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ABSTRACT 
This paper presents a joint model of walking and bicycling activity duration using a hazard based 
specification that recognizes the interval nature of time reported in activity-travel surveys.  The 
model structure takes the form of a multilevel hazard-based model system that accounts for the 
range of interactions and spatial effects that might affect walking and bicycling mode use.  In 
addition to the individual-specific factors, family (household-specific) interactions, social group 
(peer) influences, and spatial clustering effects are also considered as potential factors that 
contribute to heterogeneity in non-motorized transport mode use behavior.  The model system 
presented is capable of accommodating grouped duration responses often encountered in 
activity-travel surveys. A composite marginal likelihood estimation approach is adopted to 
estimate parameters in a computationally tractable manner. The model system is applied to a 
survey sample drawn from the recent 2009 National Household Travel Survey in the United 
States.  Model results show that there are significant unobserved family-level, social group, and 
spatial proximity effects that contribute to heterogeneity in walking and bicycling activity 
duration.  The unobserved effects were also found to have a differential impact on bicycling 
activity duration, thus suggesting the need to treat and model walking and bicycling separately in 
transportation modeling systems.   
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1. INTRODUCTION 
Transportation professionals are interested in the analysis of walk and bicycle mode use from a 
variety of perspectives, including the reduction of fuel consumption and greenhouse gas (GHG) 
emissions (1), enhancement of public health and well-being (2), and the design of livable urban 
spaces.  Although there is considerable literature on non-motorized travel behavior, previous 
research in this domain is limited in its treatment of walk and bicycle mode choice in several 
ways.  For example, several studies have examined overall physical activity participation among 
adults and children in the context of the built environment, but these studies do not explicitly 
separate walking and bicycling from other physically active episodes of participation (e.g., 3, 4).  
Other studies have lumped walking and bicycling together into a single category of non-
motorized mode use, without sufficiently recognizing that there may be trade-offs across the use 
of these two modes of transport and important differences in the factors that influence their use 
(e.g., 5).  Yet other studies have examined walking or bicycling in isolation of the other, thus 
preventing the ability to model or understand the use of these non-motorized physically active 
modes in a comprehensive way. There are numerous studies exclusively dedicated to the study of 
the choice of walking (e.g., 6-8), and others that exclusively focus on bicycling (e.g., 9-11).  

The importance of considering walking and bicycling mode use in a unified framework 
has not gone unrecognized in the literature.  However, many of these studies have restricted their 
focus to examining walking and bicycling habits of either children/adolescents, particularly in 
the context of their travel to and from school (e.g., 12), or adults in the context of their commute 
or short-distance trip making (e.g., 13, 14).  Ogilvie et al. (15), Pikora et al. (16), and Saelens et 
al. (17) provide more extensive reviews of studies in this topic area.  

In general, past research considers specific demographic segments, and describes or 
models non-motorized mode use of individuals in isolation of their social, familial, and spatial 
context.  Sener et al. (18) jointly considered physical activity participation of all members in a 
family, but their analysis was limited by the consideration of all physical activities together as a 
single choice.  The current paper uses a hazard-based duration model structure consistent with 
the use of time allocation as a measure of non-motorized mode use. Specifically, a proportional 
hazard specification is employed to capture activity participation behavior of individuals (19, 
20). The model system recognizes the presence of individual-specific unobserved factors that can 
affect the amount of non-motorized mode use as a whole, as well as the amount of time 
specifically allocated to bicycling vis-à-vis walking. The model also incorporates the effects of 
unobserved common household-specific attributes that can influence walking and cycling 
activity durations of all individuals in a household. Similarly, social group-specific and spatial-
cluster specific unobserved factors that impact walking and cycling activity durations are also 
included in the model system.  The data used in this paper is drawn from the San Francisco Bay 
Area subsample of the 2009 National Household Travel Survey (NHTS) (21). The data set 
includes detailed attitudinal information on walking and bicycling making it particularly 
appealing for this study.  The sample data set is further enhanced by merging variables 
describing built environment attributes from a variety of secondary data sources.   

The design of a behavioral model system that accounts for these myriad effects is 
motivated by work in social ecology theory that considers the critical role played by social 
networks in shaping individual choices in a variety of domains. The spatial distribution of social 
relationships has been found to be an important aspect of the vitality and fabric of urban 
neighborhoods (22, 23). A specification that captures these multiple effects and interactions leads 
to a multi-level cross-cluster structure that recognizes and preserves between-cluster 
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heterogeneity. Further, the relations between walking and cycling activity durations within and 
across individuals are correlated through these various unobserved factors.  For example, 
consider individuals from a “health conscious” household. Individuals from this household are 
likely to have a higher propensity to engage in walking and bicycling activities for longer time 
periods. Also, between these two activities, if the household has an intrinsic preference for 
walking over bicycling, then the participation durations of walking activity of all individuals in 
the household are likely to be affected. Thus, ignoring unobserved common household-specific 
factors and considering only observed exogenous variables may lead to inconsistent parameter 
estimates (24). This, in turn, can result in less accurate assessment of the impact of policy 
measures designed to promote walking and/or bicycling at individual as well as household levels.  

The multivariate cross-cluster model system proposed in the current paper requires the 
evaluation of a more than thousand-dimensional integral (number of individuals in the data set 
multiplied by number of activity types). As this is computationally prohibitive, a composite 
marginal likelihood (CML) approach that requires no use of simulation techniques is employed 
for parameter estimation (25, 26). The CML approach entails the development of a surrogate 
likelihood function that involves easy-to-compute, low-dimensional, marginal likelihoods. The 
CML estimates are consistent and asymptotically normally distributed, and the approach 
provides accurate inferential conclusions.  

The rest of the paper is organized as follows. The detailed modeling methodology is 
presented in the next section.  The third section provides a brief overview of the data used in the 
study, while the fourth section presents model estimation results.  Concluding thoughts and 
directions for further research are offered in the fifth and final section.   
 
2. THE MODEL STRUCTURE  
This section presents the modeling methodology. In the interest of brevity, a few details of the 
CML approach are omitted in this paper. More complete details of the approach may be found in 
Bhat et al. (26).  
 
2.1 Mathematical Formulation 
Let )(τλqijlm  represent the hazard at continuous time τ of ending time investment in activity type 

m (m = 1, …, M) for the thq  (q = 1, 2, …, Q) individual belonging to household i (i = 1, 2, …, I), 
social cluster j (j = 1, 2, …, J), and spatial cluster l (l = 1, 2, …, L). That is, )(τλqijlm  represents 
the conditional probability that individual q will stop investing additional time in activity type m 
during an infinitesimally small time period after time τ, given that the individual has not yet 
stopped investing time in activity type m until time τ:  

Δ

>Δ+<<
=

+→Δ

)|(
lim)(

0

τττ
τλ qijlmqijlm

qijlm

TTP
, (1) 

where qijlmT   is the index representing the continuous time of participation in activity m for 
individual q belonging to household i, social cluster j, and spatial cluster l. Next, the hazard rate 

)(τλqijlm  may be written using a proportional hazard formulation as a function of a vector of 
covariates xqm specific to individual q and activity type m: 

)exp()()( 0 qmqijlmqmmmqijlm x ωαβτλτλ ++′= , (2) 
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where βm is a vector of coefficients specific to activity m, qijlmα  is a scalar term associated with 
individual q, household i, social cluster j, spatial cluster l, and activity type m, and qmω   is an 
unobserved idiosyncratic factor affecting the hazard for individual q and activity m ( qmω  may 
represent unobserved factors such as the qth individual’s intrinsic liking or aversion for activity 
type m). qmω  is assumed to be independent of xqm and qijlmα , and normally distributed with a 

mean of zero (an innocuous normalization for identification purposes) and variance 2
mσ . 

Equation (2) represents the micro-level model for individual q in household i, belonging to social 
cluster j and spatial cluster l, participating in activity m. Next, the scalar term qijlmα  is allowed to 
vary across individuals, households, social groups, and spatial clusters in a higher-level macro-
model: 

lmljmjimiqqijlqijlm zzwwuuvh +++++++′= ςα , (3) 

where qijlh   is a vector of observed variables specific to individual q or household i or social 
cluster j or spatial cluster l or to the combination of these higher level macro-units, ς   is a 
corresponding parameter vector to be estimated, vq is an individual-specific random term that 
captures unobserved variation across individuals in the hazard function for all activity types (vq 
may include intrinsic individual-specific factors such as motivation for physical activity that 
affects the duration of participation of the individual in all types of walking and bicycling  
activities), ui is a household-specific random term that captures unobserved variation across 
households in the hazard function for all activity types (ui may include intrinsic household-
specific lifestyle factors impacting all individuals in the household in their attitudes and 
perspectives toward all types of walking and bicycling  activities), uim is another household-
specific random term that captures unobserved variation across households in the hazard function 
specific to activity type m (uim includes intrinsic household-specific factors that makes 
individuals in a household more inclined to participate in specific types of physical activity such 
as bicycling), wj and wjm are similar social-cluster specific random terms, and zl and zlm are 
similar spatial-cluster specific random terms. Consider that the above random terms are 
realizations from independent and identically normally distributed terms across individuals (for 
vq), across households (for ui and uim), across social clusters (for wj and wjm), and across spatial 
clusters (for zl and zlm). Thus, the distributions of the error terms are:  

[ ]2,0~ θNvq , [ ]2,0~ μNui , [ ]2,0~ mim Nu μ , [ ]2,0~ ηNwj , [ ]2,0~ mjm Nw η , [ ]2,0~ δNzl , and 

[ ]2,0~ mlm Nz δ        

If one were to define ),( ′′′= ςβγ mm  and ),( ′′′= qijlqmqijlm hxd , then the micro- and macro-models of 
Equations (2) and (3) can be combined into a single equation as follows:    

)exp()()( 0 qmlmljmjimiqqijlmmmqijlm zzwwuuvd ωγτλτλ ++++++++′= , (4) 

The proportional hazard formulation of Equation (4) can be written equivalently in terms of the 
logarithm of the integrated hazard at continuous time qijlmT  as follows (21): 
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 )(ln)(ln 0
0

0
*

qmqmlmljmjimiqqijlmmm

T

qijlmqijlm zzwwuuvddTs
qijlm

εωγττλ
τ

+++++++++′=−=Λ−= ∫
=

, (5) 

qmε  in the above equation occurs because of the intrinsic probabilistic nature of the hazard 
function. Further, when the relationship between the hazard function and covariates takes the 
proportional hazard form of Equation (4), it can be shown that qmε  is  standard extreme value 
distributed:  )]exp(exp[)()(Prob aaGaqm −−==<ε .   In Equation (5), since each individual q is 
uniquely identified with a particular household i, social group j, and spatial cluster l, it is 
convenient from a presentation standpoint to suppress the indices i, j, and l in qijlmT and qijlmd . 
Thus, qmT  and qmd  will be used to represent qijlmT  and qijlmd  respectively. 

Now, consider the case where time qmT   is unobservable on the continuous scale, but is 
observed in grouped (or discrete) intervals qmt . In the empirical context of the current paper, this 
grouping is a result of individuals rounding off activity durations (often to the nearest fifth 
minute) when reporting time-use patterns in activity-travel surveys (27). The net result of such 
rounding is that there is clumping or “ties” in the data at durations of time that are integer 
multiples of five minutes. The presence of such ties renders usual parametric continuous baseline 
hazard models inappropriate, since these models use density function terms in the likelihood 
function that are appropriate only for continuous duration data.  It is important to explicitly 
recognize the interval-level data arising from the grouping of underlying continuous times during 
the estimation process. To do so, consider k as an index for grouped time intervals (i.e., qmt = 0, 
1, 2,…, k,…, mK ).  Let  1, +kmb  be the upper bound on the continuous time scale corresponding to 
the grouped time interval k. Then, Equation (5) may be written in an equivalent grouped 
response form as follows: 

ktzzwwuuvdTs qmqmqmlmljmjimiqqmmqmqijlm =+++++++++′=Λ−= , )(ln 0
* εωγ  if kKmqmkKm mm

s −+− << 1,
*

, ψψ , (6)  

where )(ln ,01, kmkKm b
m

Λ−=−+ψ  is the upper bound for interval k for activity type m 

( ) ,  ;... 1,0,1,2,1,0, +∞=−∞=<<< ++ mm KmmKmmmm ψψψψψψ . 

In the above specification, if 2θ  (variance of qv ), 2μ  (variance of iu ),  2
mμ  (variance of 

imu ; Mm ,...,1= ), 2η  (variance of jw ), 2
mη  (variance of Mmwjm ,...,1; = ), 2δ  (variance of lz ), 

and 2
mδ  (variance of Mmzlm ,...,1; = ) are all simultaneously equal to zero,  then it implies that 

there is no variation in the activity durations for different activity types based on unobserved 
factors that are specific to the individual, the household, the social cluster to which the individual 
belongs, and the spatial cluster to which the individual belongs. In this case, the cross-random 
grouped response (CRGR) model of Equation (6) collapses to the standard grouped response 
(SGR) model. The implication is that all unobserved heterogeneity is due to overall idiosyncratic 
factors associated with the propensity to participate in each activity type, and there are no 
common unobserved individual, household, social group, and spatial cluster factors impacting 
durations of participation in the activity types. Note also that the specification of Equation (6) 
generates a rich covariance pattern structure among the hazard functions for participation in 
different activity types. The (log) integrated hazards (LIHs) for any pair of activity types m and 
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'm  ( )'mm ≠  for the same individual have a covariance of ,2222 δημθ +++ qU  where 1=qU  if 
the individual is in a household with more than one individual and zero otherwise. For two 
different individuals q  and q′ , the covariance in the LIHs between any pairing of activity types 
m and 'm  across the two individuals is equal to 

,2
''

22
'

22
''

2
mmmqqqqmmmqqqqmmmqqqq GGRRHH δδηημμ +++++ ′′′′  where  qqH ′ = 1 if individuals q  and 

q′  are in the same household, 'mmqqH ′ = 1 if individuals q  and q′  are in the same household and 
m and 'm   are the same activity type, qqR ′ = 1 if individuals q  and q′  are in the same social 
group, 'mmqqR ′ = 1 if individuals q  and q′  are in the same social group and m and 'm  are the same 
activity type, qqG ′ = 1 if individuals q  and q′  are in the same spatial cluster, and 'mmqqG ′ = 1 if 
individuals q  and q′  are in the same spatial cluster and m and 'm  are the same activity type. The 
indicator variables above take the value of zero otherwise.  
 
2.2 Estimation Approach  
Let yqm be the thq  individual’s observed activity participation time (obtained in the grouped 
intervals) in activity type m. The conditional likelihood function for individual q’s participation 
duration in activity type m (conditional on )and,,,,,, qmlmljmjimiq zzwwuuv ω  can be written as: 

][][,,,,,,, 1 qmyKqmyKqmlmljmjimiqqm BGBGzzwwuuvL
qmmqmm
−−−= −−+ ψψω  

where qmlmljmjimiqqmmqm zzwwuuvdB ωγ ++++++++′= .  
The likelihood function unconditional on qmω  is: 

∫ −−−= −−+

qm

qmmqmm qmqmyKqmyKlmljmjimiqqm dFBGBGzzwwuuvL
ω

ωψψ )(])[][(,,,,,, 1 ,  

where )( qmF ω  is the univariate cumulative normal distribution function corresponding to qmω . 
The likelihood function of the entire sample cannot be broken down as the product of the 
likelihood functions for each individual’s choices of grouped time interval for each activity m, 
because the underlying latent values *

qijlms   are correlated across individuals q and activities m 
(due to the presence of the lmljmjimiq zzwwuuv  and ,,,,,,  error terms). Further, since the various 
clusters are not hierarchical (i.e., one cluster is not nested within the other), the analyst needs to 
consider the entire set of MQ ×  observations (q = 1, 2, …, Q; m = 1, …, M) as a single cluster 
in developing the likelihood function. To accomplish this, stack the *

qijlms   values together 

vertically in the vector *s , and let the implied variance-covariance of  *s  due to the 

lmljmjimiq zzwwuuv  and,,,,,,  (but not considering qmω  and qmε ) error terms be Ω . Thus Ω is a 
)]()[( QMQM ×××   variance-covariance matrix whose elements are parameterized based on 

2222222 and,,,,,, mmm δδηημμθ . Define a multivariate normally distributed variable vector 
),0(~ ΩMVNg . Then the likelihood function may be written as: 

∫∏∏
= =

× Ω=
g

q

q

M

m
QMlmljmjimiqqm gdFzzwwuuvLL

1 1

)(),,,,,,(  



Ferdous, Pendyala, Bhat, and Konduri   6 

 

The likelihood function above entails the evaluation of an integral of the order of )( MQ× . The 
usual simulation techniques become impractical, if not infeasible, to evaluate such a 
multidimensional integral for even small to moderate Q. For this reason, the composite marginal 
likelihood (CML) technique is adopted in the current paper (see 26, 28). Specifically, in the 
current paper, a pairwise marginal likelihood estimation approach which is based on forming a 
surrogate likelihood function that compounds pairs of individual-activity type combinations is 
used. Then, by maximizing this surrogate (log) likelihood function, a consistent estimator of all 
relevant parameters characterizing the original high dimensional distribution is obtained. Let the 
parameter vector to be estimated be represented as:  

,),,,,,...,;,...,;,...,;,...,;..., ,  ;..., ,( 111111 ′′′′′= δημθδδηημμσσψψγγκ MMMMMM   

where ) ,... , ,( ,2,1, ′=
mKmmmm ψψψψ . The pairwise marginal likelihood function includes two main 

components – one component that represents the likelihood of all pairs of activity type 
combinations within individuals, and the second component that represents the likelihood of 
pairs of individual-activity type combinations across individuals: 
 

[ ]
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In the CML function above, (.)F is the univariate cumulative standard type I extreme value 
distribution. In Equation (7), the bi-dimensional integrations can be carried out using quadrature 
techniques or simulation techniques. However, an alternative is to use the normal scale mixture 
(NSM) representation of the extreme value distribution.  In this approach, the non-normality of 
the error term qmε  is removed by replacing it with a weighted mixture of normally distributed 
variables (29, 30). In the interest of brevity, the details of this mixing approach are suppressed in 
this paper, but are available in Bhat (30).  

The pairwise estimator CMLκ̂  offers parameters that are consistent and asymptotically 
normal distributed with asymptotic mean κ  and covariance matrix given by the inverse of 
Godambe’s (31) sandwich information matrix )(κG  (32): 
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The )(κH  matrix can be estimated in a straightforward manner using the Hessian of the negative 
of )(log κCMLL , evaluated at the CML estimate )ˆ( CMLκ . However, the estimation of the )(κJ  
matrix is more difficult. In the current paper, pure Monte Carlo computation is used to estimate 
the )(κJ  matrix. In this approach, B data sets (T1, T2,..., TB) are generated where each dataset Tb 
(b = 1, 2, …, B) is a MQ×  matrix of the dependent variables generated using the exogenous 
variables and the CML estimates )ˆ( CMLκ . Once these datasets are generated, the estimate of 

)(κJ is given by: 
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3. DATA 
In the current study, data collected for households drawn from Marin, Solano, and Sonoma 
counties in the San Francisco Bay Area under the National Household Travel Survey (NHTS) 
add-on program is used.  Data from these three counties was used because the California NHTS 
add-on survey included detailed information on weekly walking and bicycling activity duration 
for all individuals 5 years of age or above and because the authors have access to extensive 
secondary data on built environment attributes for these locations. These built environment 
attributes and spatial context variables were appended to the survey sample to form a rich data 
set suitable to the analysis of walking and bicycling choice behavior. 

The sample selected for analysis includes only individuals at least 5 years old who 
reported participating in at least one activity of interest (i.e., either walking or bicycling) over a 
period of one week. The continuous walking and bicycling activity durations were divided into 
grouped intervals and indexed appropriately (as per the description in the previous section). 
Following this initial sample selection process, a series of steps were undertaken to determine 
associations across individuals and households. First, an indicator variable was generated to 
denote individuals of the same family. Then, a number of demographic factors such as age, 
household structure, and household income were used to define social grouping.  A preliminary 
exploratory analysis suggested that using age to define social groups would yield the best model 
specification. It was found that age is the most significant variable in identifying homogeneous 
clusters of individuals who have very similar levels of walking and bicycling duration. All 
individuals were grouped into one of nine social groups based on age. Following this, the 
residential location of each household was geo-located to a TAZ (traffic analysis zone); thus, all 
households that reside in a TAZ belong to a spatial cluster.  

The survey collected information about respondents’ attitudes towards bicycling and 
walking and the factors that impact the amount of bicycling and walking they undertake (19).  A 
factor analysis, using principal components estimation and varimax rotation, was performed to 
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reduce the data and define a more compact set of influential factors.  These factors generally 
captured lifestyle characteristics, neighborhood (built environment) characteristics, motorized 
traffic characteristics, and perceptions of personal safety (details of the factor analysis are 
available from the authors).   

The final sample includes 882 individuals from 561 households. Of these individuals, 
96.1% participate in some walking activity and 18.9% participate in some bicycling activity over 
a period of one week. Individuals who participate in these activities spend, on average, 204 
minutes and 130 minutes per week in walking and bicycling activity respectively. Table 1 
provides information on walking and bicycling activity durations for individuals who participate 
in these activities. The lengths of the discrete periods used in estimation (presented in the third 
column) increase for larger activity durations until termination for all individuals (except for the 
first period for walking activity which is 10 minutes long). The number of discrete periods used 
for walking is higher than for bicycling because of the more extensive number of individuals 
walking in the sample, thus providing adequate number of individuals in finer time periods. For 
the final discrete period, all spells longer than 840 minutes for walking and 240 minutes for 
bicycling are collapsed to a single period.  

The discrete-period sample hazards (the sixth column) are estimated using the Kaplan-
Meier non-parametric estimator (33). These discrete-period sample hazards cannot be compared 
directly across periods due to variation in the length of time periods.  The discrete-period sample 
hazards are converted to continuous-time sample hazards under the assumption that the hazard is 
constant within each period k. Thus, the continuous-time sample hazard )(ˆ

0 kmλ  can be estimated 
as follows:  

)(
))(ˆ1ln(

)(ˆ
*

0
0 kt

k
k m

m Δ
−

−=
λ

λ ,  

where )(*̂
0 kmλ  is the discrete-period sample hazard in period k and )(ktΔ  is the length of the 

period k. The continuous-time sample hazards are plotted in Figure 1, and show that the sample 
hazards are higher for bicycling activity duration compared to walking activity duration in the 
first 45 minutes. This implies that individuals who participate in walking activity tend to commit 
a certain minimum amount of time to pursue this activity. Also, walking activity duration 
hazards exhibit more widespread “peaks” than bicycling duration hazards. This indicates a more 
even distribution of walking activity durations across participating individuals in comparison to 
bicycling activity durations. The hazard function for walking duration exhibits three highest 
“peaks” at time periods containing 1 hour, 2-hour, and 3-hour walking activity durations per 
week. Other “peaks” in the plot of hazard function for walking can be observed at multiples of 
30 minutes intervals. A similar trend, but to a lesser degree can be observed in the plot of the 
hazard function for bicycling duration. This pattern of hazard functions highlights the discrete 
interval nature of reporting of the underlying continuous time variable and the need to adopt an 
appropriate framework that can explicitly recognize this feature.  The model system proposed in 
the current paper incorporates this ability.            
 
4. EMPIRICAL ANALYSIS 
Estimation results for the final model specification are presented in Table 2. The final 
specification includes some variables that are not statistically significant at the usual 5% level of 
significance because the effects of these variables are intuitive, and have the potential to guide 
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future research that may have the benefit of larger sample sizes. The coefficients in the table 
indicate the effects of variables on the duration hazard for walking and cycling activity. A 
positive (negative) coefficient implies that the corresponding explanatory variable increases 
(decreases) the hazard rate and decreases (increases) the activity duration.  

In general, the variables offer plausible behavioral interpretations.  Males tend to allocate 
more time to bicycling, as do those who are employed. Those who are part-time employed 
allocate more time to walking than do other groups.  It is possible that employed individuals 
walk for utilitarian purposes during the workday (say, for lunch or to accomplish quick errands) 
or before or after work to decompress.  Individuals in “couple” households spend more time 
walking and bicycling; these individuals probably do not have the constraints associated with 
child care in the home, and find walking and bicycling a relaxing joint activity.  However, it is 
found that individuals in households with children that are older (11-15 years) allocate more time 
to bicycling, presumably because these children are able to pursue outdoor activities and ride 
bicycles together with parents.   

The perceived absence of walkable attractions and having busy lifestyles deter walking as 
evidenced by the positive coefficient associated with this attitudinal variable.  Similarly, the 
absence of walk-friendly environment and facilities deters people from spending time on walking 
activities.  Likewise, several bicycling related factors deter time allocation to bicycling.  Busy 
lifestyles and the unavailability of bicycle paths/trails, inconvenience in terms of carrying things 
and lack of paved bicycle facilities, and perceived (lack of) safety are all associated with positive 
coefficients. These results suggest that there are myriad factors that affect the time allocation to 
walking and bicycling activities.  On the one hand, busy lifestyles deter individuals from 
allocating time to walking and bicycling.  This may not be a factor that can be easily manipulated 
by policy-makers, but it may be possible to ease lifestyle constraints by providing flexible work 
schedules and telecommuting options. However, more directly related to transportation planning 
and design is the finding that unavailability and poor perceived quality of walking and bicycling 
infrastructure, and lack of walking “attractions” (i.e., appealing destinations), are clearly having 
an adverse impact on the amount of time spent walking and bicycling.  Planners, designers, and 
policy makers may be able to enhance walking and bicycling use by addressing these issues.1 

Of special relevance in the context of this paper is the bottom half of Table 2 which 
presents estimates of the heterogeneity parameters.  These parameters capture heterogeneity 
effects due to unobserved individual, household, social group, or spatial neighborhood factors.  
Heterogeneity, i.e., differences in behavior across individuals, may arise due to individual-
specific effects, interaction effects, or agglomeration effects.  Individual-specific effects 
constitute intrinsic individual attitudes, perceptions, beliefs, and values that affect walking and 
bicycling duration.  Household-specific effects constitute family influences that are not typically 
measured or observed in surveys.  Lifestyle choices at the household level, family-member 
interactions, and parental influence may impact the time spent by individuals for walking and 
bicycling.  The argument can be extended to the context of social group and spatial clusters, 
except that these effects may be a combination of interaction effects and agglomeration effects.  
Individuals of different age groups may interact with their peers (outside the household), thus 
bringing about peer (social network) influence that impacts walking and bicycling activity.  
Finally, households (individuals) may choose to reside in neighborhoods that support their 

                                                            
1 None of the many built environment variables considered entered into the final model specification. This is 
because the attitudinal variables potentially capture the effects of the built environment. 
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lifestyle and travel preferences, thus producing agglomeration effects where spatial clustering of 
households with similar walking and cycling propensity may occur.  

An examination of these parameter estimates shows that heterogeneity effects are 
generally statistically significant at all levels of clustering.  The overall heterogeneity parameter 
in each level is representative of heterogeneity in the use of non-motorized modes of travel as a 
whole, while the activity-specific heterogeneity parameter denotes whether there are unobserved 
factors that differentially impact walking and bicycling duration across individuals.  At the 
individual-specific level, the overall heterogeneity parameter is significant indicating that there 
are significant unobserved individual-specific factors that affect non-motorized mode use as a 
whole.  At the activity-specific level, it is found that such unobserved factors significantly impact 
bicycling activity duration.  All other levels exhibit similar findings.  Overall heterogeneity 
effects are statistically significant at all levels, although the significance is weaker in the context 
of household-specific heterogeneity.  There are clear indications from the model results that 
significant social influence effects and neighborhood clustering effects exist in the amount of 
non-motorized mode use by individuals.  However, when one examines the activity-specific 
heterogeneity parameters, it appears that the heterogeneity effects are more pronounced 
(significant) in bicycle activity duration as opposed to walking duration.  At all levels, the 
activity-specific heterogeneity parameter is statistically insignificant for walking activity 
duration.  In summary, the results show that heterogeneity exists, that heterogeneity exists due to 
interaction and agglomeration effects at multiple levels, and that the heterogeneity specific to 
bicycling activity duration is statistically significant. When model estimation results reported in 
this paper were compared against those obtained from a model specification in which 
heterogeneity due to a variety of effects was ignored, it was found that coefficient estimates on 
socio-economic and attitudinal variables noticeably differed in magnitude (although the signs on 
the coefficients were identical).   

Baseline hazard plots were generated (not shown in the interest of brevity) and compared 
against the sample hazard plots shown in Figure 1.  As in the case of the sample hazard rates, 
baseline hazards were calculated under the assumption that the hazard remains constant within 
each discrete time interval.  The baseline hazard functions are found to be non-monotonic and 
characterized by multiple peaks, similar to the sample hazard functions.  This finding clearly 
indicates that non-parametric hazard functions are preferred over parametric specifications for 
analyzing walking and bicycling activity durations.  Another interesting finding is that there are 
clear differences between the baseline hazards and the sample hazards.  For walking activity 
duration, the baseline hazard increases with increasing activity duration, while the sample hazard 
decreases with increase in activity duration (except for the first 45 minutes).  For bicycling 
activity duration, the baseline hazard and sample hazard were found to be more similar in profile; 
however, the baseline hazard shows more distinct peaks than the sample hazard.  These 
differences between the baseline and sample hazards suggest that it is important to recognize 
variations in activity durations due to both observed and unobserved factors using approaches 
such as that adopted in this paper.   

The log-composite likelihood value for the fully specified independent grouped response 
probit model (IGRP) (that is, independent grouped response probit models for each activity type) 
at convergence is –6,647,007.8 and that for the fully specified multi-level cross-random grouped 
response probit model (MCGRP) presented in the table is –5,524,133.6. The composite 
likelihood ratio test (CLRT) statistic for comparing the MCGRP model with the IGRP model is 
2,245,748.4. However, the CLRT statistic does not have the standard χ2 asymptotic distribution 
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under the null hypothesis, as in the case of the regular maximum likelihood inference procedure.  
Other measures can be used to determine whether the MCGRP model form is statistically 
superior to the IGRP model form.  The t-statistics on θ , mσ , μ , mμ , η , mη , δ , and mδ  
parameter estimates are statistically significant, indicating that the MCGRP model is likely to be 
superior to the IGRP model which omits these statistically significant parameters. Further, one 
may compute 2

cρ  in the composite marginal likelihood approach for the MCGRP model and the 
IGRP models as )],(log/))ˆ([(log12 TLNL CMLCMLc −−= κρ  where )ˆ(log κCMLL  is the composite 
marginal log-likelihood at convergence, N is the number of model parameters excluding the 
thresholds, and )(log TLCML  is the log-likelihood with only thresholds in the model. The value of 

2
cρ  for the IGRP model and the MCGRP model are 0.17 and 0.31 respectively once again 

indicating that the IGRP model may be rejected in favor of the MCGRP model.  
 
5. SUMMARY AND CONCLUSIONS 
This paper offers a framework and methodology for modeling the time spent walking and 
bicycling by individuals, while explicitly recognizing heterogeneity arising from individual-
specific factors, family or intra-household interactions, social group or peer influences, and 
spatial clustering effects. In the United States, walking and bicycling activity is often a lifestyle 
preference that is linked closely to personal and household attitudes, beliefs, values, and 
perceptions.  These attitudes and preferences are likely to be shaped by not only one’s own 
individual-specific beliefs, but also influences of other household members, social peers, and 
neighborhood elements.  

In this study, the time allocated to walking and bicycling activity over a period of one 
week is modeled jointly using a hazard model specification, thus providing the ability to examine 
how effects of various factors differentially impact walking vis-à-vis bicycling.  The 
methodology adopted in this paper is capable of accommodating grouped responses that typically 
occur in activity-travel survey data sets wherein durations (start and end times) are rounded to 
the nearest fifth minute.  The multilevel cross-random model structure is presented in detail in 
the paper together with a model estimation approach that overcomes the challenge associated 
with evaluating a thousand-dimension integral of a multivariate density function.  The composite 
marginal likelihood (CML) approach provides a tractable, easy to implement way to estimate 
parameters by transforming the large multidimensional integral to a low-dimensional integral.   

The model is estimated on a survey sample data set derived from the California add-on of 
the United States National Household Travel Survey (NHTS) conducted in 2009.  The subsample 
specific to three counties in the San Francisco Bay Area is extracted and analyzed in this paper. 
The continuous time hazard functions suggest that individuals tend to be more uniform in the 
allocation of time to walking than to bicycling.  Higher hazards for bicycling at small duration 
(up to 45 minutes) suggest that individuals tend to commit a certain minimum amount of time to 
walking, thus reducing the hazard in those initial periods.  The model estimation results show 
standard individual and household demographic and socio-economic variables impact walking 
and bicycling activity duration.  More importantly, however, there are numerous attitudinal 
factors and perceptions that affect walking and bicycling activity duration.  In addition to busy 
lifestyles and such constraints, it is found that perceptions of poor walking and bicycling 
infrastructure and concerns about safety adversely impact the amount of walking and bicycling 
undertaken by individuals.  These findings are all consistent with expectations and point to the 
need for professionals and policy makers to consider neighborhood designs, land use 
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configurations, and infrastructure investments that alleviate the concerns and enhance 
perceptions of bicycling and walking convenience and safety.  

Another important finding in this study is the significance of heterogeneity effects at 
multiple levels in the determination of non-motorized mode use, largely attributable to 
heterogeneity in bicycle activity duration.  Travel demand model systems, with virtually no 
exception, ignore many of the (unobserved) interaction effects, social context, and spatial 
clustering effects that bring about heterogeneity in behavior. In this paper, it is found that 
unobserved individual specific factors, intra-household interaction effects, social peer group 
influence, and spatial clustering effects are all significant determinants walking and bicycling 
activity duration.  The finding that family effects are important suggests that public education 
campaigns targeted at parents may bring about changes in the non-motorized mode use of 
children due to “family” effects.  Similarly, social peer group influences and spatial clustering 
effects should not be ignored in modeling non-motorized mode use.  People tend to be influenced 
by the behavior of individuals they associate with (in this paper, association based on age group 
was found to offer a plausible specification), and households tend to locate in spatial clusters 
(zones or neighborhoods) consistent with their lifestyle and travel preferences.  Integrated land 
use – transport model systems able to capture such effects through enhanced model 
specifications are likely to offer more accurate policy predictions that better inform decision 
makers.   
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TABLE 1  Walking and Bicycling Activity Durations and the Discrete Period Sample Hazards 

Discrete 
time 

period 
ka 

Time interval 
t (mins) 

Interval 
length 
(mins) 

No. of 
individuals 
terminating 

activity 
participation 
in this time 
period )( kF  

No. of 
individuals “at 

risk” of  
terminating 

activity 
participation 
in this time 
period )( kR  

Discrete-
period hazard 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k

k
k R

F
H  

Standard 
error of 

kH b 

Walking activity duration 
1 0 < t ≤ 10 10 7 848 0.008 0.003 
2 10 < t ≤ 15 5 8 841 0.010 0.003 
3 15 < t ≤ 20 5 22 833 0.026 0.006 
4 20 < t ≤ 30 10 37 811 0.046 0.007 
5 30 < t ≤ 40 10 16 774 0.021 0.005 
6 40 < t ≤ 50 10 25 758 0.033 0.006 
7 50 < t ≤ 60 10 106 733 0.145 0.013 
8 60 < t ≤ 80 20 11 627 0.018 0.005 
9 80 < t ≤ 100 20 85 616 0.138 0.014 

10 100 < t ≤ 120 20 116 531 0.218 0.018 
11 120 < t ≤ 150 30 36 415 0.087 0.014 
12 150 < t ≤ 180 30 90 379 0.237 0.022 
13 180 < t ≤ 210 30 27 289 0.093 0.017 
14 210 < t ≤ 240 30 47 262 0.179 0.024 
15 240 < t ≤ 300 60 55 215 0.256 0.030 
16 300 < t ≤ 360 60 47 160 0.294 0.036 
17 360 < t ≤ 420 60 31 113 0.274 0.042 
18 420 < t ≤ 480 60 14 82 0.171 0.042 
19 480 < t ≤ 600 120 34 68 0.500 0.061 
20 600 < t ≤ 720 120 9 34 0.265 0.076 
21 720 < t ≤ 840 120 10 25 0.400 0.098 
22 840 < t > 120 15 15 1.000 - 

Bicycling  activity duration 
1 0 < t ≤ 15 15 8 167 0.048 0.017 
2 15 < t ≤ 30 15 22 159 0.138 0.027 
3 30 < t ≤ 45 15 17 137 0.124 0.028 
4 45 < t ≤ 60 15 25 120 0.208 0.037 
5 60 < t ≤ 90 30 20 95 0.211 0.042 
6 90 < t ≤ 120 30 20 75 0.267 0.051 
7 120 < t ≤ 180 60 26 55 0.473 0.067 
8 180 < t ≤ 240 60 10 29 0.345 0.088 
9 240 < t  > 60 19 19 1.000 - 

                                                            
a Note, in the estimated model k starts from 0 which represents non-participation in the activity. 
b Standard error of Hk is estimated using Greenwood’s formula. 
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TABLE 2  Model Estimation Results 

  Walking activity Bicycling  activity 

  Estimatesa t-stat Estimatesa t-stat 

Individual socio-demographic variables     

Male (base: female)   -2.262 -3.39 

Employment status (base: not employed)     

Full-time employed   -1.540 -1.79 

Part-time employed -0.588 -1.36 -1.587 -2.43 

Household (HH) socio-demographic variables     

Couple (base: “other” households) -0.702 -1.74 -0.670 -1.84 
Presence of children aged between 11 to 15 years in the HH 
(base: no children in the HH)   -0.724 -1.46 

Effects of individual attitudinal variables     

Walking     

Absence of "attractions" and busy life style related factors  1.372 1.99   

Unavailability of walk-friendly environment/facilities 3.033 3.35   

Bicycling      

Busy life style and absence of bicycle paths/trails   2.660 2.52 

Inconvenience and lack of paved bicycle facilities   2.179 2.72 

(Lack of) Safety   2.059 1.57 

Heterogeneity parameters (standard deviation)     

Individual-specific heterogeneity     

Overall )(θ  0.873 3.80 0.873 3.80 

Activity-specific )( mσ  1.007 1.35 0.182 5.15 

Household-specific  heterogeneity     

Overall )(μ  0.143 1.64 0.143 1.64 

Activity-specific )( mμ    0.342 3.58 

Social group-specific heterogeneity     

Overall )(η  0.442 3.80 0.442 3.80 

Activity-specific )( mη  0.257 1.31 0.610 5.01 

Spatial cluster-specific  heterogeneity     

Overall )(δ  0.690 3.79 0.690 3.79 

Activity-specific )( mδ  0.791 1.32 0.151 5.14 

Mean log-likelihood -5524133.6 
a A positive (negative) coefficient implies that the corresponding explanatory variable increases (decreases) the 
hazard rate and decreases (increases) the activity duration.
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FIGURE 1  Continuous time sample hazard functions for walking and bicycling durations. 
 


