 

0.065 
(11.72) 

0.036 
(9.27) 

0.021 
(9.13) 

0.050 
(8.19) 

0.008 
(7.05) 

Scale parameter 0.5244 (t-stat of 27.98with respect to the value of 1.0) 
Data fit measures for full model  
  Log-likelihood at convergence -4636.92 
  Log-likelihood at constants -5673.25 
Fit measures for continuous consump.  

  Predictive log-likelihood at convergence = -3218.90 for flexible MDCEV model, = -3529.26 for  -profile T-MDCEV, = -4195.24 for L -profile T-MDCEV 

  Number of model parameters =49 for flexible MDCEV model, =20 for  -profile T-MDCEV, = 20 for L -profile T-MDCEV 

  Akaike Information Criterion = -3169.90 for flexible MDCEV model, = -3549.26 for  -profile T-MDCEV, = -4205.24 for L -profile T-MDCEV 

  Bayesian Information Criterion = -3018.03 for flexible MDCEV model, = 3611.25 for  -profile T-MDCEV, = 4277.23 for L -profile T-MDCEV 

Fit measures for discrete consumptions  

  Predictive log-likelihood at convergence = -12738.37 for flexible MDCEV model, = -13,931.32 for  -profile T-MDCEV, = -12743.95 for L -profile T-MDCEV

  Predictive log-likelihood at constants = -13111.35 for flexible MDCEV  model, = -14319.56 for  -profile T-MDCEV, = -13106.63 for L -profile T-MDCEV

  Number of parameters 14 non-constant parameters for all models that determine discrete consumption patterns 

  Predictive adjusted likelihood ratio index 0.1094 for flexible MDCEV model, 0.0261 for  -profile T-MDCEV, 0.1091 for L -profile T-MDCEV 

  Predictive non-nested test 
 84.48  and  93.2  for comparisons of the  -profile T-MDCEV and L -profile T-MDCEV with the proposed 

flexible MDCEV model; Conclusion is that the proposed flexible MDCEV model is preferred 
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Table 4. Aggregate Measures of Fit   

Percentage of individuals participating in in-
home and… 

Actual percentage of 
individuals 

participating 

Traditional  -

profile  MDCEV 
prediction 

Traditional L -

profile  MDCEV 
prediction 

Proposed Flexible 
MDCEV model 

prediction 

Shopping (S) only 9.76  6.39  7.24  7.06 

Personal Business (PB) only 5.94  5.16  6.54  6.54 

Eat Out only (EO) 5.58  3.03  3.44  3.56 

S and PB 5.88  3.63  4.62  4.43 

S and EO 2.89  1.99  2.19  2.16 

PB and EO 2.42  1.55  1.90  1.93 

S and PB and EO 2.69  2.36  2.68  2.60 

Weighted Mean Absolute Percentage Error - 31.40 22.06 22.96 

Weighted Mean Absolute Percentage Error for 
number of inside alternatives picked 

- 39.55 22.59 22.42 

Percentage of overall time-budget spent in … Actual percentage 
Traditional  -

profile  MDCEV 
prediction 

Traditional L -

profile  MDCEV 
prediction 

Proposed Flexible 
MDCEV model 

prediction 

Shopping 2.76  3.12  2.41  3.07 

Personal Business 8.92  6.91  8.35  8.58 

Recreation 3.65  3.18  3.10  3.94 

Eat Out 2.44  2.26  1.95  2.39 

Social 3.26  2.42  2.72  3.48 

Serve Passenger 0.97  0.72  0.70  0.70 

Weighted Mean Absolute Percentage Error - 18.69 12.61  6.75 

 


