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ABSTRACT 
In this paper, we examine vehicle owners’ adoption of five different types of partially automated 
features (PAFs); lane keeping system, backup camera (BUC), adaptive cruise control (ACC), 
automatic braking system (ABS), and blind spot monitoring; as well as PAF effects on vehicle 
miles of travel (VMT). The joint modeling of PAF adoption and VMT is achieved using both 
individual demographic characteristics as well as psycho-social characteristics. A Generalized 
Heterogeneous Data Model (GHDM) is estimated, which controls for possible self-selection 
effects in PAF adoption based on VMT, and thus is able to provide “true” PAF effects on VMT. 
Our analysis specifically indicates that ignoring this self-selection can lead to a significant 
underestimation of the VMT increase due to PAF adoption. The results also indicate that women 
and older individuals (65 years or older) appear to be more inclined to invest in assistive PAFs, 
because of a perception that these assistive features still leave the human driver in control. 
However, women are less likely than men to invest in the more active ABS PAF because of 
heightened safety concerns with technology. In terms of PAF effects on VMT, PAFs focusing on 
lateral movement assistance appear to have a smaller VMT effect than those that serve longitudinal 
movement assistance. The highest estimated VMT change of 2,462 miles (13.8% change) is for 
the case when the package of BUC, ACC, and ABS is installed for middle-aged men. The highest 
percentage VMT change (40%), though, is for the same package of BUC, ACC, and ABS for older 
women. Overall, there are considerable variations in VMT impact across demographic groupings, 
suggesting that a single aggregate percentage improvement in safety benefits may suffer from the 
well-known ecological fallacy.   
 
Keywords: Partially automated vehicles, vehicle automation, safety offsets, vehicle miles of travel 
(VMT), psycho-social constructs.   
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1. INTRODUCTION 
Automated vehicles (AVs) are likely to alter individual activity-travel behavior and mobility 
patterns, thanks to technologies that, in some future, will not require the human to pay attention to 
the road. However, while fully automated vehicles (or FAVs; that is, vehicles that do not need any 
human intervention in the driving task) were hailed as the wave of the very immediate future even 
five years back, such aggressive predictions of the availability and use of FAVs have simply not 
materialized. Thus, investigating the potential activity-travel behavior impacts of FAVs 
(designated as Level 4/5 automation on the Society of Automotive Engineers or SAE scale; see 
SAE, 2018) is typically undertaken through stated preference or SP surveys (that is, asking 
individuals how they may change their mobility patterns in a hypothetical environment with a 
Level 4/5 vehicle). The use of such SP surveys may be defended based on the notion that attitudes 
and stated intentions about the use of a new product do correlate with future actual behavioral 
action. Indeed, studies in the information sciences literature (see, for example, Leung et al., 2018 
and Marikyan et al., 2019) point to the value of prediction models of future behavioral action based 
on earlier stated preferences and intentions, a concept that also has strong support from the Theory 
of Planned Behavior (TPB; Ajzen, 1991) and the Technology Acceptance Model (TAM) (Davis, 
1989; Venkatesh and Davis, 2000). At the same time, there have been legitimate concerns raised 
about the level of ecological validity and reliability of stated responses to technologies that may 
still feel to many as “rocket science”, as in the case of FAVs. After all, FAVs continue to remain 
abstract and psychologically distant, and can conjure up different images for different people.  

While the stated timeline for the introduction of FAVs has now been pushed back, there 
has been considerable progress in testing, refining, standardizing, and implementing lower levels 
(SAE levels 0, 1, and 2) of automated technology in vehicles. SAE Level 0 (or no automation) 
corresponds to the driver controlling all aspects of driving, though vehicles with Level 0 may be 
equipped with warning and related convenience systems, such as backup camera or lane departure 
warning. SAE Level 1 (or driver assistance) automation corresponds to a vehicle being able to 
“control steering or acceleration/deceleration using information from the external environment”, 
while SAE Level 2 (or partial automation) corresponds to a vehicle being able to “control both 
steering and acceleration/deceleration using information from the external environment”. 
Basically, Levels 0, 1, and 2 automation features represent driver support or assistance features, 
where the human driver still has full responsibility for driving. Examples of SAE Level 1 
automation include adaptive cruise control or lane keeping, while an example of SAE Level 2 
automation would be a vehicle that not only has adaptive cruise control, but also hands-free lane 
changing and self-parking capabilities. Level 2 automation is the highest level of automation in 
vehicles on the road today, and include technology packages such as the Tesla Autopilot, Cadillac 
Super Cruise, Mercedes-Benz Drive Pilot, and Volvo Pilot Assist. For ease in presentation, in this 
paper, we will refer to Level 0, 1, and 2 automation together as partial automation, and vehicles 
with partial automation as partially automated vehicles or PAVs. SAE Level 3 automation 
corresponds to the vehicle being able to “control all driving tasks and monitoring the 
environment”, with the driver still needing to stay alert all the time and being readily available to 
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back up when called upon (also referred to as conditional automation). Level 3 automation was 
available as the Traffic Jam Pilot in the Audi A8, but was cancelled in 2019 due to legal 
considerations. Even so, Audi and other companies such as Hyundai Motor Co., Kia Motors Corp., 
BMW, and Mercedes-Benz hope to have Level 3 technology (basically, a hands-off, legs-off, eyes-
off, but brains-on situation) on the roads within a span of a couple of years or so. However, the 
highest two levels of SAE automation -- Levels 4 and 5, or FAVs -- corresponding to high/full 
automation (that is, “brains-off” too from the standpoint of the driver) are temporally distant (7-
10 years from now or well beyond from a marketplace availability standpoint; IEEE, 2020).1   

The psychological and temporal distantness of FAVs, as just discussed above, suggest that 
there is value in examining activity-travel behavior responses to the currently existing (and, 
therefore, psychologically and temporally “there right now”) situation of PAVs, both in terms of 
enhanced reliability/validity of findings as well as the more practical issue of understanding 
activity-travel behavior impacts in the short-to-medium term future. Indeed, in the latter context, 
most households will go through at least two vehicle turnover events before FAVs may become 
available for purchase at the marketplace, given that households, on average, purchase a new 
vehicle every six years (Demuro, 2019). This is likely to have the result of further delaying any 
substantial FAV penetration in household vehicle holdings to well beyond a decade (even if FAVs 
become available in the marketplace before then). At the same time, during new car purchase 
occasions in the coming decade, families are likely to increasingly embrace affordable PAV safety 
features, and upgrade to the most up-to-date PAV convenience technology as part of their 
dashboard, entertainment system, navigation system, and engine or software capability. Even if 
families are hesitant to pay up for new PAV features, safety regulations will make at least some 
PAV features standard for new vehicles, as in the case of a federal law requiring backup cameras 
in all new vehicles after 2018 (Bomey, 2018).  

The research in this paper is motivated by the discussion above. Specifically, there are two 
main objectives of our effort. The first is to examine the factors that affect the uptake of existing 
partial automation features (PAFs). After all, the rate at which PAFs penetrate the market depends 
on customer preferences. To effectively forecast and plan for the adoption and penetration of these 
technologies and options by consumers, a greater understanding of consumer preferences for PAFs 
is needed. The second is to investigate the impact of PAFs on vehicle miles of travel (VMT). Such 
an analysis is important to forecast travel demand in the short-to-medium future, especially as 
consumers purchase new and progressively higher levels of automation in their next purchased 
vehicle. At the same time, because of the potentially higher reliability through actual observations 
of VMT change in response to PAFs, an investigation of PAF effects on VMT can also provide 

                                                 
1 The different levels of automation and the types of automated features have their own set of benefits and drawbacks. 
For example, Cicchino (2018a) found a decrease in rates of fatal crashes by 86% in PAVs with lane-keeping 
technology, while Winkle (2016) suggests that there is likely to be a drop of 27% in the total number of injuries due 
to the presence of any driver assistance system. On the other hand, Hardman et al. (2021) explain that, due to the 
potential for PAVs to increase VMT, there are likely to be negative implications for the U.S.’s goals to reduce 
greenhouse emissions. A detailed discussion of the benefits and drawbacks of automated features and automation 
levels is beyond the scope of this current study. 
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added insights on how FAVs may impact VMT in a longer-term future. As importantly, it is critical 
to enjoin the first analysis of PAF adoption with the second analysis of VMT effects, to account 
for possible self-selection effects. That is, to estimate the “true” effects of PAFs on VMT, the 
analyst needs to control for the potential endogeneity of PAF choice when assessing the effect of 
PAF choices on VMT, because people who may want to drive more (higher VMT) may be more 
likely to invest in PAFs in the first place, or, alternatively, people who currently drive less (lower 
VMT) may be those who are intrinsically safety conscious and thus are the ones more likely to 
invest in PAFs. In this paper, we formulate and estimate a joint model of PAF adoption and VMT. 
Our model employs individual and household socio-demographics, as well as psycho-social 
variables (in the form of latent psychological constructs), as determinant variables. The study uses 
data from a 2019 Austin-based survey on emerging technology and mobility service adoption and 
use. 

The rest of this paper is organized as follows. Section 2 provides a brief overview of the 
PAFs considered as well as the importance of analyzing PAF effects on VMT, along with 
associated literature and a positioning of the current study. Section 3 describes the data collection 
design, sample characteristics and the modeling methodology. Section 4 presents the model results 
and goodness of fit measures. Section 5 discusses policy and safety implications. Finally, Section 
6 concludes the paper with a summary discussion of the important findings, along with an 
identification of future research directions.  
 
2. PA FEATURES AND VMT 
2.1. PA Features (PAFs) 
The five PAFs considered in this study are: (1) lane keeping system (LKS), (2) backup (rear-view) 
camera (BUC), (3) adaptive cruise control (ACC), (4) automatic braking system (ABS), and (5) 
blind spot monitoring (BSM).2 The survey asked the respondent to identify the vehicle most often 
used by the respondent (hereafter referred to as the individual’s “primary vehicle”), and solicited 
information from the respondent on whether each of the five PAFs above were available or not in 
the vehicle. These responses were binary (yes/no), leading to five binary choices for the full set of 
PAFs. 

Over the past decade, there has been an explosive body of literature devoted to the study 
of awareness levels of, attitudes toward, and adoption and use of FAVs. Some recent illustrative 
examples, almost exclusively based on stated preference surveys (but occasionally also based on 
exposure to simulated journeys in a virtual reality FAV), include Ghasri and Vij, 2021, Sharma 
and Misra, 2020, Xiao et al., 2020, Asmussen et al., 2020, Voinescu et al., 2020, Rahimi et al., 
2020, Asgari and Jin, 2019, Spurlock et al., 2019, Jiang et al., 2019, Souris et al., 2019, Sweet and 
Laidlaw, 2020, Sener et al., 2019, Berliner et al., 2019, Hardman et al., 2019, Charness et al., 2018, 

                                                 
2 The PAFs selected and included in the survey were based on ensuring adequate penetration and familiarity of the 
PAF in the consumer vehicle market, as well as the distinctiveness of each PAF in terms of the functional assistance 
offered. Note that the five PAFs listed here are the five most common PAFs in vehicles today, with Back-up Camera 
(BUC) now being standard in all vehicle models, and the other four PAFs now available in at least 80% of new vehicle 
models in each of the midsize, large, and SUV vehicle segments (see AAA, 2019).  
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Leung et al., 2018, Nair et al., 2018, Liljamo, 2018, and Lavieri et al., 2017a. Gkartzonikas and 
Gkritza, 2019 and Narayanan et al., 2020 are two recent sources for reviews of such studies. As 
indicated earlier, while these studies do provide important insights, their reliability/validity may 
be somewhat compromised because of the psychological and temporal distantness of FAVs.  

In contrast to the substantial literature on FAV adoption and use, there is a surprising dearth 
of studies on the adoption and use of PAFs, even though currently available revealed preference 
behavioral choices regarding the choice of PAFs can provide reliable insights on those who are 
likely to embrace (as opposed to not embrace) current and future automation. Four studies focusing 
on consumer preferences and adoption of PAFs are Wali et al. (2021), Abraham et al. (2017), Shin 
et al. (2015), and Owens et al. (2015). These are briefly discussed in turn in the next four 
paragraphs.  

The study by Wali et al. (2021) analyzes how consumer preferences for  partially (level 3 
or 4 connected) automated vehicles and FAVs are impacted by different vehicle attributes, electric 
vehicle ownership, safety concerns and sustainable travel behavior. For the analysis, a joint 
bivariate ordered discrete outcome modeling framework for PAV and FAV preferences is used to 
accommodate possible jointness, while also recognizing preference heterogeneity at household 
and regional levels. However, this study does not differentiate between different types of PAFs 
and is limited in the nature of psycho-social motivational factors considered. It also investigates 
higher levels of partial automation along with full automation, using questions based on stated 
intentions for adoption rather than revealed preferences. 

The study by Abraham et al. (2017) reviews the extent to which consumers are happy with 
the technology in their current vehicle, evaluates how they have learned to use the advancing 
technology they currently have, and if they are willing to upgrade to more advanced autonomous 
technology in the future. As in the Wali et al. study, the Abraham et al. study also does not identify 
the specific partial automation technologies existing in the current vehicle owned, and so is unable 
to analyze the differences among individuals in actual PAF adoption. An important result from the 
Abraham et al. (2017) study, though, is that customers feel most comfortable using safety-oriented 
technologies (safety from crashes) relative to speed control or steering-oriented (such as lane 
keeping) automation technologies.   

Shin et al. (2015) examine consumer preferences for PAFs. As these options had not yet 
made their way into the marketplace in a significant way at the time this study was conducted, a 
stated preference survey is undertaken to elicit consumer preferences. Shin et al.’s results show 
that, among the PAFs and related technologies considered (broadly, these were vehicle 
connectivity bundles for entertainment, voice command technologies, and lane keeping), 
individuals are not too interested in lane keeping technology, which is consistent with the finding 
by Abraham et al. (2017). Again, though, Shin’s study does not focus on the more expansive range 
of PAFs considered in this study. It was also based on a stated preference study rather than a 
revealed preference study, and was undertaken using a sample of consumers from a different 
geographical context than the current paper (specifically, South Korean consumers rather than a 
sample from a city in the U.S.).  
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The Owens et al. (2015) study, like the Shin et al. (2015) study, also focuses on eliciting 
the comfort levels and ownership of in-vehicle integrated partial automation technologies (backup 
camera, collision warning system, navigation system, and internet communication system), and 
examines cross-generational differences. The study, based on a sample of 1,000 respondents across 
the U.S., observes that there are no statistically significant differences in PAV ownership across 
generational cohorts, except for backup cameras that are more prevalent in vehicles owned by 
older generations than millennials (18-31 years of age). The study is exploratory and descriptive 
in nature, and focuses exclusively on age effects rather than a larger set of demographic and 
psychometric latent constructs.  

 
2.2. Effect of PAFs on VMT 
As in the case of adoption and use of technology features, a large body of literature in the past 
decade has focused on the potential effects of FAVs on (a) medium term mobility and urban 
structure decisions (including residential location, work location, recreation location, vehicle 
ownership, roadway element design, parking configurations/controls, and pedestrian/bicycle  
infrastructure; see, for example, Milakes et al., 2017, Duarte and Ratti, 2018, Fraedrich et al., 2019, 
Krueger et al., 2019, Cugurullo et al., 2021, Moore et al., 2020, Kim et al., 2020, and Acheampong 
et al., 2021 for recent studies on these longer-term effects) and (b) shorter-term activity-travel 
behavior decisions (see, for example, Dannemiller et al., 2021 and the extensive review therein of 
descriptive, model-based modification, and stated survey-based investigations of FAV effects; 
another good review may be found in Soteropoulos et al., 2019). Most of the studies in the second 
group examine FAV effects on vehicle miles of travel (VMT) or vehicle kilometers of travel 
(VKT), as may be observed from Table 4 of the review article by Gkartzonikas and Gkritza (2019). 
The focus on VMT (or VKT) as the travel outcome variable is not surprising, because VMT 
changes provide important macro-level repercussions on overall intensity of travel and traffic 
congestion levels. Earlier studies generally indicate a positive effect of FAV adoption/use on 
VMT, attributable to a reduction in the value (burden) of travel time due to increased comfort, less 
stress, the ability to pursue other activities during travel, and sending vehicles on errands, though 
the extent of the VMT change varies considerably in these studies (see Harb et al., 2018 and 
Hardman et al., 2019).  

Similar to the case of automation adoption and use, the literature on FAV effects on VMT 
dwarfs the number of studies focusing on PAF effects on VMT.3 Two earlier studies that we are 
aware of that examine PAF effects on travel are Hardman et al. (2019) and Hardman (2020), which 
we briefly discuss below. To be noted is that both these studies focus on the specific class of Tesla 
battery electric vehicles and on a composite PAF corresponding to the Tesla autopilot (rather than 
a broader sample of owners of all vehicle types and no/multiple PAFs). In particular, the Tesla 

                                                 
3 To be sure, there have been studies related to (a) trust and comfort in the use of partial automation technology (see 
Lee et al., 2019, Abraham et al., 2017), (b) PAF effectiveness in avoiding crashes on different roadway facilities 
(Chan, 2017; Yue et al., 2020), and (c) older drivers’ opinions on the ease of use of PAF features and older drivers’ 
cognitive and physical health/sensory considerations (Fernandes et al., 2017 and Gish et al., 2017). But none of these 
studies examine PAV effects on travel behavior.   
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autopilot feature effectively represents the combined functionality of all the five PAFs considered 
in the current paper, given it is claimed to “match speed to traffic conditions, keep within a lane, 
automatically change lanes without requiring driver input, transition from one freeway to another, 
exit the freeway when your destination is near, self-park when near a parking spot, and be 
summoned to and from your garage”.  That is, the autopilot feature corresponds to an affirmative 
decision along each of the five PAFs, while our study recognizes that many respondents may 
choose only one or a limited set of PAFs (in fact, only 8.4% of our sample had all the five PAFs 
in their vehicles).  

Hardman et al.’s (2019) investigation revolves around usage patterns of the Tesla autopilot 
by 424 battery electric vehicle owners, upwards of 90% of whom had the autopilot feature installed 
in their vehicles. The study clusters respondents using a latent class approach into five groupings 
based on the frequency of use of the autopilot feature (including a “no use” category corresponding 
to the less than 10% of respondents without the feature) and examines the effect of demographic 
characteristics, psycho-social factors (frustrated commuter, technophobe, and driving enthusiast), 
and VMT on the frequency of use of the autopilot. The results show important differences across 
the five frequency use clusters, with VMT and technophobia being the most important 
determinants of frequency of use. The study is of an exploratory and associative nature, and does 
not address the issue of whether autopilot use causes VMT changes. The study is focused on PAF 
use conditional on a positive PAF adoption decision, rather than on the PAF adoption decision per 
se or PAF effects on VMT.  

Another paper by Hardman (2020) is based on a qualitative semi-structured interview 
process with 36 autopilot-equipped Tesla battery electric vehicle owners. The study examines the 
benefits of autopilot as perceived by the respondents (less stressed, less tired, more relaxed, 
increased feeling of safety), activities undertaken when using autopilot (mobile phone use, observe 
the surroundings, sleep, and other), and reported changes to travel after acquiring the autopilot-
equipped Tesla. None of the 36 respondents indicated a reduction in travel (relative to travel in 
their earlier vehicle), with about 45% indicating “no change”, and 33% indicating a definite 
increase (the remaining 22% were evenly split between “small increase”, “maybe increase”, and 
“no response”).   

Another third independent study, just as we were completing our current study, is Hardman 
et al. (2021). This insightful Hardman et al. study descriptively examines the frequency of use of 
PAFs, and the driving scenarios that make drivers more likely to use PAFs. Three PAF packages 
are considered: (1) only adaptive cruise control (ACC), (2) only ACC and lateral lane keeping 
systems (LKS), and (3) the Tesla autopilot that combines all the five PAFs in this study. The first 
two packages are based on an analysis of non-Tesla vehicle owners, with 340 users with only ACC 
in their vehicles, and 312 with both ACC and LKS. The last package is based on data from 628 
Tesla owners. Overall, the results indicate that, for both commute and long-distance travel, Tesla 
autopilot owners are more likely to use PAFs when driving than other respondents, and those with 
vehicles equipped with only ACC use PAFs the least. Additional descriptive analysis is undertaken 
to examine PAF use on different roadway types, distinct weather conditions, and varying traffic 
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conditions. In addition, and more relevant to this study, the study observes that PAFs appear to 
increase driving during congested times of the day and on congested roads, and for long distance 
trips more so than for local trips. These results are based on the self-reported behavioral change of 
users. A further analysis of long distance travel among respondents who have both LKS and ACC, 
as well as those with Tesla autopilot, suggests that those who are younger, have lower household 
incomes, and those who use PAFs in a wide variety of roadway, weather, and traffic conditions 
are more likely to report an increase in long-distance travel. Finally, the authors use a propensity 
score matching (PSM) approach that compares the VMT of Tesla autopilot owners with Tesla non-
autopilot owners, and suggest an increase annually of 4,680 miles due to the presence of Tesla 
autopilot.  
 
2.3. The Current Study 
The current study uses a sample of 978 respondents drawn from across the spectrum of vehicle 
owners, and models both the dimensions of PAF choice in vehicles as well as VMT in a joint 
causal framework. As discussed earlier, disentangling the “causal” effect of PAFs on VMT from 
“spurious” associative effects due to self-selection considerations is important to better understand 
PAF effects on travel patterns. We use VMT as the travel outcome of interest because it has 
immediate implications for traffic volumes, congestion levels, and mobile-source emissions.  

Our focus on VMT is also driven by the fact that VMT has been shown to be an effective 
exposure measure to assess safety. In fact, researchers typically normalize the absolute crash 
frequencies by VMT to characterize and compare crash risks across different types of drivers and 
driving conditions. For example, men report driving more miles and hours per year than women 
(Ding et al., 2017; Shen et al., 2020). With more miles on the roads, this puts men at greater 
exposure for wrecks and crashes. While the current crash risks due to increased VMT exposure, 
and the variations across drivers, may not exactly hold as increasing automation is implemented 
in our vehicles (because of progressively reduced human involvement in the driving task), it is 
only logical and reasonable to believe that increased VMT exposure will continue to lead to a 
heightened risk of crashes.4 This then brings in the issue of the offsetting hypothesis. The offsetting 
hypothesis (Peltzman, 1975) suggests that regulatory attempts to improve automotive safety 
through technological advancements and product design may at least be partially offset by driver 
behavioral changes. Researchers have been investigating this hypothesis since the early 1990s (see 
Traynor, 1993 for his revisit of the original Peltzman hypothesis and Chirinko and Harper, 1993 
for their assessment of human behavior offset of the safety impacts of seatbelts and speed limits). 
Similarly, Peterson et al.’s (1995) study supports the offsetting hypothesis by showing the 

                                                 
4 There has been some debate in the literature regarding whether VMT is the best exposure measure for assessing 
crash risk, or if some other measure such as number of trips or time spent on the road is the more appropriate exposure 
measure. Mindell et al. (2012) and Santamarina-Rubio et al. (2014) argue that length of traveling time is a more valid 
measure of exposure than VMT; however, both these studies are in the context of pedestrian and bicyclist safety, 
rather than motorist crash risk. The preponderance of studies reach the conclusion that VMT is at least as good of a 
motorist crash risk exposure measure, if not better, than other measures (see Massie et al., 1997, Li et al., 2003, Beck 
et al., 2007, Pei et al., 2012, Papadimitriou et al., 2013, and most recently, Shen et al., 2020).  



8 

increased accident reports after the air bag system was adopted in 1993. They attribute this offset 
to more aggressive driving on the part of the driver, recognizing the additional protection offered 
by the airbag system. The offsetting hypothesis has been addressed in many other automotive 
safety scenarios as well (see Sen, 2001, Benedettini and Nicita, 2012, Winston et al., 2006); 
however, it has yet to be addressed in the context of advancing automated vehicle features. The 
key question here is how much will VMT change due to the introduction of automation in vehicles, 
and how will this VMT change caused by automation vary across different demographic groups? 
As we address this seemingly simple question, we also need to accommodate for the self-selection 
of individuals to tease out the “true” causal effects of increasing automation on VMT and not co-
mingle this “true” effect with intrinsic unobserved characteristics that may make specific 
individuals more or less likely to own a PAV as well as put in more VMT.  

In summary, there are several salient aspects of the paper. First, we examine PAF uptake 
(or adoption) using a joint model based on actual revealed choice data that examines multiple 
technologies individually and at once. We achieve this through a multi-dimensional econometric 
model using actual revealed preference data of technology ownership. This is in contrast to earlier 
studies that primarily use descriptive analysis techniques based on stated preference data. Second, 
we go beyond consumer acceptance and ownership of PAFs to also examine how the presence of 
PAFs affects annual vehicle miles of travel (VMT) In doing so, we recognize the endogeneity of 
VMT in the choice of PAFs by jointly modeling PAF uptake and VMT (that is, we account for 
possible self-selection effects in PAF adoption based on VMT). Such an analysis not only provides 
insights regarding the “true” effects of automation technology on VMT, but also can offer insights 
regarding any offset of safety benefits (of PAFs). As importantly, by considering vehicles with no 
automation at all as well as different levels of automation, we are able to obtain a more accurate 
assessment of PAF effects on VMT, relative to earlier studies that have considered only vehicles 
that are already equipped with PAFs. In this context, while the recent independent Hardman et al. 
(2021) study does use a propensity score approach to control for possible self-selection, the study 
does so based on observed individual/household characteristics and lifestyle attributes, but does 
not account for unobserved self-selection effects.5 Third, the foundational basis for our joint model 

                                                 
5 Two important points here. It could be argued that at least some consumers do not choose specific PAFs, but choose 
other vehicle features (such as leather seats or a sunroof) that are of importance to them and accept specific PAFs that 
come bundled with those desired features. But, of course, the reverse could also be true. Some consumers may desire 
specific PAFs, and find other not-particularly-important vehicle features to them (such as leather seats or a sunroof) 
bundled with their desired PAFs. Such a preference confounding due to bundling is, however, not specific to the 
current choice situation, and applies to most other choices studied in the literature. In any case, we will submit that 
examining an even more expansive set of vehicle attributes than the combination of the five PAFs examined in the 
current paper would be a worthwhile future research direction. Also, in this regard, it is only appropriate to interpret 
our use of the term “PAF adoption” with some healthy caution. A second point, and not unrelated to the first point, is 
that, in the current paper, we do not consider actual PAF use once a PAF is in the vehicle. That is, while we examine 
PAF adoption choice (with the caveat just mentioned and in the form of whether or not a vehicle is installed with a 
PAF), we do not examine the intensity of PAF use. If some consumers simply were thrust with specific PAFs in their 
quest to acquire other vehicle features, they may simply turn off the PAFs and not use them at all. In such a case, 
again, one would not obtain an accurate estimate of PAF effects on VMT. This second issue calls for a more 
comprehensive analysis of PAF use (and not simply PAF adoption), in addition to the bundling issue of the first point. 
At the same time, however, we will also note here that studies that investigate actual PAF use (once a PAF is already 
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is the use of stochastic latent attitudes/lifestyle constructs (also referred to as psycho-social latent 
constructs), along with a comprehensive set of observed individual variables, as the drivers of PAF 
adoption and VMT. We also examine the interaction effects of the psycho-social latent constructs 
with demographics on PAF adoption, as well as consider interaction effects among psycho-social 
constructs, demographics, and PAF in the VMT model. As importantly, we are able to examine 
VMT changes due to a variety of different PAF packages, and by different demographic groupings 
(Hardman et al., 2021 develop a single aggregate effect of Tesla autopilot presence across all 
demographic groupings). Fourth, methodologically, we adopt Bhat’s (2015) generalized 
heterogenous data model (GHDM) model to jointly model PAF adoption as well VMT (for recent 
studies using the GHDM framework, see Bhat et al., 2016, Lavieri et al., 2017a, Lavieri and Bhat, 
2019, Dannemiller et al., 2021, Blazanin et al., 2021, and Gomez et al., 2021). In the GHDM 
model, jointness is achieved in an econometrically parsimonious manner through the stochasticity 
of the psycho-social latent constructs. The specific GHDM implementation in the current paper 
includes 11 indicator variables (allowing the estimation of the psycho-social latent constructs) as 
well as six main outcomes of interest (the five PAFs and VMT), and results in an integral 
dimension of the order of 17 in a maximum likelihood inference context. To estimate the model, 
we use a composite marginal likelihood approach that provides a consistent and asymptotically 
normal (CAN) estimator under the same regularity conditions needed for the CAN property of the 
maximum likelihood estimator (Bhat, 2014). The adoption of the five PAFs takes a binary choice 
form, while VMT information is elicited from respondents in bracketed categories and constitutes 
a grouped outcome variable. To our knowledge, this is the first formulation of such a mixed latent 
construct-based model with a grouped outcome variable in the broader econometric and 
transportation literature. Finally, we go beyond model estimation to estimate the VMT effect of 
PAFs by demographic groupings. These estimates can be used as part of a travel demand model 
framework to forecast the intensity of travel in the presence of PAVs, as well as can provide 
insights on safety offsets of PAFs. Moreover, this also provides a basis for car manufacturers to 
target specific sociodemographic groups and focus on specific PAF combinations that might be 
more popular than others.  
 
3. METHODOLOGY 
3.1.  The Survey 
The sample used for analysis in this paper was collected through an “emerging mobility” survey 
conducted in the Austin metropolitan area in Texas in 2019. The survey administration approach 
included an array of communication and information recruitment strategies, including purchasing 

                                                 
installed) suggest that owners of vehicles with PAF features, on average, tend to use them for about 70-75% of their 
trips, with some variation based on whether a trip is a local area trip or a long distance trip (see Crump et al., 2016 
and Hardman et al., 2021). More specifically, Gorzelany (2020) state that the most often turned off PAF is Adaptive 
Cruise Control (ACC), with about 30% of vehicle owners turning the feature off. The second in terms of most often 
turned off PAF is Lane-Keeping Assist (LKA), with 25% turning the feature off. The other features sometimes turned 
off are Blind Spot Monitoring (BSM) at 9% and Back-up Camera at 6%. Overall, individual PAFs, once installed, are 
not very likely to be turned off.  
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a list of over 15,000 e-mails and “pushing” information through social media advertisements and 
local area professional network contacts A financial incentive was offered in the form of a $10 
Amazon gift card to the first 250 respondents, followed by a lottery drawing from the remaining 
respondents to win one of one hundred additional $10 Amazon gift cards. The recruiting effort 
resulted in a convenience sample of 1,127 respondents, which was reduced to a final size of 978 
(149 respondents were removed either because they did not have a motorized vehicle available in 
their household or because they did not answer questions concerning their primary vehicle).6  

The availability of each of the PAFs in the respondent’s primary vehicle, and the self-
reported annual mileage driven (by all individuals in the household) in the primary vehicle, 
constitute the main (dependent) outcomes in the current analysis.7 The annual vehicle miles of 
travel (VMT) on the primary vehicle were sought in eight groupings, from less than 5,000 miles 
to 40,000 miles or more. In addition to information on these main outcomes, the survey sought 
information on individual and household demographics (age, gender, employment type, education 
level, household annual income, and number of children in a household), as well as respondents’ 
general attitudes and lifestyle preferences. These attitudinal perspectives were obtained through 
the responses, collected using a five-point Likert scale ranging from “strongly disagree” to 
“strongly agree”, to a battery of attitudinal statements.  
   
3.2.  Analytic Framework and Data Description 
The analytic framework focuses on understanding the inter-relationship between the PAFs and 
VMT dimensions, while considering individual-level characteristics (individual and household 
demographics) as well as attitudes/lifestyle factors (also referred to as psycho-social factors). 
These psycho-social factors are not directly observed, and so are viewed as latent stochastic 
constructs manifested through a suite of observed indicators. In the current study, based on a 
combination of an exploratory factor analysis process and a subsequent confirmatory factor 
analysis, four such latent constructs (with their most suitable indicators) are identified: (1) (need 
for) driving control, (2) (need for) mobility control, (3) concerns with safety (safety concern), and 

                                                 
6 While a higher sample size would have been desired, our joint model structure is parsimonious in parameters, and 
makes efficient use of the available sample.  
7 Note that the survey was targeted at individuals, while also obtaining demographic information at the individual’s 
household level (such as number of vehicles in the household, household income, household size, and household 
structure). However, information regarding PAFs and VMT was sought only for the individual respondent’s primary 
vehicle, defined as the vehicle used most often by the respondent. In this regard, because individuals are not likely to 
keep strict records of the use of their primary vehicle by the specific individual driving the vehicle, we sought the total 
annual VMT on that vehicle by all individuals in the household. Doing so, admittedly, does not capture the 
heterogeneity (across individuals within the household) in PAF effects on VMT. However, to be noted is that it is 
typical in the U.S. for non-zero vehicle households to own as many vehicles as the number of drivers, and each vehicle 
is almost strictly allocated for use by a single individual; that is, each vehicle in a household is driven quite exclusively 
by a single individual, as also evidenced in many activity-based models in the U.S. that assign a household vehicle to 
a single primary driver (see Goulias et al., 2013 and Lavieri et al., 2017b).  
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(4) an individual’s interest in productive use of travel time (IPTT). Further discussion on these 
latent constructs is provided in Sections 3.2.2.8  

Figure 1 provides a diagrammatic representation of the analytic framework, where we 
suppress the indicators of each latent construct to avoid clutter. There are two components to the 
GHDM model: (1) the latent variable structural equation model (SEM), and (2) the latent variable 
measurement equation model (MEM). The SEM component defines each latent construct as a 
function of exogenous socio-demographic variables and an unobserved error term. The error terms 
across the four latent constructs are collected in a vector η. We assume η to be multivariate 
standard normal with a mean vector of 0 and a correlation matrix of Γ (due to identification 
considerations, the variances of the individual η elements need to be normalized to 1; see Bhat, 
2015). The SEM model relationship between the socio-demographic variables and the latent 
constructs, as well as the correlation matrix elements of Γ, are not directly estimable, but are 
estimated through observations on the latent construct indicators (not shown in Figure 1) and the 
main endogenous outcomes of interest (shown toward the right side of Figure 1). The exogenous 
socio-demographic variables, and the latent constructs (and their interactions) all then serve as 
determinants of the underlying latent propensities of the ordinal indicators, the binary PAFs, and 
the grouped VMT outcomes. This is represented by the MEM relationship in Figure 1. Note that, 
in the modeling, VMT is introduced as a dependent variable in a natural logarithm form, because 
VMT can only be positive. The logarithmic form is also well suited to account for the strong right 
skew of VMT.  

The latent constructs in Figure 1, in addition to capturing important attitudinal and lifestyle 
preference effects, also serve as vehicles to allow the parsimonious joint modeling of the six main 
outcome variables of interest (listed in the right panel of Figure 1). For instance, if interest in the 
productive use of travel time leads to a higher PAF uptake but also reduces VMT, this generates a 
negative correlation (due to unobserved factors) between PAF uptake and VMT. That is, 
individuals who are intrinsically likely to be PAF adopters may also have a low VMT to begin 
with. As we discuss later, this unobserved self-selection needs to be accounted for when attempting 
to capture “true” PAF effects on VMT.  

The GHDM framework, in its original form, supports the modeling of a mixture of different 
types of endogenous outcome variables, including continuous, nominal, ordinal, count, and 
multiple discrete-continuous variables. In our study, the framework is expanded to include grouped 
variables. The mathematical formulation of the GHDM framework is presented in an online 
supplement to this paper (see 
https://www.caee.utexas.edu/prof/bhat/ABSTRACTS/PAF/OnlineSupp.pdf). 

                                                 
8 We should note here that the psycho-social factors used in our study build upon traditional psychosocial frameworks, 
such as the Theory of Planned Behavior (TPB, Ajzen, 1991) and the traditional Technology Acceptance Model (TAM) 
(Davis, 1989; Venkatesh and Davis, 2000). In particular, while retaining attitudinal and perceived usefulness factors 
(in the form of safety concerns and IPTT) that are accommodated within the TPB/TAM frameworks, we also consider 
the emotive factor of the need for control that has not been adequately considered in the TPB/TAM frameworks (see 
Piao et al., 2016, Ward et al., 2017 and Marikyan et al., 2019 for a discussion of this issue in the socio-technical 
literature).  
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Overall, the individual-level characteristics constitute the exogenous variables in our 
model system (see left side of Figure 1). On the other hand, the latent constructs, while also serving 
as determinant variables for the main outcomes, are affected themselves by the individual-level 
characteristics (so, these latent constructs are placed in the middle of Figure 1). Thus, the 
individual-level characteristics have both a direct effect on the main outcomes of interest, as well 
as an indirect mediating effect through the latent constructs. The right side of Figure 1 indicates 
the recursive effect of PAF choice on VMT. VMT is considered endogenous to PAF choice here, 
through the correlation between the PAF variables and VMT. That is, PAF choice and VMT 
decisions are modeled jointly, while accommodating the recursive effect of PAFs on VMT.9  

The individual-level characteristics, the latent constructs, and the main outcomes are 
discussed next in turn in the subsequent sections.  
 
3.2.1. Individual-Level Characteristics 
The sample descriptive statistics of the convenience sample from the survey are presented in Table 
1. To better characterize our sample, in the following discussion, we will provide the comparable 
Census population statistic for the Austin-Round Rock, TX Metro Area, as chronicled by the U.S. 
Census Bureau in 2018. This comparison is not technically appropriate, for the simple reason that 
our sample only includes respondents who have a vehicle in their household, while the Census 
corresponds to all households residing in the Austin area. Nonetheless, a comparison provides a 
sense of the nature of our sample.  

The statistics in Table 1 represent an obvious over-representation of women in our sample, 
relative to the 50-50 gender split in the Census data for the Austin-Round Rock region. Our sample 
indicates an over-representation of young individuals, with about 56% of 18-29 year olds (far 
higher than the 18% of the Austin area population in this age group). This age bias is not surprising, 
as our survey dissemination efforts focused on social media outlets and on or near a college 
campus. The Census did not report on the number of students in the region, though our sample 
under-represents employment rates (61.9% in our sample compared to 73.3% in the Census; also, 
note the high number of individuals who are both students and employed, which is again quite 
characteristic of a University-biased sample). In terms of education levels, our sample shows a 
lower representation of individuals who have completed high school or less (13.9% compared to 
29% in the Census) and those who have completed some college or technical school (34.7% 
compared to 25% from the Census). Again, since the survey was administered around a college 
campus, our sample shows a slight over-representation of individuals with an undergraduate or 
graduate degree (34.7% in our sample versus 30% from the Census for individuals with an 
undergraduate degree and 17.1% in our sample versus 17% with a graduate degree from the 
Census). 

                                                 
9 In joint limited-dependent variables systems in which one or more dependent variables are not observed on a 
continuous scale, such as the joint system considered in this paper that has binary PAF variables and the grouped 
VMT variable, the structural effects of one limited-dependent variable on another can only be in a single direction. 
See Maddala (1986) and Bhat (2015) for a more detailed explanation.  
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As for household characteristics (lower panel of Table 1), our sample is skewed toward 
low-income households. In particular, while 70% of our sample indicates an annual household 
income of less than $100,000 (70%), the Census reports a significantly lower percentage (59%) of 
households making less than $100,000. This may be attributed to the high fraction of students in 
our sample relative to the general population. The Census only reports average household size, 
which is 2.7 persons per household. This aligns well with our sample, which yields a three person 
per household average (the Census does not provide a distribution of the number of individuals in 
the household, and only provides an average household size value). The Census also does not 
provide information on the number of vehicles per household or household structure. Finally, our 
sample is remarkably representative of the Census data in terms of presence of children in the 
household (18.3% compared to 18.7% from the Census).  

Obviously, our sample is not representative of the Austin-Round Rock population, 
particularly on the dimensions of gender and age distribution. This may be attributable to the high 
number of students who took our survey. Also, the Austin region is home to many colleges and 
universities, and students. If only renting property or living in Austin to attend school for nine 
months out of the year, students may not report themselves as Austin residents in the Census, 
leading to another reason for differences in individual/household characteristics between the 
Census and our sample. Thus, it is likely that both our sample as well as the Census may not 
represent the “true” Austin area living population at any given time. While this ambiguity makes 
it difficult to determine which of the descriptive statistics (from our sample or from the Census) 
would be closer to the “true” population characteristics, there is no reason to believe that the 
individual level causal relationships (how changes in exogenous individual-level characteristics 
impact the six endogenous outcomes of interest) estimated here would not be applicable to the 
larger “true” population of those with motorized vehicles in their households, because we are 
controlling for the exogenous demographic variables in our model specification. For example, 
safety concerns are likely to be different among different age groups, but we have included the 
“age” category variables as exogenous variables for the latent construct regression model as well 
as the main outcomes model to account for such demographic heterogeneity. In addition, our 
sample displays adequate variation across the range of values for each demographic variable, 
allowing us to test a variety of functional forms across different range values for the effects of 
these variables. Importantly, because our sampling strategy itself is not based on the endogenous 
variables (that is, our sample corresponds to the case of exogenous sampling where the sample 
collection process itself is not predicated on whether or not individuals have PAFs and is not based 
on VMT of individuals), an unweighted estimation approach provides consistent estimates as well 
as yields more efficient estimates relative to a weighted procedure (see Wooldridge, 1995 and 
Solon et al., 2015 for an extensive discussion of this point). Overall, the combination of our 
exogenous sampling approach, as well as the adequate variation in the sample to test demographic 
effects at a fine level of resolution, implies that there is no reason to believe that the individual 
level relationships estimated from disaggregate models developed in this paper are not applicable 
to the larger population of individuals with vehicle availability in their household.  
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3.2.2. Stochastic Latent Constructs 
In the structural equations model component of the analytic framework, individual-level 
characteristics (left side of Figure 1) are used to explain the four latent constructs representing 
driving control, mobility control, safety concern, and interest in productive use of travel time (or 
IPTT). Other latent constructs such as security concern, green lifestyle, time sensitivity, privacy 
sensitivity, technology-savviness and variety-seeking were also considered based on theoretical 
and conceptual considerations. But our analysis of “within construct” and “between construct” 
variance (based on the battery of indicators), along with the testing of the larger set of developed 
constructs as they impacted the main outcomes, indicated that the most appropriate set were the 
ones finally used in the current paper. This is, of course, due to a similar set of indicators loading 
on the many theoretically-developed latent constructs. For example, frustration in the level of 
congestion during the daily commute turned out to be an important indicator that loaded rather 
heavily on both the IPTT and time sensitivity latent constructs. Similarly, “I will never ride in an 
AV” turned out to be an important indicator for both the “driving control” and “privacy-
sensitivity” constructs.  The resulting high correlations across the many developed latent constructs 
quickly led to the winnowing down to the four used here. 

The first two latent constructs of driving and mobility control, while rarely used in 
transportation-related studies, encompass the concept of an individual’s sense of, and need for, 
control in life. The social-psychological literature (see, for example, Freeman and Muraven, 2010, 
McFarlane and Harvey, 2017, Elliot et al., 2018, Johnson et al., 2021, Chesters et al., 2019) 
suggests the pathways by which a sense of control can impact decisions and choices made by 
individuals, through its relation to individual’s level of overall life satisfaction, self-worth 
projections, risk-taking inclinations, personal agency in navigating/adapting to changes and 
trauma, and perception of power dynamics. For example, Freeman and Muraven (2010) indicate 
that individuals who report a high level of control over their life are less willing to engage in 
changes in their lifestyle, because they appreciate the sense of being in control and are averse to 
losing this sense. On the other hand, as Narisada and Schieman (2016) report, individuals who 
perceive less control over their lives are more likely to embrace new and “risky” situations because 
they anyway feel they have less to lose (because of their current low control). A related view 
reinforcing this reluctance to change among those with a strong need of control in their lives is 
that, for such individuals, having a stable (unchanging) environment serves as a coping mechanism 
to retain sanity in what may seem an out of-control external world (Laferton et al., 2018).  

In the context of the current transportation study, control is characterized by driving control 
and mobility control. Individuals high in their need for driving control may be reluctant to embrace 
automation features that involuntarily wrest complete control away from them, even if only in 
specific emergency situations (such as automatic braking systems). Of course, it is also possible 
that older individuals, who may have progressively more physical challenges in driving 
themselves, invest in some of the PAFs as a means to preserve driving control and be independent 
in their travel needs. That is, the effect of driving control on PAFs may be dependent upon 
demographic variables such as age. We consider this and other similar moderation effects of 
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individual-level characteristics in the influence of latent constructs on PAFs through interacting 
individual-level characteristics with latent constructs. 

The second latent construct, mobility control, is associated with a need for freedom to 
choose the “when, where, and the with whom” of travel. It may be expected that individuals with 
a high need for mobility control will not want to use other modes of travel other than their private 
vehicles, and, therefore, may be more willing to invest in PAFs that may make driving an easier 
and less tiring task (see Wu et al., 2020). This mobility control need is distinct from driving control 
in that it is not so much about wanting to be behind the wheel as it is about having movement 
flexibility and the ability to pursue activities spontaneously.  

The third construct represents a general safety concern associated with automation 
technology (or, for short, simply safety concern from hereon). The indicators for this construct are 
based on responses about concern levels related to FAVs, but they are used in the current study to 
proxy a general safety-related mistrust about automated vehicle technology. Such individuals are 
less likely to trust their children, property, selves, or other items of value in or around PAFs and 
ultimately FAVs (see de Miguel et al., 2019; Moody et al., 2020; Nair and Bhat, 2021). As such, 
the expectation would be that those high on the scale of safety concern (with respect to automation) 
will be less likely to invest in PAFs. While this safety concern is specifically about automation 
technology, it is possible that these same individuals have a higher level of safety concerns about 
driving in general, and so may have low VMTs to keep exposure to crashes low.  

The last latent construct is Interest in Productive use of Travel Time (in short, IPTT). PAFs 
obviously do not allow the same level of lack of need for attention to the driving task as would 
FAVs (in fact, drivers are supposed to be in full control of the vehicle at all times with PAFs, and 
doing otherwise is generally illegal). But the study by Hardman (2020) indicates that 50% of the 
respondents of Tesla autopilot users do in fact pursue activities such as texting or talking when 
driving, observing the scenery and surroundings and not looking forward, sleeping, and eating 
with both hands off the wheel. Without intending in any way to condone such activities or promote 
such activities, this study recognizes that some kinds of time-productive activities appear to be 
pursued in the presence of PAFs. So, we test whether a higher level of IPTT leads to more 
inclination to have PAFs need, and if IPTT has any impact on VMT.  

The indicators used to extract information on each of the above four latent constructs are 
listed and presented in Figure 2. Each indicator is measured on the same five-point Likert scale of 
(1) Strongly disagree, (2) Somewhat disagree, (3) Neutral, (4) Somewhat agree, (5) Strongly agree. 
Descriptive statistics for each variable’s indicators are provided in Figure 2. The indicators for the 
first latent construct, driving control, show that, while individuals are generally positive toward 
yielding control to automation technologies, they also prefer to be a driver rather than a passenger. 
A similar range is observed within each of the indicators representing the second latent construct, 
mobility control. Individuals, overall, prefer keeping a private vehicle for their travel rather than 
completely sub-contracting their travel needs to ride-hailing services. In terms of the third latent 
construct, it is clear that there is concern related with safety associated with automation, with over 
75% of respondents in somewhat or strong agreement that technology reliability is a concern, and 
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only about 20-25% stating they would be (somewhat or very) comfortable sleeping in a vehicle or 
having an AV pick up/drop off a child (the latter indicator may be associated with not only 
technology reliability in the context of whether a technology will function as intended in the 
regular course of use, but also related to safety concerns tied with cyber-security attacks by 
malicious agents). The final latent construct, IPTT, suggests a high degree of interest in productive 
use of time, as observed from the high percentage of individuals who report currently making good 
use of time when traveling, as well as high levels of frustration with traffic congestion levels and 
a stated inclination to drive more with automation.  
 
3.2.3. Main Outcome Variables 
There are six main outcome variables, five binary outcomes corresponding to each of the five PAF 
dimensions, and the grouped VMT dimension.  

Table 2 presents the distribution of PAFs across respondents’ primary vehicles. Just over 
half (50.5%) of respondents reported having backup cameras (BUCs) in their vehicles, clear 
evidence that BUCs have started becoming standard in new vehicles. Adaptive cruise control 
(ACC) and automatic braking systems (ABS) are also much sought after, while lane keeping 
systems (LKS) appear to have the lowest penetration (consistent with the findings of Abraham et 
al., 2017 and Shin et al., 2015). A significant fraction of respondents (close to 35.3%) report having 
no PAFs. Thus, household vehicle holdings continue to include older vehicles without any PAF. 
On the other side, only 8.4% of vehicles have all the five PAFs altogether. The most common 
technology package is only BUC (13.8%), followed by all PAFs (8.4%) and only BUC and ACC 
(8.3%). Additional popular technology packages are presented in the second row panel of Table 2. 

The statistics related to the VMT dimension in Table 2 (the third row panel) show that most 
vehicles are driven between 10,000-14,999 miles, with less than 10% of vehicles driven more than 
25,000 miles. These vehicle-specific annual VMT figures are quite consistent with U.S. national 
and Texas averages. The national average is 13,476 miles a year (Federal Highway Administration, 
2018), while, in Texas, the average is a bit higher at 16,172 miles a year (Covington, 2021).   

 
4. MODEL RESULTS 
The final model specification was developed through a systematic process of analyzing alternate 
combinations of explanatory variables, while removing statistically insignificant ones. The 
individual-level characteristics are all obtained in the survey in either bracketed categories (age 
and income), or are naturally discrete (gender, household size, employment type, education, 
number of vehicles, household structure variables, and presence of a child). The effects of all these 
individual-level characteristics were tested as dummy variables in the most disaggregate form 
possible, and progressively combined based on statistical tests and intuitive reasoning to yield 
parsimonious specifications. Further, we examined interaction effects of latent constructs with 
individual-level characteristics as well as interactions of PAF effects with individual-level 
characteristics, but only the interaction effect of older individuals (≥65 years of age) with driving 
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control on lane keeping system (LKS) propensity turned out to be statistically significant, as 
discussed later.   

In the final model specification, not all the included variables are statistically significant at 
a 95% level. This is to acknowledge the relatively small sample size of our estimation that may 
have led to the marginal significance of some of the variables, which nonetheless can help inform 
future investigations with larger sample sizes. As discussed earlier, our estimation proceeds by 
first identifying the most appropriate indicators for each of the four latent constructs based on a 
confirmatory factor analysis. The loadings of the latent constructs on the indicators are estimated 
jointly with other components of the model system, and are available in the online supplement (the 
entire model system was estimated using code written in the GAUSS programming language). 
Suffice it to say that the loadings were significant and had the expected sign. The other results are 
discussed next, starting first with the SEM results relating the individual-level characteristics to 
the latent constructs, and then proceeding to the results for the main outcomes.  

 
4.1.  Latent Constructs 
The effects of individual-level characteristics (including individual and household demographics) 
on the four latent variables are presented in Table 3. As shown in the following section, the latent 
constructs have a strong impact on the main outcomes, implying that there is a significant 
mediating impact of individual-level characteristics (through the psycho-social constructs) on the 
PAF and VMT dimensions. Any cells marked “--” in Table 3 suggest that the corresponding row 
variable has no influence on the column latent construct. Further, while a host of individual-level 
characteristics (presented in Table 1) were tested in our specifications, only gender, presence of 
children, age, and household income turned out to be statistically significant determinants of the 
latent constructs.  

The gender effects from Table 3 reveal that women, in general, have a stronger desire for 
driving control than men (see also Charness et al., 2018 for a similar result). One explanation from 
the social-psychological fields is that, in a rather asymmetric, male-dominated world in which 
women feel a lower sense of general life control, they are not willing to relinquish the feelings of 
free-spiritedness, independence, and empowerment they associate with driving (Skuladottir and 
Halldorsdottir, 2008; Leung et al., 2018). Table 3 also reveals that women are more likely than 
men to have safety concerns related with automation in vehicles, a result that is well established 
in the literature (see, for example, Acheampong and Cugurullo, 2019 and Asmussen et al., 2020). 
Women tend to be more risk-averse than men, since women experience feelings of nervousness 
and fear more so than men in anticipation of potentially negative outcomes (Meier-Pesti and Penz, 
2008; Borghans et al., 2009). Thus, women are likely to shy away from any change in the travel 
environment, including automation, which is viewed as a risk. Not surprisingly, safety concern 
increases all the more for women in the presence of children in the household, given that women 
continue to shoulder much of the responsibility for transporting children (Ciciolla and Luthar, 
2019). This result may also explain why women, in general, are less interested in productive use 
of travel time (IPTT). Though being time-poor (particularly mothers), the nature of non-travel 
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activities that women are typically responsible for (such as household chores and child-care 
responsibilities) cannot be performed inside a vehicle (Craig and Mullan, 2010). Moreover, earlier 
studies suggest that men and women engage in different types of activities when traveling (Keseru 
and Macharis, 2018). While men are more likely to engage in work-related activities (such as 
working on their laptop), women are more likely to engage in social activities (such as talking on 
the phone or interacting with other passengers), which they may not necessarily consider 
productive (see Moore et al., 2020 and Guo et al., 2015).  

In terms of age, older individuals (≥65 years of age) appear to have a stronger desire for 
both driving and mobility control. The need for driving control as one gets older may be traced to 
self-identity considerations. In particular, older individuals have driven on their own for much of 
their life, and a continuation of that lifestyle allows them to retain a sense of mental self-esteem at 
a time when their physical self-esteem may be flailing (Kessler, 2009; González Gutiérrez et al., 
2005). Earlier studies have also clearly pointed to older individuals being less trusting of 
automation-based disruptors in general life as well as in vehicles (see Haboucha et al., 2017, 
Voinescu et al., 2020). The higher need for mobility control among the elderly may similarly be 
attributed to an unwillingness to let go of regular habits. In addition, the elderly, though they 
venture outside the home less than their younger peers, place a premium on mobility control 
because they have a habituated and rigid travel routine (with a regular spatial-temporal rhythm of 
activity participation; see Paillard-Borg et al., 2009, Bhat et al., 2020, Nikitas et al., 2018). The 
higher safety concern toward technology and lower IPTT among older individuals (as well as 
individuals between 30 and 64, for IPTT) may be associated, respectively, with the general distrust 
of technology in this population segment and a more relaxed way of life (see Oliveira and Baldi, 
2019, Berkowsky et al., 2017, Rogers and Mitzner, 2017, and Nair and Bhat, 2021). The higher 
IPTT among younger individuals may also be associated with the higher technological ability and 
greater desire to undertake travel-based activities (see Dannemiller et al., 2021).  

Alongside the age and gender effects, the results in Table 3 indicate a higher mobility 
control desire/ability, and a lower safety concern, among individuals from high income 
households. The mobility control result is consistent with higher income individuals being able to 
afford the ability to retain control over how they travel (see Veternik and Gogola, 2017, Brown, 
2017, and Morris et al., 2020).  The lower safety concern among high income individuals is 
corroborated by earlier literature on vehicle automation, attributable to such individuals being 
exposed earlier and more to new technological developments (see for example, Moody et al., 2020 
and Asmussen et al., 2020). 

The estimated correlations between the error terms of the latent constructs are presented at 
the bottom of Table 3. Unobserved factors that increase the need for driving control also increase 
the need for mobility control, while both of these constructs also positively correlate with safety 
concerns. The high positive correlation between driving control and safety concern toward 
automation is intuitive; those who intrinsically desire human control tend to have a deep mistrust 
of automotive technology. Interestingly, all of driving control, mobility control, and safety concern 
negatively correlate with IPTT; individuals who seek to be productive when driving are less 
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concerned about maintaining control and appear to have more safety trust in automated 
technology.  
 
4.2.  Main Outcomes 
Table 4 presents the coefficients estimated for the PAF and VMT outcomes. These coefficients 
refer to the impact on the underlying propensities characterizing the outcomes. These propensities 
get mapped to the actual observed binary category responses (for the PAFs) and to the observed 
grouped category response (for the natural logarithm of VMT). Any cells marked “--” indicate that 
the corresponding row variable has no impact on the column outcome variable.  
 
4.2.1. Latent Construct Effects 
The latent construct effects in Table 4 reveal that individuals with a high driving control need are 
more likely to invest in lane keeping system (LKS), backup camera (BUC), and adaptive cruise 
control (ACC), but not automatic braking system (ABS) and blind spot monitoring (BSM). This 
is an interesting result, suggesting that those with driving control see the field-tested and passive 
nature of LKS, BUC, and ACC as not hampering or reducing their vehicle control need, but 
actually providing them a higher sense of driving control. For example, BUC and ACC have been 
available for some time now; BUC is standard in all vehicles since 2018, while ACC has been 
available in the form of cruise control, even if not adaptive cruise control, for at least a decade 
(Kamalanathsharma et al., 2015). All of LKS, BUC, and ACC are relatively passive, and do not 
have any substantial steering and swerving intervention longitudinally or laterally (though LKS 
and ACC aid in keeping to an appropriate lateral position, or assist in longitudinal slowing down 
based on the space/time headway with respect to the vehicle in front). Overall, it appears that LKS, 
BUC, and ACC are viewed as valuable assist features without eliminating the sense of driver 
control. In fact, these appear to bolster that sense by reinforcing driving exhilaration in a sensory-
stimulating and rapid-moving environment, while also investing some in safety. This interpretation 
is strengthened by the supplementary positive effect of driving control for LKS. For the same level 
of driving control need, older individuals are more likely to invest in LKS, perhaps because these 
individuals particularly appreciate the lateral lane keeping assist as a feature that allows them to 
retain their driving control (especially in high speed driving environments) at a time when their 
cognitive and physical abilities are declining. To the contrary, ABS and BSM are relatively newer 
technologies with lower penetration in vehicles (see Table 2). ABS is also a much more active 
PAF than LKS, BUC, and ACC in that, in emergency situations, the feature involuntary and 
completely takes control away from the driver to stop the vehicle. In terms of the negative impact 
of driving control on VMT, this is again consistent with the notion that driving control is about a 
sense of “self-identity” and “empowerment” through retaining the ability to drive, much more so 
than associated with a need for driving more. Thus, for example, older individuals have a higher 
sense of driving control, though they drive less. But they do not want to give up driving for the 
limited traveling they undertake (Paleti et al., 2011; Harvey et al., 2011; FHWA, 2018).  
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Mobility control, on the other hand, does not impact adoption of LKS, BUC, and ACC, but 
positively affects the adoption of automatic braking system (ABS) and blind spot monitoring 
(BSM) features. Those desirous of mobility control may be the ones who chain activities routinely 
and are unwilling to (or cannot much afford to) compromise on their space-time movement 
freedom. These individuals will necessarily encounter different kinds of travel environments, 
including stop-and-go traffic in slow-moving as well as high-speed environments. Indeed, 
according to Hill and Boyle (2007), merging onto highways and having to abruptly stop in stop-
and-go traffic and high-speed traffic are two of the most accident-prone driving maneuvers. 
Partially automated features such as ABS and BSM are particularly suited (among the 5 PAFs 
considered) to assist drivers in such high accident-prone situations. Thus, investment in these PAFs 
would be viewed as supporting individuals with high mobility control needs/desires as they scurry 
from one location to another. As in the case of driving control, the results suggest that individuals 
with high mobility control needs/desires generally drive less, which may be attributed to the types 
of chaining and short-distance activities that warrant high mobility control.    

The sole effect of safety concern on ABS adoption supports our earlier observation that 
ABS is a more active PAF relative to the other four assistive PAFs. Specifically, the deployment 
of ABS entails the active non-human application of braking to prevent serious front-end collisions. 
For such potentially life-threatening situations, it is not uncommon for humans to be reluctant to 
yield control to a machine, because of a belief that machines just are not reliable as oneself. In fact, 
Shimazaki et al. (2018), in their study on the public’s understanding of the functionality of 
automatic braking, state the following: “people enjoy a greater feeling of safety when they believe 
that driver intervention can readily disengage automatic braking, and this can be interpreted as a 
corollary to the anxiety drivers feel toward automated systems having primary control over 
driving”. Also, the lower VMT among those who are safety-concerned related to technology is 
rather intuitive, given that such safety concerns may (a) permeate into a general concern for driving 
(given that miles driven is a well-established exposure measure for crashes and injuries) as well as 
(b) lead to an elevated crash risk perception because of other drivers using emerging technologies 
(Hardman et al., 2019). Another important point from our results is that the effect of psycho-social 
constructs (such as safety-concern) varies based on the specific PAF under consideration, and thus 
it is important to partition PAFs by specific functionality as opposed to grouping all of these under 
a single category, as undertaken in earlier studies (see, for example, Wali et al., 2021).  

Finally, our results indicate that individuals interested in the productive use of travel time 
(IPTT) are more likely to invest in the lane keeping (LKS) feature. Although not a fully automated 
feature, LKS provides a safety margin for minor distractions or lapses from full driving 
concentration, thereby allowing drivers to engage in activities such as texting, making a phone 
call, distracted thinking about work place matters, or talking to fellow passengers. As reported by 
Hardman (2020), about 50% of individuals engage in one or more of these activities when driving 
in the presence of partially automated vehicles. IPTT reduces VMT, a direct consequence of a 
higher desire to use travel time for other activities. 
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4.2.2. Effects of Individual-Level Characteristics  
The individual-level effects in Table 4 provide the direct effects of socio-demographics, beyond 
their indirect effects through the latent constructs. The results indicate that women in general are 
less likely to invest in BSM compared to men. That is, for a man and a woman with identical 
driving and mobility control desires/needs, the woman is less likely to invest in BSM. This may 
be a reflection of women being less prone to being distracted and less likely to make aggressive 
lane changes (see Schroeder et al., 2018 and Fountas et al., 2019), and thus not feeling as much 
need for BSM.  Further, a woman’s peripheral vision is effectively 180 degrees (Parnell, 2007), 
while a man’s vision range is narrower. Thus, men are more likely to invest in BSM for their 
vehicles, as a way of supplementing their inherently tunnel vision to reduce blind spot problems. 
The positive effect of the “female” variable on the VMT equation indicates that, between a man 
and woman with identical values on the latent constructs, the woman drives more. However, when 
computing the net effect of the “female” variable (through both latent construct effects and the 
direct effect), women drive less (net “female” variable effect on VMT is –0.0431), supporting the 
findings from earlier literature (see, for example, Ding et al., 2017 and Shen et al., 2020).    

Finally, individuals from high income households (annual income greater than $100,000) 
put more mileage on their vehicles, after controlling for mobility control and safety concern. The 
net income effect (through both the latent construct effects and the direct effect) is also positive. 
This is consistent with earlier studies of trip generation and VMT that indicate that higher income  
households, because of their high consumption potential, generate more recreational and leisure 
trips, both within their area of residence and also long distance (for example, see Ke and 
McMullen, 2017 and Singh et al., 2018).  

 
4.2.3. PAF Effects on VMT 
The PAF effects provide the influence of each PAF’s adoption on VMT, after controlling for the 
association between the PAFs and the VMT through the correlations engendered by the stochastic 
latent constructs. That is, these PAF effects represent the “cleansed” effects of the PAFs after 
accounting for spurious correlations among the PAFs and VMT. We first explain these spurious 
correlations before proceeding to a discussion of the cleansed PAF effects on VMT. To do so, note 
that, for example, the stochastic component embedded in driving control immediately permeates 
into the propensities for adoption of lane keeping (LKS), backup camera (BUC), and adaptive 
cruise control (ACC), and creates a positive correlation among these three dimensions (because 
the effect of driving control is uniformly positive on the three dimensions). At the same time, 
driving control also negatively impacts VMT, and engenders a negative covariance between VMT 
and each of the LKS, BUC, and ACC dimensions. Similar correlations are generated by the effect 
of other stochastic latent construct effects on PAFs and VMT.  

The overall implied correlation matrix among the PAFs and VMT may be developed from 
the estimates in Table 4. These correlations are in the +0.021 to +0.207 range among the PAFs, 
with the highest correlation between the relatively higher level technology and more recent ABS 
and BSM entrants in the market. The positive correlations among the PAFs are to be expected, 
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indicating that complementary forces are at play in PAF adoption. As importantly, the generally 
positive effects of the stochastic latent constructs on PAF adoption and the simultaneous negative 
effects of these constructs on VMT imply a negative correlation between PAF adoption and VMT. 
That is, as discussed in the introduction section, individuals who intrinsically (after controlling for 
observed demographics) drive less (lower VMT) appear to be the ones more likely to invest in 
PAV features. Without controlling for this self-selection, any positive impact of the actual presence 
of the PAF on VMT would be underestimated. In our study, this correlation between PAFs and 
ln(VMT) ranged between –0.001 to –0.130. The lowest negative correlation is between BUC and 
ln(VMT), while the highest negative correlation is between ABS and ln(VMT). These results are 
intuitive. BUC is becoming standard today, and individuals who invest in BUC are intrinsically 
not much different in their VMT relative to those who do not invest in BUC. The high negative 
correlation between ABS and VMT is primarily driven by the intrinsic need for mobility control; 
those with a strong mobility control desire tend to drive less.  

After accommodating for the self-selection discussed above, the “true” impacts of PAFs 
on ln(VMT) are shown toward the bottom of Table 4.10 We considered the effect of all the popular 
individual and packaged PAFs identified in Table 2; the ones reported in Table 4 are those that 
turned out to be statistically significant. As can be observed, every PAF, either in isolation or as 
part of a technology package, has a positive effect on VMT. This implies that, once invested in, 
PAFs generally increase VMT. Though these VMT shifts vary across both sociodemographic 
groups and PAF packages, the increase in VMT due to the presence of automation in vehicles 
aligns with similar findings in Harb et al. (2018), Hardman et al. (2019),  Hardman (2020), and 
Hardman et al. (2021). The magnitude of these VMT increases may be obtained using the 
parameter values from Table 4. To do so, we first estimate, at the individual-level, the expected 
value of ln(VMT) with a specific PAF/PAF combination relative to without any PAF. The 
corresponding expected VMT (EVMT) may be obtained by exponentiating and adding the square 
of half of the variance estimated for ln(VMT). Then, the EVMT change may be computed for each 
PAF bundle for each individual, and then averaged by demographic group or averaged over the 
entire sample. In common econometric terminology, this refers to the average treatment effect 
(ATE), which corresponds to the case of moving all individuals to vehicles equipped with each 
specific PAF/PAF combination. In our analysis, we present the results by gender and age-specific 
combinations, so that our sample bias on these two important determinant sociodemographic 
variables of VMT (through direct as well as latent construct-mediated indirect effects) do not much 
affect our conclusions. We then use the distributions of annual VMT by each of these combination 
groups in the larger population, as obtained from FHWA (2018), to compute a percentage change 
(that is, the percentage ATE or PATE) for each demographic group combination. Finally, we 

                                                 
10 The constants and the standard deviations at the bottom of Table 4 do not have any substantive interpretations. The 
constants simply adjust for the range of the continuous latent constructs. However, the magnitudes of the constants 
are consistent with the overall PAF uptake rates presented in the first row panel of Table 2, with the lowest negative 
value for backup camera and the highest negative value for lane keeping systems.  
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estimate an overall weighted (by VMT of each group) ATE and PATE attributable to each specific 
PAF/PAF combination.11  

The results of the above analysis are presented in Table 5. Thus, the presence of only a 
backup camera (BUC), according to our analysis, would lead to an average increase of 1,350 miles 
on an annual basis in the group of men under the age of 30. This corresponds to an increase of 
8.2% over the mileage without any PAFs installed (see first numeric cell of Table 5). The last two 
columns for the BUC row provide the estimated population-wide changes in miles and percentage 
mileage increase due to BUC presence (relative to no PAF presence at all). Other figures in Table 
5 may be similarly interpreted.  

A number of interesting insights may be obtained from the table. First, the PAF associated 
with the smallest VMT increase corresponds to only automatic braking system (ABS) being 
installed in the vehicle (third numeric row in Table 5), while the largest VMT increase is associated 
with the combination of BUC, adaptive cruise control (ACC) and ABS in the vehicle (fourth 
numeric row of Table 5). The former result is consistent with ABS being the most active PAF of 
all the PAFs, and being primarily considered a safety PAF when installed solely in the vehicle. On 
the other hand, the latter result suggests that when ABS is linked up with BUC and ACC, the 
combination appears to provide an extra sense of convenience/comfort in longitudinal vehicle 
maneuvering and assistance that encourages more driving. BUC and ACC, alone by themselves 
too, lead to a relatively high (and about an equal) amount of additional driving, perhaps given the 
extra ease people find in driving once these PAFs are mounted (see first two rows of Table 5). 
Second, when the PAFs that assist in lateral guidance (that is, lane keeping and blind spot 
monitoring) are mounted (these are almost always exclusively packaged with BUC), there is but 
only a VMT small increase (over and above when only BUC is installed; see the first and last 
numeric rows of Table 5), suggesting that PAFs focusing more on lateral movement assistance do 
not increase VMT as much as those that serve the functionality of providing longitudinal 
movement assistance. Third, the PAF combination of “all five PAFs” does not appear in Table 5. 
That is, our analysis indicates that the combination of all five PAFs at the same time, rather 
surprisingly, did not lead to any statistically significant change in VMT from the base case of no 
PAFs at all. Note that this cannot be attributed to the PAF preference of individuals, since that is 
modeled jointly with VMT decisions. What this implies is that, if all five PAFs are installed, 
individuals do not increase their driving VMT. One possible explanation is that, after purchasing 
a vehicle with many PAFs packed in, it is not uncommon to turn all features off because of false 
alarms, annoyance, unreliable technology, and the jerky movements (see Edmonds, 2020, 
Gorzelany, 2020).  That is, when the entire suite of lateral as well as longitudinal assist features 
are in place, it is possible that individuals turn off all features en masse, and get back to a situation 
of essentially not activating any feature. On the other hand, specific packages of exclusively lateral 
or exclusively longitudinal movement assists may not have the same figurative and literal “turn-
off” effect. But certainly this result warrants some additional investigation in future studies. 

                                                 
11 Of course, an assumption here is that driver travel behavior shifts from the absence of PAFs to the presence of PAFs 
would be similar between Austin drivers and the larger U.S. population of drivers.  
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Fourth, middle-aged individuals (30-64 years of age) put in the most miles if equipped with PAFs, 
even more so than young individuals (<30 years of age), attributable to a lower IPTT in the middle-
aged relative to the very young. However, the difference in additional mileage is rather small 
between these two age groups. As would be expected, the absolute value change in VMT is lowest 
for older individuals. But, from the standpoint of percentage change, the highest change is among 
this group of older drivers, with an estimated VMT percentage increase of 19.4% for men and 40% 
for women for the PAF combination that produces the highest absolute VMT change 
(corresponding to the package of BUC, ACC, and ABS). Fifth, and related to the previous point, 
while the absolute VMT change after PAF installation is higher among men relative to women, 
the difference is not substantial. But the percentage change is much higher among women than 
men because women drive less than men in general.  

The last two columns provide the overall (weighted) average of the VMT increase (that is, 
weighted ATE) and percentage VMT increase (that is, weighted PATE) across all demographic 
groupings. The highest VMT change of 2,297 miles (18.9% change) is for the case when the 
package of BUC, ACC, and ABS is installed, while the lowest VMT change of 607 miles (5.0% 
change) corresponds to the case when only ABS is in the vehicle. This is consistent with the notion 
that sole active driving assistance systems are more intended for safety applications, while the 
other PAF combinations are viewed as being more assistive in nature. Interestingly, even our 
highest estimation of VMT change for the PAF package of BUC, ACC, and ABS, is only half as 
much as predicted by Hardman et al. (2021) (where they suggested an annual increase of 4,680 
miles due to the presence of the composite Tesla autopilot PAF). This difference could be 
attributed to (a) variations in vehicle fuel type (Hardman et al.’s research was based on electric 
vehicles, while our study is based on all vehicles regardless of fuel type), or (b) additional features 
such as automatic steering in Tesla autopilot vehicles that are not part of the PAFs considered in 
our study, or (c) even contextual variations (Californian drivers versus Texan drivers, and 
differences in land-use patterns in the two states).  

Another important note here. We also estimated the VMT changes for the case when PAF 
adoption is considered exogenous to VMT (that is, ignoring self-selection effects based on VMT 
in the adoption of PAFs). The corresponding full table is available in the online supplement. As 
expected, the VMT increases are generally underestimated when this self-selection is ignored, for 
reasons discussed earlier. For example, for the case of the package of BUC, ACC, and ABS, the 
overall population-wide VMT change is estimated at only 1,547 miles (12.6% increase) instead of 
our estimate of 2,297 miles (18.9% increase), a 33% underestimate in mileage. Further, the VMT 
change due to only ABS in the vehicle is negatively estimated at –193 miles (–1.6%), an estimate 
that is in the wrong direction and an underestimate in mileage by 132%. This underscores the 
importance of considering self-selection when examining the effects of PAFs on VMT and 
activity-travel behavior more generally. The finding, however, has broader applicability and 
highlights the importance of considering the adoption of all kinds of automation (including fully 
automated vehicles or FAVs) when examining activity-travel behavior impacts of that automation. 
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On the other hand, most studies of FAVs do not consider adoption preferences when investigating 
the potential activity-travel behavior impacts of FAVs.  

 
4.3.  Model Goodness of Fit 
The GHDM model used in the joint modeling of PAFs and VMT provides important insights on 
the joint, yet different, nature of the factors influencing the five different PAFs and the VMT 
dimension. But to ensure that the insights gained from the joint modeling are valid and accurate, 
it is also important to consider the data fit provided by such a model relative to a naïve model that 
completely ignores jointness among the two dimensions of PAFs and VMT. For such an 
evaluation, the performance of the proposed GHDM model may be compared with that of a 
restricted model (that is, an independent model) that does not consider latent constructs (and 
consequently also ignores any type of dependency among the outcomes because of unobserved 
factors). In the restricted independent model, we model the main outcomes of the paper 
independently in the form of five independent binary outcomes (for the PAF outcomes) and one 
grouped outcome for ln(VMT). This independent model takes the form of an independent binary-
grouped (or IBG) model. For each of the six endogenous outcomes in the IBG model, we include 
all the determinants of the latent constructs (from the GHDM) as exogenous variables in the main 
outcome equations (so that the primary difference between the GHDM and IBG models is whether 
jointness in the six outcomes is considered or not). The GHDM model and the IBG model are not 
nested, as the latter model does not provide a mechanism to incorporate the latent constructs. 
Therefore, for a fair comparison between the GHDM and IBG models, we compute the predictive 
likelihood at convergence for only the six main outcome variables in the GHDM. Our joint model 
and the independent model may be then compared using a predictive Bayesian Information 

Criterion (BIC) statistic [= – ˆ( )Z + 0.5 (# of model parameters) log (sample size)] ( ˆ( )Z  is the 

predictive log-likelihood at convergence). The model with a lower BIC statistic is the preferred 
model. In addition to the comparison using the BIC value, an informal predictive non-nested 
likelihood ratio test may be used to compare the models. The adjusted likelihood ratio index of 
each model of the joint and independent models is first computed as follows with respect to the 
log-likelihood with only the constants in the six outcomes: 
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where ( )θL  and ( )L c  are the predictive log-likelihood functions at convergence and at constants, 

respectively, and M is the number of parameters (excluding the constants) estimated in the model. 

Let the corresponding values be 2
GHDM  and 2

IBG . If the difference in the indices is 
2 2( )GHDM IBG    , then the probability that this difference could have occurred by chance is no 

larger than 0.5( ) ( )] }GHDM IBGL c M M   , with a small value for the probability of chance 

occurrence suggesting that the difference is statistically significant and the model with the higher 
value for the adjusted likelihood ratio index is preferred.  
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We also evaluate the data fit of the two models intuitively and informally at the 
disaggregate level. To do so, we first compute the multivariate predictions for each of the six 

outcomes (this will entail a total of 52 8 = 256 combinations). Then, for the joint model, we 
compute an average (across individuals) probability of correct prediction at this full dimensional 
level. A similar disaggregate measure is computed for the independent model. The results of the 
disaggregate data fit evaluations are provided in Table 6. The BIC values, predictive adjusted 
likelihood ratio indices, the corresponding informal non-nested likelihood ratio statistics, and the 
average probability of correct prediction from the joint model indicate the superior fit of the 
GHDM relative to the IBG model. These average probabilities reported in the table may appear 
low, but considering that the six outcome variables produce a total of 256 combinations, the 
probability of correct prediction due to random chance is 1/256 = 0.0039; our probability values 
are several times better than this random chance probability of correct prediction. 
 
5. IMPLICATIONS 
Our results in Section 4 and the ATEs in Table 5 have several important policy implications and 
can be utilized in a multitude of ways. We identify some possibilities below.  
 
Offsetting Hypothesis   
As discussed earlier, the offsetting hypothesis suggests that the effect of improved automotive 
safety through technological advancements is often met with an offset effect through behavioral 
changes in drivers. Our analysis suggests that we could be walking a similar pathway in terms of 
PAFs as well. Thus, while there are suggestions that PAFs can lead to a reduction in crashes (20% 
reduction of head-on crashes due to LKS, 17% reduction in backing-up crashes due to BUC, 30% 
reduction in rear-end collisions due to ACC, 50% reduction in total crashes due to ABS, and 14% 
reduction in lane-change crashes due to BSM; see Utriainen et al., 2020, Cicchino, 2017, Li et al., 
2017, Gorzelany, 2020, Cicchino, 2018a, Cicchino, 2018b), some of these percentage reductions 
are likely to be offset because of the higher VMT.  Whether the increase in crashes would be closer 
to being linear or non-linear functions of VMT is an open question (depends on the level of 
automation and driver-intervention too). Nevertheless, what we can most certainly infer is that the 
offsetting effect that were observed during the introduction of seat-belts and air bag systems is also 
likely to be at play as automated features begin to penetrate the market. Therefore, studies and 
reports that provide numbers and figures about the safety improvements attributable to automation 
need to viewed with caution. For example, BUC, based on our analysis, increases VMT by 10.6% 
in the overall, which can significantly offset the estimated 17% rear-end crash reduction attributed 
to BUC when VMT increase is ignored. As importantly, the 10.6% VMT increase can lead to 
additional rear-end as well as non-rear end crashes. That is, it is important to also consider the 
totality of crashes rather than the ability of an individual PAF or a combination of PAFs to reduce 
specific types of crashes. Further, our analysis strongly suggests that any crash reduction estimates 
of PAFs be examined in the context of specific demographic groups, because of the considerable 
variation across demographic groupings in PAF effects on VMT. For example, our estimates 
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indicate that BUC increases VMT by 22.6% for women older than 65 years, but only by 7.8% for 
men in their middle ages. Given variations in crash frequencies and injury consequences, a careful 
disaggregate analysis is needed in crash reduction estimates due to PAFs. Additionally, ignoring 
self-selection effects during estimation of automation impacts on VMT can underestimate VMT 
increase, and therefore also underestimate the safety offset effect. 
 
Informing Governmental Policies 
Our results suggest that, of all the PAFs, the PAF corresponding to only automatic braking systems 
(ABS) being installed in vehicles increases VMT the least. Thus, ABS appears to not only be 
effective in actually reducing crashes per mile of travel exposure, but also does not have as much 
offset effects by way of increasing VMT as do other PAFs. While it would obviously be impossible 
to mandate that only ABS be installed in the vehicle without other assistive PAFs, it does suggest 
that making ABS a standard feature in vehicles sooner rather than later should be a government 
priority. At the same time, there is a high reluctance and technology reliability concern associated 
with ABS systems, particularly among women and older individuals. Government-led information 
campaigns directed toward these demographic groups that, in a simple and clear manner, articulate 
the reliability and benefits of ABS should help. Of course, at a more fundamental level, it is 
imperative that car manufacturers undertake much more extensive testing in different driving 
environments before making ABS (and other PAFs) available on the market. While there is a race 
to include such features among auto manufacturers, ostensibly to obtain a competitive edge, a 
recent study by AAA automotive researchers concluded that PAFs are simply not as reliable as 
made out to be and had some type of a malfunction or unintended result about every eight miles 
of travel (Edmonds, 2020). Such experiences could, in fact, also hold back the acceptance of 
reliable future automation systems. In this regard, clear governmental regulations and metrics 
related to testing and performance quality control of all emerging automation technology would 
be beneficial.  

More broadly speaking, the federal government and some states, such as California, have 
established (or are considering establishing) goals to reduce VMT, primarily to reduce mobile-
source emissions. Our analysis suggests that the increased availability and standardization of PAFs 
in vehicles may work against such VMT reduction goals. There is also the issue of potentially 
increased traffic congestion due to the elevated levels of VMT. These results do point to the 
continued need to examine ways to hold consumers responsible for the full externality cost of their 
travel footprint, including potentially VMT-based fees.  

 
Take Away for Car Manufacturers 
From a marketing perspective, our analysis provides useful insights for car manufacturers 
regarding who among consumers are most likely to be drawn toward specific PAFs or PAF 
combinations. In general, women and older individuals (65 years or older) are likely to be more 
inclined to invest in LKS, BUC and ACC, primarily because of a perception that these assistive 
features contribute further to their driving control. Older individuals also have a higher propensity 
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to invest in ABS and BSM, because these are viewed as fostering their need for space-time 
mobility control (while older individuals also express safety reservations with ABS, the mobility 
control-based desire for ABS dominates over safety concerns in this demographic group; the net 
effect of being 65 years or older on ABS adoption propensity may be computed from Tables 3 and 
4, and is 0.714*0.839 – 0.339*0.492= +0.432).12  

Unlike the older generation, women are less likely than men to invest in the active ABS 
PAF (because of heightened safety concerns with technology), and are less predisposed to adopt 
BSM (presumably because of women’s generally better peripheral vision than men). Importantly, 
by partitioning out the effects of demographics by psycho-social constructs, our analysis provides 
car manufacturers with a way to customize their advertising and media campaigns for maximum 
impact. Of particular note here is that, while women and older individuals appear to shy away from 
fully autonomous vehicles (FAVs) because of a perceived lack of driving/mobility control and 
safety concerns (see Asmussen et al., 2020), they appear to be much more receptive to PAFs 
because of a sense that they are retaining control. Strategies that play up the emotive control 
elements, thus, may be a good approach for car manufacturers to not only promote PAF adoption 
in the short-term, but also to establish a foundational affective pathway for the uptake of FAVs in 
the future. For example, as also identified in Asmussen et al. (2020), the new cohort of the elderly 
tend to be more physically active, and more open to “seeing the world” (Levy, 2020). This 
tendency can be exploited by positioning PAFs first, and subsequently FAVs, as the new “vehicle” 
for older adults to fulfill their bucket-list of travel desires and explorations, providing them a new 
perception of mobility control.  

 
Travel Demand Shifts 
The results of our analysis in Table 5 indicate that PAF adoption will increase VMT, well before 
driverless vehicles will arrive on the market and are predicted to increase VMT. This can have 
consequences for the urban structure of our cities, with (a) potential sprawl because of willingness 
to accept longer commutes and (b) an increase in urban and suburban traffic congestion due to 
increased trip-making and longer trips. In this regard, the likely VMT shift for several 
combinations of PAFs as presented in Table 5 can be directly used as inputs to travel demand 
models. Often, these travel models use VMT modifying factors to predict the future travel patterns 
under hypothetical scenarios related to automated or partially-automated vehicles. Our estimates 
from Table 5 can be directly used as modifying factors to forecast the intensity of travel in the 
presence of PAVs.  

                                                 
12 The generational difference across PAF adoption in the current study is consistent with the findings of Abraham et 
al. (2017), though not entirely so with Owens et al.’s (2015) results that “current seniors may be more cautious with 
and hesitant to adopt new vehicle technology, but that they do not necessarily avoid it”. The difference from Owens 
et al.’s conclusions may be attributed to the rapid change and maturation in PAF technology between 2015 and the 
dates of the more recent research of Abraham et al. and our study. In any case, our study, unlike earlier studies, “peels 
the onion” by partitioning demographic effects by psycho-social motivations. Overall, the efforts of Owens et al. 
(2015), Abraham et al. (2017) and the current study indicate that older individuals have the same, if not more, interest 
in lower level PAFs that will help them keep control over their driving.  
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6. CONCLUSIONS 
In this paper, we have examined the adoption of five different types of PAFs; lane keeping system, 
backup camera, adaptive cruise control, automatic braking system, and blind spot monitoring; as 
well as PAF effects on VMT. Our focus on PAFs (rather than the extensive focus on fully 
automated vehicles in the earlier transportation literature) is driven by the fact that PAFs are 
available today in vehicles, and it is possible to investigate PAF automation preferences and PAF 
effects on travel using actual revealed data. In so doing, and unlike earlier PAF-related studies, we 
formulate a joint psycho-social latent construct-based model that examines multiple PAF 
technologies and investigates how the presence of PAFs affects annual vehicle miles of travel 
(VMT). This approach explicitly recognizes that PAF choice may be endogenous to VMT 
decisions (that is, we account for possible self-selection effects in PAF adoption based on VMT). 
As importantly, by considering vehicles with no automation at all as well as different levels of 
automation, we are able to obtain a more accurate assessment of PAF effects on VMT, relative to 
earlier studies that have considered only vehicles that are already equipped with PAFs.  

The PAF dependent variables in our analysis takes the form of a binary variable. The VMT 
dimension takes the form of a grouped dependent variable, because annual mileage information is 
typically elicited from respondents in bracketed categories. The joint modeling of PAF adoption 
and VMT is accomplished using a behavioral framework that considers both individual 
demographic characteristics as well as psycho-social characteristics. The resulting GHDM model 
controls for possible self-selection effects in PAF adoption based on VMT, and thus is able to 
estimate “true” PAF effects on VMT. Our analysis specifically indicates that ignoring this self-
selection can lead to an underestimate of VMT increase due to PAF adoption. The data used for 
the analysis is drawn from a 2019 “emerging mobility” survey conducted in the Austin 
metropolitan area in Texas,  

The results underscore the importance of considering psycho-social variables, in addition 
to individual demographic characteristics, when modeling PAF adoption. For example, women 
and older individuals (65 years or older) appear to be more inclined to invest in assistive PAFs, 
because of a perception that these assistive features do not wrest control away from the human 
driving act. However, women are less likely than men to invest in the more active ABS PAF 
because of heightened safety concerns with technology. In terms of PAF effects on VMT, PAFs 
focusing more on lateral movement assistance appear to have a smaller VMT effect than those that 
serve the functionality of longitudinal movement assistance. The highest estimated VMT change 
of 2,462 miles (13.8% change) is for the case when the package of BUC, ACC, and ABS are 
installed and for middle-aged men. The highest percentage estimate VMT change (40%), though, 
is for the same package of BUC, ACC, and ABS for older women. Overall, there are variations in 
VMT impact across demographic groupings and PAF combinations, suggesting that a single 
aggregate percentage improvement in safety benefits across all demographic groupings may suffer 
from the well-known ecological fallacy.   

Our study points to the need for much additional research related to PAF effects on VMT 
and activity-travel behavior. First, VMT is a rather aggregate dependent outcome, and a closer 
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examination of PAF effects on activity-travel behavior at a finer resolution would be valuable. 
Second, as discussed in Section 2.3, examining an expansive set of vehicle attributes (in addition 
to the PAFs examined in the current paper) as well as analyzing PAF usage (jointly with PAF 
adoption and VMT effects) would help in more accurately assessing PAF effects on VMT. Third, 
isolating PAF use and VMT driven (on each household vehicle) by each household member would 
better capture preference heterogeneity across different household members. Fourth, a larger 
sample size of respondents may identify additional determinant variables of PAF preferences and 
VMT. Fifth, there is a need to undertake more studies to develop a resource base to evaluate PAF 
benefits and offset effects by demographic groupings, given the repercussions of varying (across 
demographic groups) VMT impacts of PAFs for number of crashes and injury severity. Finally, 
policy studies that focus on how best to harness the safety benefits of assistive technologies, while 
also curtailing the consequent VMT growth, is needed. 
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Figure 1. Model Framework
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Figure 2. Distribution of Attitudinal Indicators 
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Table 1. Sample Distribution of Exogenous Variables: Socio-Demographic and Household 
Related Characteristics 
  

Variable Count % 
 Individual Demographics   
 Gender  
   Female 634 64.8 
   Male 344 35.2 
 Age   
   18 to 29 550 56.3 
   30 to 39 117 12.0 
   40 to 49 104 10.6 
   50 to 64 103 10.5 
   65 or older 104 10.6 
 Employment Type    
   Student           *490 50.1 
   Employed           *605 61.9 
   Unemployed and not a student 113 11.6 
 Education   
   Completed high-school or less 136 13.9 
   Completed some college or technical school 340 34.7 
   Completed undergraduate degree 335 34.3 
   Completed graduate degree 167 17.1 
 Household Characteristics   
 Household Annual Income   
   Less than $24,999 205 20.9 
   $25,000 to $49,999 191 19.5 
   $50,000 to $74,999 158 16.2 
   $75,000 to $99,999 139 14.2 
   $100,000 to $149,999 155 15.9 
   $150,000 to $249,999   91   9.3 
   $250,000 or more   39   4.0 
 Household Size   
   1 210 21.5 
   2 278 28.4 
   3 152 15.5 
   4 or more 338 34.6 
 Number of Vehicles in Household   
   1 265 27.1 
   2 353 36.1 
   3 or more 360 36.8 
 Household Structure   
   Nuclear family 134 13.7 
   Single parent   45   4.6 
   Lives alone 210 21.5 
   Couple, no children 207 21.2 
   Multiple adults, no partner, no children 310 31.7 
   Other   72   7.3 
 Children (<18 years) in Household    
   Yes 179 18.3 
   No 799 81.7 
*230 respondents were both employed and students   
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Table 2. Sample Distribution of Outcome Variables 
Variable Count % 

 Partially Automated Features    

   Lane Keeping System (LKS) 151  15.4* 

   Backup Camera (BUC) 494 50.5 

   Adaptive Cruise Control (ACC) 352 36.0 

   Automatic Braking System (ABS) 272 27.8 

   Blind Spot Monitoring (BSM) 203 20.8 

   None 345 35.3 

 Popular “Technology Packages”   

   No PAFs 345 35.3 

   Only Backup Camera  135 13.8 

   All PAFs   82   8.4 

   Only Backup Camera (BUC) and Adaptive Cruise Control   81   8.3 

   Only Adaptive Cruise Control    50   5.1 

   Only Automatic Braking System    41   4.2 

   Only Backup Camera, Adaptive Cruise Control and Automatic Braking System    34   3.5 

   Only Backup Camera and Automatic Braking System   31   3.2 

   Only Adaptive Cruise Control and Automatic Braking System   28   2.9 

   Only Lane Keeping System, Backup Camera and Blind Spot Monitoring    14   1.4 

 Household Annual Miles Traveled by Relevant Vehicle 

   Less than 5,000 128 13.1 

   5,000 to 9,999  232 23.7 

   10,000 to 14,999 375 38.3 

   15,000 to 19,999   98 10.0 

   20,000 to 24,999   56   5.7 

   25,000 to 29,999   26   2.7 

   30,000 to 39,999   20   2.1 

   40,000 or more   43   4.4 
*The sum of the percentages in this column for this first row panel do not add up to 100 because multiple PAFs can 
be installed at the same time.  
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Table 3. Determinants of Latent Variables  

Variables 
(base category) 

Structural Equations Model Component Results 

Driving Control Mobility Control Safety Concern IPTT 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Gender (male)         

 Female 0.188 10.11 0.261 8.04 0.745 32.87 -0.094 -4.94 
 Female*Presence of children --  --  0.151 5.45 --  

Age (younger than 30)         

 34 to 64 --  --  --  -0.085 -4.80 
 65 or older 0.531 16.82 0.839 17.78 0.493 15.93 -0.367 -11.80 
Household Characteristics         

Income (<$100,000)         

 ≥$100,000 --  0.274 10.11 -0.124 -6.50 --  
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Table 4. Estimation Results of PAFs and VMT 

 
  

Exogenous Variables 
(base category) 

Vehicle Features 
Vehicle Miles 

Traveled 
Lane Keeping 

System 
(LKS) 

Backup Camera 
(BUC) 

Adaptive Cruise 
Control  
(ACC) 

Automatic 
Braking System 

(ABS)  

Blind Spot 
Monitoring  

(BSM) 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Latent Construct Effects             

  Driving Control 0.396 2.80 0.304 10.35 0.331 11.17 --  --  -0.131 -1.78 
  Driving Control*Age 65 or Older 0.419 7.25 --  --  --  --  --  
  Mobility Control  --  --  --  0.714 10.48 0.506 8.06 -0.227 -5.97 
  Safety Concern --  --  --  -0.339 -6.93 --  -0.100 -1.22 
  IPTT 0.205 1.55 --  --  --  --  -0.364 -3.82 
Individual-level  Characteristics             
Gender (male)             
  Female --  --  --  --  -0.285 -8.84 0.081 1.47 
Household Characteristics             
Income (<$100,000)             
  ≥$100,000 --  --  --  --  --  0.144 6.21 
PAF Effects             
  Only Backup Camera NA  NA  NA  NA  NA  0.096 5.32 
  Only Adaptive Cruise Control NA  NA  NA  NA  NA  0.088 3.90 
  Only Automatic Braking System NA  NA  NA  NA  NA  0.046 1.83 
  Only BUC*ACC NA  NA  NA  NA  NA  0.117 6.01 
  Only BUC*ACC*ABS NA  NA  NA  NA  NA  0.164 5.48 
  Only ACC*ABS NA  NA  NA  NA  NA  0.117 3.64 
  Only LKS*BUC*BSM NA  NA  NA  NA  NA  0.099 2.42 
Constant -1.148 -39.67 -0.039 -3.22 -0.436 -30.59 -0.762 -24.41 -0.921 -28.61 0.064 5.52 
Standard Deviation NA  NA  NA  NA  NA  0.613 35.22 
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Table 5. VMT Change Estimates (ATE) (% Change Estimates or PATE) for each PAF Combination  

 

PAF Combination 

Gender and Age Group ATEs 

Overall 
ATE for 

each PAF 
Overall 
PATE 

18-29 Years 30-64 Years 65 Years or Older 

Male Female Male Female Male Female 

Only Backup Camera 
1,350 

(8.2%) 
1,290 

(11.6%) 
1,392 

(7.8%) 
1,331 

(12.7%) 
1,132 

(11.0%) 
1,082 

(22.6%) 
1,299 10.6% 

Only Adaptive Cruise Control  
1,232 

(7.5%) 
1,178 

(10.5%) 
1,271 

(7.1%) 
1,215 

(11.6%) 
1,034 

(10.0%) 
988 

(20.6%) 
1,186 9.8% 

Only Automatic Braking System  
631 

(3.9%) 
603 

(5.4%) 
650 

(3.6%) 
622 

(5.9%) 
529 

(5.1%) 
506 

(10.6%) 
607 5.0% 

Only Backup Camera and 
Adaptive Cruise Control 

1,663 
(10.2%) 

1,590 
(14.3%) 

1,715 
(9.6%) 

1,640 
(15,6%) 

1,395 
(13.5%) 

1,333 
(27.9%) 

1,600 13.2% 

Only Backup Camera, Adaptive 
Cruise Control and Automatic 
Braking System 

2,387 
(14.6%) 

2,282 
(20.5%) 

2,462 
(13.8%) 

2,354 
(22.4%) 

2,003 
(19.4%) 

1,915 
(40.0%) 

2,297 18.9% 

Only Adaptive Cruise Control 
and Automatic Braking System 

1,663 
(10.2%) 

1,590 
(14.3%) 

1,715 
(9.6%) 

1,640 
(15.6%) 

1,395 
(13.5%) 

1,333 
(27.9%) 

1,600 13.2% 

Only Backup Camera, Lane 
Keeping System, and Blind 
Spot Monitoring 

1,394 
(8.5%) 

1,333 
(12.0%) 

1,438 
(8.0%) 

1,375 
(13.1%) 

1,169 
(11.3%) 

1,118 
(23.4%) 

1,341 11.0% 
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Table 6. Disaggregate Data Fit Measures 

Summary Statistics 
Model 

Joint (GHDM) 
Model 

Independent 
(IBG) Model 

Predictive log-likelihood at convergence -4381.98 -4645.49 

Number of parameters 103 31 

Bayesian Information Criterion (BIC) 4736.58 4752.21 

Constants-only predictive log-likelihood -4782.42 -4782.42 

Predictive adjusted likelihood ratio index 0.0622 0.0221 

Informal non-nested adjusted likelihood ratio test:  
Joint model versus Independent model 

[ 16.241] 0.000    

Average probability of correct prediction 0.022 0.020 

  
 
 


