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ABSTRACT 

In this paper, we unpack the magnitude effects of the determinants of pedestrian crashes using a 

multivariate analysis approach. We consider four sets of exogenous factors that characterize 

residential neighborhoods as well as potentially affect pedestrian crashes and the racial 

composition of such crashes: (1) crash risk exposure (CE) attributes, (2) cultural variables, (3) built 

environment (BE) features, and (4) sociodemographic (SD) factors. Our investigation uses 

pedestrian crash and related data from the City of Houston, Texas, which we analyze at the spatial 

Census Block Group (CBG) level. Our results indicate that social resistance considerations (that 

is, minorities resisting norms as they are perceived as being set by the majority group), density of 

transit stops, and road design considerations (in particular in and around areas with high land-use 

diversity) are the three strongest determinants of pedestrian crashes, particularly in CBGs with a 

majority of the resident population being Black. The findings of this study can enable policymakers 

and planners to develop more effective countermeasures and interventions to contain the growing 

number of pedestrian crashes in recent years, as well as racial disparities in pedestrian crashes. 

Importantly, transportation safety engineers need to work with social scientists and engage with 

community leaders to build trust before leaping into implementing planning countermeasures and 

interventions. Issues of social resistance, in particular, need to be kept in mind.    

  

Keywords: Pedestrian crashes, racial bias, implicit bias, safety, crash risk exposure, social 

resistance, built environment  
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1. INTRODUCTION 

According to data collected by the National Highway Traffic Safety Administration, a total 

of 6,516 pedestrians were killed in vehicular crashes in the U.S. in 2020 (National Center for 

Statistics and Analysis, 2022). This value reflects a 51% increase in the number of pedestrian 

fatalities relative to a 7% increase in population over the last decade, while the share of walking 

trips has remained constant at approximately 10.5% (McGuckin and Fucci, 2018; Smart Growth 

America, 2021; Statista, 2022). In addition to fatalities, the Center for Disease Control and 

Prevention has estimated that 137,000 pedestrians were hospitalized due to vehicular crash-related 

injuries in 2017 (CDC, 2020). Moreover, crash and fatality risks are not proportionally distributed 

among different communities. Multiple earlier studies have provided evidence that members of 

ethnic or racial minority groups in the U.S. continue to experience a higher risk of severe or fatal 

pedestrian crashes (see, for example, Apardian and Smirnov, 2020; Bhat et al., 2017; Guerra et al., 

2019; Lee et al., 2019). For example, over the past decade, Black pedestrians were 82% more 

likely to be involved in fatal crashes compared to white, non-Hispanic Americans (Smart Growth 

America, 2021). In addition, the 2021 edition of the “Dangerous by Design” report compared 

pedestrian crash risks among different races and ethnicities using the “Pedestrian Danger Index” 

(PDI) metric which controls for population and walking rates (% of work trips made by walking) 

(Smart Growth America, 2021). Between 2010 and 2019, people of color, especially Black and 

American Indian/Alaskan Native individuals, had danger indices that were 79% and 67% higher 

than those corresponding to white, non-Hispanic individuals. Further, according to Glassbrenner 

et al. (2022), Black pedestrian fatality rates per Black individual relative to white pedestrian fatality 

rates per white individual in the U.S. increased from 1.81 to 2.00 between 2014 and 2018. That is, 

Black pedestrians were 81% more likely to be involved in fatal crashes compared to white 

pedestrians in 2014, and this disparity increased even more to 100% in 2018. These findings have 

motivated the revival of the “Walking While Black” expression, which reflects how Black 

pedestrians, as well as other minorities, are disproportionately affected by pedestrian injuries and 

deaths (Bullard, 2003; Lee et al., 2019). 

The racial disparity in pedestrian safety may be tied, at least in part, to the broader systemic 

discrimination experienced by racial minorities across the smorgasbord of societal domains. From 

a historic perspective, the tension between mobility justice and racial justice started from the 

segregation of races on intercity trains, as well as the disproportionate displacement of low-income 
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and non-white communities during the design/construction of the freeway and rail transit 

infrastructure network. Today, the underdevelopment of transportation infrastructure in Black 

communities stands as a continuing stark reminder of systemic racism and inequitable 

transportation funding and policies. Communities of color are exposed to a large density of 

highways and high-speed arterials (The Governors Highway Safety Association, 2021), 

discriminatory land-use practices, and insufficient walking and rolling infrastructure (Gibbs et al., 

2012; Transportation Choices, 2020). In this context, despite the considerable research efforts to 

analyze pedestrian safety as a function of demographic and built environment characteristics, not 

many pedestrian safety studies have considered racial disparities alongside other crash-related 

determinants. In particular, there is a need for more research to investigate the underlying factors 

causing pedestrian crashes in general, but also why racial disparities exist in the pool of such 

crashes, as also recently pointed out by Merlin et al. (2020). Is it the increased use of transit by 

minorities? Do minorities exhibit riskier pedestrian behavior? Is the transportation infrastructure 

in minority neighborhoods deficient? Or are there other forms of racial and socioeconomic bias at 

play? And what configurations of factors cause these disparities?  

In this paper, we contribute toward addressing the above questions by considering four sets 

of exogenous factors that characterize residential neighborhoods as well as potentially affect 

pedestrian crashes and the racial composition of such crashes: (1) crash risk exposure (CE) 

attributes, (2) cultural variables, (3) built environment (BE) features, and (4) sociodemographic 

(SD) factors. Our investigation uses pedestrian crash and related data from the City of Houston, 

Texas, which we analyze at the Census Block Group (CBG) level. Then, using the CBG spatial 

unit of analysis, we examine (a) whether or not there exist differences in the four exogenous factors 

identified above between majority Black (MB) Census Block Groups (or MB CBGs) and majority 

non-Black CBGs (or NMB CBGs) (throughout this paper, an MB CBG is defined as one where the 

proportion of the Black population is the highest of all the racial groupings), (b) the determinants 

of CBG-level fatal and severe pedestrian crashes (for presentation ease, we will refer to the sum 

of fatal and severe pedestrian crashes simply as “total crashes” in the rest of this paper), while also 

assessing how race composition within a CBG (specifically, the MB CBG dummy variable 

representation of whether or not a CBG is MB) affects the total pedestrian crash count, and (c) the 

determinants of a Black pedestrian crash at any CBG.  
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2. RELEVANT LITERATURE 
While the existing body of literature that investigates pedestrian crashes is voluminous 

(refer to Mirhashemi et al. (2022) and Ziakopoulos and Yannis (2020) for an extensive review of 

pedestrian safety studies, including crash frequency and injury severity models), the majority of 

studies do not consider racial and ethnic disparities while evaluating crash risk. The relevant 

literature for this paper may be broadly categorized into two areas: (1) controlled field experiments 

that investigate drivers’ yielding bias, and (2) general pedestrian crash modeling studies that 

explore the factors affecting pedestrian crashes. 

2.1. Controlled Field Experiments 

The first category of studies investigates bias in drivers’ yielding behavior when crossing 

a street. The earliest such published study was undertaken by Goddard et al. (2015), who undertook 

an observational experiment to test discrimination in drivers’ yielding behavior, based on the race 

of pedestrians. Using a controlled experimental design at an unsignalized but marked midblock 

crosswalk in Portland, the authors concluded that Black pedestrians were passed by more than 

twice as many cars and waited 32% longer to cross safely compared to their white counterparts. 

They linked their finding to implicit biases, which can manifest themselves in fast-paced decision-

making situations or when there is ambiguity/discretion in behavior. A similar experiment, also 

conducted in Portland, was undertaken by Kahn et al. (2017) who found that vehicles were most 

likely to stop for white women and least likely to stop for Black men. Coughenour et al. (2017) 

also investigated yielding behavior at two unsignalized midblock crosswalks in Las Vegas, 

Nevada. One crosswalk was selected to be in a low-income neighborhood and another crosswalk 

in a high-income neighborhood. In the high-income neighborhood, drivers yielded less often and 

more cars passed through the crosswalk when a Black pedestrian was in the crosswalk. However, 

there was no statistically significant difference in yielding behavior based on pedestrian race at the 

low-income crosswalk. Schneider et al. (2018) obtained similar conclusions by studying drivers’ 

yielding behavior at 20 uncontrolled intersections in Milwaukee, Wisconsin.  

The carefully designed nature of the field experiments in the above studies provides 

important insights into yielding behaviors in crosswalks at midblock and unsignalized intersection 

locations. But the conclusions are still based on a relatively small sample size. Further, as 

Coughenour et al. and Schneider et al. indicate, there may be variations in yielding behaviors based 

on neighborhood sociodemographic characteristics, driver behavioral norms, and other related 
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built environment factors. Besides, while it is reasonable to assume that yielding behavior has a 

bearing on pedestrian-related crashes, these studies do not examine actual crashes.   

 

2.2. General Pedestrian Crash Frequency Modeling Studies 

The studies in the first category above, while highlighting racial/ethnic disparities in 

pedestrian-related yielding behaviors, do not identify the underlying reasons for why ethnic and 

racial groups are more prone to pedestrian crashes. This is also the case with the descriptive studies 

discussed in the introduction section of this paper that compare pedestrian safety purely segmented 

by race/ethnicity (without controlling for a whole host of other factors that may impact pedestrian 

safety). At the same time, while many data-driven studies relate pedestrian safety to multiple 

underlying factors, such earlier studies, to our knowledge, have not explicitly explored racial 

disparities. However, factors identified as being important in these general pedestrian studies can 

still shed some light, when considered in combination with what is known about infrastructure 

conditions in MB neighborhoods. The factors explored in the literature can also inform our model 

specification. Accordingly, in this section, we discuss the effects of exposure, cultural, built 

environment, and sociodemographic variables that have been reported to be pedestrian crash 

frequency determinants.  

 

2.2.1. Crash Risk Exposure (CE) Attributes 

Crash risk exposure variables reflect the distance or time a pedestrian spends in travel 

(Merlin et al., 2020). Examples of exposure variables include population density, employment 

density, vehicle miles traveled (VMT), car ownership levels, and commute mode shares (Merlin 

et al., 2020; Roll and McNeil, 2022). Researchers have reported that communities with a higher 

percentage of non-white residents experienced significantly higher walking volumes due to lower 

car ownership levels and higher use of transit, which result in increased pedestrian crashes (Dai 

and Jaworski, 2016; Lee et al., 2019; Yu et al., 2022). Particularly among urban residents in the 

U.S., 34% of Blacks and 27% of Hispanics report taking public transit, compared with only 14% 

of whites (Anderson, 2016). Regarding car ownership, 18% of non-white households did not have 

access to a vehicle compared to only 6% of white households (The National Equity Atlas, 2019). 

These factors highlight the socioeconomic disparities that may contribute to the higher levels of 
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crash risk exposure for non-whites, which in turn may explain some of the over-representation of 

Black individuals in pedestrian crashes.  

 

2.2.2. Cultural Variables 

Sociological, cultural, and behavioral differences can contribute to racial disparities in 

pedestrian crashes. Voas et al. (2000) and Demetriades et al. (2004) reported that Latino 

populations had the highest alcohol-related pedestrian fatality rates, followed by Black pedestrians. 

Conversely, other studies concluded that there is no sufficient evidence to support attributing the 

overrepresentation of minority groups in traffic fatalities to higher intoxication rates (Hamdan, 

2013; Thomas et al., 2019). However, the literature lacks studies that investigate pedestrians under 

influence (PUI), making it challenging to investigate the effects of pedestrian intoxication on crash 

risk.   

In the transportation profession, and the traffic crash analysis community in particular, 

there has been inadequate attention to cultural variables. Implicitly, there appears to be an 

assumption that individuals behave in specific ways (such as being alcohol-inebriated or not 

wearing seatbelts) because they “choose” to do so (and make “bad” choices). For example, while 

being intoxicated as a pedestrian is likely to increase crash risk, by ignoring broader societal 

considerations of power relations in society, the onus tends to be placed squarely on individual 

responsibility.1 But researchers across many different disciplines have consistently found that, in 

general, non-dominant minority groups uniformly exhibit behaviors across literally all walks of 

life that go counter to usual societal norms. Factor et al. (2011) proposed the theoretical framework 

of social resistance theory (which, to our knowledge, has not been explicitly invoked in earlier 

traffic crash analysis literature) to explain this rather universal observation. According to this 

theory, societal power relations, and especially the position of non-dominant minority groups in 

the power landscape, leads to a conscious or unconscious tendency to actively engage in “everyday 

resistance behaviors”. The pathway to social resistance may be through (a) alienation from society 

that is perceived as being controlled by the majority (including a lack of trust in the police and 

                                                 
1 To be sure, we are not suggesting here that individual responsibility and actions are not important. Indeed, taking 
away individual responsibility and putting the onus squarely on “cultural” issues invites stereotyping bias, which is 
anything but our intent. The point we are making is that, as scholars and fair-minded citizens, moving us toward an 
equitable and just society requires that we take a broader viewpoint of human behaviors, including taking account of 
historical and explicit racism, rather than putting the onus squarely on the individual.   
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court systems), thus warranting resistance as a mark of a sense of freedom to defy “majority-

dictated” norms and a signal to the majority group that their power is not without limits, and/or (b) 

a form of collective identity formation, a kind of pact or accord that is not to be broken, that 

encourages individuals of minority groups to not act similar to those of the majority group (for 

example, not to be seen as “acting white”; Fordham and Ogbu, 1986). Additional evidence of 

social resistance was reported by Factor et al. (2013), who surveyed minority and majority groups 

and found that members of non-dominant minority groups who experienced discrimination had 

higher levels of social resistance and engaged more in high-risk and unhealthy behaviors. This 

study, while focusing primarily on public health rather than traffic crashes, also noted that Black 

respondents who scored highest in social resistance frequently drove without buckling their 

seatbelts. While this does not provide evidence regarding pedestrian behaviors, it highlights how 

the effects of social resistance are translated into minorities’ daily activities affecting their overall 

safety and well-being. In our analysis, we attempt to incorporate, for the first time to our 

knowledge in pedestrian crash analysis, two measures of social resistance, related to CBG 

educational attainment levels and crime rates. The former has been used in some earlier pedestrian 

crash studies (see the section on “sociodemographic variables” below), but more from the 

standpoint of understanding road signage rather than from a social resistance perspective.  

 

2.2.3. Built-Environment (BE) Features 

Some of the well-established risk factors that threaten pedestrian safety are related to BE 

features. For example, higher vehicle-pedestrian collision rates are typically associated with 

commercial and industrial land-use types (Merlin et al., 2020; Ukkusuri et al., 2012; Wier et al., 

2009; Yu et al., 2022). On the other hand, fewer crashes are estimated in residential as opposed to 

nonresidential land-use types, suggesting that crashes are more likely at major trip attractors rather 

than generators (Jermprapai and Srinivasan, 2014). Yu et al. (2022) related the latter finding with 

social disparity by showing a higher percentage of commercial land use around schools in deprived 

areas. Also, Dai and Jaworski (2016) and Roll and McNeil (2022) have noted the important 

positive effect of the intensity of transit stops on pedestrian crashes.  

Roadway functional class also has been reported to be a significant determinant of 

pedestrian crashes. The literature reveals that minority pedestrians are exposed to higher 

percentages of arterial roads (Morency et al., 2012; Yu et al., 2022), which are consistently found 
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to negatively impact pedestrian safety (Dumbaugh and Li, 2010; Sandt et al., 2016; Miranda-

Moreno et al., 2011; Yu et al., 2022). Additionally, Rowangould (2013) found that 24% of the 

Black population and 30% of the Latino population live within 500m of high-capacity roads 

carrying over 25,000 average annual daily vehicle trips compared to a national average of 20%. In 

addition to road design, different intersection types also have varying impacts on crash frequency. 

Roll and McNeil (2022) observed that intersection density at a location reduces pedestrian crashes, 

while Dumbaugh and Li (2010) and Ukkusuri et al. (2011) demonstrated that four- and five-way 

intersections were positively related to collisions (and three-way intersections showed a negative 

association due to a smaller amount of conflicting traffic movements). Researchers have also noted 

that such four-way or more-legged intersections are more likely to be present in disadvantaged 

neighborhoods (see, for example, Morency et al., 2012), though many such studies have viewed 

“disadvantaged” from the perspective of social disadvantage (i.e., low-income levels) and not 

racial disparities (see, for example, Gibbs et al., 2012, Sandt et al., 2016, Schultz et al., 2015, Yu 

et al., 2022). In the current study, we specifically separate racial disparities from social disparities 

by examining BE characteristics based on race rather than income. This is an important difference 

from many earlier studies that examine the presence (or not) of adequate infrastructure based on 

low-income versus high-income neighborhoods. Thus, our first model is based on the majority 

Black proportion in a CBG, not majority low-income proportion. At the same time, in our analysis, 

we control for the “% low income” proportion in a CBG, to reduce (if not eliminate) the 

confounding of social disparity effects with racial disparity effects.  

 

2.2.4. Socio-Demographic (SD) Factors 

Earlier studies have also discussed several other demographic and economic factors in the 

context of pedestrian crashes, such as income, age composition, the lack of English language 

fluency, and education level (Dai and Jaworski, 2016; Guerra et al., 2019; Ukkusuri et al., 2012; 

Wier et al., 2009; Roll and McNeil, 2022). Higher crash risks are experienced in zones with higher 

percentages of young populations, which may be alarming because young people make up a greater 

proportion of the population in minority communities (Hamann et al., 2020; Ukkusuri et al., 2011). 

Cottrill and Thakuriah (2010) investigated the factors contributing to pedestrian crashes and 

compared crash frequencies between environmental justice (EJ) and non-EJ areas2; they found that 

                                                 
2 EJ areas are those with high proportions of minority and low-income households (Cottrill and Thakuriah, 2010). 



 

9 

pedestrian crashes are more frequent in EJ areas and are associated with higher crime rates and 

low income. Moreover, disadvantaged groups, which include low-income and racial/ethnic 

minorities, are also more likely to have lower levels of education, resulting in labor and physically 

demanding jobs that may require traveling during adverse conditions that increase the likelihood 

of being involved in crashes (Adkins et al., 2017; Hamdan, 2013). Thus, evidence from earlier 

studies clearly alludes to the close association of the sociodemographic composition of a region or 

zone with pedestrian crash risk, suggesting the importance of including such variables while 

analyzing race-based pedestrian accident frequencies.  

 

2.3. The Current Study 

In this study, we analyze the framework presented in Figure 1. As discussed in the previous 

section, pedestrian safety literature categorizes the factors that affect the count of pedestrian 

crashes into crash risk exposure (CE), cultural, built environment (BE), and sociodemographic 

(SD) factors. The combination of variables within these categories is used to estimate three distinct 

models. First, we investigate disparities in CE, cultural, BE, and SD characteristics between MB 

and NMBCBGs. For this analysis, we use the MB CBG dummy variable as the dependent binary 

variable and investigate the factors that distinguish MB CBGs from NMB CBGs. Unlike many 

other studies that focus on social disparity, our emphasis is on racial disparity. In fact, to our 

knowledge, this is the first multivariate modeling study of racial disparity highlighting the 

difference between MB and NMB CBGs. Second, we use the MB CBG binary variable alongside 

a comprehensive set of exogenous variables determinants to estimate the total number of 

pedestrian crashes. Using such a comprehensive list of determinants allows us to accurately 

estimate the “true” effect of racial composition (as represented by the MB CBG effect) on the total 

number of crashes in a CBG as well as the “true” effects of the other crash determinants. In 

particular, by isolating the MB CBG effect from possible confounding variables, we avoid over or 

under-estimating the impact of CBG racial composition on the total number of pedestrian crashes. 

We will refer to this MB CBG dummy variable effect on pedestrian crash count within a CBG, 

which is over and beyond the effect of other crash determinants, as the MB total crash (MB-TC) 

effect. Third, we estimate the fraction of Black pedestrian crashes at a CBG as a function of 

exogenous variables. In this investigation, we include the MB CBG, as well as other exposure and 

Black population share variables at both MB CBGs and NMB CBGs (the latter variables to control 
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for the fact that one would expect a higher share of Black pedestrian crashes as the share of Black 

population in a CBG increases). This third model provides information on how exogenous 

variables may affect Black crashes over and beyond the effects of these exogenous variables on 

total crashes. In combination, we are able to take away more insights into countermeasure 

development to reduce total pedestrian crashes in Black CBGs (based on Models 1 and 2) and 

Black pedestrian crashes in any CBG (based on Models 2 and 3). Fourth, we consider a 

comprehensive set of exogenous variables in our analysis, compiled from a variety of data sources. 

The data compilation effort, was carefully and rigorously vetted, both to get each database in a 

uniform format for fusion, as well as in fusing the many different data sets using multiple 

Geographic Information Systems overlay procedures. Also, for the first time to our knowledge in 

the pedestrian crash literature, we introduce cultural variables to acknowledge the possible 

presence of social resistance-related factors. Finally, most earlier studies of pedestrian crashes 

present model estimates, but do not estimate the magnitude effects of variables on pedestrian crash 

frequency. Some of the studies that do estimate such magnitude effects include those by Dai and 

Jaworski, 2016, Bhat et al., 2017, Saeed et al., 2019, and Roll and McNeil, 2022. As in these earlier 

studies, we too estimate the magnitude effects of each variable, but proceed further to assess the 

relative magnitudes of (a) each variable within each of the four categories of exposure, cultural, 

BE, and SD factors, (b) each variable across all determinants of crash frequency, and (c) each of 

the four sets of variable categories and the MB total crash effect. 

 

3.  METHODOLOGY 

3.1. Data Description 

The study area for this paper is the City of Houston (COH), Texas. COH has a population 

of 2,304,580 (U.S. Census Bureau, 2020) and a total of 2,970 Census Block Groups (CBG). 

According to the 2020 census data, the ethnic composition of the population in COH is 55% non-

Hispanic/non-Latino and 45% Hispanic/Latino. The racial composition is 57% white (compared 

to 76% nationally), 24% Black (compared to 13% nationally), and 20% other races (compared to 

11% nationally). A vast majority (43%) of the non-Hispanic/non-Latino population is white. This 

inherent racial diversity makes the COH an appropriate study area for the current analysis.  
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Figure 1. Conceptual framework 

 

The exogenous variables used in this study were compiled through an extensive and 

intensive compilation effort, drawing from a whole range of data sources, including (a) 

Network/BE features and exposure attributes from the roadway network inventory database of the 

Texas Department of Transportation (TxDOT), (b) crime rate database, as reported by the COH 

police department, (c) BE related to bicycle and walking infrastructure from the COH open data 

portal, (d) bus stop database from the Metropolitan Transit Authority of Harris County, (e) traffic 

signal data from Open Street Maps, (f) schools location database from the Texas Education Agency 

public open data site, (g) motorized vehicle ownership data and land-use variables from the U.S. 

Environmental protection agency’s Smart Location Database (SLD), and commute mode splits 

and sociodemographic data from the U.S. Census Bureau.  

The construction of the dependent variables for analysis was based on ten years (2012–

2021) of crash data from TxDOT’s Crash Record Information System (CRIS). To focus on 

pedestrian crashes, we screened the crashes to consider only those involving pedestrians. Of the 

75,674 pedestrian crash instances in Texas, a total of 5,105 crashes occurred in the COH area. 

Around 20% of the pedestrian crashes in COH were fatal or severe injury crashes, and these were 

the ones considered in our analysis. Each of these pedestrian-vehicle crashes in COH was geo-
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coded for spatial analysis in ArcGIS 10.8.1, and aggregated to the CBG spatial unit of analysis. 

ArcGIS tools were also used to integrate the exogenous variables from multiple databases. 

Pedestrian crashes are relatively rare events from an analysis point of view, with 78.7% of 

CBGs having zero total crashes during our timeframe of analysis, and 93.0% having zero crashes 

involving Black pedestrians. 2,968 of the 2,970 CBGs had non-zero populations, and these 2,968 

CBGs are considered in our analysis (the two CBGs with zero populations could not be considered 

because the MB CBG dummy variable and many other independent variables used in the models 

are not defined for these CBGs). The range of total pedestrian crashes at a CBG is from a low of 

zero to a high of six. Of the 631 CBGs with a non-zero crash occurrence, 454 (71.9% of CBGs 

with non-zero crashes) have one crash, 99 (15.7% of CBGs with non-zero crashes) have two 

crashes, and 78 (12.4% of CBGs with non-zero crashes) have 3-6 crashes over the ten-year frame 

of our analysis.  

  

Dependent Variables 

Before discussing the dependent variables, we should indicate that, in the context of 

white/Black races and Hispanic ethnicity, the TxDOT CRIS database’s characterization of an 

individual involved in a traffic crash is in one of seven categories: (1) American Indian/Alaskan 

Native, (2) Asian, (3) Black, (4) Hispanic, (5) other, (6) unknown, and (7) white. Based on this 

characterization, it is not possible to distinguish Black, non-Hispanic and Black, Hispanic, as well 

as white, non-Hispanic and white, Hispanic pedestrians. Upon further inquiry with the CRIS 

database’s administrators, it was found that the classification is subjective and depends on what 

the police officer reports at the accident site. As a result, a Black, Hispanic individual may be 

arbitrarily included in the Black category or the Hispanic category. However, since our descriptive 

statistics indicate that only 2.1% of the Black population in COH is also Hispanic, we will assume 

that the Black category in the CRIS database corresponds to Black, non-Hispanic individuals. 

Thus, any reference to a Black crash or a Black-related exogenous variable refers to the population 

segment of non-Hispanic Blacks.  

For our current study, as already discussed, we focus on three distinct dependent variables. 

(i) The first is a binary outcome variable that indicates whether the population of the census block 

group is majority Black, (ii) the second is an ordered-response outcome variable for total 

pedestrian crashes (the number of total fatal and severe pedestrian-vehicle crashes, irrespective of 
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race, at each CBG), and (iii) the third is a fractional outcome variable that represents the fraction 

of Black pedestrian crashes as a proportion of total crashes in the CBG. The analysis of the first 

two dependent variables, the MB versus NMB CBG disparities and total crash count, is undertaken 

using the full set of 2,968 CBGs. The analysis of the third dependent variable, fractional Black 

pedestrian (BP) crashes, is confined to the 631 CBGs with a non-zero pedestrian crash. In these 

631 CBGs, the split in Black pedestrian crashes is as follows: 0 (422 CBGs), 1 (165 CBGs), and 

44 CBGs with two or more crashes. Clearly, there are sparseness issues in this third model.  

Table 1 presents descriptive statistics of the dependent variables. The second broad column 

indicates that about 15% of the CBGs are MB CBGs. The third broad column provides the average 

number of crashes (and the standard deviation), by CBG type, showing the elevation of total 

crashes in Black CBGs. The fourth broad column presents the mean and standard deviation (S.D.) 

of the fraction of Black crashes in those CBGs that had at least one pedestrian crash during the 

ten-year timeframe of our analysis, by CBG type. Not surprisingly, the mean fraction is higher in 

MB CBGs, because these are, by definition, locations of a high number of Black individuals. In 

our multivariate analyses of the three dependent variables, we control for multiple factors that may 

explain some of the differences in the descriptive statistics in Table 1. 

 

Table 1. Sample Descriptive Statistics for Dependent Variables 

Block Group 
Type 

CBG Type 
Number of Crashes 

per CBG 
Fraction of Black 
crashes per CBG 

Frequency 
Relative 

Frequency (%) 
Mean S.D. Mean S.D. 

Majority Black 0440 014.8 0.423 0.920 0.577 0.465 

Majority Non-
Black 

2528 0085.2 0.306 0.764 0.210 0.367 

Total 2968 100.0 0.324 0.790 0.269 0.413 

 
 
Exogenous Variables 

The explanatory variables considered for the analysis may be grouped into the four 

categories of crash risk exposure attributes, culture (i.e. social resistance) variables, built 

environment features, and sociodemographic factors. Table 2 provides the descriptive statistics 
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and data sources for the many variables considered for all CBGs, and then also by MB CBGs and 

NMB CBGs.  

Crash risk exposure (CE) attributes are directly related to pedestrian and vehicular 

volumes. The CBG population is available from the U.S. Census Bureau, while average daily 

vehicle miles traveled (ADVMT) and average daily traffic (ADT) volumes are available from 

TxDOT. However, pedestrian volume data with adequate spatial distribution is not available for 

the COH. Therefore, additional variables that reflect risk exposure, including the percentage of 

households owning, zero, one, or two or more vehicles, as well as the percentage of individuals 

commuting by car, public transit, or walking are used. Cultural variables include educational 

attainment and crime rate (total number of police-reported crimes/total population). The BE 

attributes for each CBG included several variables corresponding to its active transportation 

facilities, school availability, transit availability, road design, and land-use diversity. The state of 

active transportation facilities is measured using the ratio of sidewalks and bikeways out of the 

total centerline road miles. School availability is measured by the number of schools per 10 acres. 

Transit availability is measured as the number of bus stops per 10 acres in the CBG. Road design 

variables include road density (centerline road miles per 10 acres), the number of intersections per 

total centerline road miles, the proportion of three-leg and four or more–leg intersections, the 

number of traffic signals relative to the total number of intersections, the percentages of freeways, 

interstates, and arterial roads, and the percentage of one, two, three, and four or more lane roads. 

Finally, a land-use diversity index (LUDI) was derived from the percentage of retail (Ret), office 

(Off), industrial (Ind), service (Srvc), and entertainment (Ent) employment, using the metric 

proposed by Bhat and Gossen (2004). The index ranges between zero and one, with higher values 

corresponding to zones with a richer land-use mix. The actual form of the land-use index is: 

 

1 1 1 1 1
%Ret - + %Off - + %Ind - + %Srvc - + %Ent - 

5 5 5 5 5
LUDI = 1-

8
5

 
  
 
 
  

                  (1) 

Relevant sociodemographic (SD) factors include the percentage of children (<15 years), young 

adults (18-30 years), middle-aged individuals (31-64 years), and seniors in the CBG population, 

the percentage of low, medium, and high-income households in the CBG, as well as racial 
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diversity. Racial diversity is measured by the racial diversity index, also referred to as the 

Multigroup Entropy Index, used by the U.S. Census Bureau. The calculation methodology 

suggested by Iceland (2004) is used in this study to calculate the racial diversity index. The index 

ranges between 0 and 1, where the latter indicates a highly diverse racial environment. 

The statistics in Table 2 show that the CE attributes, as reflected by ADVMT, ADT, vehicle 

unavailability, and use of public transit, are higher in MB CBGs.3 In the cultural variables category, 

the data shows that MB CBGs experience higher crime rates, on average, than NMB ones. The 

descriptive statistics also indicate disparities in mean BE characteristics. MB CBGs have lower 

sidewalk coverage, more bus stops, more freeways and roads with four or more lanes, and less 

diverse land use. In terms of SD factors, on average, MB CBGs have a higher percentage of low-

income households and a lower percentage of college graduates. Of course, these are all univariate 

statistics characterizing MB and NMB CBGs, but the exogenous variables are not controlled for 

each other. Besides, many of these differences in the mean between MB and NMB CBGs are not 

statistically significant. A full characterization of the differences between MB and NMB CBGs as 

a function of the exogenous variables (and the significance of the effects of these exogenous 

variables) can only be undertaken using a model that considers all variables at once, which is the 

first binary probit model in the current study. 

                                                 
3 We should note here that the ADVMT and ADT figures from TxDOT include travel on freeways; thus, the higher 
values for these in MB CBGs in Table 2 should not be a surprise, because freeways were built through more of Black 
neighborhoods in urban areas (Archer, 2020, and Boehmer et al., 2013; see also the higher % of freeways in MB CBGs 
in Table 2). But pedestrian travel is illegal on freeways. As a result, VMT and ADT would not be good exposure 
measures for pedestrian crash risk. Indeed, the VMT and ADT variables did not turn out to be statistically significant 
in our empirical specification. However, car ownership levels and commuting shares appeared to be good controls for 
exposure not only for pedestrian volumes, but also motorized traffic volumes in our empirical analysis.   



 

16 

Table 2. Summary Statistics of Exogenous Variables 

CBG type 
All CBG Majority Black Majority Not Black 

Data source 
Mean S.D. Mean S.D. Mean S.D. 

Crash Risk Exposure        
Total population 2291.295 2562.213 2118.534 1860.609 2321.365 2664.678 U.S. Census Bureau – 2010 
Employment density (jobs/0.1 acres) 0.306 1.130 0.220 0.476 0.322 1.207 SLD – 2019 
Vehicle miles traveled  2981.924 6494.474 3399.319 7148.433 2909.276 6372.544 TxDOT roadway inventory – 2019 
Average daily traffic  10097.440 20305.454 10568.388 18571.645 10015.471 20594.640 TxDOT roadway inventory – 2019 
% HH owning zero vehicles  6.943 9.456 12.248 12.454 6.019 8.502 SLD – 2019 
% HH owning one vehicle 35.223 16.464 42.932 16.421 33.881 16.101 SLD – 2019 
% HH owning two or more vehicles 57.678 20.832 44.166 19.961 60.030 20.074 SLD – 2019 
% individuals commuting by car 89.824 9.106 88.411 11.151 90.070 8.680 U.S. Census Bureau – 2010 
% individuals commuting by public transit 2.296 4.225 4.557 6.991 1.903 3.699 U.S. Census Bureau – 2010 
% individuals commuting by walking 1.672 4.525 1.886 6.234 1.634 4.157 U.S. Census Bureau – 2010 

Cultural        
% population with less than a high school 
diploma 

19.170 16.645 17.945 10.521 19.383 17.486 U.S. Census Bureau – 2010 

Crime rate (crimes/ 0.1 capita) 0.040 0.219 0.066 0.074 0.035 0.235 City of Houston police reports – 2019 
Built Environment        
Active Transportation Facilities        

Proportion of sidewalks to total road miles 1.965 2.845 1.848 6.062 1.985 9.835 COH open data portal – 2018 
Proportion of bikeways to total road miles 0.362 2.846 0.502 3.091 0.337 2.800 COH open data portal – 2021 

School Availability        
# schools per 10 acres 0.014 0.04 0.018 0.049 0.014 0.044 Texas Education Agency – 2021 

Transit Availability       Metropolitan Transit Authority of 
# of bus stops per 10 acres 0.174 0.289 0.291 0.330 0.153 0.289 Harris County – 2018 

Road Design        
# intersections per acre 0.076 0.048 0.077 0.045 0.076 0.048 TxDOT roadway inventory – 2019 
% three-leg intersections 33.148 16.704 30.423 17.189 33.622 16.576 TxDOT roadway inventory – 2019 
% four or more–leg intersections 64.626 18.714 66.434 20.261 64.311 18.418 TxDOT roadway inventory – 2019 
# traffic signals relative to # of intersections 0.232 0.428 0.238 0.340 0.230 0.442 Open Street Maps – 2021 
Road density (miles/10 acres) 0.248 0.268 0.267 0.245 0.247 0.273 TxDOT roadway inventory – 2019 
% Freeway miles  2.116 8.120 3.175 10.760 1.932 7.555 TxDOT roadway inventory – 2019 
% Interstate miles 3.004 9.792 2.511 7.905 3.090 10.084 TxDOT roadway inventory – 2019 
% Principal Arterial miles 5.648 12.770 6.350 13.370 5.525 12.661 TxDOT roadway inventory – 2019 
% Four or more lane road miles 13.523 18.506 16.245 20.710 13.049 18.058 TxDOT roadway inventory – 2019 

Land-use Diversity        
Land-use diversity index 0.415 0.196 0.364 0.212 0.424 0.192 SLD – 2019 
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Table 2. Summary Statistics of Exogenous Variables (contd.) 

CBG type 
All CBG Majority Black Majority Not Black 

Data source 
Mean S.D. Mean S.D. Mean S.D. 

Socio-demographic        
% Low income 33.813 20.172 46.993 19.720 31.693 19.490 U.S. Census Bureau – 2010 
% Medium income 45.210 14.763 44.505 15.836 45.332 14.568 U.S. Census Bureau – 2010 
% High income 20.811 19.690 8.825 9.865 22.898 20.222 U.S. Census Bureau – 2010 
% Children (<15 years) 20.652 8.272 20.025 9.076 20.761 8.121 U.S. Census Bureau – 2010 
% Young adults (18 – 30 years) 16.931 8.732 19.507 9.439 16.482 8.525 U.S. Census Bureau – 2010 
% Adults (31 – 64 years) 45.843 8.102 44.805 9.241 46.024 7.875 U.S. Census Bureau – 2010 
% Seniors (>65 years) 12.438 7.922 11.716 7.258 12.564 8.026 U.S. Census Bureau – 2010 
% High school graduates 44.882 15.817 54.816 12.063 43.153 15. 757 U.S. Census Bureau – 2010 
% College graduates 33.838 21.717 26.370 15.072 35.138 22.426 U.S. Census Bureau – 2010 
Racial diversity index 0.431 0.177 0.520 0.161 0.416 0.175 U.S. Census Bureau – 2010 
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3.2. Mathematical Formulation 

The binary and ordered-response models of the first and second models take the same form, 

except that the binary model is a special case of the ordered-response model. The third model takes 

a fractional split form. For completeness, we provide a brief overview of each of these model 

structures below. 

 

MB versus NMB CBG Binary Model 

In order to test the characteristics that distinguish MB CBGs, a Probit binary response 

model (see Greene, 2017) is used. Let q be an index for CBG (q = 1, 2, …, Q; where Q = 2,968 in 

our case), and let qz  be equal to one if a certain CBG is MB and zero otherwise. The binary 

response model estimates the probability )( 1q qP z = | X , where qX  is an (L×1) vector of 

exogenous variables. Let *
qz  be the latent propensity corresponding to CBG q . *

qz  is written as 

follows: 

*    q q qz  γX  (2) 

where γ  is an ( 1L  ) vector of coefficients to be estimated, and  q is a standard normal error term 

assumed to be identically and independently distributed across CBGs. In the data, we observe 

whether a CBG is MB ( 1qz   when * 0qz   or not ( 0qz   when * 0qz  ), where *
qz  is an 

unobserved underlying propensity. Then, the probability that a CBG is MB can be written as: 

   *1| (z 0| ) ( 0| ) ( | ) Φq q q q q q q q q q qP z P P P            X X γ X X γ X X γ X  (3) 

where  Φ .  is the cumulative standard normal distribution operator.  

 

Total Count Model 

Model 2, which examines the factors influencing the total number of crashes, is estimated 

using an ordered probit modeling framework (see Ferdous et al. (2010) for a detailed discussion 

of the estimation methodology). Again, let q be an index for CBG (q = 1, 2, …, Q; where Q = 

2,968) and k be an index for the crash count categories (k = 0, 1, 2, …, K; K=6 in our empirical 

analysis). The latent propensity *
qy  is a function that relates relevant exogenous variables to the 
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observed total crash frequency outcome ( qy ) through threshold bounds (see McKelvey and 

Zavoina, 1975): 

* ' ,q qq qy y k  X  if  
* 1k k
qy         (4) 

where qX  is a (L×1) vector of exogenous variables (not including a constant),   is a 

corresponding (L×1) vector of coefficients to be estimated, q  is a standard normal error term that 

is assumed to be independent and identical across CBGs, and k is the lower bound threshold for 

k total number of crashes ( 0 1 2 1... ;   K       0 1,   K      ). The parameter vector of 

the ordered probit model is ( , ) ,      where 1 2( , , ..., )K     . Then, let the actual observed 

number of crashes for the qth CBG be qm . The likelihood function for the qth CBG can be written 

as follows:  

1*( ) Pr( ) Pr( )q qm m
q q q qL y m y         (5) 

1

( ) ( )    

mq
q

mq
q

q

v

L v dv






 

 

 
X

X





  (6) 

where ( )v  represents the normal density function. 

 

BP Crash model 

This model, which investigates the factors influencing the fraction of Black pedestrian 

crashes at any CBG, is estimated using a fractional split model (see Papke and Wooldridge, 1996 

and Sivakumar and Bhat, 2002 for a detailed discussion of the estimation methodology). Let qw  

be the fraction of Black pedestrian crashes (between 0 and 1) in CBG q. qw  is written as a function 

of a vector of exogenous variables qX , a (L×1) vector. The fractional split model used in this 

study is the one proposed by Papke and Wooldridge (1996): 

( | ) ( , ),  0 (.) 1q q qE w G G  X μ X  (7) 

where (.)G  is a pre-determined function whose properties ensure that the fraction of Black 

pedestrian crashes is between 0 and 1, and μ  is a (L×1) vector of coefficients to be estimated. 
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Quasi-maximum likelihood methods based on the multinomial logit functional form for (.)G  is 

used to estimate μ . The structure of the fractional regression model is written as: 

exp( )
( | ) ( , )

1 exp( )
q

q q q
q

E w G


 


μ
μX

X X
μX

 (8) 

Finally, the log-likelihood function used to estimate the   parameters is: 

( ) log[ ( , )]qq qL w Gμ μ X  (9) 

 

4. MODEL ESTIMATION RESULTS  

In the model specifications, we explored a range of alternative functional forms for the 

explanatory variables. The final specification for each model was obtained after a systematic 

process of testing alternative combinations (and interactions) of explanatory variables based on 

statistical fit and parsimony considerations. In the final model specifications, we did not impose 

specific a priori statistical significance thresholds to retain variables, but considered the sample 

size and dependent variable distribution, along with intuitive judgment and the value of retaining 

variables for the benefit of future research. For example, a few variables that were statistically 

significant only at the 80% confidence level were retained in the third model that had few 

observations (631 CBGs) and even fewer CBGs with the presence of a Black pedestrian crash 

(only 209 CBGs with one or more Black pedestrian crashes).  For the second model, which had 

2968 CBGs, but again with a high skew toward zero with 2337 CBGs (78.7%) having zero crashes, 

a couple of variables that showed up as being significant at only the 85% confidence level were 

retained. Furthermore, we examined interaction effects, especially between the MB CBG dummy 

variable and other exogenous variables in the second and third models (to examine if the effects 

of the CE, cultural, BE, and SD variables differed based on the racial composition of the CBG, but 

none of these interactions came out to be of any consequence even at a 65% confidence level 

(corresponding to a t-statistic of 0.94)). The implication is that the effects of the crash determinants 

on crash risk do not vary across CBGs with MB and NMB populations. However, these crash 

reductions also are a function of the starting point for improvement. Our results below indicate 

that the state of the existing pedestrian infrastructure and travel environment in MB CBGs is not 

as good as in NMB CBGs. From this standpoint, improvements focused on MB CBGs will have a 

higher impact on reducing total pedestrian crashes.  
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 The estimation results are presented in Table 3 and are discussed in turn by variable 

category in the next few sections. The parameters in the table represent the elements of the γ vector 

(for the MB vs. NMB CBG model), the   vector (for the second total count model), and μ vector 

(for the third fractional BP model).  

 

4.1. Crash Risk Exposure Attributes 

Table 3 shows that, after controlling for the logarithm of population, MB CBGs exhibit 

lower employment densities and motorized vehicle ownership levels, and have higher shares of 

individuals commuting by public transportation. These characteristics indicate disproportionately 

lower access to jobs in MB CBGs, as corroborated by earlier studies (for example, Agan and Starr, 

2020). The results related to motorized vehicle ownership and commuting suggest race-based 

disparity in vehicle ownership and public transportation usage (Anderson, 2016; Karner et al., 

2017; The National Equity Atlas, 2019). In 2016, the Consumer Expenditure Survey indicated that 

Black individuals spend up to 100% more than white individuals on insurance costs per motorized 

vehicle (Consumer Federation of America, 2017). Similar disparities are also observed in the 

automobile loan market where racial minorities have lower loan approval rates even after 

controlling for creditworthiness (Butler et al., 2021). The consequent lower motorized vehicle 

ownership among residents of MB CBGs then increases public transit use.  

 In the total count model, the logarithm of residential population is positively correlated 

with pedestrian crashes, which is a scale effect as a higher population will be associated with more 

pedestrians and crash risk exposure. Employment density is associated with a higher crash 

propensity. Typically, areas with high employment density experience higher daily vehicular 

traffic and pedestrian activity, which increases the risk of exposure to vehicle-pedestrian crashes 

(Guerra et al., 2019; Siddiqui et al., 2012). This result, along with the result that employment 

density is lower in MB CBGs, suggests that any efforts to increase access to jobs in traditionally 

employment-sparse MB CBG locations should be carefully choreographed to reduce vehicle-

pedestrian conflict areas due to the additional risk. Regarding other risk exposure variables, as 

expected, areas with a high share of public transit- and walking-based commuting are locations of 

high crash propensity. In combination with the first model results, it is clear that, at least some of 

the difference in total crashes between MB CBGs and NMB CBGs is due to higher risk exposure 

at MB CBGs. In addition, the effect of the share of individuals commuting by public transit is  
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Table 3. Estimation Results 

Variables 
MB versus NMB  Total Count  BP Crash Model 

Coef. t-stat Coef. t-stat Coef. t-stat 
Crash Exposure 

Ln(Population) 0.150 2.86 0.254 5.930 -- -- 
Employment density (jobs/ 0.1 acres) -0.316 4.43 0.056 2.65 -- -- 
% HH owning zero vehicles 1.181 3.26 -- -- -- -- 
% individuals commuting by public transit 3.362 4.97 1.888 3.20 1.460 1.64 
% individuals commuting by walking -- -- 1.563 2.87 -- -- 

Cultural 
% population with less than a high school 
diploma 

-- -- 0.877 5.60 -- -- 

Crime rate (crimes/ 0.1 capita)  0.178 1.64 0.387 4.15 0.886 2.50 
Built Environment 
Active Transportation Facilities 

Ratio of sidewalks to total road miles -0.011 -2.15 -- -- -- -- 
School Availability 

# schools per in 10 acres -- -- 1.072 1.97 -- -- 
Transit Availability 

# of bus stops per 10 acres 0.550 4.47 0.671 6.46 -- -- 
Road Design 

# intersections per acre -- -- -1.474 -2.13 0.901 1.21 
% four or more–leg intersections 0.375 2.28 0.507 3.19 -- -- 
# traffic signals relative to # of intersections -0.263 -2.72 0.130 2.08 -- -- 
Road density (miles/10 acres)  -0.405 -3.19 -- -- -- -- 
% Freeway miles 1.134 3.42 0.793 2.72 -- -- 
% Local road miles -- -- -- -- 0.251 1.31 
% Principal arterial miles -- -- 0.291 1.40 -- -- 
% Four or more lane road miles 0.344 1.92 0.268 1.74 -- -- 
Land-use diversity index -0.819 -5.18 0.710 5.17 -- -- 

Sociodemographic 
% Young adults 2.223 5.53 0.494 1.43 -- -- 
% Low income 1.239 6.74 -- -- -- -- 
% Black population in an NMB CBG -- -- -- -- 3.269 5.90 
MB CBG   0.107 1.47 1.394 9.64 

Constant -3.025 -7.00 -- -- -1.584 -8.67 
Thresholds 

Threshold 1 

-- -- 

3.879 10.91 

-- -- 

Threshold 2 4.735 13.19 
Threshold 3 5.173 14.31 
Threshold 4 5.475 14.03 
Threshold 5 5.752 15.62 
Threshold 6 6.111 16.15 

Model Type Probit  Ordered probit  Fractional response  
Number of observations 2,968 2,968 631 
Goodness-of-fit 
Log-likelihood at convergence -1057.848 -1949.663 -314.513 
Number of parameters 15 17 6 
Constants-only log-likelihood -1245.5448 -2129.9873 -366.05406 

Nested likelihood ratio test 
LR = 375.393 > 

2

(15 ,0.05 )
24.995   

LR = 360.648 >
2

(17 ,0.05 )
27.587   

LR = 103.082 > 
2

( 6 ,0.05 )
12.591    

Pseudo R2         0.151 0.085 0.141 
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positive (even if only marginally significant effect due to the small sample size) in the fractional 

BP crash model, further indicating that improved public transit service and safety protocols at any 

CBG will reduce Black pedestrian crashes, especially in MB CBGs. This is particularly so because 

individuals who rely on public transit for commuting are more exposed to vehicular traffic, since 

walking is an essential prerequisite for accessing transit services (Su et al., 2021). Additionally, 

public transit stops/stations are significant pedestrian gathering areas (Osama and Sayed, 2017).  

 
4.2. Cultural Variables 

In the context of cultural variables, the (police-reported) crime rate turned out to be 

significant for all three models, suggesting (a) more reported criminal activity in MB CBGs, (b) 

higher crash risk when there is a higher reported crime rate, and (c) a higher fraction of Black 

pedestrian crashes in locations of high reported crime rate. The higher reported crime in Black 

neighborhoods has been linked to the historical structural racism that led to the rampant growth of 

poverty, unemployment, low education attainment, and police surveillance of minority 

neighborhoods (Davidson, 2019; Lodge et al., 2021). Of course, these are police-reported crimes, 

and so the high reported crimes in MB CBGs may also, in part, be a result of disproportionately 

higher arrests of minority individuals for seemingly similar infractions as those engaged in by non-

minorities (Baumgartner et al., 2018; Pierson et al., 2020).  

The higher pedestrian crash risk in high police-reported crime areas, as reflected by the 

total crash model, is not surprising; crime, fear of crime, or fear of being accused of a crime is a 

social stressor influencing behavior. Areas with high reported crime activity provoke strong 

feelings of discomfort and fear (Davis, 1992; Rottenstreich and Hsee, 2001), and pedestrians may 

attempt to reduce exposure risk even if through unsafe pedestrian behaviors (such as jaywalking 

or crossing at unmarked crosswalks). This tendency to “flee” areas through walking short-cuts 

may be particularly so among Black pedestrians in locations with high crime reporting, as they 

may be fearful of an environment of being accused of a crime due to potentially aggressive racial-

profiling based policing. There is support (for the above possible explanations) in the broader 

psychology and neuroscience literature, which has established that humans tend to flee from the 

source of perceived danger in the face of a fearful/anxiety-provoking environment (see, for 

example, Steimer, 2002 and Hengen and Alpers, 2021). Also, intense feelings of stress in high 

police-reported crime areas may impair drivers’ reasoning and judgment, thereby resulting in the 

manifestation of implicit racial bias behavior (Chugh, 2004; Fazio and Olson, 2003), which may 
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translate to yielding bias against Black pedestrians and increasing their proportion in the total 

number of pedestrian crashes. A related explanation, of course, is that residents in high police-

reported crime areas, especially in MB CBG police-reported high crime areas, exhibit socially 

resistant attitudes given their general cynicism of police and court systems. Such attitudes can 

extend to risky pedestrian behavior, further elevating Black pedestrian crash risk, as suggested by 

our third model results.   

CBGs with a relatively high percentage of individuals with less than a high school diploma 

in their resident population tend to have a high pedestrian crash propensity, which sometimes has 

been associated with difficulty understanding posted pedestrian and traffic signs (Wontorczyk and 

Gaca, 2021), or because those who have obtained higher education degrees ostensibly have better 

self-control on not pursuing risky/illegal behavior (Jia et al., 2021; Piotrowska et al., 2015), or 

because of social resistance toward “those elites of society who think they know it all” (Factor et 

al., 2013). Interestingly, the safety literature does not discuss the latter issue, where social 

resistance could be an important driving factor for risky behaviors such as jaywalking and red-

light running. 

 

4.3. BE Features 

Our results reveal that MB CBGs are characterized by a higher number of bus stops per 

unit of space, while CBGs with a high density of schools and bus stops are clearly those with a 

higher crash propensity. These are BE features that lead to risk exposure, given the high level of 

walking and vehicular-pedestrian mix of road users in proximity to bus stops and schools. Further, 

schools are focal points for young individuals, who are more likely to exhibit inattentive behavior 

(Lennon et al., 2017; Peeters et al., 2017). In terms of the effect of bus stops, again, this is a 

significant safety concern as public transit is systemically underfunded, leading to negative safety 

effects on public transit users, most of whom are minorities.  

The table also indicates that numerous other BE factors differ between MB and NMB 

CBGs, with MB CBGs being consistently characterized by inadequate infrastructure quality (based 

on Model 1) that can lead to higher pedestrian crashes (based on the second total crash count 

model). These disparities in infrastructure are primarily a result of disinvestment (Archer, 2020, 

Karner et al., 2017) or a higher percentage of relatively high-speed roads, resulting in MB CBGs 

having lower sidewalk coverage, higher proportions of dangerous four-or-more leg intersections, 
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% freeway miles, and % four or more lane road miles. These findings are also consistent with 

previous literature (Gibbs et al., 2012; Thornton et al., 2016; Yu et al., 2022). Overall, the lack of 

sidewalks, the prevalence of unsafe intersections, and the widespread presence of high-speed and 

high-volume roads endanger the safety of pedestrians in such neighborhoods to a greater extent 

compared to NMB CBGs. Additionally, MB CBGs are less likely to have diverse land-use, given 

that mixed land-use is generally associated with higher housing prices and gentrification 

(MacDonald and Stokes, 2020; Wu et al., 2018).  

 A few interesting observations regarding the effect of BE features on the total count of 

crashes. First, the density of bus stops, the percentage of four or more-legged intersections, and % 

freeway miles are more prevalent in MB CBGs and also result in higher pedestrian crashes, clearly 

indicating the mediating effect these BE features have on the higher pedestrian crash propensity 

in MB CBGs. Second, the coefficients on the “# traffic signals relative to # of intersections” effect 

and the “land-use diversity index” on the first two models suggest that the lower number of 

controlled intersections and the lower land-use mix, while having possible negative accessibility 

repercussions, actually appear to buffer MB CBGs from pedestrian crashes. Third, the density of 

intersections is negatively correlated with total pedestrian crashes, but positively with the fraction 

of Black crashes. That is, at intersection crossings, while the total crash count reduces, there is an 

overrepresentation of Black pedestrian crashes. A higher intersection density is associated with 

small block sizes that generally reduce jaywalking, unlawful crossing, and speeding, thus lowering 

total crash propensity (Sung et al., 2022). However, it appears that the implicit driver yield bias 

uncovered by Coughenour et al. (2017), Goddard et al. (2015), and others may be at play against 

Black pedestrians at such locations. Fourth, as for the road network, a higher percentage of freeway 

and principal arterial miles increases the frequency of pedestrian crashes. Roads belonging to these 

functional classes are typically vehicle-oriented, high-speed, and high-volume links that increase 

the exposure of pedestrians to vehicular crashes (Wang et al., 2016; Yu et al., 2022). 

 

4.4. Sociodemographic Factors 

Table 3 indicates that MB CBGs are associated with a higher percentage of young adults 

and low-income households. A recent survey shows that the Black population continues to be 

younger than other racial or ethnic groups (Tamir, 2021), possibly due to the lower life expectancy 

in MB neighborhoods (Perry et al., 2021). A high percentage of low-income HHs in MB CBGs is 
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presumably due to the persisting disparity in income across racial and ethnic groups caused by 

systematic differences in access to opportunities (Bell et al., 2020; Bhutta et al., 2020). 

Moving on to the total count model results, the percentage of young adults in the population 

has a positive effect on the total number of pedestrian crashes. This is to be expected, since young 

adults between the age of 18 and 30 years are generally more active than middle-aged and older 

individuals, especially after dark, which exposes them to higher risks of severe pedestrian crashes 

(Li and Fan, 2019). In addition to increased exposure, younger pedestrians have a higher 

propensity for red-light running and other aggressive crossing behaviors (Zhu et al., 2021). This is 

another instance of the younger nature of the population in MB CBGs explaining, in part, the higher 

crash occurrence in MB CBGs.  

The MB CBG binary variable has a positive sign in the total crash and the fractional BP 

models. These results confirm the presence of additional unobserved forces related to racial 

composition that elevate crash risk at MB Black CBGs (this is the MB-TC effect). Note that this 

“remnant” effect is after controlling for a number of other mediating effects that explain the reason 

for the higher crash risk at MB CBGs relative to NMB CBGs. In terms of the MB CBG effect on 

the fractional BP model, the strong positive effect shows that Black pedestrians are more likely to 

be involved in pedestrian crashes in MB CBGs (relative to NMB CBGs). This outcome is expected 

since an MB CBG, by construction, has a high proportion of Black residents, which gets reflected 

in the number of Black pedestrian crashes. However, Table 3 also shows that the proportion of 

Black residents in an NMB CBG has a positive effect on the fraction of Black pedestrian crashes. 

That is, the higher the proportion of Black individuals in an NMB CBG, the higher the proportion 

of Black crashes in that CBG. The magnitude of this coefficient is also greater than one, which 

indicates that the fraction of Black pedestrian crashes is 3.3 times higher than their proportion in 

the total population in NMB CBGs. This clear overrepresentation of Black pedestrians in total 

crashes in NMB CBGs, even after controlling for other crash determinant variables, may be 

attributed to implicit racial bias. This is consistent with previous findings in the field of racial bias 

that indicate that individuals show implicit and explicit biases that are more positive toward the 

ingroup than the outgroup (Lai and Banaji, 2020; Lai and Wilson, 2021; Ratcliff and Smith, 2021). 

For example, Morin (2015) found that about half of all single-race whites automatically preferred 

whites over Blacks, including about a third (35%) who favored whites moderately to strongly. As 

a result, implicit bias against Black pedestrians may be more prevalent in NMB CBGs, resulting in 
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the overrepresentation of Black in the pool of total crashes. Interestingly, though, the reverse effect 

of the fraction of white population in an MB CBG did not turn up even moderately significant. Of 

course, the small sample size of CBGs for this third analysis, and the predominantly zero Black 

crashes in most CBGs, suggest that the fractional BP model needs further analysis in future 

research efforts. In particular, the overrepresentation of Black pedestrians in total crashes in NMB 

CBGs, while suggestive of implicit racial bias, may also be explained (at least in part) by factors 

not considered in the current analysis. Further investigations with additional fine resolution 

spatial/temporal pedestrian activity and crash data would also be helpful in this regard. 

4.5. Constants and Threshold 

The constants and the threshold values toward the bottom of Table 3 do not have any 

substantive interpretation, and only serve the purpose of fitting the observed binary, ordered-

response, and fractional dependent variables as best as possible, in combination with the 

exogenous variable effects. These are, of course, important in any prediction process.  

 

4.6. Goodness-of-fit Measures 

The performance of the models may be compared with those of corresponding constants-

only models (in which only the constant in the first and third models, and only the thresholds in 

the total count ordered-response model, are included). Since the estimated models and the 

corresponding constants-only models are nested forms of one another, their performances can be 

compared using the likelihood ratio test. The log-likelihoods at convergence for each of the 

models, the corresponding log-likelihoods at constants, and the respective likelihood ratio test 

results are all provided at the bottom of Table 3. These clearly indicate that the exogenous variables 

used in our models are useful and provide good predictive power.  

 

5. A DEEP DIVE INTO THE TOTAL COUNT MODEL DETERMINANTS 

Of the three models, the first model provides valuable information on the variations in 

infrastructure and other characteristics between MB and NMB CBGs. However, this model by itself 

does not provide changes in pedestrian crash counts due to changes in exogenous variables. The 

third model, while also providing important insights, is estimated on a rather small sample with 

most CBGs showing zero Black pedestrian fatal and severe crashes. We believe that additional 

research with an adequate number of Black pedestrian crashes would be helpful for this third model 
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in future research. The second model, on the other hand, is estimated with a large enough sample 

size, and also provides critical evidence on the determinants of total pedestrian crashes in any CBG 

(though, the first and second models together, as discussed in the previous section, provide further 

insights on infrastructure and other investments in MB CBGs that could lead to a high reduction 

in total pedestrian crashes at those CBGs). This second model is therefore the focus of further 

analysis in this section.  

The results in the previous section for this second model provide the effects of variables 

on underlying crash propensities. While useful by themselves, these do not provide information 

on the actual effects of the variables on total crash counts (note also that in ordered-response 

models even the directionality of the effect of a variable on the underlying propensity does not 

always provide a sense of how the variable may actually impact individual count categories). To 

determine directionality and magnitude effects, the estimates need to be translated to actual 

outcome effects which will vary across CBGs because of the non-linear nature of our model. 

However, an average treatment effect (ATE) can be computed by taking the mean (across 

individuals) of the effect of a variable, which can then provide insights for policy actions. In the 

context of the current paper, a specified goal may be to decrease the count of pedestrian injuries 

in a CBG. The procedure to estimate the relevant effects of variables is discussed next. 

   

5.1. ATE Computation 

The model provides, for each CBG, the probability of each pedestrian crash count value k 

(k=0,1,2,…,K) based on Equation 5. From these probabilities, we can further compute the expected 

value of pedestrian crash count for each CBG q as follows, given exogenous variable values: 

0

( | , ) .P( | , )
K

q q q q
k

E y k y k


 X X   (10) 

Next, to determine the effect of any variable on pedestrian crash counts, we use the ATE effect 

(see Angrist and Imbens, 1991 and Heckman and Vytlacil, 2000), which is a metric that computes 

the impact on a downstream posterior variable of interest due to a treatment that changes the state 

of an antecedent variable from A to B. For example, if the intent is to estimate the impact of the 

percentage of four or more-legged intersections in a CBG on the total pedestrian crash count in 

that CBG, A can be set to the lower quartile (25%) and B can be set to the upper quartile (75%) 

value of this variable (the quartiles being computed based on the distribution of the variable across 
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CBGs). The impact of this change is measured in terms of the change in the expected crash count 

(ECC) value (computed as the difference between the aggregate ECC (across all CBGs) in the 

treatment variable state B and the aggregate ECC (across all CBGs) in the base variable state A, 

averaged over all the CBGs; this is the ATE effect of the variable). Then, the ATE effect as a 

percentage of the aggregate ECC (across all CBGs) in the base variable A is also computed and 

labeled as the “%ATE effect” of the variable). Note also that because all variables in the sample 

are continuous variables (except for the MB CBG dummy variable), using a uniform lower quartile 

to upper quartile change accommodates for scaling variations across the variables, thus allowing 

a direct comparison of the ATE and % ATE effects across variables to obtain a relative magnitude 

effect of each variable.  

A note here. The ATEs computed for all variables are positive except for the “# 

intersections per acre” variable (which is not surprising given the negative sign on the “# 

intersections per acre” in the total count model in the model estimation). So, to get all the ATEs to 

be interpreted as the estimated increase in expected pedestrian crashes, we use the base for the “# 

intersections per acre” as the upper quartile and the treatment as the lower quartile. That is, the 

ATEs for other variables indicate the expected pedestrian crash increase due to an increase in those 

variables, while the ATE for the “# intersections per acre” represents the average expected 

pedestrian crash increase due to a decrease in this variable. For the MB CBG dummy variable, we 

consider the ATE as the shift in the expected number of pedestrian crashes between the base case 

of all CBGs being considered as NMB CBGs to the treatment case of all CBGs being considered 

as MB CBGs. Effectively, this provides the difference in expected pedestrian crashes between a 

Black and a non-Black CBG after controlling for the effects of the other four sets of variables (this 

corresponds to the ATE associated with the model estimated MB-TC effect).  

In addition to individual magnitude effects, one can further use the individual variable 

ATEs (leaving the MB-TC ATE alone) to obtain a relative magnitude effect of each of the variables 

within each of the four exogenous variable categories of CE attributes, cultural variables, BE 

features, and SD factors. This is computed as a percentage contribution of each variable’s ATE 

effect within the respective variable category. A similar exercise is undertaken to get the 

percentage contribution of each variable across all other variables affecting crash counts. Further, 

we are also able to aggregate the ATE values across variables within each category, and then 
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compute a relative magnitude effect of each of the four exogenous variable sets and the MB-TC 

effect.  

Finally, while not shown in this paper to conserve space, we also undertook a similar ATE 

effects exercise using the first binary model of MB versus NMB CBGs to estimate the relative 

contributions of each of the CE, cultural, BE, and SD categories of variables. These estimates 

suggest that the difference between an MB and NMB neighborhood attributable to each of the four 

categories of variables (specifically in the context of variables that may impact pedestrian crashes) 

are as follows: CE (21.04%), cultural (0.28%), BE (36.04%), and SD (42.24%). These category-

specific contributions will also be invoked as appropriate in the discussion of the total crash count 

model implications below.  

 

5.2. Crash Count Model ATE Estimate Implications 

Table 4 provides the ATE estimates. Note that the table does not provide the ATE effect 

values per se, because they are less insightful than the % ATE values. However, in quantifying the 

relative contribution of each variable in totality and within each of the four broad categories of 

variables, and the relative contribution of each of the four broad categories of variables themselves, 

it is the ATE effects that are used, as discussed earlier. The values are to be interpreted as follows. 

Consider the entries corresponding to the “percentage of individuals commuting by public transit” 

(third numeric row of Table 4). The % ATE column has a value of 8.74. This implies that a change 

in the percentage of individuals commuting in a randomly picked CBG from the lower quartile to 

the upper quartile would increase the total number of crashes at the CBG by 8.74%. The entry of 

19.20% in the “category” sub-column under the broad “relative contribution %” column (last 

column of Table 4) reveals that the crash risk exposure (CE) category of variables contributes 20% 

to the total crash count relative to the other three categories of variables and the MB-TC effect. 

Next, the entry in the “in-group” sub-column under the broad “relative contribution %” column 

indicates that the increase in the total number of crashes attributable to “% commuting by transit” 

represents 18.48% of the contribution of the crash risk exposure category of variables. Finally, the 

last column entry of 3.55% for the “percentage of individuals commuting by public transit” 

provides the % contribution across all variables in all sets of variables.   
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Table 4. Average Treatment Effects of Exogenous Variables 

 Variables %ATE 
Relative contribution (%) 

Category In-group 
Across All 
Variables 

Crash Risk Exposure  19.20     
Ln(Population) 32.01 

  

67.71 13.00 
Employment density (jobs per 0.1 acre) 1.84 3.88 0.75 
% individuals commuting by public transit 8.74 18.48 3.55 
% individuals commuting by walking 4.69 9.92 1.91 

Cultural   16.62     
% population with less than a high school 
diploma 

38.06 
  

92.99 15.46 

Crime rate (crimes/0.1capita)  2.87 7.01 1.16 
Built Environment  54.69     
School Availability  12.39     

# schools per 10 acres  16.68   12.39 6.77 
Transit Availability   26.81     

# of bus stops per 10 acres 36.1   26.81 14.66 
Road Design   34.95     

# intersections per acre 13.87 

  

10.30 5.63 
% four or more–leg intersections 15.90 11.81 6.46 
# traffic signals relative to # of intersections 4.93 3.66 2 
% Freeway miles 1.16 0.86 0.47 
% Principal arterial miles 2.58 1.91 1.05 
% Four or more lane road miles 8.63 6.41 3.51 

Land-use Diversity   25.85     
Land-use diversity index 34.81   25.85 14.14 

Sociodemographic  2.72     
% Young adults 6.71   100 2.72 

MB CBG 16.62 6.75 100 6.75 

 

The results in Table 4 are, to our knowledge, the first attempt to unpack the relative 

magnitude effects of variables on pedestrian crash counts, and can guide effective pedestrian safety 

interventions in two ways. First, the % ATEs quantify the magnitude of the impact of interventions 

based on a specific variable on the total number of crashes. Second, the relative contribution values 

highlight the individual variables or factor categories with the highest contribution to the total 

number of crashes, and thereby should be prioritized by policymakers and planners.  

 

CE Attributes 

Overall, the CE variable category contributes 19.20% to pedestrian crashes, and is the 

second most contributing category after BE factors. Within the crash risk exposure category, the 

natural logarithm of the population has the highest relative contribution of 67.71%, though its 

overall contribution to pedestrian crashes (across all variables) is moderate at 13%. Indeed, as 
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discussed in the analysis in Section 4.1, the total number of crashes is expected to increase with 

increasing population. As a result, land-use plans that encourage compact and dense land use 

should be evaluated carefully to avoid an increase in the number of pedestrian crashes. 

Employment density is another determinant of total pedestrian crashes. An average CBG area of 

1,682 acres (obtained from our sample) with an “Employment Density (jobs per 0.1 acres)” of 

0.016 indicates a CBG with 269.12 jobs  0.016 10 /1682  (that is, the base level for this variable 

is about 270 jobs in an average-sized CBG). Similarly, the employment density at the treatment 

level reflects a total of over 4,000 jobs in an average-sized CBG. Even this substantial increase in 

job availability only increases pedestrian crashes by 1.84%. Consequently, we conclude that while 

employment density has a statistically significant effect on the total number of crashes, the actual 

magnitude of the effect is minimal.  

On the other hand, the results indicate a larger contribution of the “% commuting by public 

transit” variable to the total number of crashes. Table 4 shows that increasing this percentage by 3 

percentage points (which is the equivalent of the lower to upper quantile shift for this variable) 

results in an 8.74% increase in crashes. Interestingly, the increase in transit mode share has a higher 

impact on the total number of crashes compared to the walking mode share. The positive effect of 

higher transit use on pedestrian crashes is further made clear from the effect of the related “# of 

bus stops per 10 acres” variable (while categorized as a BE variable for presentation ease, this bus 

stop variable is closely linked with the percent commuting by transit). Compared to a CBG with 

zero bus stops (the lower quartile value for “# of bus stops per 10 acres” is zero), a CBG with 0.3 

bus stops per 10 acres (or 3 bus stops per 100 acres, which is the upper quartile value) experiences 

36.10% more total crashes. Overall, the “% individuals commuting by public transit” has the 

second highest contribution in the CE factor category, while the “# of bus stops per 10 acres” 

variable has the second highest contribution of any other variable. Together, the two transit-related 

variables contribute by 18.21% (3.55% + 14.66%) to the total number of crashes. This high 

contribution underscores the importance of transit-related pedestrian safety investments. Buses 

have been considered a safety concern as they reduce pedestrian field of vision and limit the 

visibility of bus drivers, especially on left turns (Samerei et al., 2021). Previous studies have also 

discussed the safety versus efficiency trade-offs in bus stop placement (Craig et al., 2019, George, 

1970). Bus stops are generally placed in proximity to midblock or intersection crosswalks to limit 

the distance riders have to walk to cross the street. However, this obstructs motorists’ vision of 
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pedestrians attempting to cross. Craig et al. (2019) also found poorer yielding behavior at bus 

stops, either due to unclear pedestrian crossing intentions or high driver distraction levels. 

Therefore, increasing transit ridership, which, in part, would generally entail increasing the number 

of bus stops, must be preceded by meticulous bus stop design and placement studies. While placing 

bus stops away from crosswalk locations could reduce the negative impacts of transit on pedestrian 

crashes, future studies need to better investigate driver and pedestrian behaviors in the vicinity of 

transit stops to better understand the nature of conflicts that arise. Adding unsafe transit 

infrastructure, especially at MB CBGs which have significantly higher transit mode share and more 

bus stops, will further increase the overrepresentation of Black pedestrians in total crashes. Also, 

combined with the rather small contribution of the “% individuals commuting by walk” variable, 

our results point to conflicts around transit-embarking and transit-disembarking points as 

substantially more of a determinant of pedestrian crashes than the act of walking itself.  

More generally, our results reveal that exposure (by way of population, employment, or 

even transit use and walk mode use) by itself has only a moderate impact on pedestrian crashes, 

but it is exposure when also combined with the BE that is the key, as we further discuss under the 

category of BE variables.  

 

Cultural Variables 

The cultural (social resistance) category contributes 16.62% to the total crash count. This 

contribution is almost entirely driven by the “% population with less than a High school diploma” 

variable, which has a large in-group contribution of 92.99%. Moreover, this variable has the 

highest % ATE contribution of 38.06, with the corresponding highest relative contribution of any 

variable at 15.46%. This reveals a sizable impact of socially resistant behavior. In countering this 

effect, transportation planners must consider more community involvement with social scientists, 

first and foremost, to understand the underlying reasons for this result. That is, while it is always 

good from a traffic design standpoint to hold road use information workshops and strive for simple 

signage practices, invoking such actions as a result of the finding of increased pedestrian crashes 

in areas with a high percentage of individuals holding less than a high school diploma immediately 

only feeds into the (legitimate) perception felt by many of the “elite wanting to educate the 

common” (which is nothing but prejudicial and a form of privilege shaming; see Bien-Aimé, 2017 

and Sandel, 2020). A deep engagement strategy with community leaders and elders to show a 
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common cause and earn trust with the right attitude is likely to be a necessary prerequisite before 

embarking on policy actions.  

An increase in the police-reported crime rate also results in more pedestrian crashes, though 

the effect of this variable based on the metrics in Table 4 is rather minimal. To put things in 

perspective, the lower quartile of this variable is 0 reported crimes per 0.1 capita, while the upper 

quartile is 0.005 reported crimes per 0.1 capita (or 50 reported crimes per 1000 residents). That is, 

even an increase from 0 to 50 reported crimes per 1000 residents on an annual basis increases the 

total number of crashes by less than 3% (note also from Table 1 that the average crime rate is about 

40 crimes per 1000 residents in COH). The results suggest that perhaps police-reported crime 

measures are not the best indicators of actual crimes committed, or perhaps the “group” walking 

that is more prevalent in high reported crime areas (Ferraro and LaGrange, 2017) also makes it 

less probable that motorists will miss pedestrians during their driving.  

 

BE Features 

BE factors have the most influence on the total number of pedestrian crashes, with a total 

category contribution of 54.69%. Thus, adding one school to a 100-acre CBG that did not have 

any schools (which was effectively the range between the lower and upper quartiles of this 

variable), increases the total number of crashes by 16.68%. This is a substantial increase in the 

number of crashes from just adding one school. Generous investments in Safe Routes to School 

initiatives and projects will be needed by state departments of transportation and local 

municipalities to ensure students have safe walking environments to access their schools.  

As already discussed, the “# bus stops per 10 acres” has a very high contribution to total 

crashes. But, within BE factors, road design variables, when all combined, have the highest overall 

relative contribution of 34.95%. Within the road design sub-category, decreasing the intersection 

density from the 75th to the 25th quartile results in a 13.87% increase in the total number of crashes 

(conversely, increasing intersection density decreases crashes). Conversely, as the percentage of 

four or more-leg intersections increases from 56% (lower quartile value) to 76% (upper quartile 

value), the total number of crashes increases by 15.90% -- making it clear that planners need to be 

cautious when proposing complex and multi-legged intersections. This is further exacerbated by 

the fact that equipping intersections with traffic signals does not alleviate the risks of complex 

crossing. Moreover, four or more-legged intersections are also more prevalent in MB CBGs 
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compared to NMB CBGs. Policies that limit this type of design for future intersections, or that 

reconfigure intersections to reduce multiple approaches, can curtail the number of pedestrian 

crashes in any CBG and particularly in MB CBGs.  

Relative to the other road design variables, the percentages of freeway and principal arterial 

miles have a relatively low contribution to total crashes. While these high-speed and high-volume 

roads endanger pedestrian safety, they generally experience lower levels of pedestrian traffic. 

Conversely, the percentage of four or more lane road miles has a higher impact on crashes with an 

ATE of 8.63%. Perhaps the number of lanes provides a better indication of travel speed and traffic 

volume compared to functional classification. Interestingly, four or more lane roads are also more 

prevalent in MB CBGs and, as such, strategies that promote road diets will reduce crash counts at 

all CBGs, more so in MB CBGs.  

The land-use diversity index variable has the second highest contribution to total crashes, 

with a 34.81% ATE, and a relative contribution among all variables of 14.14%. It also stands out 

as the single most important neighborhood/road design variable. Thus, while mixed land-use 

development may benefit accessibility to activity opportunities (especially in MB CBGs), any 

changes to zoning codes and mixed development actions must carefully review pedestrian safety 

considerations. Road network designs that reduce pedestrian-motorist conflict zones need to be 

seriously considered, as should the strict enforcement of motorist speed limits. 

 

SD Factors 

Unlike other categories, SD variables, which only include the percentage of young adults, 

have the lowest contribution to total crashes.  

 

MB-TC Effect 

Finally, the ATE analysis helps quantify the MB-TC effect, which estimates the effect of a 

CBG’s racial composition on the total number of crashes, after controlling for CE, cultural, BE, 

and SD variables. Compared to an NMB CBG, we estimate a 16.62% higher prevalence of 

pedestrian crashes in MB CBGs. When taken relative to all other variables, the MB-TC effect 

(driven by unobserved race-related factors) contributes to 6.75% of total pedestrian crashes. 

Understanding the mechanisms that result in the MB-TC effect requires further research. This 

paper is, to our knowledge, the first to start exploring this issue through the third model of the 
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fraction of Black pedestrian crashes. Our results from that model suggest that exposure (% 

commuting by transit) and crime rates appear to elevate Black pedestrian crashes, prompting the 

need for further investigations into the effects of social resistance on pedestrian and driver 

behavior. Perhaps more importantly, our results indicate a clear and unambiguous elevated risk of 

Black pedestrian crashes in NMB CBGs (relative to MB CBGs). When taken in combination with 

other micro-level controlled experimental studies of yielding behavior, this result strongly points 

to the activation of implicit racial biases on the part of drivers as a reason for the over-

representation of Black individuals in pedestrian crashes.  

Taken in totality, our study underscores the importance of controlling for a range of 

exogenous variables before ascribing the overrepresentation of Black individuals in pedestrian 

crashes to purely a racial “bias-on-the-road” effect. Exposure considerations, cultural issues, the 

state of the transportation infrastructure, and demographic factors all play a role. At the same time, 

and just as importantly, there should be little doubt left that the transportation inequity in 

infrastructure provision in MB CBGs is a reason for the elevated pedestrian crashes in MB CBGs. 

The relative contribution of this category of variables to crashes is close to 55%, while this 

category of variables also explains 36% of the total variation of crash-relevant characteristics 

between MB and NMB CBGs.  

 

6. CONCLUSION 

The steep rise in pedestrian crashes in recent years, along with the overrepresentation of 

Black pedestrians in the pool of these crashes, has gained significant attention in the past few years. 

While there have been many earlier studies on pedestrian crash analysis, we are not aware of earlier 

studies that have unpacked the magnitude effects of individual crash determinants within a 

multivariate analysis framework. Further, the mechanisms that link high pedestrian crash rates 

with people of color remain unclear; racial disparities in pedestrian crashes have been anecdotally 

attributed to crash exposure levels, unsafe pedestrian behavior, and deficient built environments, 

but the literature lacks evidence-based studies that confirm these suppositions. In this paper, we 

have contributed to filling this gap.   

The findings of this study can enable policymakers and planners to develop more effective 

countermeasures and interventions to contain the growing number of pedestrian crashes in recent 

years, as well as racial disparities in pedestrian crashes. In particular, our results indicate that social 
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resistance considerations, pedestrian facilities in proximity to transit stops, and road design 

considerations (in particular in and around areas with high land-use diversity) are the three most 

influential determinants of pedestrian crashes, particularly in MB CBGs. More generally, BE 

attributes stand out, by far, as the single most important category of variables influencing 

pedestrian crashes, while also being the most differentiating set of variables between MB and NMB 

CBGs. 

In addition to the association with the crash exposure, cultural, and infrastructure 

considerations that contribute to disparities in crashes between MB and NMB CBGs, our study did 

find a remnant (MB-TC) effect that elevated crash risk at MB relative to NMB CBGs. Our study 

also revealed that the fraction of Black pedestrian crashes in NMB CBGs is substantially elevated, 

relative to MB CBGs. These results support recent micro-scale controlled experimental studies that 

point to implicit racial bias that makes walking more dangerous for Black pedestrians. However, 

this issue needs more exploration and understanding. While we have used a comprehensive set of 

available variables, an improved dataset with an even richer set of exogenous variables may be 

able to explain some of the MB-TC effect detected in this study (though it could also point to an 

underestimation of this effect). For example, future research can benefit from including variables 

that better reflect the state of pedestrian infrastructure in a CBG such as the number of marked 

crosswalks, yield signs, and street light poles. Additionally, more indicators of social resistance, 

such as the number of reported traffic violations in a CBG, can be used to better explain the cultural 

environment. Further, a better understanding of when, why, and how driver yielding bias occurs 

through experiments that correlate the likelihood of yielding bias to physical and social 

environments can provide additional support to the findings of this study. Finally, a closer 

examination of disaggregate pedestrian crash data that includes the race and age of both drivers 

and pedestrians, as well as the direct causes of a given crash would further help in investigating 

disparities in pedestrian crashes.  

In closing, we believe that it is important for transportation safety engineers to work with 

social scientists and engage with community leaders to build trust before leaping into 

implementing planning countermeasures and interventions. Issues of social resistance, in 

particular, need to be kept in mind.    
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