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ABSTRACT 

This paper develops a multiple discrete-continuous nested extreme value (MDCNEV) model that 

relaxes the independently distributed (or uncorrelated) error terms assumption of the multiple 

discrete-continuous extreme value (MDCEV) model proposed by Bhat (2005 and 2008). The 

MDCNEV model captures inter-alternative correlations among alternatives in mutually exclusive 

subsets (or nests) of the choice set, while maintaining the closed-form of probability expressions 

for any (and all) consumption pattern(s).  

 The MDCNEV model is applied to analyze non-worker out of home discretionary 

activity time-use and activity timing decisions on weekdays using data from the 2000 San 

Francisco Bay Area data. This empirical application contributes to the literature on activity time-

use and activity timing analysis by considering daily activity time-use behavior and activity 

timing preferences in a unified utility maximization-based framework. The model estimation 

results provide several insights into the determinants of non-workers’ activity time-use and 

timing decisions. The MDCNEV model performs better than the MDCEV model in terms of 

goodness of fit. However, the nesting parameters are very close to 1, indicating low levels of 

correlation. Nonetheless, even with such low correlation levels, empirical policy simulations 

indicate non-negligible differences in policy predictions and substitution patterns exhibited by 

the two models. Experiments conducted using simulated data also corroborate this result. 
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INTRODUCTION 

A variety of consumer demand choice situations are characterized by multiple discreteness (i.e., 

the simultaneous choice of one or more alternatives from a set of alternatives that are not 

mutually exclusive) as opposed to single discreteness (i.e., the choice of a single alternative from 

a set of mutually exclusive alternatives). In addition, there can be a continuous choice 

corresponding to the amount of consumption of each chosen discrete alternative, which leads to a 

multiple discrete-continuous choice situation. In the recent econometric literature, several 

important choice situations, including grocery purchases (Kim et al., 2002), individual activity 

participation and time-use (Bhat, 2005; Srinivasan and Bhat, 2006; and Pinjari et al., 2009; 

Habib and Miller, 2009), household expenditure allocation patterns (Ferdous et al., 2008), 

household travel expenditures (Rajagopalan and Srinivasan, 2008), and household vehicle 

ownership and usage (Fang, 2008; and Bhat et al., 2009) have been analyzed as multiple 

discrete-continuous choice situations.  

A variety of modeling frameworks have been used to analyze multiple discrete/discrete-

continuous choices, and these can be broadly classified into: (a) multivariate single discrete-

continuous modeling frameworks (see for example, Srinivasan and Bhat, 2006 and Fang, 2008), 

and (b) utility maximization-based Kuhn-Tucker (KT) demand systems (Hanemann, 1978, Wales 

and Woodland, 1983, Kim et al., 2002, von Haefen and Phaneuf, 2005, Bhat, 2005, and Bhat, 

2008). Among the available modeling frameworks, the recently proposed multiple discrete-

continuous extreme value (MDCEV) model structure (see Bhat, 2005 and 2008) is particularly 

attractive because of at least two important features. First, the model is based on utility 

maximization theory and captures important features of consumer choice making, including the 

diminishing nature of marginal utility with increasing consumption. Second, the model offers 

closed-form consumption probability expressions and, thus, obviates the need for 

numerical/simulation-based methods of estimation. These probability expressions simplify to the 

well-known multinomial logit (MNL) probabilities when all decision makers choose a single 

alternative out of all available alternatives in the choice set.  

An important limitation of the MDCEV model formulation, however, is the neglect of 

potential interdependence (or similarity) among alternatives. This is due to the assumption that 

the stochastic components (or the error terms) associated with the utility expressions of the 

alternatives are independent (or uncorrelated) and identically distributed (IID). This assumption 
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is analogous to the IID error term assumption in the multinomial logit (MNL) model. The 

simplifying IID assumption can potentially result in a misrepresentation of the substitution 

patterns among the choice alternatives, statistically inferior model fit, biased estimation of model 

parameters, and distorted policy implications. To relax the IID assumption, the empirical 

applications in the literature have used a mixed MDCEV (MMDCEV) model formulation. A 

problem with this approach, however, is that the consumption probabilities resulting from the 

mixed MDCEV model formulation do not have closed-form expressions. This necessitates a 

simulation-based estimation that can be computationally expensive, and saddled with technical 

problems associated with the accuracy of simulation and the identification of parameters.  

In view of the issues discussed above, in this paper, we propose a multiple discrete-

continuous nested extreme value (MDCNEV) model that captures interdependence among 

alternatives in mutually exclusive subsets (or nests) of the choice set, while maintaining the 

closed-form of probability expressions for any (and all) consumption pattern(s). Specifically, we 

prove the existence of closed-form probability expressions in the MDCNEV model, and derive a 

general and compact form for the expressions for any (and all) consumption pattern(s) in the case 

of a general two-level nested extreme value error structure.1,2 The MDCNEV model 

accommodates correlations among the stochastic utilities, and allows flexible substitution 

patterns across the discrete-continuous choices, of the alternatives within a nest. In the current 

paper, we provide an empirical application of the MDCNEV framework to jointly model and 

analyze non-workers’ out-of-home discretionary activity time-use patterns and activity timing 

decisions on weekdays using data from the 2000 San Francisco Bay Area Travel Survey. 

The remainder of this paper is organized as follows. Section 2 presents the structure of 

the MDCNEV model, along with the proof of the existence of, and the derivation of, the closed-

form expressions for the consumption probabilities. Section 3 presents a simulation analysis to 

                                                 
1 To be sure, Bhat (2008) has indicated that an extension of the MDCEV model to a multiple discrete-continuous 
generalized extreme value (MDCGEV) model can accommodate general patterns of correlations and at the same 
time yield closed-form expressions for consumption probabilities. However, in his paper, Bhat mentions that “the 
derivation [of the consumption probability expressions] is tedious and the expressions get unwieldy”. Further, Bhat 
provides no formal proof of the existence of closed-form probability expressions for the MDCGEV model. His 
paper provided expressions for only a specific and simple nested logit error structure with 4 alternatives.  
2 It would be desirable to extend the MDCNEV model to incorporate more general Generalized Extreme Value 
(GEV) error structures such as cross-nested structures (see Small, 1987, Vovsha, 1997, Bhat, 1998, Ben-Akiva and 
Bierlaire, 1999, and Wen and Koppelman, 2001 for single discrete choice models with cross-nested error structures). 
Such an extension is anything but straightforward in the multiple discrete-continuous case (see footnote 6). We leave 
such an extension for future research. 
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assess the importance of capturing inter-alternative correlations and to understand the properties 

of the MDCNEV model. Section 4 provides a brief discussion of the empirical context to which 

the MDCNEV model is applied. Section 5 discusses the data sources and the data sample used in 

the analysis. Section 6 presents and discusses the empirical results. Section 7 concludes the paper 

with a summary of the contributions and identifies avenues for future research. 

 

2 THE MDCNEV MODEL: A TWO LEVEL NESTED CASE 

Consider the following functional form for utility proposed by Bhat (2008):3 

1
( ) 1 1 ; 0, 1, 0

kK
k k

k k k k
k k k

tU
α

γ ψ ψ α γ
α γ=

⎧ ⎫⎛ ⎞⎪ ⎪= + − > ≤ >⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑t  (1) 

In the above expression, U(t) is the total utility accrued from consuming non-negative amounts 

of each of the K alternatives (or goods) available to the decision maker, and t is the 

corresponding consumption quantity (Kx1)-vector with elements tk (tk ≥ 0 for all k).  The term 

kψ  (k = 1, 2, 3, …, K) represents the random marginal utility of one unit of consumption of 

alternative k at the point of zero consumption for the alternative. Thus, kψ controls the discrete 

consumption decision for alternative k. We will refer to this term as the baseline preference for 

alternative k (see Bhat, 2008). The kγ  terms (for k = 1, 2, 3, …, K) are translational parameters 

that allow corner solutions for the consumer demand problem. That is, these terms allow for the 

possibility that a decision-maker may not consume certain alternatives. The kγ  terms, in addition 

to serving as translation parameters, also serve the role of satiation parameters that reduce the 

marginal utility accrued from consuming increasing amounts of any alternative. Specifically, 

values of kγ  closer to zero imply higher satiation effects (i.e., lower consumptions) in activity k 

(see Bhat, 2008). The kα  terms (for k = 1, 2, 3, …, K) also serve to capture satiation effects. 

Specifically, values of kα  farther away from 1 imply higher satiation effects (see Bhat, 2008). 

In the above utility function, the impact of observed and unobserved alternative 

attributes, decision-maker characteristics, and the choice environment factors may be 

conveniently introduced through the kψ  parameters: 

exp( )k k kzψ β ε′= +  (2) 
                                                 
3 The index for the decision-maker is suppressed in this discussion. 
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where, kz  is a set of attributes characterizing alternative k, the decision-maker and the choice 

environment, and kε  captures unobserved factors that impact the baseline utility for good k.4  

From the analyst’s perspective, the decision-makers maximize the random utility given 

by Equation (1) subject to a linear budget constraint and non-negativity constraints on kt : 

1
(where is the total budget) and 0  (  1, 2,..., )

K

k k
k

t T T t k k K
=

= ≥ ∀ =∑   (3) 

The optimal consumptions can be found by forming the Lagrangian and applying the Kuhn-

Tucker (KT) conditions. The Lagrangian function for the problem is (Bhat, 2008): 

L  [ ]
1

exp( )  1 1
k K

k k
k k k

k kk k

tz t T
α

γ β ε λ
α γ =

⎧ ⎫⎛ ⎞ ⎡ ⎤⎪ ⎪′= + + − − −⎨ ⎬⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ , (4) 

where λ  is the Lagrangian multiplier associated with the budget constraint.  The KT first-order 

conditions for the optimal consumptions *( ; 1,2,..., )kt k K= are given by: 

1*

exp  1 0
k

k
k k

k

t(β z ε )
α

λ
γ

−
⎛ ⎞

′ + + − =⎜ ⎟
⎝ ⎠

, if * 0,kt >  (k = 1, 2,…, K) (5) 

1*

exp  1 0
k

k
k k

k

t(β z ε )
α

λ
γ

−
⎛ ⎞

′ + + − <⎜ ⎟
⎝ ⎠

, if * 0,kt =  (k = 1, 2,…, K) 

Next, without any loss of generality, designate alternative 1 as an alternative to which the 

individual allocates some non-zero amount of consumption. For this alternative, the KT 

condition may be written as:  
1 1*

1

1

exp 1k k
t(β z ε )

α

λ
γ

−
⎛ ⎞

′= + +⎜ ⎟
⎝ ⎠

 (6) 

Substituting for λ  from above into Equation (5) for the other alternatives (k = 2,…, K), and 

taking logarithms, we can rewrite the KT conditions as (see Bhat, 2008): 

11 εε +=+ VV kk  if * 0,kt >  (k = 2, 3,…, K) 

11 εε +<+ VV kk  if * 0,kt =  (k = 2, 3,…, K)  (7) 

                                                 
4 The kγ  and kα  terms may also be parameterized as functions of observed and unobserved alternative attributes, 
decision-maker characteristics, and the choice environment factors (see Bhat, 2008). 
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where, 
*

( 1) ln 1 ,k
k k k

k

tV zβ α
γ

⎛ ⎞
′= + − +⎜ ⎟

⎝ ⎠
 (k = 1, 2, 3,…, K). 

The stochastic KT conditions of Equation (7) can be used to write the joint probability 

expression of consumption patterns if the density function of the stochastic terms (i.e., the kε  

terms) is known. In the general case, let the joint probability density function of the kε  terms be 

g( 1ε , 2ε , …, Kε ), let M alternatives be chosen out of the available K alternatives, and let the 

consumptions of these M alternatives be * * * *
1 2 3( ,  ,  ,  ...,  ).Mt t t t  As given in Bhat (2008), the joint 

probability expression for this consumption pattern is as follows: 
1 1 1 1 2 1 1 1 1 1 1

1 1 2 1

* * * *
1 2 3

1 1 2 1 1 3 1 1 1 1 2 1

1

( , , , ..., , 0, 0, ..., 0) | |

( , , , ..., , , , ..., , )

M M K K

M M K K

V V V V V V V V

M

M M M K K

K K

P t  t  t   t      J    

g  V V  V V   V V      
d d

ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε ε
ε ε

+ + −

+ + −

− + − + − + − ++∞

=−∞ =−∞ =−∞ =−∞ =−∞

+ + −

−

=

− + − + − +

∫ ∫ ∫ ∫ ∫

2 1 1... ,M Md d d  ε ε ε+ +

   (8) 

where J is the Jacobian whose elements are given by (see Bhat, 2005) 

1 1 1 1 1
* *

1 1

[ ] [ ] ;i i
ih

h h

V V V VJ
t t

ε+ +

+ +

∂ − + ∂ −
= =

∂ ∂
 i, h = 1, 2, …, M – 1. 

 In this paper, we rewrite the above probability expression as an integral of the Mth order 

partial derivative of a K-dimensional joint cumulative distribution of the error 

terms 1 2( , ,.., )Kε ε ε : 

2 1 2 1 3 1 3 1 K 1 11

* *
1 1 2 1

1 , ,...,

( ,..., ,0,...,0) | | ( , ,..., ) d
...  

k

M K
M V V V V V V

M
P t t J F

ε ε ε ε ε εε

ε ε ε ε
ε ε

= − + = − + = − +

+∞

=−∞

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎩ ⎭⎣ ⎦

∂∫  (9) 

where 1 2( , ,..., )KF ε ε ε  is the joint cumulative distribution of the error terms 1 2( , ,.., ).Kε ε ε  The 

reader will note here that the order of the partial derivative in the above expression is equal to the 

number of chosen alternatives (M), and that the differentials in the partial derivative are with 

respect to the stochastic utility components of the chosen alternatives.  

The specification of the joint cumulative distribution 1 2( , ,..., )KF ε ε ε  of the error terms 

1 2( , ,..., )Kε ε ε  determines the form of the consumption probability expressions. In this paper, we 

assume a nested extreme value distributed error term structure that has the following joint 

cumulative distribution: 
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th
1 2

1 nest

( , ,.., ) exp exp
KS

i
K

i

F
θ

εε ε ε
θ= ∈

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎜ ⎟
⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦
∑ ∑

s

ss s
 (10) 

In the above cumulative distribution function, s ( 1,2,..., )KS= is the index to represent a nest of 

alternatives and KS  is the total number of nests the K alternatives belong to. 

(0 1; 1,2,..., )KSθ θ< ≤ =s s s  is the (dis)similarity parameter introduced to capture correlations 

among the stochastic components of the utilities of alternatives belonging to the ths nest.5  

 Next, without loss of generality, let 1,2,..., MS  be the nests the M chosen alternatives 

belong to, let qs  be the number of chosen alternatives in the ths nest (hence 

1 2 ...
MSq q q M+ + + = ), and let 1 2, ,..., qε ε εs s s  be the stochastic terms associated with each of the 

chosen alternatives in the ths nest. Also, for simplicity in notation, let 1 2( , ,.., )KF ε ε ε  be 

represented as F . Using this notation and based on the functional form of F from equation (10), 

the Mth order partial derivative of the joint cumulative distribution in Equation (9) can be 

simplified into a product of MS  number of smaller partial derivatives, one for each nest. That is: 

11 2 1 2

1
...  ...  

MS

M q

qM F FF
Fε ε ε ε ε ε=

⎛ ⎞
= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂∏
s

s s s s
 (11) 

The order of each smaller partial derivative in the right side of the above equation is equal to the 

number of chosen alternatives in the ths nest.6 Using the above expression, Equation (9) may now 

be rewritten as: 

                                                 
5 This error structure assumes that the nests are mutually exclusive and exhaustive (i.e., each alternative can belong 
to only one nest and all alternatives are allocated to one of the KS  nests). 
6 The independence of the stochastic terms across different nests allows the Mth order partial derivative of F to be 
simplified into a product of smaller partial derivatives. This simplification forms the basis for the subsequent 
derivation of the MDCNEV choice probability expressions. However, if the error structure is relaxed to allow cross-
nested structures, the Mth partial derivative cannot be reduced into a simple product of smaller partial derivates. This 
makes it difficult and cumbersome to derive the consumption probability expressions for a cross-nested case. 
Different and more general approaches, such as the use of recursive functional forms in the derivation, would be 
needed for the cross-nested case. 



 7

 

1 1

1 11

* *
1 1; 1,2,...

1 1 2 ; 1,2,...,

1( ,..., ,0,...,0) | | d
...  

M

i i

S

M V V i K
q V V i qi i

q FP t t J F
Fε ε

εε ε

ε
ε ε ε= − + =

=
= − + =

+∞

=−∞

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟= ×⎨ ⎬⎜ ⎟∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭

∂∏∫
s s

s

s s s s
 

 (12) 

Next, in the above equation, consider the thqs  order partial derivative for the ths nest, 

which, after several algebraic manipulations (details are available with the authors), can be 

expanded as follows:  

thth

1

th

1 1

( 1)

1 nestnest, and1
{chosen alts}

nest, and1 ; 1,2,..., {

( ) , and
...  

1
...  

i i

i

q r q
q

r
r iiq

i

V V

iq V V i qi i i

q

q

F F e e sum X

F e
F

θ

θ θ

θ

ε

ε ε

ε

ε ε

ε ε

− + −
− −

= ∈∈
∈

−
−

∈= − + = ∈

⎛ ⎞ ⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ⎜ ⎟ ⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠

=
∂ ∂

∂

∂

∑ ∑∏
s

s
s

s s s

s s sss s s
s

s s
s

ss

s

1

1

th

( 1)( )
( 1)

1 nest
chosen alts}

( )
i

q r qV Vq
q r

r
r i

e e sum X
θ

ε θ

− + −−
−− − +

= ∈

⎛ ⎞ ⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠
∑ ∑∏
s

s
s s ss s s s

s
       (13)7 

In the above two expressions, ( )rsum X s is a sum of the elements of a row matrix rX s . This 

matrix takes a form described in Appendix A.  

Substitution of the second expression of Equation (13) into Equation (12), followed by 

further expansion and algebraic rearrangements (shown in Appendix B), leads to the following 

expression for the consumption probability8: 

( )

1

11 1
1 1

th
1 1

* * *
1 2

{chosen alts}

( 1)( ) ( 1)

1
1 1 1 1 1nest

( , ,... ,  0,...,0) | |

... ... ( ) exp

i

i

SM
iSM M M

=

SM

V V

M
i

q r qV Vqqq S S q r

r
r r r = =i

P t t t J e

e sum X e e f d

θ

θ
ε

θ ε

ε

ε

−
−

∈

− + −− +∞ − − +−
−

= = = ∈ =−∞

⎛ ⎞
= ×⎜ ⎟⎜ ⎟

⎝ ⎠
⎧ ⎛ ⎞ ∑⎪× −⎜ ⎟⎨ ⎜ ⎟

⎝ ⎠⎩

∏

∑ ∑ ∑ ∏ ∑ ∏ ∫
s

s
s

s s s s s
s

s
s

s ss
          

⎫
⎪
⎬

⎪ ⎪⎭

 (14) 

                                                 
7For presentation ease, in this equation (and from this point onward), we use the notation  ‘ rs ’  for ‘ rs ’  as the 

subscript  of X  in ( )rsum X s .  
8 In the Equation below, iθ  is the dis(similarity) parameter associated with the nest to which alternative ‘i’ belongs 

to. Both iθ  and θs  are used (at different places) in the expression to represent the same parameters (dissimilarity 
parameters) for the sake of notational and representational clarity. 
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where 
1

th

( )

1 nest

iK
V VS

i

f e

θ

θ
−

−

= ∈

⎧ ⎫⎛ ⎞⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑
s

s
s s

 

The integral in the above Equation has the following closed-form expression (proved/derived in 

Appendix C):  

( )
1

1 1

1
1

( 1)
1

1
( 1)

( 1) 1 !
exp

M
SM

=
SM

=

S

q r
=

q r

q r
I e e f d

f

ε
ε

ε

ε
+∞ − − +

−

− +=−∞

⎛ ⎞
− + −⎜ ⎟∑ ⎝ ⎠= − =
∑

∑
∫ s

s

s s

s

s s

s
s    

that proves and gives rise to the following closed-form consumption probability expression for 

the MDCNEV model: 

11 1

th
1

1

* * *
1 2

( 1)( )
1

( 1){chosen alts} 1 1 1 1nest

( , ,... ,  0,...,0)

( 1) 1 !
| | ... ... ( )

M

ii M M
i

SM

=

M

S

q r qV VV V qq S S
=

r
q ri r r = =i

P t t t

q r
J e e sum X

f

θ

θθ

− + −−− −−

− +∈ = = ∈

=

⎧ ⎫⎛ ⎞
− + −⎪ ⎜ ⎟⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎨ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ∑⎪⎝ ⎠ ⎝ ⎠

⎪⎩

∑
∏ ∑ ∑ ∏ ∑ ∏

s

s s

s s

s

s s s
s

s

s
s s

s ss1

SM

SM

q

r =

⎪
⎪
⎬
⎪
⎪⎭

∑
  (15) 

After further algebraic rearrangements (details are available with the authors), the above 

expression simplifies to: 

th1

1

th
th

* * *
1 2

nest{chosen alternatives}

1 1 1

1 nest 1 nest

( , ,... ,  0,...,0)

| | ... ...

ii

i

iM ik

M

VV

q Sq
ii

qVS Vr r = S

= i i

P t t t

ee
J

e e

θ

θθ

θ

θ θ

∈∈

= =

∈ = ∈

=

⎡ ⎤
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎧ ⎫⎛ ⎞ ⎢ ⎥⎛ ⎞⎪ ⎪⎜ ⎟ ⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎪ ⎪⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦

∑∏
∑ ∑

∑∏ ∑ ∑
s

s

s s
s

s
s

s s
s

s

s s s

1

1 11

( ) ( 1) 1 !
S M MM M

SM

q r

q S S

r
r ==

sum X q r

− +

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎛ ⎞⎛ ⎞⎪ ⎪− + −⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∑∏ ∏

s s

s ss ss

  (16) 

The general expression above represents the MDCNEV consumption probability for any 

consumption pattern with a two-level nested extreme value error structure. This expression can 

be used in the log-likelihood formation and subsequent maximum likelihood estimation of the 

parameters for any dataset with mutually exclusive groups (or nests) of interdependent multiple 

discrete-continuous choice alternatives (i.e., mutually exclusive groups of alternatives with 
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correlated utilities).9 It may be verified that the MDCNEV probability expression in Equation 

(16) simplifies to Bhat’s (2008) MDCEV probability expression when each of the utility 

functions are independent of one another (i.e., 1and 1 , and Mq S Mθ = = ∀ =s s s ). Also, one may 

verify that the above expression simplifies to the probability expressions derived by Bhat (2008) 

for a simple nested error structure with four alternatives. Finally, and importantly, it should be 

noted here that the nested extreme value extension developed in this paper is applicable not only 

for Bhat’s MDCEV model, but also for all Kuhn-Tucker (KT)-based consumer demand model 

systems involving multiple continuous choices or multiple discrete-continuous choices (see von 

Haefen and Phaneuf, 2005 for a review of KT-demand model systems). 

 

3 PROPERTIES OF THE MDCNEV MODEL 

In this section, we present a simulation experiment and analysis to examine the importance and 

the properties of the MDCNEV model. Section 3.1 describes the simulation experiment, and 

Section 3.2 presents and discusses the results of the experiment. 

 

3.1 Simulation Experiment 

We consider the following utility structure with three choice alternatives (this is a simplistic 

special case of the general utility function proposed by Bhat, 2008): 

1 1 1 1

2 2 2 2 2

3 3 3 3 3

exp( ) ln( )

exp( ) ln( )

exp( ) ln( )

u t

u x t

u x t

β ξ

β ξ

β ξ

= +

= +

= +

 (17) 

In the above equation, the terms 1 2 3,  ,  and u u u  represent the utility accrued from consuming 

1 2 3,  ,  and t t t  amounts of alternatives1,  2,  and 3, respectively. 2 3and x x  are explanatory 

variables affecting the baseline utility of alternatives 2 and 3 (The data corresponding to these 

explanatory variables was generated assuming that 2 3and x x  were uniformly distributed in the 

                                                 
9The analytic gradients of the MDCNEV model are rather tedious, and have not been coded at this point. Thus, the 
MDCNEV model takes about 10 hours to estimate relative to the MDCEV model that takes about 20 minutes. But 
this is not a fair comparison since we have written the gradients down for the MDCEV model. If we run the 
MDCEV model without the analytic gradients, it takes about 8 hours to estimate. Thus, the MDCNEV model takes 
about 25% longer to estimate than the MDCEV.  The authors are currently coding the gradients, though this is 
proving to be difficult for a general nested logit case. In any event, it is important to note that the MDCNEV model 
without analytic gradients is still faster than a mixed MDCEV model with gradients. This latter model takes about 
12 hours to run for the analogous “nested” specification of the final MDCNEV model of this paper.  
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interval [0, 2]). 1 2 3, ,  and β β β  are the parameters affecting the deterministic part of the baseline 

utilities ( 1 2 31.5, 1.2,  and 2.5β β β= = = ). 1 2 3, ,  and ξ ξ ξ  are the stochastic utility terms (or error 

terms) assumed to be nested extreme value distributed as below: 

( )1 2
1 2 3 3( , , ) exp exp exp expF

θ

θ θ

ξ ξξ ξ ξ ξ
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞= − − + − − −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥⎣ ⎦
  (18) 

The reader will note from the above distribution function that the alternatives 1 and 2 are 

assumed to be in a nest with a nesting parameter that is equal to θ . 

 Using the above utility structure and a consumption budget T = 100, we generated the 

consumption data ( * * *
1 2 3, ,  and t t t ) for 2500 hypothetical individuals, assuming that each individual 

chooses the consumption amounts * * *
1 2 3, ,  and t t t  to maximize the total random utility of 

consumption ( 1 2 3RU u u u= + + ) subject to a budget constraint * * *
1 2 3T t t t= + + . Five sets of 

consumption data were generated, each with a specific value of θ  (θ =0.1, 0.3, 0.5, 0.7, and 0.9). 

Subsequently, for each of the above identified values of θ , using the corresponding 

consumption data and the explanatory variable data, we estimated both MDCEV and MDCNEV 

models to retrieve the model parameters 1 2 3, ,  and β β β  (the nesting parameter θ  associated with 

the nest with alternatives 1 and 2 was also estimated with the MDCNEV model). Further, we 

used the parameter estimates (of both the models) to predict the consumption patterns of all the 

2500 hypothetical individuals. These predictions were compared with the simulated “true” 

consumptions used to estimate the parameters. Finally, we employed the parameter estimates to 

analyze the impact of a policy in which the explanatory variable 2x  was increased by 30%. 

These exercises were carried out for each of the above-identified values of θ .10 The results are 

discussed in the following section. 

 

3.2 Experiment Results and Discussion 

Table 1 presents the results of the simulation experiments and analysis conducted for all the five 

datasets. As indicated in the second row of the table, each dataset corresponds to a specific value 

of θ  (0.1, 0.3, 0.5, 0.7, and 0.9). The subsequent four blocks of rows present the following 

                                                 
10We conducted the same experiments with datasets simulated using additional values of θ , including 0.2, 0.4, 0.6, 
and 0.8. The corresponding results are not reported in the paper to conserve on space.  
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results for both MDCEV and MDCNEV models: (1) The model estimation results (in the row 

block labeled “Parameter Estimates” with the standard errors in parenthesis), (2) The goodness 

of fit measures, (3) The model prediction performance results, and (4) The policy analysis 

results. 

 

3.2.1 Parameter Estimates and Goodness of Fit Measures 

The block of rows labeled “Parameter Estimates” shows the parameter estimatesθ̂ , 1̂β , 2β̂ , and 

3β̂  (with corresponding standard errors in parentheses) estimated from each of the five simulated 

datasets using both MDCEV and MDCNEV models. As can be observed from the row labeled 

“θ̂ ”, the MDCNEV model estimation was able to recover the θ  parameters to the second 

decimal place. However, for values of θ  that are closer to 1, the standard errors of θ̂  are higher. 

This may be because of larger sample size requirements to efficiently estimate values of θ  that 

are closer to 1.   

A comparison of the MDCEV and MDCNEV model estimates of other parameters (i.e., 

the beta parameter estimates: 1̂β , 2β̂ , and 3β̂ ) indicates that for datasets simulated using smaller 

values of θ  (i.e., for values of θ  less than 0.7), the MDCNEV model parameter estimates are 

much closer (than the MDCEV model parameter estimates) to the “true” model parameters. It 

can also be observed that the standard errors of the MDCNEV model parameter estimates are 

substantially smaller than those corresponding to the MDCEV model. As the value of θ  

becomes closer to 1, the MDCNEV model estimates for 3β  are the only ones closer to the 

corresponding true value than that of the MDCEV model. It is interesting to note that, for 

1 2andβ β , the MDCEV model estimates appear to be slightly closer to the true values than that 

of the MDCNEV model estimates. However, the standard errors of the MDCNEV model 

parameter estimates are consistently smaller than (or equal to) those of the MDCEV model 

parameter estimates. Overall, with larger correlations in the data (i.e., for smaller values of θ ) 

the simpler MDCEV model is not able to recover the parameters well. On the other hand, for 

values of  θ  that are closer to 1, there appears to be no substantial difference between the two 

models in terms of the ability to recover model parameters. 
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The next block of rows corresponds to goodness of fit measures. Both the 2ρ (adjusted 

rho-bar squared) and the log-likelihood ratio test values (for the comparison of the MDCNEV 

model with the MDCEV model) indicate that the MDCNEV model clearly outperforms the 

MDCEV model when the true values of θ  are small. As the true values of θ  become closer to 1, 

although the MDCEV model can be rejected on the basis of the log-likelihood ratio test between 

the MDCEV and the MDCNEV models, there is no substantial difference in the  2ρ  values.  

In summary, these results indicate that ignoring the dependency between alternatives due 

to common unobserved factors, especially when highly significant (i.e., for values of θ  that are 

smaller than 0.7), can lead to biased model estimates and inferior model fit. 

 

3.2.2 Prediction Performance 

The block labeled “Model Prediction Performance Results” shows the differences between the 

predicted average percentage consumptions (obtained using the parameter estimates of both the 

models) and the simulated average percentage consumptions for the three alternatives. It is clear 

from these results that the MDCEV model substantially underperforms in predicting the 

consumption in datasets generated using values of θ  that are less than 0.7. Even for datasets 

generated using values of θ  that are closer to 1 (i.e., for θ  = 0.7 or 0.9), the differences between 

the predicted consumptions and the simulated consumptions are not negligible for the MDCEV 

model. On the other hand, the MDCNEV model predictions match closely with the simulated 

consumptions. This underscores the importance of accommodating inter-alternative correlations, 

from a prediction point of view, even when modest to low levels of correlations exist in the data 

(i.e., for values of θ  that are close to 1). 

  

3.2.3 Policy Analysis 

For policy analysis, the attribute corresponding to the second alternative was improved by 30% 

(i.e., 2x  was increased by 30%). The analysis results are reported in the last block of rows of 

Table 1 in terms of the percentage change in average consumption from before policy to after 

policy. 

As expected, for all datasets, both the models showed an increase in the consumption of 

the second alterative and a decrease in the consumption of the other alternatives. However, again 

for all datasets, between the MDCNEV and the MDCEV models, the proportional consumption 
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drawn from the first alternative (that belongs to the nest to which the second alternative belongs) 

is higher in the case of the MDCNEV model. This highlights the higher rate of substitution 

between the first and the second alternatives when they are in a nest (than the rate of substitution 

when they are not in a nest). Ignoring these differential substitution patterns between pairs of 

alternatives, when present, can potentially result in distorted policy implications. When the 

substitution effects are compared across the different datasets (simulated using different values 

of θ ), stronger substitution effects (between the first and second alternatives) can be observed 

for the MDCNEV model results for smaller values of θ , as expected. For values of  θ  that are 

closer to 1, the differences in the substitution effects and in the policy implications between the 

MDCEV and the MDCNEV models are not negligible, if not substantial. 

 In summary, the simulation experiment results presented in this section demonstrates the 

need to account for the presence of inter-alternative error term correlations from model fit, 

forecasting, and policy analysis standpoints. As expected, the repercussions of ignoring the error 

term correlations are severe in the presence of stronger correlations. In the presence of modest to 

low levels of error term correlations (i.e., when the values of θ  are closer to 1), it appears that 

using a simpler MDCEV model (rather than the MDCNEV model) may not severely affect the 

model parameter estimates. However, the impact on model predictions and elasticity effects (or 

policy impacts) is not negligible. Given that the end-objective of a model is for use in prediction 

and policy analysis (and not parameter estimation per se), the simulation results clearly illustrate 

the need to consider error correlation among utilities when present.  

 In the subsequent sections, we present an empirical application of the MDCNEV model 

to further explore the presence of, and the impact of ignoring, error correlation among utilities in 

real empirical contexts.  

 

4 EMPIRICAL CONTEXT 

The appropriate treatment of the time dimension of activity-travel behavior is one of the most 

important prerequisites to accurately forecasting travel demand. Hence, in the activity-based 

approach to travel demand analysis, “time” is viewed as the main backdrop/setting against which 

the entire activity-travel decision making process is assumed to unfold (see Kurani and Lee-

Gosselin, 1996). Specifically, in the travel demand literature, a significant amount of research 

has been devoted to two specific aspects of the time-dimension of activity participation behavior: 
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(1) Activity time-use, and (2) Activity timing. In this section we briefly discuss these two topics, 

and then position the empirical context of the current study. 

 

4.1 Activity Time-use and Activity Timing Analysis 

Activity time-use analysis is concerned with understanding how individuals use (or allocate) the 

time available to them among various activities and travel. Such an analysis is central to the 

activity-based approach to travel modeling, because, in this approach, individuals’ activity-travel 

patterns are viewed as a result of their activity time-use decisions (see Bhat and Koppelman, 

1999; Pendyala and Goulias, 2002; and Arentze and Timmermans, 2004). On the other hand, 

activity timing analysis pertains to understanding the timing decisions (i.e., the when-dimension) 

of individual activity participation. Such an analysis is essential to understanding individual 

responses to travel demand management policies.  

As indicated earlier, both of the above-identified topics have received considerable 

research attention over the past decade. A notable gap in the literature, however, is that the 

research efforts in the two directions have largely been independent of each other (see Pinjari 

and Bhat, 2009 and Rajagopalan et al., 2009). That is, while most activity time-use studies have 

ignored the timing dimension of activity participation by limiting their focus to only activity 

participation and time-use behavior, most activity timing studies have neglected the broader 

time-use context within which activity-travel timing decisions take place. It has only recently 

been explicitly recognized that individual preferences regarding activity time-use and activity 

timing jointly (rather than independently) shape activity-travel patterns, (see Ettema et al., 2007). 

Thus, only a handful of recent studies have considered activity time-use behavior and activity 

timing behavior in a joint framework (see Bhat, 1998, Yamamoto, et al., 2000, Chu, 2005, Joh et 

al., 2002, Ashiru et al., 2004, and Ettema et al., 2007). Most of these studies, however, consider 

activity participation during only certain specific portions of the day (Bhat, 1998; and Yamamoto 

et al., 2000), or consider only a single activity purpose or a very restricted set of activity 

purposes (Ettema et al., 2007, Ashiru et al., 2004 and Chu, 2005). Further, almost all of these 

studies are focused around a typical workday of commuters (see, Rajagopalan et al., 2009 for a 

discussion on these studies).  
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4.2 Current Empirical Research 

The empirical research in this paper contributes to the literature on activity time-use and activity 

timing analysis by developing a random utility maximization-based weekday activity generation 

model for non-workers that considers daily activity time-use behavior and activity timing 

preferences in a unified framework. More specifically, the MDCNEV model proposed in Section 

2 is employed to analyze non-workers’ activity participation and time allocation patterns in 

several activity purposes at different time periods of a weekday. The activity purposes 

considered in this study include: (1) In-home (IH) and out-of home (OH) maintenance, (2) IH 

discretionary/leisure, (3) OH volunteering, (4) OH socializing, (5) OH recreation, (6) OH meals, 

and (7) OH non-maintenance shopping.11 The activity timing intervals are defined by 

partitioning the day into six time periods: (1) Early morning (3am-7am), (2) Morning (7am-

9am), (3) Late morning (9am-12 noon), (4) Afternoon (12 noon-4pm), (5) Evening (4pm-7pm), 

and (6) Night (7pm-3am). In this first joint study of non-worker activity time-use and timing 

behavior, we limited the activity timing analysis to out-of-home (OH) discretionary activities. 

Thus, the model developed in the paper predicts the discrete choice of participation in, and the 

continuous choice of time allocated to: (1) maintenance activities, (2) IH discretionary activities, 

and (3) each of the five OH discretionary activity purposes at each of six time periods (for a total 

of 30 OH discretionary activity purpose-time period combination alternatives).  

 

5 DATA AND DESCRIPTIVE ANALYSIS 

5.1 Data Sources 

The primary source of the data used for this analysis is the 2000 San Francisco Bay Area Travel 

Survey (BATS), designed and administered by MORPACE International Inc. for the Bay Area 

Metropolitan Transportation Commission (MTC). The data contains information on: (1) 

Individual and household socio-demographics from over 15,000 households in the Bay Area, and 

(2) All activity episodes (including activity type, start and end times of the activity, geo-

referenced location of activity participation, and mode of travel to the activity) undertaken by the 

individuals from all the surveyed households for a two-day period.  

                                                 
11We use the terms, “IH and OH maintenance” and “maintenance” interchangeably and the terms “non-maintenance 
shopping” and “shopping” interchangeably. 
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In addition to the 2000 BATS data, several other sources of secondary data, including the 

land-use data, travel level-of-service data, Census population and housing data, and geo-

referenced data on businesses, bicycling facilities, highways and local roads were used to derive 

spatial variables characterizing the activity-travel environment (ATE) in and around the 

household locations of the individuals in the BATS data.12  

 

5.2 Descriptive Analysis of Activity Time-use and Timing Behavior in the Sample 

The final estimation sample consists of 6167 non-working adults (i.e., individuals of age>16 

years who are either unemployed, or employed but did not go to work on the survey day) from 

the San Francisco Bay area. Table 2 presents the descriptive statistics of these non-workers’ 

activity participation and time-use by activity type and activity timing.  

The grey-shaded column in the table presents the total number and percentage of non-

workers participating, and the average amount of time invested (for those who participated in the 

activity) in each activity purpose. As is evident from the first numbered row of this column, all 

non-workers in the sample participated in maintenance activities. Also the mean duration of time 

investment in maintenance activities is rather high, at about 1
210  hours. The mean durations of 

time investments in in-home (IH) discretionary activities and in out-of-home (OH) discretionary 

activities are about 1
25  hours and 3 hours, respectively (see second and third numbered-rows in 

the same column). The rows within the OH discretionary activity category provide the activity 

participation rates (i.e., the number of non-workers and the percentage out of the 3383 non-

workers who participated in at least one OH discretionary activity purpose) and average amounts 

of time investment (for those who participated in that activity purpose) in different OH 

discretionary activity purposes. These descriptive statistics indicate a low participation rate and a 

high amount of time investment in OH volunteering activities, and the reverse for OH non-

maintenance shopping activities.  

Within the OH discretionary activity category, the grey-shaded row of the table provides 

the activity participation rates and the average amounts of time investment (for those who 

participated) in OH discretionary activities that start during different time periods of the day. The 

                                                 
12The details of these secondary data sources, spatial variable computation, and the sample formation process are 
being suppressed here due to space considerations. The reader is referred to Guo and Bhat (2004) and Pinjari et al. 
(2009) for additional information on the secondary data sources and the procedures used to derive spatial variables. 
Details of the sample formation process are available from the authors. 
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activity participation rates indicate that, in general, non-workers’ OH discretionary activity 

participation is more likely to start in the late morning to evening periods (i.e., between 9am to 

7pm) rather than during the early morning, morning, and night periods. However, from the 

average time investment values, it appears that the OH discretionary activities that start in the 

early morning (3am-7am) and morning periods (7am- 9am) are undertaken for longer durations 

than those that start later in the day. 

Next, between the second to the last numbered columns, in the OH discretionary activity 

rows, the activity participation rates are provided for different time periods for each OH 

discretionary activity purpose. These activity participation rates indicate that most OH 

discretionary activity pursuits (irrespective of the activity purpose) are likely to start in the late 

morning to evening periods (i.e., between 9am to 7pm). Further, non-maintenance shopping is 

most likely to be undertaken during the afternoon period (12 noon-4pm) and least likely to be 

undertaken during the early morning, morning, and night periods. This is reasonable, given the 

nature of shopping activity and the temporal constraints due to shopping store opening and 

closing hours. Also, socializing activities are least likely to start before 9am.  

An important point from the descriptive statistics of Table 2 is that the non-worker, 

weekday, OH discretionary activity time-use and timing patterns are considerably different from 

those of workers reported elsewhere in the literature. For example, based on the comparison of 

the non-worker descriptives in Table 2 with similar descriptives on workers’ activity time-use 

and timing patterns by Rajagopalan et al. (2009), the non-worker OH discretionary activity 

participation rates as well as average time investments appear to be significantly higher than 

those for workers. Further, while non-workers’ activity time allocations are longer during the 

morning periods (i.e., before 9am) compared to the later parts of the day, workers’ activity time 

allocations reported by Rajagopalan et al. (2009) are longer during the evening period (i.e., after 

they return home from work). Such differences between non-workers and workers warrant the 

development of separate models for these two population groups.  

The non-worker MDCNEV model estimation results are presented and discussed in the 

following section. 
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6 MODEL ESTIMATION RESULTS 

6.1 Utility Function 

For the empirical model estimation, we considered various estimable forms of the general utility 

function in Equation (1) proposed by Bhat (2008). The following form of the utility function 

provided the best fit to the current empirical data: 
32

2
1 1 2 2

32

( ) ln ln 1 ln 1k
k k

k k

ttU tψ γ ψ γ ψ
γ γ=

⎛ ⎞⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑t                   (19) 

In the above utility equation, on the right hand side, the first term ( 1 1ln tψ ) corresponds to the 

utility contribution of the time invested in maintenance activities, the second term corresponds to 

the utility contribution due to participation in, and the time investment in, the IH discretionary 

activities, and the next 30 terms (for 3,4,...,32k = ) correspond to the utility contribution due to 

participation in, and the time investment in, each of the 30 OH discretionary activity purpose-

time period combination alternatives. 

 The reader will note here that the above equation can be obtained by constraining all the 

kα  terms (for 1, 2,3...,32k = ) in Equation (1) to be equal to zero (see Bhat, 2008). Further, there 

is no kγ  term for the maintenance activity category, because all individuals in the estimation 

sample participated in that activity (see Bhat, 2008). Note that, to distinguish the activity 

purpose-specific satiation and activity timing-specific satiation, we reparameterized kγ  (for k = 

3,4,…,32) as 
kk hlk γγγ ×= , where 

kl
γ and 

khγ  are the activity purpose-specific and activity 

timing-specific satiation parameters, respectively, corresponding to the activity purpose–activity 

timing combination alternative k. 

 

6.2 Variables Considered 

Several types of variables were considered in the MDCNEV model of non-worker activity time-

use and activity timing behavior. These included: (1) household socio-demographics (household 

size, family structure and household composition, income, race/ethnicity, and vehicle and bicycle 

ownership, etc.), (2) individual socio-demographics (gender, age, license holding to drive, 

physical ability/disability status, and employment status), (3) contextual variables such as day of 

the week and season of the year, and (4) a host of spatial variables characterizing the activity-

travel environment (ATE) around the household locations. The ATE variables included: (a) 
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household, population, and employment density measures, (b) land-use composition measures, 

(c) demographic composition variables, (d) activity opportunity variables, for various 

discretionary activities, including recreation, shopping, and eating out (or meals), and (e) 

transportation network measures (see Pinjari et al., 2009 for details on these variables). These 

ATE measures were considered at the residential TAZ (traffic analysis zone) level of spatial 

resolution, as well as at finer levels of spatial resolution. Specifically, to assess the impact of the 

ATE characteristics around a household’s immediate neighborhood, the above-mentioned 

variables were considered for 0.25 mile, 1 mile, and 5 mile radii around the residential 

coordinates of each individual in the sample (see Guo and Bhat, 2004).   

In the next section (Section 6.3), we discuss the estimation results of the MDCNEV 

model. Section 6.4 focuses on likelihood-based measures of data fit. 

 

6.3 Estimation Results 

The final specification results of the MDCNEV model are presented in Tables 3 and 4. Table 3 

presents the parameter estimates corresponding to household and individual socio-demographics, 

day of the week and seasonal effects, and activity-travel environment (ATE) attributes on the 

baseline utility specification. Table 4 presents the baseline preference constants and satiation 

parameter estimates. The maintenance activity purpose serves as the base activity purpose 

category and the night time period serves as the base activity timing category for most (but not 

all) variables. Further, the model is specified (and the results are presented) in such a way that 

the effect of each variable is first identified separately along the activity purpose and activity 

timing dimensions. Subsequently, any interaction effects of the variable over and beyond the 

unidimensional effects are identified. A ‘-’ entry corresponding to the effect of a variable for a 

particular activity purpose in the top “activity purpose dimension” panel of Table 3 indicates no 

significant effect of the variable on the corresponding activity purpose utility. The same holds for 

the “activity timing dimension” panel and the “activity purpose-activity timing” panel. Further, 

the effects of variables on the baseline utilities have been constrained to be equal in Table 3 if 

coefficient equality could not be rejected based on statistical tests. Finally, the t-statistic of each 

estimated parameter is presented in parenthesis beneath the parameter. 
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6.3.1 Effects of Household Socio-Demographics on Baseline Utility 

Among the household socio-demographic variables, the lone coefficient of the household size 

variable indicates that, with increasing household size, non-workers tend to spend more time on 

maintenance activities as opposed to IH leisure and OH discretionary activities. This is perhaps 

due to an increase in household maintenance needs as the number of household members rises. 

The reader will note here that this coefficient, although marginally significant with a t-statistic of 

1.62, was retained in the model specification due to intuitive considerations (see Kitamura et al., 

1996 for a similar result). With respect to the timing decisions of non-workers’ OH discretionary 

activities, household size did not show any significant impacts.  

 The next household socio-demographic attribute is a dummy variable indicating if a 

household comprises of a single adult. The coefficients on this variable indicate that non-workers 

who live alone are more likely to participate in out-of-home (OH) socializing and OH meal 

activities compared to non-workers not living alone. Single individuals are also more likely to 

participate in OH discretionary activity during the evening time period. These effects reflect the 

need for human interactions when living alone. The preference for the evening period may be 

simply because this period offers better opportunities to coordinate discretionary activities jointly 

with other individuals. Further, non-workers who live alone are more likely (than those who do 

not live alone) to undertake OH recreation activities during the night time period. This 

inclination toward recreation activities during the night time may again be because of the 

potential opportunities for social contact, the nature of the activity purpose under consideration 

(such as movies, theatre shows, etc.), and the lesser extent of household responsibilities and 

greater available free time during night time (relative to non-workers who do not live alone). 

 The impact of the presence of children was explored using several explanatory variables, 

including continuous variables for the number of children, and dummy variables for the presence 

of children, of different age groups. The final model specification has two dummy variables: (1) 

Presence of children of age less than 5 years, and (2) Presence of children of age between 5 and 

15 years. Interestingly, none of the children-related variables showed any direct impact on the 

activity purpose preferences of non-workers. However, presence of children, when interacted 

with the female dummy variable, had a significant impact on maintenance activity pursuits. With 

respect to activity timing, non-workers with children of age below 5 years are less likely to time 

their OH discretionary activities during the morning, late morning, evening, afternoon, and 
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evening periods (i.e., between 9 am and 7pm). A likely explanation is that, on weekdays, other 

adults of the household (for example, working adults) may not be available during these time 

periods. This may necessitate non-workers to take care of the children, and prevent them from 

pursuing OH discretionary activities. In contrast to these impacts of the presence of young 

children, the presence of older children (of age between 5 and 15 years) increases the propensity 

of non-workers to participate in OH discretionary activity pursuits during the morning and 

evening periods. A plausible explanation is that non-workers may combine OH discretionary 

activities within the pick-up/drop-off tours associated with assisting older children with their 

travel needs (such as travel to/from school) during (and around) the morning and evening time 

periods. 

 The next household socio-demographic variable is the number of adults in the household 

who worked on the survey day. As the number of working adults in the household increases, 

non-workers avoid OH discretionary activity pursuits during the late morning and afternoon 

periods. This may be because non-workers jointly undertake OH discretionary activities with 

working individuals in the household, and the late morning and afternoon periods are less likely 

to offer a common time window for such joint activity pursuits. 

 The effect of household income is introduced in the form of dummy variables, with the 

“medium income” category (annual income between 45K and 100K) being the base. The 

corresponding coefficients reveal that non-workers from low income (annual income <45K) 

households are more likely to spend their time on maintenance and IH discretionary activities (as 

opposed to OH discretionary activities), while those from high income (annual income >100K) 

households are more likely to spend their time on OH discretionary activities such as socializing, 

recreation, meals, and shopping. These effects reflect the high “consumption potential” 

associated with high income levels (see Chu, 2005). In contrast to such significant activity 

purpose-specific impacts, household income does not influence activity timing decisions. 

 The coefficient on the vehicle ownership variable suggests a lower propensity to 

participate in IH discretionary activities as vehicle ownership levels rise, perhaps due to the 

flexibility and improved mobility to pursue OH discretionary activities. Finally, within the 

category of household demographics, the coefficient corresponding to the number of bicycles 

shows a positive association between bicycle ownership and OH recreational activity pursuits. 
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This may be because bicycle owners are outdoor-oriented and physical fitness conscious (see 

Pinjari et al., 2009).  

 

6.3.2 Effects of Individual Socio-Demographics on Baseline Utility 

Among the individual socio-demographic variables, the coefficients on the female gender 

dummy variable indicate that female non-workers are more likely (than males) to spend their 

time in maintenance and OH volunteering activities. Further, non-working women with children 

in the household are even more likely to invest time in maintenance activities (see the coefficient 

on the variable “female with kids”). This association of women with maintenance activity 

responsibilities reiterates the traditional gender role that has been documented in a number of 

studies (see, for example, Bhat and Misra, 1999; Yamamoto and Kitamura, 1999; Srinivasan and 

Bhat, 2006; Gossen and Purvis, 2005; Chen and Mokhtarian, 2006; and Goulias and Henson, 

2006). In the context of OH discretionary activity pursuits, the activity timing-related results 

suggest that non-working women are least (most) likely to time their OH discretionary activities 

during the early morning and morning (late afternoon and evening) periods. These timing 

preferences may again be traced to the maintenance activity responsibilities of non-working 

women during the early morning, morning and night periods (see Bradley and Vovsha, 2005).  

The coefficients on the age-related variables (introduced as dummy variables –

age<30years and age>65years, with age between 30-65years as the base) point to the higher 

tendency of the younger (age<30years) non-workers toward OH socializing activities, and the 

older (age>65years) non-workers toward OH volunteering activities With respect to activity 

timing decisions, younger non-workers are more likely to time their OH discretionary activity 

pursuits during the evening and night time periods, while the older non-workers are less likely to 

do so during the night time period. The evening and night time preferences of the younger 

demographic segment may be because of the nature of the social activities they are most likely to 

undertake. That is, as discussed earlier (in Section 6.3.1), on weekdays, evening and night time 

periods may be more conducive for joint activities such as socialization that usually involve 

multiple individuals. On the other hand, older people may refrain from OH discretionary activity 

pursuits during the night time to avoid late night driving. 
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 The impacts of the next two variables - holding of a license to drive and being physically 

disabled - reflect the expected association between how mobile a person is and the level of OH 

discretionary activity participation. 

 Finally, among the individual socio-demographic attributes, the coefficients on the 

employed dummy variable indicate that employed adults who did not go to work on the survey 

day are less likely to undertake maintenance and IH discretionary activities. Specifically, they 

are least likely to undertake maintenance activities. This may be because employed individuals 

are more likely to undertake maintenance activities during their work-days and, consequently, 

avoid maintenance activities during non-work days. Further, they might have chosen not to go to 

work specifically to carry out OH discretionary activities.  

 

6.3.3 Day of the Week and Seasonal Effects 

Non-workers are more likely to participate in OH discretionary activities such as socialization, 

recreation, meals, and shopping on Fridays than on other weekdays. On Fridays, the OH 

discretionary activities are more likely to be undertaken during the night time period. Further, 

there is a lower propensity for IH discretionary and OH recreation activities during the Fall 

season, and a higher propensity for OH recreation activity during the Summer season.  

 

6.3.4 Effects of Activity-Travel Environment (ATE) Attributes on Baseline Utility 

A variety of ATE effects were explored in the model specification. However, and interestingly, 

most of the ATE effects did not turn out to be statistically significant in the empirical 

specification. The only statistically significant ATE effect in the final model specification 

corresponds to retail employment (i.e., the number of jobs in the retail sector) within 0.25 mile 

radius of the household location. The corresponding parameter estimates indicate that, with 

higher retail employment density around the household, non-workers are more likely to 

undertake OH meals during the afternoon period. This activity purpose preference may be a 

reflection of the availability of OH meal activity opportunities (such as restaurants and eat-out 

centers) around the household. The afternoon time period preference may be due to the nature of 

the activity purpose (i.e., meals) under consideration.   
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6.3.5 Baseline Preference Constants 

The estimated baseline preference constants and the corresponding t-statistics are presented in 

the first half of Table 4. Maintenance activity is treated as the base alternative. Note also that, in 

the column labeled “In-home Discretionary”, the rows corresponding to different time periods 

have no entries because we did not model the timing of in-home discretionary activities. 

 The baseline preference constants do not have any substantive interpretations. They capture 

generic tendencies to participate in each activity purpose-time period category as well as 

accommodate the range of the continuous independent variables in the model. However, all the 

baseline preference constants are negative, indicating the high participation level of non-workers 

in maintenance activities relative to IH discretionary and OH discretionary activities. Also, the 

baseline preference constant for the IH discretionary activity is higher than those for all the OH 

discretionary activity purpose-time period combinations, indicating the higher participation level 

of non-workers in IH discretionary activities relative to OH discretionary activities. 

 

6.3.6 Satiation ( kγ ) Parameters 

The satiation parameter estimates and the corresponding t-statistics are provided in the second 

half of Table 4. These satiation parameters were introduced dimension-wise in the model 

specification. That is, instead of estimating 31 satiation parameters (i.e., one parameter for in-

home discretionary activity, and one parameter each for the 30 OH discretionary activity 

purpose-timing combination alternatives), 11 satiation parameters were estimated. Among these 

11 estimated satiation parameters, 6 were estimated to distinguish the satiation effects for each of 

the 6 activity purposes and an additional 5 satiation parameters were estimated to distinguish 

satiation effects for five time periods (the night time period satiation parameter was fixed at 1.00 

due to estimability considerations). The dimension-wise estimates are presented in grey-shaded 

cells in Table 4. Further, as explained in Section 6.1, the satiation parameters for each of the 30 

activity purpose-activity timing combination alternatives have been obtained through appropriate 

combination of the dimension-wise estimates. 13 

                                                 
13 Hence, from Table 3, the kγ  estimate for OH meals activity during afternoon time period is (0.92)×(66.05) = 
60.50. The appropriate t-statistics (against zero) are also shown in the table. 
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 From the satiation parameter estimates and the corresponding t-statistics provided in 

Table 4, it can be observed that significant satiation effects exist in the time investment patterns 

for each activity purpose-timing combination. Further, it can be observed that the satiation levels 

show larger variation across different activity purposes than across different time periods. 

Among different activity purposes, IH discretionary activities are associated with low satiation 

(hence high durations) when compared with those of OH discretionary activities. Within OH 

discretionary activities, the shopping category is associated with the highest level of satiation 

(hence low durations). With regard to the activity timing categories, consistent with the 

descriptive results in Section 5.2, the early morning and morning periods are associated with low 

satiation levels (hence high durations of OH discretionary activity participation). Overall, these 

satiation trends are in agreement with the average amounts of time investment reported in Table 

2. 

 

6.3.7 Nesting (θ ) Parameters 

Several nesting structures were considered and later refined based on intuitive and statistical 

considerations. The final specification included two nests – (1) Nest 1 that includes OH meal 

activities during evening and night time periods and OH socializing and OH recreation activities 

during the night time period (i.e., a total of 4 activity purpose-timing alternatives), and (2) Nest 2 

that includes OH meals and OH shopping activities during both late morning and afternoon 

periods (i.e., a total of 4 activity purpose-timing alternatives). The nesting parameter for Nest 1 is 

0.94 (with a t-statistic of 2.74), and that of Nest 2 is 0.98 (with a t-statistic of 1.56), 

respectively.14  

 

6.3.8 Comparison with MDCEV Model Parameters  

The preceding discussions in this Section have focused on the MDCNEV model parameter 

estimates. The estimation results of the simpler MDCEV model are neither presented nor 

discussed. This is because the parameter estimates are not substantially different (between the 

MDCNEV and MDCEV models) to affect variable effect interpretations. This is due to the 

modest levels of inter-alternative error term correlations (i.e., the nesting parameters are closer to 

1). Nonetheless, as in the simulation experiments, it is possible that ignoring even modest levels 

                                                 
14 These statistics are computed for the null hypothesis that the nesting parameters are equal to 1. 
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of error term correlations may result in tangible differences in goodness of fit and policy 

predictions between the two models, as we demonstrated in the simulation experiments earlier. 

Hence, the subsequent sections focus on model fit and policy simulations. 

 

6.3.9 Goodness of Fit Measures  

The log-likelihood value for the MDCEV model with only the constants in the baseline 

preference (and with the satiation/translation parameters) is -74,012.6. The log-likelihood value 

at convergence of the MDCEV model with the explanatory variables is -73,690.1. For the 

MDCNEV model with the explanatory variables and with two additional parameters for the two 

nests, the log-likelihood at convergence is -73,603.1.  The likelihood ratio between the final 

MDCNEV and the MDCEV models is 173.91, which is substantially larger than the critical chi-

square value with 2 restrictions (one for each nest) at any reasonable level of significance. This 

highlights the importance of the nested model from a goodness-of-fit standpoint. 

  Another approach to compare the model fit is the Bayesian Information Criterion (BIC), 

which incorporates a penalization to an apparent improvement in model fit due to larger sample 

sizes. The BIC for a model is equal to 2 ln( ) ln( )L number of parameters Q− × + × , where ln( )L  is 

the log-likelihood value at convergence and Q is the number of observations. The model that results in 

the lowest BIC value is the preferred model. The BIC value for the MDCNEV model (with 79 

model parameters) is 147895.6, which is lower than that for the simpler MDCEV model 

(148052.2 with 77 model parameters). Thus, the BIC favors the MDCNEV model. 

 A third measure of model fit is the adjusted rho-bar square ( 2ρ ), which is equal to 0.0038 

for the MDCEV model and 0.0050 for the MDCNEV model. Given the complexity of the 

models with 36 alternatives, it is not surprising to obtain such low values of 2ρ .  

 

7 POLICY SIMULATIONS WITH EMPIRICAL DATA 

Goodness of fit measures, as discussed above, favor the MDCNEV model over the MDCEV 

model. However, it is worth noting here that both of the nesting parameter estimates are close to 

1 (and one of the nesting parameters is in fact only marginally significant), indicating low levels 

of correlations. Besides, the model coefficients were not substantially different between the two 

models. This leaves a possibility that the MDCNEV model may not be necessary (over the 

simpler MDCEV model) to model activity time-use and timing choices in the current empirical 
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context. To explore this further, we conducted policy simulations using the estimates obtained 

from both the MDCEV and MDCNEV models. 

The policy simulation was conducted in the context of a five-fold across-the-board 

increase in the “Retail employment within 0.25 miles of household” variable for 20 individuals 

in the sample. This variable positively affects the time individuals expend in OH meals during 

the afternoon period. The OH meals-afternoon alternative is in Nest 2, which includes the four 

alternatives of OH meals-late morning, OH meals-afternoon, OH shopping-late morning, and OH 

shopping-afternoon. Thus, to keep the presentation focused, we examine the impact of a change 

in the retail employment variable on time use in only these four OH alternatives and two other 

alternatives – maintenance activity and IH discretionary activity (for all other alternatives, the 

policy impact was negligible enough to be ignored) . For each individual, we used 250 sets of 

error term draws15 to determine the time use before and after the change in retail employment. 

The results are reported in Table 5, which provide, for each of the six alternatives identified-

above, the percentage change in time-use due to the increase in retail employment as averaged 

across the 20 individuals used in the simulation. These results clearly show the higher draw from 

the OH meals-late morning, OH shopping-late morning, and OH shopping-afternoon 

alternatives. This is as expected given that these alternatives are in the same nest as the OH 

meals-afternoon alternative. Further, the MDCEV model overpredicts the increase in time-use 

for OH meals in the afternoon by about 25%, and also overpredicts the draw from the 

maintenance and IH discretionary activities.  

    In summary, although the nesting parameters indicate low levels of correlations in the 

current empirical context, there are differences in the policy results as predicted by the MDCEV 

and MDCNEV models. These results are in line with the results of the simulation experiment, 

and reinforce the notion that model predictions and policy results can be quite different between 

the MDCEV and MDCNEV models even at low levels of correlation implied by the MDCNEV 

model.   

 

 

                                                 
15In this paper, to simulate the nested extreme value (NEV) error term draws, we used a procedure based on Laplace 
Transforms proposed in McNeil et al. (2005). The S code for simulating NEV error term draws using McNeil et al.’s 
procedure is available for download at http://www.ma.hw.ac.uk/~mcneil/book/QRMlib.html. For additional 
references on the simulation of NEV error terms, see Bodea and Garrow (2006) and Wu et al. (2006).  
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8 SUMMARY AND CONCLUSIONS 

This paper develops a multiple discrete-continuous nested extreme value (MDCNEV) model that 

relaxes the independently distributed (or uncorrelated) error terms assumption of the MDCEV 

model proposed by Bhat (Bhat, 2005 and Bhat, 2008). Specifically, the MDCNEV model 

proposed in this paper captures inter-alternative correlations among alternatives in mutually 

exclusive subsets (or nests) of the choice set, while maintaining the closed-form of probability 

expressions for any (and all) consumption pattern(s).  

 The MDCNEV model is applied to analyze non-worker out of home discretionary 

activity time-use and activity timing decisions on weekdays using data from the 2000 San 

Francisco Bay Area data. This empirical application contributes to the literature on activity time-

use and activity timing analysis by considering daily activity time-use behavior and activity 

timing preferences in a unified utility maximization-based framework. The model estimation 

results provide several insights into the determinants of non-workers’ activity time-use and 

timing decisions and highlight the importance of the nested model. Also, the knowledge of the 

activities (and the corresponding time allocations and timing decisions) predicted by this model 

can potentially be used for the subsequent scheduling and sequencing of activities and related 

travel in regional activity-based travel demand microsimulation models. 

 In the current empirical context, the MDCNEV model performs better than the MDCEV 

model in terms of goodness of fit. The nesting parameters are, however, very close to 1 (even 

though one of them is statistically different from one), indicating low levels of correlation. 

Nonetheless, even with such low correlation levels, empirical policy simulations with the Bay 

area data indicate that it is possible that there are non-negligible differences in policy predictions 

and substitution patterns exhibited by the two models. These findings are in line with the results 

of the experiments conducted with simulated data. Of course, when the levels of inter-alterative 

error correlations are higher, the MDCNEV model clearly outperforms the MDCEV model in 

our simulations. In any event, it behooves the analyst to, at the least, estimate the MDCNEV 

model to test for the presence of inter-alternative correlations in the data before employing the 

simpler MDCEV model.             

The research in this paper may be extended in several ways, including: (1) The 

consideration of more general nesting structures (such as cross nesting) and GEV-based error 

term specifications, and (2) The development of an integrated model of activity time-use, activity 
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timing, activity sequencing and scheduling decisions, and travel-related decisions. These are 

important areas for future research that the authors are currently pursuing. 
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APPENDIX A 
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APPENDIX B 

 

From Equation (13),  
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Equation (B1) can be used to expand the Mth order partial derivative of Equation (9) as follows: 
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The above expression for the Mth order partial derivative can be substituted into the probability 

expression of Equation (9) as follows: 
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The probability expression in Equation (B3) can be rewritten as follows: 
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The reader will observe that the expression in Equation (B4) involves a product over all nests 

(i.e., over s = 1,2,…,SM) of summations over all alternatives in a nest  (i.e., over rs = 1,2,…, qs ). 

This product of summations can be expressed as a summation of products and the Equation (B4) 

can be rewritten as follows: 
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In the above expression, all the terms containing 1ε are moved to the right corner and the other 

terms are moved out of the integral as follows: 
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Finally, the product of exponentials in the integral above is expressed as a single exponential, 

and the probability expression is as below:  
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This expression is the same as the consumption probability expression given in Equation (14). 

The expression includes an integral that has a closed-from expression (proved in Appendix C). 
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APPENDIX C 
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Applying integration by parts, the above integral can be simplified as follows: 
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Table 1. Simulation Experiment Results 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

True Model Parameters 
θ  = 0.1,   1β  = 1.50,       

2β  = 1.20, 3β  = 2.50 

θ  = 0.3,   1β  = 1.50,       

2β  = 1.20, 3β  = 2.50 

θ  = 0.5,   1β  = 1.50,       

2β  = 1.20, 3β  = 2.50 

θ  = 0.7,   1β  = 1.50,       

2β  = 1.20, 3β  = 2.50 

θ  = 0.9,   1β  = 1.50,       

2β  = 1.20, 3β  = 2.50 

Parameter Estimates MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV 

      θ̂  1.00 (fixed) 0.10 (0.00) 1.00 (fixed) 0.30 (0.00) 1.00 (fixed) 0.50 (0.01) 1.00 (fixed) 0.70 (0.03) 1.00 (fixed) 0.90 (0.13) 

     1̂β  1.61 (0.09) 1.50 (0.01) 1.58 (0.06) 1.48 (0.02) 1.55 (0.05) 1.47 (0.03) 1.52 (0.05) 1.46 (0.04) 1.47 (0.05) 1.44 (0.04) 

     2β̂  1.28 (0.06) 1.20 (0.01) 1.26 (0.05) 1.19 (0.02) 1.24 (0.04) 1.17 (0.03) 1.20 (0.04) 1.16 (0.03) 1.16 (0.04) 1.14 (0.04) 

     3β̂  2.30 (0.04) 2.48 (0.03) 2.32 (0.04) 2.47 (0.03) 2.34 (0.04) 2.46 (0.04) 2.38 (0.04) 2.45 (0.04) 2.42 (0.04) 2.44 (0.04) 

Goodness of Fit Measures MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV 

     2ρ  0.071 0.290 0.070 0.159 0.070 0.107 0.070 0.082 0.071 0.073 

     Log-likelihood ratio 8737.00 3540.15 1498.25 492.85 53.20 

Model Prediction 
Performance Results MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV 

     Alternative 1  4.02  0.17  3.62  0.16  2.89  0.14  1.91  0.13  0.72  0.11 

     Alternative 2  4.09  0.17  3.62  0.11  2.81  0.05  1.76  0.00  0.53 -0.06 

     Alternative 3 -8.11 -0.35 -7.24 -0.27 -5.71 -0.19 -3.67 -0.13 -1.25 -0.05 

Policy Analysis Results MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV MDCEV MDCNEV 

     Alternative 1 -2.29 (-8.00) -2.76 (-11.15) -2.22 (-7.85) -2.63 (-10.55) -2.13 (-7.65) -2.41 (-9.58) -2.02 (-7.39) -2.16 (-8.48) -1.88 (-7.08) -1.92 (-7.39) 

     Alternative 2  5.21 (21.77)  5.57 (27.80)  5.10 (21.50)  5.38 (26.65)  4.94 (21.16)  5.11 (24.82)  4.74 (20.72)  4.81 (22.75)  4.50 (20.14)  4.51 (20.70) 

     Alternative 3 -2.92 (-6.16) -2.80 (-5.08) -2.88 (-6.00) -2.76 (-5.02) -2.81 (-5.76) -2.70 (-4.98) -2.73 (-5.47) -2.64 (-4.95) -2.62 (-5.13) -2.58 (-4.95) 
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Table 2. Descriptive Statistics of Activity participation and Time-Use by Activity Purpose and Activity Timing16 

  

ACTIVITY TIMING 
Early 

Morning 
(3am-7am) 

Morning 
(7am-9am) 

Late Morning
(9am-12pm) 

Afternoon 
(12pm-4pm) 

Evening 
(4pm-7pm) 

Night 
(7pm-3am) 

ACTIVITY PURPOSE 

Number (%) of non-
workers participating, and 

mean duration of 
participation among those 

participating 

88 
(1.8%)17 
193 min 

469 
(9.6%) 

172 min 

1416 
(28.9%) 
123 min 

1556 
(31.7%) 
101 min 

894 
(18.2%) 
102 min 

485 
(9.9%) 

111 min 

Maintenance 6167    (100%)   630 min -- -- -- -- -- -- 

IH Discretionary  2427   (40.4%)   333 min -- -- -- -- -- -- 

OH Discretionary 3383   (54.9%)   170 min -- -- -- -- -- -- 

      Volunteering   494   (14.6%)18151 min     10 (2.0%)19  97 (19.6%)   171 (34.6%)  113 (22.9%)   85 (17.2%)  87 (17.6%) 
      Socializing   667   (19.7%)   149 min   7 (1.0%)  30 (  4.5%)  187 (28.0%)  239 (35.8%) 149 (22.3%) 115 (17.2%) 
      Recreation 1099   (32.5%)   154 min 47 (4.3%) 165 (15.0%)  386 (35.1%)  310 (28.2%) 182 (16.6%) 126 (11.5%) 
      Meals 1183   (35.0%)   115 min 19 (1.6%) 127 (10.7%)  318 (26.9%)  403 (34.1%) 317 (26.8%) 139 (11.7%) 
      Non-Maintenance Shopping 1485   (43.9%)     64 min   7 (0.5 %)   60 (  4.0%)  519 (34.9%)  764 (51.4%) 233 (15.7%)  77 (  5.2%) 

 

                                                 
16 The reader will note here that the average time investments reported in this table are for only those who participated in the corresponding activity purpose or for those who 
participated in OH discretionary activities during the corresponding time period. Also, the activity participation percentages across all activity purposes (and across all time 
periods) may sum to more than 100% because of multiple discreteness (i.e., participation in multiple activity purposes and/or during multiple time periods). For example, a 
non-worker can undertake both OH recreation and OH meal activities on a day. Similarly, a non-worker can undertake OH meal activity during both afternoon and night 
periods.  
17 Percentages in this row are out of the 3383 non-workers who participated in at least one OH discretionary activity during the day.  
18 Percentages in this column, from this row onward, are out of the 3383 non-workers who participated in at least one OH discretionary activity during the day.  
19 Percentages from this row and column onward are based on total number of non-workers participating in row activity purpose [(10/494)×100=2.0%]. 
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Table 3. The MDCNEV Model Results: Baseline Parameter Estimates 
 Household (HH) Socio-demographics 

 HH 
size 

Single 
member 

HH 

Kids of 
age <5 

yrs 
present 

Kids of 
age 5-15 

yrs 
present 

#  of adults 
in HH who 
worked on 

the day 

HH 
annual 
income 
< 45k 

HH 
annual 
income 
>100k 

# of 
vehicles 
in HH 

# of 
bicycles 
in HH 

‘Activity Purpose’ Dimension          

IH and OH Maintenance 0.031 
(1.62) - - - - 0.117 

(2.45) - - - 

IH Discretionary - - - - - 0.247 
(3.98) - -0.092 

(-3.31) - 

OH Volunteering - - - - - - - - - 

OH Socializing - 0.384 
(3.99) - - - - 0.169 

(3.61) - - 

OH Recreation - - - - - - 0.169 
(3.61) - 0.076 

(4.11) 

OH Meals - 0.274 
(3.55) - - - - 0.169 

(3.61) - - 

OH Non-Maintenance Shopping - - - - - - 0.169 
(3.61) - - 

‘Activity Timing’ Dimension          

Early Morning - - - - - - - - - 

Morning - - -0.079 
(-1.22) 

0.232 
(1.85) - - - - - 

Late Morning - - -0.079 
(-1.22) - -0.125 

(-3.72) - - - - 

Afternoon - - -0.079 
(-1.22) - -0.125 

(-3.72) - - - - 

Evening - 0.266 
(2.94) 

-0.079 
(-1.22) 

0.294 
(3.19) - - - - - 

Night - - - - - - - - - 

Activity Purpose-Activity Timing          

OH Recreation – Night - 0.528 
(2.34) - - - - - - - 
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Table 3 (Continued.) The MDCNEV Model Results: Baseline Parameter Estimates  

 Individual Socio-demographics Day of week and seasons ATE attributes 

 

Female 
Female 

with kids 

Age  
< 30 
yrs 

Age  
> 65 yrs 

Licensed 
to drive 

Physically 
disabled Employed Friday Fall Summer

Retail 
employment 
within 0.25 

miles of HH (in 
1000s of jobs) 

‘Activity Purpose’ Dimension   

IH and OH Maintenance 0.325 
(7.56) 

0.138 
(2.13) - - - - -0.208 

(-4.72) - - - - 

IH Discretionary - - - - - - -0.152 
(-2.46) - -0.117 

(-2.29) - - 

OH Volunteering 0.420 
(4.65) - - 0.625 

(7.45) 
0.531 

(6.72) 
-0.292 

(-3.49) - - - - - 

OH Socializing - - 0.381 
(2.81) - 0.531 

(6.72) 
-0.292 

(-3.49) - 0.290 
(5.34) - - - 

OH Recreation - - - - 0.531 
(6.72) 

-0.292 
(-3.49) - 0.290 

(5.34) 
-0.178 
(-2.19)

0.213 
(3.05) - 

OH Meals - - - - 0.531 
(6.72) 

-0.292 
(-3.49) - 0.290 

(5.34) - - - 

OH Non-Maintenance Shopping - - - - 0.531 
(6.72) 

-0.292 
(-3.49) - 0.260 

(3.77) - - - 

‘Activity Timing’ Dimension            

Early Morning -0.267 
(-2.76) - - - - - - - - - - 

Morning -0.267 
(-2.76) - - - - - - - - - - 

Late Morning 0.237 
(4.77) - - - - - - - - - - 

Afternoon 0.237 
(4.77) - - - - - - - - - - 

Evening - - 0.315 
(2.44) - - - - - - - - 

Night - - 0.775 
(5.99) 

-0.551 
(-4.92) - - - 0.342 

(3.27) - - - 

‘Activity Purpose-Activity Timing’            

OH Meals – Afternoon - - - - - - - - - - 0.554 
(2.18) 
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Table 4. The MDCNEV Model Results: Baseline Preference Constants and Satiation Parameters 

Baseline Preference Constants 

Activity Timing 

Activity Purpose 

In-home 
Discretionary 

Out-of-home Discretionary 
Volunteering Socializing Recreation Meals Shopping 

-6.40 - - - - - (-80.61) 

Early Morning - -13.09 -13.13 -11.27 -12.08 -13.03
(-38.01) (-32.80) (-60.13) (-47.31) (-31.68) 

Morning - -10.84 -11.70 -10.04 -10.20 -10.91 
(-62.19) (-53.55) (-69.80) (-73.44) (-62.29) 

Late Morning - -10.49 -10.04 -9.33 -9.45 -8.87 
(-68.61) (-80.16) (-76.93) (-81.60) (-80.47) 

Afternoon - -10.91 -9.78 -9.56 -9.26 -8.45 
(-69.20) (-79.11) (-76.95) (-79.03) (-78.96) 

Evening - -11.22 -10.33 -10.16 -9.48 -9.75 
(-68.47) (-77.36) (-73.48) (-81.06) (-78.93) 

Night - -10.98 -10.46 -10.48 -10.19 -10.77 
(-63.23) (-68.67) (-67.21) (-72.20) (-68.06) 

Satiation Parameters 

Activity Timing 

Gamma ( kγ ) 
estimates for 

activity 
timing  

(t-statistics) 

Activity Purpose 

In-home 
Discretionary 

Out-of-home Discretionary 
Volunteering Socializing Recreation Meals Shopping 

395.80 115.73 111.11 127.75 66.05 36.38
(16.86) (6.01) (7.16) (6.95) (7.46) (7.27)

Early Morning 1.19 - 138.02 132.50 152.35 78.77 43.38
(3.87) (3.26) (3.41) (3.38) (3.44) (3.42) 

Morning 1.25 - 144.43 138.66 159.43 82.43 45.39 
(6.31) (4.35) (4.74) (4.67) (4.82) (4.77) 

Late Morning 1.10 - 127.01 121.94 140.20 72.49 39.92 
(7.19) (4.61) (5.07) (5.00) (5.18) (5.11) 

Afternoon 0.92 - 106.02 101.78 117.03 60.50 33.32 
(7.19) (4.61) (5.08) (5.00) (5.18) (5.11) 

Evening 0.99 - 114.64 110.06 126.55 65.42 36.03 
(6.75) (4.49) (4.91) (4.84) (5.01) (4.95) 

Night 1.00 - 115.73 111.11 127.75 66.05 36.38 
         (Fixed) (6.01) (7.16) (6.95) (7.46) (7.27) 
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Table 5. Elasticity Effects of a Five-fold Increase in “Retail Employment within 0.25 Miles of the Household” 

% Change in time use 

Activity Purpose Time period MDCEV MDCNEV 

OH Meals Late morning -0.232 -0.584 

OH Meals Afternoon 27.743 21.873 

OH Shopping Late morning -0.321 -0.387 

OH Shopping Afternoon -0.213 -0.378 

Maintenance All day -0.189 -0.170 

IH Leisure All day -0.244 -0.229 

  
 

 


