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MODELING THE CHOICE CONTINUUM: 
AN INTEGRATED MODEL OF RESIDENTIAL LOCATION, AUTO OWNERSHIP, 

BICYCLE OWNERSHIP, AND COMMUTE TOUR MODE CHOICE DECISIONS 
 

 

ABSTRACT 

The integrated modeling of land use and transportation choices involves analyzing a continuum 

of choices that characterize people’s lifestyles across temporal scales. This includes long-term 

choices such as residential and work location choices that affect land-use, medium-term choices 

such as vehicle ownership, and short-term choices such as travel mode choice that affect travel 

demand. Prior research in this area has been limited by the complexities associated with the 

development of integrated model systems that combine the long-, medium- and short-term 

choices into a unified analytical framework. This paper presents an integrated simultaneous 

multi-dimensional choice model of residential location, auto ownership, bicycle ownership, and 

commute tour mode choices using a mixed multidimensional choice modeling methodology. 

Model estimation results using the San Francisco Bay Area highlight a series of 

interdependencies among the multi-dimensional choice processes. The interdependencies 

include: (1) self-selection effects due to observed and unobserved factors, where households 

locate based on lifestyle and mobility preferences, (2) endogeneity effects, where any one choice 

dimension is not exogenous to another, but is endogenous to the system as a whole, (3) 

correlated error structures, where common unobserved factors significantly and simultaneously 

impact multiple choice dimensions, and (4) unobserved heterogeneity, where decision-makers 

show significant variation in sensitivity to explanatory variables due to unobserved factors. From 

a policy standpoint, to be able to forecast the “true” causal influence of activity-travel 

environment changes on residential location, auto/bicycle ownership, and commute mode 

choices, it is necessary to capture the above-identified interdependencies by jointly modeling the 

multiple choice dimensions in an integrated framework. 

 

Keywords:  multi-dimensional choice modeling, simultaneous equations model, tour mode 

choice, endogeneity, residential self-selection, built environment and travel behavior 
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1. INTRODUCTION 

Research addressing the nexus between land use and transportation has long recognized that 

these two entities are inextricably linked together in a cyclical relationship.  Planners have 

strived to influence travel demand through the implementation of policies that promote compact 

and mixed land uses, walk- and bicycle-friendly neighborhoods, and transit-oriented 

developments.  These strategies attempt to influence people to adopt more sustainable (energy 

and environmentally friendly) transportation choices by modifying the urban activity-travel 

environments in which they exercise their choices.  This paper builds on the fundamental thesis 

that an integrated approach to land use – transportation systems analysis is needed to truly 

quantify the impacts of land use strategies on travel demand. Within this broader context, the 

primary focus of this research is to understand and model the interactions between the human 

choices that influence regional land-use patterns and human choices that influence regional travel 

demand patterns. The choices that influence land-use patterns include, for example, long-term 

employment and residential location choices, and the choices that influence travel demand 

include medium-term vehicle ownership and short-term travel choices. 1 

Prior to recent developments in integrated modeling, most travel models assumed long-

term employment and residential location choices, and medium-term vehicle ownership choices, 

as exogenous inputs. These studies ignore the possibility that households and individuals may 

adjust combinations of long-term, medium-term, and short-term behavioral choices in response 

to land-use and transportation policies (Waddell, 2001). To avoid biases in policy assessment, it 

is important to consider both long-term and medium-term choices as endogenous (rather than as 

exogenous) to travel models. Further, it is possible that individuals and households make a 

multitude of choices, including the choice of locations to live and work, choice of how many 

                                                 
1 Admittedly, we are limiting the discussion of integrated land-use transportation modeling to the interactions 
between the individual/household choices that influence land-use patterns and choices that influence travel demand 
patterns. In a broader sense, the term integrated land-use transportation modeling includes several other important 
aspects such as the interactions between individuals/households, and other players within the housing, labor, and 
transportation markets. The other players include real estate developers, employers, and production, manufacturing 
and service firms. The choices made by all the players in these markets and the demand-supply interactions in these 
markets influence the spatial structure of the land-use patterns and the travel demand patterns. In addition, the 
dynamics of the above-mentioned interactions gives rises to the evolution of the urban systems from one state to 
another. Equally important are the issues related to the evolution of socio-demographics and employment patterns. A 
truly integrated urban model would also consider the interaction of other urban amenities such as water and 
telecommunication networks with the land-use and travel demand patterns in the region.  
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vehicles to own, and the choice of their daily activities and travel, as part of an overall lifestyle 

package rather than as independent choices exercised in a sequential fashion.  

The field of integrated land-use – transportation modeling has made significant progress 

in addressing some of the above-identified concerns. For example, the simultaneity of residential 

location and travel choices (hence, the need for integrated modeling) is supported by 

microeconomic theoretical contributions that date back to LeRoy and Sonstelie (1983) and 

Brown (1986) (also, see Desalvo and Huq, 2005). Further, the concept of lifestyle has long been 

recognized in the literature (Ben-Akiva and Salomon, 1983; Wegener et al., 2001) and has been 

identified as a source of residential self-selection effects, where people self-select into specific 

neighborhoods depending on their lifestyle and mobility preferences (Cao et al., 2006; Bhat and 

Guo 2007; and Pinjari et al., 2007). A growing body of literature documents that ignoring self-

selection effects can potentially lead to incorrect assessments of the influence of land-use and 

transportation policies on individual travel behavior and aggregate travel demand patterns (see 

Cao et al., 2006 for an excellent review). More recently, the development of large-scale 

integrated land-use and transportation microsimualtion systems such as ILUTE (Miller and 

Salvini, 2001; Salvini and Miller, 2005), ILUMASS (Strauch et al., 2005), and UrbanSim 

(Waddell, 2002; Waddell et al., 2008) has generated a new excitement in the field.  

Despite all these developments, most integrated land use - transportation models do not 

consider a multitude of key long-term, medium-term, and short-term choices of households and 

individuals within a unified integrated modeling framework. Most studies consider only a couple 

of choices – generally the residential location choice and a travel choice (e.g., mode choice; see, 

for example, Pinjari et al., 2007 and Vega and Reynolds-Feighan 2009). Such efforts ignore the 

range of interdependencies among long-term, medium-term, and short-term choices. Further, the 

intervening effects of medium-term (e.g., vehicle ownership) choices are ignored when 

considering the interconnections between the long-term choices (e.g., residential location) and 

short-term choices (e.g., commute mode choice).  

It is recognized that there are studies that attempt to model more than two dimensions of 

human location and transportation choices. In fact, about 30 years ago, Lerman (1976) developed 

a joint multinomial logit (MNL) choice model of housing location, automobile ownership, and 

commute mode choice. He considered all three choice dimensions as a jointly determined choice 

bundle by taking each potential combination of the three choices as a composite alternative in a 
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multinomial logit model. Another notable study is by Ben-Akiva and Bowman (1998) who 

suggested a deeply nested logit (NL) model (i.e., a nested logit model with multiple levels of 

nests) to integrate various choice dimensions within a joint modeling framework.2 More recently, 

Salon (2006) explored the relationship between the transportation and land use system in New 

York City by developing an MNL model of residential location, car ownership, and commute 

mode choice. She also developed a joint model of residential location, auto ownership, and 

walking levels to address the issue of residential self-selection in understanding the impact of 

land-use patterns on walking levels. All these studies constitute major contributions to the 

integrated modeling of location choices and mobility choices. However, they use MNL and NL 

approaches that have several limitations. First, the approach of bundling choice alternatives of 

various choice dimensions into composite choice alternatives leads to an explosion in the  

number of composite alternatives with the increase in the number of alternatives (especially in 

the context of location choices). Thus, in virtually all of the above applications, location choice 

alternatives are sampled to form the residential (or work) location choice set; while this is 

feasible in the context of traditional logit modeling frameworks, such sampling approaches do 

not allow the adoption of newer mixed logit modeling methods that accommodate more flexible 

heterogeneity patterns in the sensitivity of decision-makers to various policy attributes. Second, 

as the number of choice dimensions increase, the composite alternative MNL approach becomes 

increasingly cumbersome, while the NL approach becomes increasingly restrictive in terms of 

parameter restrictions.3 Third, these approaches cannot clearly disentangle the multitude of 

interdependencies among the long-term, medium-term, and short-term choice decisions.4 Fourth, 

                                                 
2Examples of the nested logit approach to jointly model location and mobility choice include Abraham and Hunt 
(1997), Waddell (1993a), Ben-Akiva and de Palma (1986), and Eliasson and Matson (2000). The MNL and NL 
approaches are also at the heart of a series of papers by Anas and colleagues (Anas and Duann, 1985; Anas, 1995; 
and Anas, 1981) that form the basis of an integrated land-use and transportation model.  
3The nested logit model requires that the coefficient on the expected maximum utility of choice alternatives in a nest 
(this coefficient is labeled as the logsum parameter) should be between 0 and 1 (Ben-Akiva and Lerman, 1985). 
Further, with more than two levels (e.g., residential location, auto ownership, and mode choice), the logsum 
parameters have to be in the ascending order from the bottom level nest to the top level nest. Due to such 
restrictions, it is difficult to estimate nested logit models with multi-level nested structures. 
4 For example, neither of the approaches offers a clear understanding of the extent of residential self-selection 
effects with respect to different land-use attributes. In the nested logit approach, the self-selection effect is estimated 
as the extent of correlations among unobserved factors (such as attitudes and travel preferences) affecting different 
travel choice alternatives. However, the self-selection effect is only a part of the correlations captured in a nested 
logit model of residential location and travel choices. Thus, the estimated self-selection effect may be confounded 
with several other unobserved factors, leading to potential overestimation of self-selection. Further, a common self-
selection effect is estimated for all land-use attributes, without disentangling the extent of the effect with respect to 
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neither approach can be used when the travel behavior variable is either continuous (e.g., vehicle 

miles of travel) or ordinal discrete (e.g., car ownership). 

The remainder of this paper is organized as follows.  A more detailed objective statement 

for the research effort reported in this paper is presented in the next section.  The modeling 

methodology is presented in detail in the third section.  The empirical context and data set are 

described in the fourth section, while model estimation results and interpretations are offered in 

the fifth section.  Conclusions are offered in the final section.   

 

2 CURRENT RESEARCH 

This paper aims to make a substantive contribution to the integrated modeling of multi-

dimensional choice processes across varying temporal scales. To this end, this paper presents a 

mixed multidimensional choice modeling methodology for an integrated model of residential 

location, vehicle ownership, bicycle ownership, and commute tour mode choices.  

The four choice dimensions considered in this paper are of much interest to urban 

transportation planning. Residential location is a long-term choice that directly impacts land use 

patterns and defines the set of activity-travel environment attributes available to a household or 

individual. Vehicle ownership is a medium-term choice that has long been considered an 

important determinant of mobility. Bicycle ownership can be viewed as a medium/short-term 

transportation choice and a key determinant of (as well as a surrogate measure of) bicycle use 

and active lifestyles.5 The fourth choice, commute tour mode, is an important travel dimension of 

interest for various reasons. Commute travel largely occurs in and contributes to congestion in 

the peak period. Further, commute trips are often linked with non-work activities to create 

commute tours (or trip chains); such trip chaining influences mode choice and contributes to 

additional trips taking place in and around the peak period. Thus (and consistent with the spirit of 

recent developments related to tour-based modeling), in this paper, mode choice is treated as a 

tour-level decision as opposed to a trip-level decision.  

Mixed multidimensional choice modeling is a general approach to jointly modeling 

various decision processes. In this approach, a series of sub-models are formulated for different 
                                                                                                                                                             
each attribute. Thus, it is not possible to understand, for example, the difference in the extent of self-selection with 
respect to population density and bicycling facilities. 
5The addition of the bicycle ownership dimension is important from a non-motorized travel behavior (such as 
bicycle use) analysis perspective, which is of considerable interest to the transportation planning profession. Further, 
bicycle ownership has been a relatively understudied variable.  



 5

choice dimensions – an MNL model of residential location, ordered logit models of vehicle 

ownership and bicycle ownership, and an MNL model of commute tour mode choice – and the 

models are econometrically joined together by the use of common stochastic terms (or random 

coefficients, or error components) to form a joint model system. The approach circumvents 

several of the afore-mentioned challenges (such as the explosion of choice alternatives, 

parameter restrictions, and the restriction to nominal discrete variables) associated with the MNL 

and/or NL approaches. More importantly, the approach can be used to disentangle a multitude of 

interdependencies among the choice dimensions of interest, as discussed below. 

 Figure 1 represents various interdependencies among the four choices considered in the 

paper, including: (1) Causal effects of longer-term choices on shorter-term choices, represented 

by solid arrows, (2) Residential self-selection effects (represented by the dashed arrows toward 

the residential location choice box) manifested due to the self-selection of individuals into 

neighborhoods based on their lifestyle preferences related to auto ownership, bicycle ownership 

(or bicycling), and commute travel, (3) Endogeneity of auto ownership and bicycle ownership 

with respect to commute mode choice (represented by the dashed arrows toward auto and bicycle 

ownership boxes), due to the possibility that individuals’ car ownership and bicycle ownership 

levels may depend on their commute travel preferences by those modes, and (4) Associative (as 

opposed to causal) correlations between auto ownership and bicycle ownership due to common 

unobserved factors influencing both the choices (i.e., common unobserved heterogeneity, 

represented by the dashed arrow between auto and bicycle ownership boxes). Ignoring any of the 

latter three effects (i.e., self-selection, endogeneity, or associative correlations) can result in 

biased estimation of the causal effects and lead to distorted policy implications regarding the 

influence of various land-use and transportation attributes on longer-term location choices and 

shorter-term transportation choices. In this paper, an integrated model of residential location, 

vehicle ownership, bicycle ownership, and commute tour mode choices is estimated using data 

from the San Francisco Bay Area. 

There are at least two notable limitations of the current work. First, we consider work 

location as exogenous, and thus, residential location choice is conditional upon work place. 

However, for several households, work location may be endogenous to the other choices 

considered here, especially the residential location choice (Waddell, 1993). The implication of 

this assumption is that the analyst will not be able to assess the impact of public policies related 
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to housing markets (residential location choice) on labor markets (work location). Another 

implication is a potential bias in the estimated influence of commute level of service variables on 

residential location choices, especially when individuals choose their work locations based on 

their residential locations. Extending the analysis framework to consider the endogeneity of work 

location is a fruitful avenue for further research. Second, use of cross-sectional data limits us 

from addressing the issue of temporal dynamics between long-term and short-term choices. As a 

result, to the extent that some of the households may have made their auto/bike ownership and 

mode choice decisions prior to their settlement in the current location, one may not be able to 

clearly decipher the impact of the residential built environment on these decisions. 

Understanding the dynamics of the interrelationships between the various choice components is 

an important avenue for future research. 

 

3. ECONOMETRIC MODELING METHODOLOGY 

3.1 Model Structure 

Let the indices q (q = 1, 2, …, Q) , i (i = 1, 2, …, I), and k (k = 1, 2, …, K) represent the decision-

maker,  the spatial unit of residence, and the modal alternative, respectively, and the terms n (n = 

0, 1, 2,…, N), and m (m = 0, 1, 2, …, M) represent the auto ownership level (i.e., the number of 

cars) and the bicycle ownership level (i.e., the number of bicycles), respectively. Using these 

notational preliminaries, the following discussion presents the structure of the model components 

for each of the four choices (residential location, auto and bicycle ownership and commute tour 

mode choice), and then highlight the interdependencies among the four components. 

3.1.1. The Residential Location Choice Component of the Joint Model System 

The residential location component takes the multinomial discrete choice formulation as below: 
* '
qi q i qis zϕ ε= + , spatial unit i chosen if * *

1,2,...,
max   qi qjj J

j i

s s
=

≠

> , where:           (1)  

*
qis  is the latent utility that the qth individual obtains from locating in spatial unit i,  

iz  is a vector of activity-travel environment (ATE) attributes corresponding to spatial unit i, and 

qϕ  is a coefficient vector capturing individual q’s sensitivity to attributes in iz .  
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Each lth element of qϕ , qlϕ corresponds to a specific ATE attribute ilz  from the vector iz . 

Each of these elements is parameterized as '
ql l l ql ql ql ql qkl

k
x vϕ ϕ ο π ω= +Γ + + + +∑ , where:  

qlx  is a vector of observed characteristics of individual q affecting his/her sensitivity to ilz , and  

qlv , qlο , qlπ , and qklω  (k = 1, 2, 3, …, K) are unobserved factors impacting individual q’s 

sensitivity to the ATE attribute ilz .  

qlv  includes only those unobserved factors that influence sensitivity to residential choice,  

qlο  includes the unobserved factors that influence both residential choice and auto ownership, 

qlπ  includes the unobserved factors that influence both residential choice and bicycle ownership, 

qklω  (k = 1, 2, 3, …, K) terms include only those individual-specific unobserved factors that 

influence both residential choice and the choice of modal alternative k.  

Finally, in Equation (1), qiε  is an idiosyncratic error term assumed to be identically and 

independently extreme-value distributed across individuals and spatial alternatives. 

3.1.2. The Auto Ownership and Bicycle Ownership Components of the Joint Model System 

The Equations (2) and (3), presented below, correspond to the ordered-response structure for 

auto (or car) ownership and bicycle ownership decisions, respectively. 
* ' ' *

;1 0 1,    if ,qi q q i qi qi n qi n Nc x z c n cα δ ξ ψ ψ ψ ψ+ += + + = < < = −∞ = +∞ , and          (2) 

* ' ' *
;1 0 1,    if ,qi q q i qi qi m qi m Mb x z b m bβ θ ζ τ τ τ τ+ += + + = < < = −∞ = +∞ , where:          (3) 

*
qic  and *

qib  represent the latent car ownership and bicycle ownership propensities, respectively, 

of the qth individual should his/her household choose to locate in spatial unit i,  

qx  is a set of sociodemographic characteristics of individual q,  

iz  is the vector of activity-travel environment (ATE) attributes corresponding to spatial unit i.  

α ,β  are coefficient vectors representing the impact of socio-demographics on car ownership 

and bicycle ownership propensities, respectively.  

qδ , qθ  are individual-specific coefficient vectors capturing the impact of ATE attributes on car 

ownership and bicycle ownership decisions, respectively.  

qδ  and qθ  are parameterized as: '
ql l l ql qlxδ δ μ= + Λ + ; '

ql l l ql qlxθ θ η= + Δ + , where: 
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qlx  is a vector of observed characteristics of individual q influencing his/her sensitivity to ilz ,  

lΛ , lΔ  are corresponding coefficient vectors in car ownership and bicycle ownership equations,  

qlμ , qlη  capture the impact of unobserved factors that influence the sensitivities to ATE attributes 

on car ownership and bicycle ownership propensities, respectively.  

Finally, qiξ  and qiζ  are error terms in the car ownership and bicycle ownership 

propensity equations, respectively, each of which is partitioned into four components as follows: 

( )qi ql il qk q qi
l k

zξ ο ϑ ι= ± + + + ∂∑ ∑ , and ( )qi ql il qk q qi
l k

zζ π υ ι ρ= ± + ± +∑ ∑ , where:  

qlο±  terms are common error components related to the sensitivity of the ATE attribute ilz  in 

residential location choice and car ownership, 

qlπ±  terms are common error components related to the sensitivity of the ATE attribute ilz  in 

residential location choice and bicycle ownership, 

qk
k
ϑ∑  terms include the common error components that capture common unobserved factors 

affecting car ownership and the utility of mode k,  

qk
k
υ∑  terms include the common error components that capture common unobserved factors 

affecting bicycle ownership and the utility of mode k,  

qι  terms are the common error components capturing the unobserved factors that affect car 

ownership propensity as well as bicycle ownership propensity,  

qi∂ , qiρ  are idiosyncratic terms assumed to be identically and independently standard logistic 

distributed across individuals and spatial units, in the car ownership and bicycle ownership 

propensity equations, respectively.  

The car ownership propensity *
qic  and the bicycle ownership propensity *

qib  are mapped 

to the observed car ownership level qic  and the observed bicycle ownership level qib , using the 

ψ  and τ  thresholds, respectively, in the usual ordered-response fashion. 

 

3.1.3. The Commute Tour Mode Choice Component of the Joint Model System 

The Equation (4), presented below, corresponds to the MNL structure for mode choice decisions.  
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* ' '
qkicb k q k qi k qi qk i qkicbu x c b zφ χ ς= + + + +h D , mode k chosen if * *

1,2,...,
max   qkicb qdicbd K

d k

u u
=

≠

> , where:        (4) 

*
qkicbu  is the utility that the qth individual obtains from choosing kth mode for commute should 

his/her household choose to locate in spatial unit i and own qic  number of cars and qib  

number of bicycles.  

qx  is a set of socio-demographic characteristics (of individual q) that influences mode choice,  

kφ  is the corresponding coefficient vector in the utility of mode k.  

kh , kD  capture the impact of auto ownership qic  and bicycle ownership qib , respectively, on the 

utility of mode k.  

iz  is the vector of ATE attributes corresponding to spatial unit i,  

qkχ  is a coefficient vector capturing the impact of ATE attributes iz on the utility for mode k.  

Each lth element of qkχ , qklχ corresponds to a specific ATE attribute ilz  from the vector 

iz . Each of these elements is parameterized as follows: '
qkl kl kl ql qklxχ χ γ= + ϒ + , where:  

qlx  is a vector of observed factors influencing sensitivity to ilz , the lth ATE attribute of iz ,  

klϒ  is the corresponding vector of coefficients in the utility of mode k,  

qklγ captures the impact of unobserved terms associated with different sensitivities to ATE 

attributes in the utility of mode k.  

Finally, in the Equation (4),  qkicbς  is an error term which is partitioned into four 

components as follows: ( )qkicb qkl il qk qk qkicb
l

zς ω ϑ υ= ± ± ± +℘∑ , where:  

qklω±  terms are the common error components related to the sensitivity to ATE attribute ilz  in 

residential location choice and mode choice for mode k,  

qkϑ±  term is the common error component capturing the unobserved factors that affect car 

ownership propensity and the utility of mode k,  

qkυ±  term is the common error component capturing the unobserved factors that affect bicycle 

ownership propensity and the utility of mode k,  and 
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qkicb℘  is an idiosyncratic error term assumed to be identically and independently extreme-value 

distributed across individuals, modal alternatives, and spatial units. 

3.1.4.  Interdependencies among the Components of the Joint Model System 

The Equations (1), (2), (3) and (4) explained in the above three sections may be rewritten as the 

following joint equation system, with each equation representing one of the four model 

components – residential location, auto ownership, bicycle ownership, and commute mode 

choice (the terms in the equations are arranged, with blank spaces, in such a way to show similar 

elements among different equations in the same column): 
* '( )qi l l ql ql il ql il ql il qkl il qi

l l l k l
s x v z z z zϕ ο π ω ε= +Γ + + + + +∑ ∑ ∑ ∑∑

* ' '
)( ( )qi q l l ql ql il ql il qk q qi

l l k
c x x z zα δ μ ο ϑ ι= + +Λ + + ± + + +∂∑ ∑ ∑

* ' '( ) ( )qi q l l ql ql il ql il qk q qi
l l k

b x x z zβ θ η π υ ι ρ= + +Δ + + ± + ± +∑ ∑ ∑
* ' '( )qkicb k q k qi k qi kl kl ql qkl il qkl il qk qk qkicb

l l
u x c b x z zφ χ γ ω ϑ υ= + + + +ϒ + + ± ± ± +℘∑ ∑h D

 (5) 

The equation system captures the joint nature of, and the interdependencies among the different 

model components of, the multidimensional model system employing common stochastic terms, 

ql ilzο , ql ilzπ , qkl ilzω , qkϑ , qkυ , and qι , between the different components of the model system. 

Each of these common unobserved terms represents a particular type of interdependency 

between two specific components of the model system, as discussed below. 

3.1.4.1. Residential self-selection: The ql ilzο , ql ilzπ , and qkl ilzω  terms capture the jointness of the 

residential location choice component with the auto ownership, bicycle ownership, and commute 

mode choice components, respectively. These terms allow self-selection of individuals into 

neighborhoods based on their unobserved (to the analyst) preferences of auto ownership, bicycle 

ownership, and commute mode choice, respectively. Such residential self-selection effects are 

represented by the dashed arrows to the residential location box in Figure 1. To understand this 

better, consider unobserved factors such as auto disinclination, fitness consciousness and 

environmental friendliness that make some individuals associate higher utility to bicycle/walk 

modes, and locate in neighborhoods that allow them to bicycle or walk to work and/or own more 

bicycles and/or own less cars. In such case, the qkl ilzω  terms in the first and fourth equations of 
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Equation system (5) capture the unobserved factors that affect both residential location choice 

and mode choice preferences, where ilz  can, for example, be the commute time, and the index k  

can correspond to bicycle and walk modes. That is, the unobserved factors that affect the 

sensitivity of commute time in the bicycle/walk modal utilities also affect the sensitivity of 

commute time in residential location preferences, due to which individuals self select into 

neighborhoods that are closer to work locations. These common unobserved factors give rise to 

correlations between residential and modal utilities. The ±  sign in front of the qkl ilzω  terms in 

the modal utility equations indicates that the correlation may be positive or negative (one can test 

the most appropriate signs of correlations). Similarly, the ql ilzο  ( ql ilzπ ) terms capture the 

unobserved factors due to which individuals may have, for example, lower auto ownership 

propensity (higher bicycle ownership propensity) and live closer to work locations. Finally, it is 

important to note here that the model system allows for residential self-selection due to observed 

individual attributes also (more in Section 5.2).  

3.1.4.2. Endogeneity of auto ownership and bicycle ownership in mode choice: The qkϑ  and qkυ  

terms capture the jointness of (or the endogeneity of) the auto ownership and bicycle ownership 

components, respectively, with the mode choice component. Consider, for example, unobserved 

factors such as social status (physical fitness orientation). Individuals with high social status 

(physical fitness orientation) may prefer to associate higher car (bicycle) ownership propensity as 

well as use auto (bicycle) mode for commuting to work. The qkϑ  ( qkυ  ) term captures such 

unobserved factors and gives rise to correlations between the utility of auto (bicycle) mode and 

the auto (bicycle) ownership propensity. The correlation in such cases can be expected to be 

positive, though one can again test the directionality of correlation by experimenting with both 

the ±  signs in the mode utility equation. Such endogeneity effects discussed here are represented 

by the dashed arrows to the auto ownership and bicycle ownership boxes in Figure 1. Ignoring 

these endogeneity effects can lead to an inflated influence of auto ownership on auto mode 

choice and of bicycle ownership on bicycle mode choice. 

3.1.4.3. Jointness of auto ownership and bicycle ownership propensities: The qι  term isolates the 

unobserved factors that affect both auto ownership and bicycle ownership, from those that affect 

residential location choice or mode choice. These factors include, for example, recreational 
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activity preferences due to which households may own larger number of vehicles (such as SUVs 

and vans) and use them to carry their bicycles for recreational activities. Ignoring such factors 

may lead to inflated estimates of the other common unobserved terms and misinform about 

residential self-selection and endogeneity of auto ownership and bicycle ownership. The arrow 

between the auto ownership and bicycle ownership boxes in Figure 1 represents this jointness. 

3.1.4.4. Causal Relationships: The above three sections discussed the interdependencies among 

the various choice processes (i.e., the residential location choice, auto ownership, bicycle 

ownership, and mode choice decisions) due to unobserved factors. These interdependencies can 

also be termed as associative correlations that do not imply a causal relationship. The primary 

interdependencies of interest, however, are the causal relationships (represented by the solid 

arrows in Figure 1) between various choice processes. These relationships are captured by the 

coefficients of ATE attributes (i.e., the coefficients on the ilz  terms) in all the equations above, 

and by the coefficients of auto ownership and bicycle ownership variables (i.e., the coefficients 

on the qic  and qib  terms) in the mode choice equations. The purpose of including the above 

discussed common unobserved factors in the model system is to disentangle the “true” impact of 

the ilz , qic  and qib terms from the associative correlations, in order to be able to carry out 

accurate predictions under various policy scenarios. 

 

3.1.5 Discussion 

The reader will note that our model formulation has parallels with the seemingly unrelated 

regression (SURE) approach typically used to connect different linear regression equations. In 

such linear systems, simultaneity between two variables (where one variable appears on the right 

side of the linear regression formulation of the other variable) implies that the included 

“endogenous” variable in each equation is correlated with the disturbance term in that equation. 

Equivalently, in reduced form, the error terms of the two equations get correlated in a specific 

manner depending upon the structural form of the simultaneity. The only difference is that 

restrictions imposed on the reduced form by the structural simultaneous equations system must 

be considered in the simultaneous system, while the seemingly unrelated regressions model 

imposes no restrictions. Between these two extremes, one can also consider other systems of 

regression equations (such as random coefficients-based systems) that do not start from a 
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structural system but still impose some structure (relative to the SURE system) in the reduced 

form system. Thus, even in a linear system, the difference between a simultaneous “integrated” 

system and a SURE model (or other intermediate structures) for variables is purely based on 

whether a specific structural model is specified for the endogenous variables or whether the 

analyst believes that the variables of interest are determined simultaneously but does not know 

(or would rather not completely specify) a direct structural relationship between the variables.  

 In a discrete choice variable system, things get even more trickier in terms of a clear 

distinction between a simultaneous system and a SURE type model  (In fact, in discrete choice 

dependent variable systems, a truly simultaneous system, where one variable affects the other 

and vice versa, is not possible because of identification issues). Specifically, it is typical for 

discrete choice systems to consider a latent underlying continuous variable system as the 

generating mechanism to accommodate the discrete nature of the dependent variables. Then, for 

the latent underlying continuous variable system, one can consider a simultaneous system or a 

SURE system or other intermediate systems typically considered within the usual linear 

regression structure (as discussed earlier in this note). But regardless of which system is used for 

the underlying latent variables, the result is that the discrete variables themselves do get related 

and become “co-determined”. In this context, the result is an “integrated” discrete variable model 

system. Intuitively, one way to view this is to consider that the discrete variables are chosen as a 

package, because of which one discrete variable cannot “cause” the other (but the precursor 

latent variables can be related to one another). In our integrated system, we model the discrete 

variables by specifying random coefficients and error components on the underlying latent 

variable system using an intermediate system formulation. Thus, the sensitivity to observed 

activity-travel environment attributes in the residential choice utility equations (due to 

unobserved individual/household tastes) are related to the unobserved auto/bicycle ownership 

and modal preferences of individuals/households. Such a specification is assumed to be the basis 

for potential self-selection of individuals/households into specific residential neighborhoods. 

Similarly, it is assumed that there are common unobserved factors impacting long term mobility 

decisions (auto ownership and bicycle ownership) and mode choice decisions. 

3.2 Model Estimation 

The parameters to be estimated in Equation system (5) include:  

(a) The vectors α , β , kφ ,  lϕ , lδ , lθ , klχ , lΓ , lΛ , lΔ , klϒ , ( 1, 2, ... )n Nnψ =  and ( 1, 2, ... )m Mmτ = ,  
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(b) The scalars kh  and kD , and  

(c) The variances of stochastic components qlν , qlμ , qlη , qlο , qlπ , qlω , qkϑ , qkυ ,and qι  (all assumed 

to be normally distributed with variances 2
qlνσ , 2

qlμσ , 2
qlησ , 2

qlοσ , 2
qlπσ , 2

qlωσ , 2
qkϑσ , 2

qkυσ , and 2
qισ ) 

Let Ω  represent a vector that includes all of the parameters to be estimated,  

let σ−Ω  represent a vector of all parameters except the variance terms,   

let qg  be a vector that stacks the qlν , qlμ , qlη , qlο , qlπ , qlω , qkϑ , qkυ , and qι  terms,  

let Σ  be a corresponding vector of standard errors, 

let 1qjr =  if individual q resides in spatial unit j and 0 otherwise,  

let 1qna =  if individual q owns n cars and 0 otherwise ( 1[ ]qn qia c n= = ),  

let 1qme =  if individual q owns m bicycles and 0 otherwise ( 1[ ]qm qie b m= = ), and  

let 1qkp =  if individual q commutes by mode k and 0 otherwise.    

Then the conditional likelihood function for a given value of σ−Ω  and qg  for an individual q is:   
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 (6) 

Using the above conditional likelihood function, the unconditional likelihood for the entire data 

can be computed as: ( )( ) ( ) | ( | )
q

q q q
q g

L L g d gσ−Ω = Ω Σ∑ ∫ F , where F is the multidimensional 

cumulative normal distribution. Simulation techniques are applied to approximate the 

multidimensional integral in the likelihood function, and the resulting simulated log-likelihood 

function is maximized. 



 15

 

4. THE DATA 

The primary source of data used for this analysis is the 2000 San Francisco Bay Area Travel 

Survey (BATS) designed and administered by MORPACE International Inc. for the Bay Area 

Metropolitan Transportation Commission (MTC). This activity-travel survey collected detailed 

socio-demographic and comprehensive two-day activity-travel information for individuals from 

a sample of about 15000 households in the Bay Area. In addition to the 2000 BATS data, several 

other secondary data sources were used in this analysis. These include: (1) Land-

use/demographic coverage data, and zone-to-zone motorized travel level of service files for the 

bay area, obtained from MTC, (2) GIS layers of bicycling facilities and bicycle network, also 

obtained from MTC, (3) GIS layers of schools, parks, gardens, restaurants, recreational and other 

businesses obtained from the InfoUSA business directory, (4) GIS layers of highway and local 

roadway networks, extracted from the Census 2000 Tiger files, and (5) The Census 2000 

population and Housing data summary files (SF1). 

Using the raw database of the 2000 BATS and the above-identified secondary data 

sources, several steps were undertaken (details are available with the authors) to create a 

comprehensive residential location – auto ownership – bicycle ownership – commute tour mode 

choice database ready for the integrated analysis. This database contained an exhaustive set of 

socio-demographic and ATE attributes to be explored in the model specification , including: (1) 

Zonal size and density measures, (2) Zonal land-use structure variables, (3) Regional 

accessibility measures, (4) Zonal demographics, (5) Zonal ethnic composition measures, and (6) 

Zonal activity opportunity variables. Such zonal-level built environment measures were created 

not only for the potential residential location alternatives for each household, but also for the 

employment locations of all employed individuals residing in the household. The zonal-level 

characteristics of the employment locations were averaged over all the employed individuals in 

the household to obtain household level aggregate measures of the activity-travel environment 

(ATE) in the work locations. In addition to the zonal-level ATE variables, the following 

variables were extracted and appended to the database: (1) several transportation network level 

of service (LOS) characteristics by each mode, in and around the residential locations and work 

locations (such as highway density, bikeway density, and street block density, number of zones 

accessible by transit from the residential and work locations, number of zones accessible by bike 
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and walk within 6 miles, etc.); (2) individual and household level commute variables (such as 

travel times and travel costs by each mode, total auto commute travel time for all employed 

members in the household, travel distance by bike and walk modes, number of commuters in the 

household that have transit available between home and work zones, number of commuters in 

the household that have bike route available between home and work zones, etc.). The authors 

are not aware of any other study in the literature that considers the impact of such a 

comprehensive set of ATE attributes of both residential and work locations, and commute level 

of service characteristics. 

The final estimation sample consists of 5147 adult commuters from 5147 households 

(one randomly chosen commuter from each household)6 residing in five counties (San Francisco, 

San Mateo, Santa Clara, Alameda, and Contra Costa) of southern San Francisco Bay area. A 

descriptive analysis of the estimation data sample indicated the following characteristics of the 

dependent variables (residential location, auto and bicycle ownership, and commute tour mode 

choice) in this study. The residential locations belonged to one of the 127 traffic analysis zones 

(TAZs) of the San Francisco (SF) County, 115 TAZs of the San Mateo (SM) County, 269 TAZs 

of the Santa Clara (SC) County, 236 TAZs of the Alameda (AL) County, or 154 TAZs of the 

Contra Costa (CC) County. Out of the 5147 households, 12.3% belonged to SF, 13.6% belonged 

to SM, 32.7% belonged to SC, 25.7% belonged to AL, and 15.6% belonged to CC Counties. The 

auto ownership descriptives indicate an average ownership of 1.85 autos per household; 3.5% of 

the households did not own any automobiles, 33.9% owned one car, 43.1% owned two cars, and 

19.4% owned three or more cars. The bicycle ownership descriptives indicate an average bicycle 

ownership of 1.42 bicycles per household; 36.8% of the households did not own a bicycle, 

22.5% owned one bicycle, 20.9% owned two bicycles, and 19.8% owned three or more bicycles. 

Descriptive analysis of the commute tour mode choice variable indicate the following mode 

shares: 83.83% auto, 11.47% transit, 1.22% bicycle, and 3.48% walk. The mode shares matched 

well with the Census journey to work mode shares for each of the 5 counties. Among all 

                                                 
6 Admittedly, modeling the mode choice of only a single commuter per household does not consider all 
interdependencies between mode choice and other decisions (in Figure 1) in multi-commuter households. For 
example, in a two commuter household, it is possible that one commuter’s work location and mode choice 
preferences influence the households’ residential location choice, while the other commuter may simply make the 
work location and mode choices conditional upon the residential location. Alternatively, both the commuters may 
have a certain degree of influence on the residential location. Such interdependencies between the mode choice 
preferences of different commuters and other household level choices in multi-commuter households cannot be 
captured in the current modeling framework. 
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commute tours, 12.7% involved at least one stop between the origin (home) and destination 

(work). In a trip-based mode choice analysis, such complex tours would be ignored and the mode 

shares used for analysis would be skewed. 

 

5. MODEL ESTIMATION RESULTS 

Estimation results are presented in Tables 1 through 4, one table for each choice dimension 

modeled in this paper. This section discusses salient results from these tables.  

5.1 Residential Location Choice Model Component Results 

Table 1 presents the estimation results for the residential location choice model component.  

With respect to the residence-end measures, it is found that, after including the zonal 

transportation network measures and zonal activity opportunity variables in the model, 

household density and employment density had no significant impact on residential location 

choice except for certain demographic segments (such as households with seniors and children in 

the context of household density, and higher income households and Caucasian households in the 

context of employment density). Thus, it is important to consider the influence of transportation 

supply and activity opportunities of neighborhoods to avoid over-assessment of the influence of 

density measures on residential location preferences.    

The coefficients on the residence-end zonal land-use structure variables suggest that 

zones with commercial or mixed land uses are less likely to be chosen for residential location. 

This result may either reflect a preference of households for exclusive residential neighborhoods, 

or an artifact of the way zones are defined based on land-use homogeneity (i.e., zones with 

exclusive residential land-uses are categorized as separate zones). Among the residence-end 

zonal demographics, after controlling for the influence of the housing value variable, the effects 

of “absolute difference between zonal median income and household income” and “absolute 

difference between zonal average household size and household size”, indicate that people of 

similar income levels and race tend to cluster together when it comes to residential location. 

Similarly, the residence-end zonal race composition measures, when interacted with individual 

race (see the fourth block of variables in Table 1), also indicate racial clustering. People of a 

certain race tend to locate in neighborhoods that have a higher fraction of their particular race. 

Such clustering trends have long been documented in the residential analysis literature (see 

Waddell, 1993b; Waddell, 2006).  
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The “Residence-end zonal activity opportunity variables” reveal that the availability of 

destination opportunities such as physically active recreation centers and natural recreation 

centers makes a neighborhood an attractive residential location. The “Residence-end zonal 

transportation network measures” show that street block density is negatively associated with 

residential location choice, particularly for higher income groups, reflecting the preference of 

high income households for low-density suburban regions with lower density of local streets. 

The positive coefficient on bicycle facility density (which can be viewed as a surrogate for the 

bicycle and walk friendliness of the location) suggests that households prefer to live in locations 

with good infrastructure for bicycling and/walking.   

 Among the household level commute variables, as expected, commute time is negatively 

associated with residential location choice suggesting that individuals generally try to locate 

within close proximity of their workplace. However, this tendency appears to be less  

pronounced for higher income households and more pronounced for lower income households, 

perhaps because of the ability of the higher income households to afford higher transportation 

costs. In addition to such income-based heterogeneity, the significant standard deviation of the 

random coefficient indicates a significant magnitude of unobserved factors influencing 

households’ sensitivity of residential location choice to commute time. Furthermore, the standard 

deviation of the random coefficient (i.e., the qlπσ term corresponding to ql ilzπ  in Equation (5)) 

capturing common unobserved factors qlπ  in residential location choice and bicycle ownership is 

found to be significant at the 0.09 level with a negative correlation. As discussed in Section 

3.1.4.1, this suggests the presence of significant unobserved factors such as environmental 

friendliness, bicycling-oriented and/or physically active lifestyles that make people own more 

bicycles as well as live in (or self-select to live in) residential locations close to the work place 

(perhaps to enable bicycling to work while staying within a reasonable commute time). These 

lifestyle preferences constitute unobserved variables or factors influencing both bicycle 

ownership and residential location. It was found that the neglect of these random coefficients, 

including the self-selection effects, in the model resulted in an inflated estimation of the negative 

influence of the commute time variable on residential location and bicycle ownership choices.  

Finally, transit and bicycle modal accessibility (to work) for commuters in the household 

positively impacts residential location choice.  
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5.2 Auto Ownership Model Component Results 

Table 2 presents the model estimates of the auto ownership component of the model. The 

coefficients on the residence-end zonal size and density measures indicate that residing in a zone 

with higher housing or employment density is associated with lower levels of auto ownership, 

especially so in the case of lower income households residing in high employment locations. 

However, the standard deviation on the corresponding random coefficient indicates a significant 

heterogeneity in the influence of household density on auto ownership. Zonal demographic 

variable effects indicate that households residing in zones with higher fraction of single family 

dwelling units are likely to own more cars. With respect to commute-related variables, as 

expected, as the household-level commute time increases, auto ownership increases. However, 

for lower income households, for whom the transportation costs typically constitute a significant 

portion of their income, higher auto commute costs are associated with lower auto ownership. 

Low income households may typically own cars for commuting purposes, among other reasons 

that necessitate the use of cars. Thus, when the commuting costs are higher, these households 

may tend to use alternative means of transport and stay in a low-car ownership segment to reduce 

their transportation costs. Further, higher modal accessibility provided by transit and bicycle is 

associated with lower levels of auto ownership.   

 Among the residence-end transportation network measures, while neighborhoods with 

denser highways have higher auto ownership levels, those with higher street block density have 

lower auto ownership levels. While highway density is indicative of auto-oriented transportation 

network, street block density is indicative of land uses conducive to travel by walk or bicycle. 

However, the standard deviation on the random coefficient on street block density suggests a 

significant variation in the influence of street block density on auto ownership.  Higher levels of 

accessibility by alternative (to auto) modes contribute to lower levels of auto ownership, 

although again, there appears to be considerable heterogeneity in the influence of transit 

accessibility. It was found that after including the modal accessibility attributes, the explanatory 

power of zonal density variables decreased, suggesting that the zonal-density variables often act 

as proxies for access by modes in explaining auto ownership levels (Bhat and Guo, 2007). 

The ATE attributes of employment zones such as average bicycling facility density and 

average street block density negatively impact auto ownership. Presumably these variables 

signify a greater ability to walk and bike, thus leading to lower car ownership levels for 
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households whose individuals work in such locations. Another important finding in the context 

of the ATE attributes of employment zones is that the explanatory power of transportation 

network related variables of the residential locations decreased after including the transportation 

network related variables of work locations. From a policy perspective, to reduce auto ownership 

levels, it may not suffice to improve the pedestrian and bicycle facilities in the residential 

neighborhoods alone; it is important to enhance the walkability and bikeability of different 

destinations (especially work locations) that people visit. While urban planners may already 

appreciate the importance of design at both the residential and destination ends of travel, most 

studies do not include destination attributes in modeling auto ownership and other travel choices. 

Such studies are likely to be of limited value in assessing the impacts of efforts oriented toward 

improving the pedestrian, bicycle and transit facilities at work locations, and can potentially 

overestimate the influence of such policies at the residence-end..    

 A host of socio-economic and demographic variables appear significant in the model. In 

the absence of such variables in the model, the magnitudes of the coefficients (and the t-

statistics) associated with ATE attributes were considerably higher – thus indicating that the 

impacts of ATE attributes may be overstated when residential self-selection effects due to 

observed factors are omitted. For example, higher income households are associated with higher 

auto ownership levels. At the same time, as discussed in the previous section, higher income 

households are found to self-select themselves into low density locations. Thus, ignoring the 

influence of income on auto ownership would result in an over assessment of the density 

variables on auto ownership levels. The results clearly show the importance of incorporating the 

influence of socio-demographic factors and unobserved factors (note the significant standard 

deviations on random coefficients of selected variables including density variables) on auto 

ownership.     

 In addition to the above findings, there are two significant error correlations that were 

found to be significant.  They are as follows: 

Common unobserved factors ( qkϑ ) affecting auto ownership propensity and auto mode choice 

(standard deviation = 0.4808, t-stat = 3.24, positive correlation, not shown in tables): As 

discussed in Section 3.1.4.2, this error correlation captures the unobserved auto mode choice 

preferences that can potentially impact auto ownership levels. For example, auto-inclined 

lifestyle preferences affect both auto mode utility and auto ownership levels.  
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Common unobserved factors ( qι ) affecting auto ownership propensity and bicycle ownership 

propensity (standard deviation = 0.5821, t-stat = 8.60, positive correlation, not shown in tables): 

The unobserved factors captured by this error component (discussed in Section 3.1.4.3) may 

include recreational activity preferences due to which households may own a larger number of 

vehicles and use them to haul their bicycles for recreational activities.  

The explanatory power of the auto ownership variable in the auto modal utility equation 

decreased significantly after including the former error component. Ignoring the latter error 

component resulted in an inflation of the former error component as well as the common error 

component between residential location choice and bicycle ownership discussed in the previous 

section. These findings clearly point to the need to disentangle the different unobserved effects 

that affect multiple choice processes through different error components. Further, since activity-

travel environment (ATE) attributes influence mode choice directly as well as indirectly (through 

their influence on auto and bicycle ownership), it is important to account for the endogeneity of 

auto ownership and bicycle ownership to appropriately assess the indirect effects of ATE 

attributes on mode choice.  

5.3 Bicycle Ownership Model Component Results 

The bicycle ownership model results are presented in Table 3. Bicycle ownership is found to 

increase with average household income of the residence-end zone. The commute-related 

variables show that, as commute time of commuters in the household increases, bicycle 

ownership decreases. However, two findings are noteworthy in the context of bicycle ownership 

sensitivity to commute time. First, there is significant heterogeneity in the population with 

respect to sensitivity to this variable as evidenced by the significant standard deviation on its 

random coefficient. Second, as already discussed in the context of the results presented in Table 

1, significant magnitude of common unobserved factors ( qlπ ) affect the sensitivity of both 

residential location and bicycle ownership choices to commute travel time.  Ignoring such 

common unobserved factors (or unobserved self-selection effects) resulted in an over-assessment 

of the influence of commute time on bicycle ownership levels.   

 Bicycle facility density and the availability of activity opportunities such as physically 

active recreation centers and natural recreation centers are positively associated with bicycle 

ownership. Finally, a host of socio-economic and demographic variables are found to influence 
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bicycle ownership, several of which have significant impact on residential location choices as 

well (see Section 5.1). Such common observed factors affecting residential location and bicycle 

ownership choices suggest the presence of residential self-selection effects due to observed 

factors, ignoring which would lead to an over assessment of the influence of the ATE attributes.  

Similar to the common observed and unobserved factors affecting residential location and 

bicycle ownership choices, a significant magnitude of common unobserved factors were found to 

influence bicycle ownership and bicycle mode choice to work. This evidenced by the common 

error component qkυ  between the bicycle ownership propensity and the bicycle mode choice 

utility (standard deviation = 0.5165, t-stat = 2.49, positive correlation, not shown in tables), 

which  accounts for unobserved bicycle mode choice preferences (such as environmental 

consciousness) that can potentially impact bicycle ownership levels. Ignoring this error 

component resulted in an over assessment of the influence of bicycle ownership on bicycle mode 

choice. 

5.4 Mode Choice Model Component Results 

Mode choice model estimation results are presented in Table 4. Each variable is denoted with the 

modal utility equation in which it is included. In general, it is found that several ATE attributes 

of the residential locations and employment locations (the zonal density measures, land-use 

structure variables, and transportation system related variables) have a statistically significant 

influence on mode choice. For example, in the context of residence-end zonal size and density 

measures and land-use structure attributes, it is found that employment density is positively 

associated with non-motorized modes, and land-use mix is positively associated with transit 

mode choice. Further, the standard deviation associated with the random coefficient on the 

employment density variable is statistically significant suggesting that there are unobserved 

factors that contribute to significant variation in individual sensitivity to this variable for mode 

choice to work.  Among the residence-end transportation network measures, the positive impacts 

of street block density on walk mode, bicycle density on walk and bicycle mode, and transit 

accessibility on transit mode are all intuitive and expected. At the employment location end (see 

the fourth set of variables), several ATE attributes show a strong influence on commute mode 

choice – household density and employment density contribute to the choice of transit and walk 

modes, and bicycle facility density contributes to the choice of bicycle mode. Ignoring these 
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effects resulted in an over assessment of the influence of the corresponding residence-end 

attributes.     

 Among the level of service variables, as expected, travel time and cost show negative 

coefficients for all travel modes, and the level of sensitivity to travel cost is greater for 

individuals from households with lower income. Where the home and work zones are connected 

by bicycle or walk routes, individuals are more likely to choose the bicycle and walk modes.  

 Activity participation and tour-level variables significantly impact mode choice. For 

example, combining non-work activities during commutes increases the likelihood of choosing 

the automobile for travel to work.  Similarly, if an individual undertakes serve passenger, 

maintenance, or personal business activities on the travel day, the likelihood of choosing the 

automobile increases.  Interestingly however, participation in discretionary type of non-work 

activities such as socializing and recreation was not associated with commute mode choice.  

 With respect to the auto ownership and bicycle ownership variables, as discussed earlier 

in the context of the bicycle and auto ownership model results, the explanatory power of these 

variables decreased considerably after incorporating the endogeneity of these two variables 

through common error components qkϑ  and qkυ . Accounting for such endogeneity allows a more 

accurate estimation of the impacts of ATE attributes on mode choice, moderated through the 

influences of such attributes on automobile and bicycle ownership. Finally, several socio-

economic/demographic variables are found to be significant in explaining mode choice (see the 

eighth set of variables in Table 4); and all of them show expected influences on mode choice. 

The alternative specific constants shown in the last block of the table do not have a substantive 

interpretation, but suggest an overall higher preference for the auto mode.  

 One of the key findings in the context of the mode choice model is that zonal density 

variables became either insignificant or less significant (with lower t-statistics) after adding 

transportation network variables (various modal accessibility variables).  For example, the zonal 

household density and employment density variables in the utility of the transit mode became 

insignificant after adding transportation (modal) accessibility variables.  Similarly, household 

density in bike and walk modal utilities, and land use mix in walk utility became insignificant 

after adding street block density to the modal utility equations.  Street block density of work 

zones in the walk and bike utility equations became insignificant after adding the home-work 

zone connectivity variables (within 6 miles by bike or within 3 miles by walk).  These findings 
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suggest that land use density measures serve as proxies for transportation (modal) availability 

and accessibility, at least to some extent, in explaining mode choices. Once modal 

availability/accessibility is accounted for, the land use variables themselves offer modest 

additional explanatory power. If the modal accessibility variables (i.e., self-selection effects due 

to observed factors) had been omitted, then the impacts of land use measures on mode choice 

could have been potentially grossly over-estimated. 

 Another key finding is that the explanatory power of transportation network related 

variables of the residential locations reduced after including the transportation network related 

variables of work locations. For example, the variable “number of zones accessible within 30 

minutes by transit” became less statistically significant, and the variable “number of zones 

accessible by transit within 30 to 60 minutes from the residential zone” became insignificant in 

transit modal utility after adding the transit accessibility variables for the work zones. Similar 

effects were found with the bicycle facility density variable. Thus, it is important to consider the 

activity-travel environment attributes of employment locations to avoid over estimation of the 

impact of residential location attributes in commute mode choice modeling. From a policy 

standpoint, this result indicates the importance of improving the accessibility of work locations 

in combination with that of residential locations, to be able to achieve higher non-auto mode 

shares (Frank et al., 2008, and Maat and Timmermans, 2009 report similar findings regarding the 

influence of work location attributes on mobility choices).     

The log-likelihood value at convergence for an independent model system of residential 

location, auto ownership, bicycle ownership, and mode choice is -37001 (with 108 parameters), 

while that for the joint model system is -36871 (with 119 parameters). The corresponding log-

likelihood ratio statistic is statistically significant at any reasonable level of confidence. This 

suggests the need to jointly model the multidimensional choice process within an integrated 

framework even from a model fit stand point. 

 

6. CONCLUSIONS 

This paper presents an integrated model system of residential location choice, auto ownership, 

bicycle ownership, and commute tour mode choice processes. From a substantive viewpoint, this 

effort embodies the spirit of two major thrusts underlying recent advances in urban travel 

demand modeling. First, the model system is based on the underlying philosophy that individuals 
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and households make land use and transportation choices as part of a lifestyle package or bundle 

of decisions that, as evidenced by the findings of this paper, should be modeled simultaneously. 

Second, consistent with the recent developments in activity- and tour-based modeling, the paper 

considers mode choice using tours as the unit of analysis.  

 From a methodological standpoint, much of the work in the past has been limited by the 

complexity associated with estimating simultaneous equation systems that include a multitude of 

choice dimensions and interdependencies. This paper overcomes these challenges by employing 

an integrated multi-dimensional choice modeling methodology. The methodology treats 

residential location as a multinomial logit, auto and bicycle ownership as ordered logits, and 

commute tour mode choice as a multinomial logit and joins all the model components using 

common unobserved error components. The methodology explicitly incorporates a series of 

behavioral aspects (or interdependencies) that are critical to simultaneously modeling multiple 

choice dimensions. These include: (1) self-selection effects due to observed and unobserved 

factors (where households locate based on lifestyle and mobility preferences), (2) endogeneity 

effects (where any one choice dimension is not exogenous to another, but is endogenous to the 

system), (3) correlated error structures (where common unobserved factors significantly and 

simultaneously impact multiple choice dimensions), and (4) unobserved heterogeneity (where 

decision-makers show significant variation in sensitivity to explanatory variables due to 

unobserved factors). The development and estimation of such a model system constitutes an 

important step forward in the integrated modeling of land use and transportation choices. 

 Model estimation results using the data from the San Francisco Bay Area highlight the 

need to model multiple choice dimensions simultaneously to explicitly account for the effects 

identified above. Model estimation results indicate: (1) significant residential self-selection 

effects, for example, where individuals with certain modal preferences (either in auto/bicycle 

ownership or mode choice) are found to self-select into residential zones that support their 

preferences, (2) significant endogeneity effects, for example, where auto ownership and bicycle 

ownership are endogenous to mode choice decisions, (3) significant presence of common 

unobserved factors affecting multiple choice dimensions, for example, in the case of auto 

ownership and bicycle ownership, and (4) significant unobserved heterogeneity, for example, 

where households showed significant variance in sensitivity to commute travel time in making 

residential location choices (due to unobserved factors). More importantly, ignoring any of these 
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effects resulted in biased estimation of the other effects, as well as that of the coefficients of the 

activity-travel environment attributes in the model system. Thus, from a policy standpoint, to be 

able to forecast the “true” causal influence of activity-travel environment changes on residential 

location, auto/bicycle ownership, and commute mode choices, it is necessary to jointly model the 

multiple choice dimensions in an integrated framework. Unfortunately, most land-use and travel 

forecasting model systems in place today treat multi-dimensional choice processes as a series of 

sequential independent decisions or attempt to connect the various decisions through the use of 

deeply nested logit models that are quite restrictive with regard to their ability to reflect the 

various aspects of behavior highlighted in this paper. Given recent advances in analytical and 

computational methods, a fruitful avenue for further research is to investigate ways to implement 

integrated models of the type developed in this paper in large-scale land-use and travel 

forecasting model systems. Another useful avenue for further work is to integrate additional 

model components such as work location choice into the proposed modeling framework. 
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Figure 1. Interdependencies between Residential Location, Auto and Bicycle Ownership, and 
Commute Mode Choices 
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Table 1. Estimation Results of the Residential Location Choice Component of the Joint Model 
Variables Parameter t-stat 
Residence-end zonal size and density measures   

Logarithm of number of households in zone 0.838 29.67 
Household density (#households per acre x 10-1) 0.000 Fixed 

Interacted with presence of seniors in household -0.479 -5.82 
Interacted with presence of children (of age 5 to 15 years) in household -0.217 -2.86 

Employment density (#jobs per acre x 10-1) -0.002 -0.80 
Interacted with household income greater than $ 90,000 per annum -0.077 -1.94 
Interacted with household belonging to the Caucasian race -0.034  -1.77 
Interacted with presence of children (of age 15 years or younger) in household -0.011 -1.65 

Residence-end zonal land-use structure variables    
Fraction of commercial land area -0.683 -5.31 
Land-use mix -0.395 -4.47 

Residence-end zonal demographics   
Median housing value in the zone -0.133 -10.48 
Absolute difference between zonal median income and household income ($ x 10-3) -0.016 -15.96 
Absolute difference between zonal average household size and household size -0.345 -8.90 

Residence-end zonal race composition measures   
Fraction of African-American population interacted with African-American dummy 

variable 
3.239 6.83 

Fraction of Asian population interacted with Asian dummy variable 2.476 8.26 
Fraction of Caucasian population interacted with Caucasian dummy variable 1.713 13.86 
Fraction of Hispanic population interacted with Hispanic dummy variable 1.666 3.72 

Residence-end zonal activity opportunity variables    
Number of physically active recreation centers such as fitness centers, sports centers, 

dance and yoga studios 
 0.027 5.25 

Number of natural recreational centers such as parks, gardens, etc. interacted with 
Number of bicycles in the household 

0.046 2.27 

Residence-end zonal transportation network measures    
 Street block density (number of blocks per square mile x 10-1) -0.031 -5.56 

Interacted with household income greater than $ 90,000 per annum -0.039 -3.89 
Bicycling facility density (miles of bike lanes per square mile) 0.018 2.97 

Household level commute variables    
Total commute time (by auto) of all commuters in the household (minutes) -0.064 -23.69 

Interacted with household income less than $ 35,000 per annum -0.034 -5.10 
Interacted with household income greater than $ 90,000 per annum 0.007 2.31 
Standard deviation  0.041 16.29 
Standard deviation of the random coefficient capturing common unobserved 

factors in residential location and bicycle ownership choices (negative 
0.006 1.69 

Number of commuters in the household with home and work zones connected by transit 
within 30 minutes 

0.306 6.96 

Number of commuters in the household with home and work zones connected by bike 
route of less than 6 miles length 

0.272 7.00 

1 Mile = 1.609 Kilometers, 1 Square Mile = 2.59 Square Kilometers, 1 Acre = 0.004046 Square Kilometers 
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Table 2. Estimation Results of the Auto Ownership Component of the Joint Model 
Variables Parameter t-statistic 

Residence-end zonal size and density measures    
Household density (#households per acre x 10-1) -0.031  -2.44 

Standard deviation   0.056   3.84 
Employment density (#employment per acre x 10-1) -0.091  -1.80 

Interacted with household income less than $ 35,000 per annum -0.045  -3.42 
Residence-end zonal demographics    

Fraction of single family housing units  0.382   1.79 
Commute-related variables     

Total commute time (by auto) of all commutes in household (minutes)  0.003   1.67 
Total commute cost by (auto) of all commutes in household ($) interacted with 

household income less than $ 35,000 per annum 
-0.260  -2.58 

Number of commuters in the household with home and work zones connected by 
transit within 30 minutes 

-0.207  -2.07 

Number of commuters in the household with home and work zones connected by 
bike route of less than 6 miles length 

-0.099  -1.33 

Residence-end local transportation network measures    
Density of highways (miles per square mile)  0.063   1.38 
Street block density (number of block per square mile x 10-1) -0.023  -1.53 

Standard deviation  -0.008  -5.65 
Number of zones accessible within 30 minutes by transit  -0.011  -1.97 

Standard deviation   0.025 -3.34 
Number of zones accessible within 6 miles by bicycle -0.003  -1.21 

ATE Attributes of Employment Zones   
Average bicycling facility density (miles of  bike lanes per square mile) of the 

employment locations of all commuters in the household 
-0.028  -1.88 

Average street block density (number of street blocks per square mile) of the 
employment locations of all commuters in the household 

-0.003  -4.56 

Standard deviation   0.002   1.24 
Household demographic variables   

Number of active adults  1.688 14.90 
Number of senior adults  1.783 11.45 
Number of children (of age 5 to 15 years) in household  0.120   2.15 
Number of employed individuals  0.772   8.22 
Number of physically challenged individuals -0.877  -5.16 
Household income ($ x 10-5)   0.548   5.96 
Single parent household -1.168  -4.69 
Single individual household -1.374  -9.40 
Age of householder is less than 30 years -0.252  -1.99 
Householder is male  0.279   3.68 
Caucasian household  0.143   1.66 
Residing in a single-family housing unit  0.782   7.11 
Own household dwelling  0.831   7.90 
Residing in San Francisco County -0.366  -1.68 
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Table 3. Estimation Results of the Bicycle Ownership Component of the Joint Model 
Variables Parameter t-statistic 

Residence-end zonal demographics    

Average household income in the zone   0.438      2.77 
Commute-related variables     

Total commute time (by auto) of all commutes in household (minutes x 10-1) -0.023    -1.59 
Standard deviation  0.009     2.42 
Standard deviation of the random coefficient capturing common 

unobserved factors in residential location and bicycle ownership 
choices (negative correlation) 

 0.006     1.69 

Residence-end local transportation network measures    

Bicycling facility density (miles of bike lanes per square mile)   0.040      3.27 
Residence-end zonal activity opportunity variables    

Number of physically active recreation centers such as fitness centers, sports 
centers, dance and yoga studios 

 0.016     1.51 

Number of natural recreational centers such as parks, gardens, etc. interacted 
with Number of bicycles in the household 

 0.053     1.34 

Household demographic variables   

Number of active adults   0.371     5.58 
Number of children (of age less than 5 years) in household   0.491     6.63 
Number of children (of age 5 to 15 years) in household  1.153   13.44 
Number of students in the household  0.332     5.04 
Household income ($ x 10-5)  0.464     6.20 
Single individual household -0.386    -3.56 
Age of householder is less than 30 years -0.762    -6.41 
Householder is male  0.144     2.35 
Caucasian household  0.666    8.86 
Residing in a single-family housing unit  0.470     5.68 
Own household dwelling  0.302     3.76 
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Table 4. Estimation Results of the Mode Choice Component of the Joint Model 
Variables Parameter t-stat 
Residence-end zonal size and density measures (including demographic interactions)   

Employment density (#jobs per acre x 10-1) – Bicycle and Walk modes  0.017 1.67 
Standard deviation 0.046 2.39 

Residence-end zonal land-use structure variables    
Land-use mix – Transit mode 0.621 1.91 

Residence-end zonal transportation network measures    
 Street block density (number of blocks per square mile x 10-1) – Walk mode 0.041 1.71 
Bicycling facility density (miles of bike lanes per square mile) – Bicycle mode 0.042 1.00 
Bicycling facility density (miles of bike lanes per square mile) – Walk mode 0.070 1.85 
Number of zones accessible within 30 minutes by transit – Transit mode 0.011 2.67 

ATE attributes of employment zones   
Household density (#households per acre x 10-1) – Transit mode 0.015 2.18 
Household density (#households per acre x 10-1) – Walk mode 0.021 1.50 
Employment density (#jobs per acre x 10-1) – Transit mode 0.017 3.83 
Employment density (#jobs per acre x 10-1) – Walk mode 0.012 1.49 
Bicycle facility density (miles of  bike lanes per square mile) – Bicycle mode 0.101 2.70 
Number of zones accessible within 30 minutes by transit 0.032 9.07 

Level of service variables (including demographic interactions)   
Travel time between home and work zones – All modes -0.031 -8.39 
Travel cost between home and work zones – All modes -0.342 -9.29 

Interacted with household income less than $ 35,000 per annum – All modes -0.508 -2.15 
Home and work zones connected by a bicycle route of length less than 6 miles – 

Bicycle mode  
1.132 3.99 

Home and work zones connected by walk route of length less than 3 miles – Walk 
d

1.616 3.63 
Activity participation and tour-level variables   

Individual undertakes pick-up/drop-off activity – Auto mode 0.842 4.42 
Individual undertakes maintenance activity – Auto mode 0.248 1.62 
Individual undertakes personal business activity – Auto mode 0.553 3.49 
Tour involves at least one non-work stop – Auto mode 1.725 4.92 

Household vehicle ownership and bicycle ownership   
Number of vehicles owned by the household – Auto mode 0.435 5.27 
Number of bicycles owned by the household – Bicycle mode 0.292 3.79 

Individual and household sociodemographic and economic variables   
Individual is a female – Bicycle mode -1.417 -4.61 
Individual has a drivers license – Auto mode 1.681 4.30 
Individual has an inflexible work schedule – Auto mode 0.219 1.65 

Alternative specific constants (Auto is the base alternative)   
Transit -0.495 -1.05 
Bicycle -1.975 -3.45 
Walk -1.266 -1.90 

 


