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Abstract 

The analysis of highway accident data is largely dominated by traditional statistical 

methods (standard regression-based approaches), advanced statistical methods (such as models 

that account for unobserved heterogeneity), and data-driven methods (artificial intelligence, neural 

networks, machine learning, and so on). These methods have been applied mostly using data from 

observed crashes, but this can create a problem in uncovering causality since individuals that are 

inherently riskier than the population as a whole may be over-represented in the data. In addition, 

when and where individuals choose to drive could affect data analyses that use real-time data since 

the population of observed drivers could change over time. This issue, the nature of the data, and 

the implementation target of the analysis imply that analysts must often tradeoff the predictive 

capability of the resulting analysis and its ability to uncover the underlying causal nature of crash-

contributing factors. The selection of the data-analysis method is often made without full 

consideration of this tradeoff, even though there are potentially important implications for the 

development of safety countermeasures and policies. This paper provides a discussion of the issues 

involved in this tradeoff with regard to specific methodological alternatives and presents 

researchers with a better understanding of the trade-offs often being inherently made in their 

analysis. 
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1. Introduction 

The implicit assumption in traditional statistical analyses is that an appropriately estimated 

model will both uncover causal effects and have the highest possible prediction accuracy. But the 

recent development and application of data-driven methods, as well as issues of causality in 

traditional statistical modeling, suggest that safety analysts must often, even if not always, make a 

trade-off between prediction accuracy and uncovering underlying causality. That is, models that 

predict well may not be the best at uncovering causality, and models that are good at uncovering 

causality may not be the best for practical prediction purposes. 

There are four general methodological approaches that are potentially suitable for the 

analysis of transportation safety data: traditional statistical models, endogeneity/heterogeneity 

models, data driven methods, and causal inference models.1 Each of these models have an implicit 

trade-off between practical prediction accuracy and their ability to uncover underlying causality. 

Traditional statistical models, such as those in the Highway Safety Manual (AASHTO, 2010), use 

conventional statistical methods with limited data (data that is readily available to most safety 

practitioners) to predict the effect of various safety improvements on accident risk. The traditional 

literature (such as that supporting the Highway Safety Manual) claims predictive capabilities and 

causal explanations, but generally lacks fundamental support for these claims via assessments of 

parameter bias (for example, potential biases in parameter estimates and estimates of standard 

errors). Predictive capabilities of traditional highway-safety models are typically based on 

assessment of aggregate counts (total count of accidents for example), and there is scant support 

for true tests of predictability (such as tracking observational predictions against observed counts 

                                                 
1 Causal inference models have become a key analytic approach in the economics field, and have been gaining in 

interest among transportation researchers. However, the complexities of applying the approach in the complex 
behavioral arena of transportation-related decision making are an ongoing concern (Brathwaite and Walker, 2018). 



4 

several years ahead of the estimated models). In fact, claims of predictive ability in many 

traditional models are limited in credibility, in large part due to temporal instability in parameters 

(Mannering 2018). Similarly, claims about causal ability in the traditional safety literature are 

limited because the true range of influential factors on accident likelihoods is unknown. Missing 

data problems, problems of consistency of measurement, and variation in unobserved effects due 

to economic, socio-demographic and vehicle characteristics amplify the potential bias in 

estimation.  

To address some of the limitations above, endogeneity models (see Bhat et al., 2014) and 

heterogeneity models (see Mannering et al., 2016 for a thorough review) have been developed to 

extend traditional safety models by using advanced statistical and econometric methods. 

Endogeneity models account for the potential endogeneity of a safety-related variable when 

attempting to extract the “true” causal effect of the variable on a primary safety outcome variable 

of interest, after accommodating “spurious” associative effects or correlation effects between the 

variables. Unobserved heterogeneity models control for unobserved factors that may influence the 

likelihood and resulting injury severities in accidents. Endogeneity models and heterogeneity 

models are stylized, in that they are based on relatively limited datasets where the range of the 

potential endogenous and explanatory variables is much larger than widely available transportation 

highway data. A richer set of variables can potentially improve predictive capability and 

understanding of causality; however, the increased model complexity creates an additional burden 

on model transferability and predictive validation. Model complexity also poses challenges in 

estimation due to computational constraints. Estimation of highly complex endogeneity models 

and heterogeneity models involves simulation-based methods or analytic approximation methods 

due to the numerical integration needed to capture unobserved effects. While there has been 
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substantial progress in such methods in the recent past (see, for example, Bhat, 2018), the required 

estimation techniques can still present dimensionality challenges for large accident datasets.  

Data-driven methods include a wide range of techniques including those relating to data 

mining, artificial intelligence, machine learning, neural networks, support vector machines, and 

others. Such methods have the potential to handle extremely large amounts of data and provide a 

high level of prediction accuracy. On the downside, such methods may not necessarily provide 

insights into underlying causality (truly understanding the causal effects of specific factors on 

accident likelihoods and their resulting injury probabilities).2  

Finally, causal-inference models explicitly recognize that accidents are only observed for 

a portion of the driving population and that this can lead to erroneous interpretations of findings 

(more on this below). Causal-inference models have rarely been applied in the accident analysis 

literature, but such approaches in other fields base these models on time series data to identify 

causal effects. However, causal-inference models have weak predictive capabilities because, 

among other reasons, they typically are not based on individual-accident level data and thus 

address a limited number of explanatory variables. Besides, the time-series nature of these models, 

while supposedly providing more basis for inferring causality, raises additional issues about the 

possible presence of uncontrolled factors that change during the intervening periods of time 

thereby potentially tainting the presence and estimated extent of causation.  

Figure 1 presents a graphic of the trade-offs associated with these methods regarding 

predictive capability, causal inference capability and big data suitability (the ability of the methods 

to address problems that involve large amounts of data.) The choice of one method over another 

often involves several important considerations that go beyond a simple tradeoff between 

                                                 
2 Some insight into the influence of specific variables in data-driven methods can made through simulation and 

calculating factors such as Gini Index, but this may not necessarily provide insight into underlying causality. 
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prediction and causality. Each of these four methods (data-driven versus causal versus traditional 

versus endogeneity/heterogeneity models) involve different levels of data. In addition, the 

application of the model (modeling purpose) needs to be considered as well. For example, 

endogeneity models and heterogeneity models would seem to be superior to traditional models in 

both prediction and causality; however these models typically use highly detailed datasets, and the 

models are complex in their application. In contrast, traditional safety models have relatively 

modest data requirements that are easy to apply, but their utility comes at the expense of a loss of 

predictive capability and lack of insight into causal influences (with the added risk of biased 

inference).  

With extremely large datasets (big data) such as those that might be available in naturalistic 

driving studies, traditional models, advanced endogeneity/heterogeneity models, and causal effect 

models can be challenging to estimate, often making data-driven methods the preferred approach. 

In fact, data-driven methods can cover a wide range of data sizes, but, with smaller data sizes, the 

advantages of other methods to uncover causality tend to be preferred among analysts. Also, data 

driven methods may not be adequately complemented with domain expertise, resulting in inference 

driven primarily by statistical reasoning. The advent of artificial intelligence (AI) methods and the 

explosive growth of AI potentially opens the door for introducing some level of “automated” 

domain expertise to fine-tune data driven models that are developed strictly by statistical 

reasoning. But, at the end, human judgement and domain expertise are still likely to be needed in 

some form, especially in the context of driving the formulation of models of causal inference, since 

directional relationships between variables are formulated based on apriori knowledge of 

influential factors. As an example, in big data problems studying the impact of factors affecting 

fatality likelihoods, sample size is a significant issue. Fatalities on average occur at the rate of 
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roughly 0.6 percent of all reported accidents. To extract meaningful policy, very large amounts of 

driving data are required to develop a sample size of non-traditional variables (for example, 

relating to impaired driving, access to taverns, breweries and pubs along commuter routes and 

proximity of these locations to drivers’ residences). In a purely data-driven model, this insight will 

not be extracted because the database may not initially contain distances from breweries, taverns 

and pubs to commuter routes. If one were to estimate a model of fatality likelihoods, domain 

expertise helps fine-tune a data driven model to include distances and therefore measures of 

“access” to undesirable effects, since the likelihood of alcohol-impaired driving has a well-known 

causal effect on fatalities. There is also anecdotal and published evidence in the literature that 

correlates higher fatality rates with robust economic outlook. The contextual awareness value of 

domain expertise is therefore lacking in models that are developed on pure statistical reasoning. 

Therefore, it can be reasoned that big data models (and data driven models in general) could 

potentially suffer from a model-based data-definition disconnect which can cause issues relating 

to the identification of relevant variables and potential “missing data” issues. While some of this 

disconnect may be addressed by automated and trained AI systems, human involvement by way 

of domain expertise and judgment will still remain a requirement.  

The discussion above raises an important issue. If the goal of big data modeling is to 

provide added insight, then the burden of proof lies in the quality of statistical information 

extracted from those models. In this sense, big-data modeling is not merely an exercise in 

techniques that accommodate large amounts of data or simply draw associations among variables, 

but the predominant burden of proof lies in the ability of these models to provide higher-quality 

inference (“big” inference). The example of drunk-driving fatalities described above is one 

example of big inference that can be limited without a basic understanding of the sources of 
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unobserved heterogeneity. Another example of limited inference from big data relates to not 

adequately making efforts to disentangle causation from correlation, leading to a comingling of 

the two that can lead to misinformed policy actions (more on this later). These issues can be 

described as limited big inference in the absence of model-based data definitions using domain 

expertise. On the other hand, big-data inference can bring in variables that can serve as a source 

of heterogeneity due to scale. For example, if one were to estimate driving risk models based on 

naturalistic driving datasets, several non-traditional fine-resolution variables can become available 

for modeling, such as lane offsetting variables or vehicle kinematic measures such as pitch, yaw 

and roll.  

Figure 1 suggests that the future of big data applications in traffic safety modeling lies at 

the intersection of strong domain knowledge and quality of extraction of statistical information, 

and this intersection is heavily influenced by methods that attempt to uncover, to the extent 

possible, causal effects (after controlling for sources of correlation) and unobserved heterogeneity. 

Therefore, as a baseline for further evaluation of big data and data driven models, endogeneity 

models and heterogeneity models can potentially serve as useful tools for both model selection 

and model definition purposes.  

Given the above discussion, with data size and application limitations, what are the 

potential consequences of trading off predictive capability to understand causality and what factors 

will compromise our understanding of causality to get better predictive capabilities? Various 

aspects of this tradeoff are discussed in the following sections, after first discussing causality 

considerations in safety modeling. In the rest of this paper, we do not discuss causal inference 

models because, as already indicated, these models have rarely been applied in the accident 

analysis literature and are not typically based on individual-accident level data.   
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2. Causality versus Other Explanations in Relationships 

The difference between causality and other possible relationship structures involving 

variables will always be important from a policy action perspective and from the behavioral 

perspective of improving safety. This is an issue that has been long discussed and remains an 

important consideration as we enter a “big data” landscape. One possible reason for causality being 

incorrectly inferred may simply be the fact that the sample being used in safety analysis is itself 

not representative of the larger population, and thus a relationship estimated for a specific sample 

may not reflect “true” causal relationships in the larger population. For example, the use of 

observed accidents, and particularly data conditioned on an accident having occurred, can be 

potentially problematic for both accident occurrence likelihood and injury-severity statistical 

modeling because individuals involved in accidents may not be a random sample of the population. 

That is, the fact that less-safe drivers will be over-represented could potentially present a 

transference problem of the relationship to the population at large. Further, less-safe drivers may 

be particularly over-represented in specific types of accidents. To see the problem more clearly, 

consider a statistical model of the resulting accident-injury severities on a mountain pass. A study 

of this problem may conclude that high snow accumulations increase the resulting injury-severities 

in crashes. Injury severity will be known only after a crash has occurred, so it is conditional on a 

crash having occurred. However, due to the substantial increase in risk involved in driving in snow-

related conditions, some drivers may choose to take other modes of travel or avoid traveling 

adverse weather. Thus, it is possible that the individuals who continue to drive over the mountain 

pass in adverse conditions are self-selected drivers with risk profiles significantly different from 

the driving population as a whole. This makes the interpretation of the high-snow-accumulation 

variable challenging. The variable’s estimated parameter could be picking up the actual effect of 
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the snow or merely picking up the unique risk characteristics of the drivers who continue to drive 

in snowy conditions. It is also possible this effect could be much more subtle than this extreme 

weather case. For example, safe drivers may avoid dangerous roadway sections or dangerous 

intersections with specific types of traffic controls by choosing alternate routes than drivers with 

less of a concern for safety (see, for example, Bhat et al., 2014). In such situations, estimating 

models on observed crash data will tend to overstate the risk of dangerous roadway segments and 

intersections because these roadways tend to have drivers with higher risk than the overall driving 

population. Some studies have considered only severe accidents (such as fatalities) thereby 

potentially compounding the problem because the sample is further restricted making less-safe 

drivers even more over-represented in the sample.  

Another possible, and broader, reason why causality is co-mingled with other associative 

effects is that many of the explanatory variables used in accident-likelihood and injury-severity 

models could be viewed as endogenous, causing inconsistent parameter estimates and 

compromising the interpretation of the statistically estimated parameters (Washington et al., 2011, 

Abay et al., 2013). For example, seat belt use may be endogenous to injury severity. In other words, 

individuals who do not wear seat belts may be overrepresented in severe injuries (conditional on 

an accident), but this may be because those who do not wear seat belts are intrinsically aggressive 

drivers and this aggressive driving itself may contribute to severe injuries. Thus, one may have to 

consider seat belt use as an endogenous variable to determine the true causal engineering benefit 

of seat belt use in preventing serious injuries conditional on an accident. Importantly, such 

considerations are not merely esoteric scholarly pursuits, but are very germane to assessing the 

potential effectiveness of various countermeasures and selecting priority measures. In the next few 

sections, we discuss the ability to investigate causality effects from different types of data/methods.  
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3. Causality and the Nature of Traditional Accident Data  

Of all the many safety-related studies that have been undertaken over the years, those that 

are based on police-reported accident data have formed the primary basis for developing statistical 

models to help guide specific safety-related highway and traffic-control improvements. Over the 

years, the analyses of these data have become increasingly sophisticated, evolving from simplistic 

regression analyses to highly sophisticated endogeneity/heterogeneity methods. Although the 

front-line statistical methods used to analyze these data are the mainstay of academic journals, 

from an application perspective, the culmination of this research is embodied in the Highway 

Safety Manual (AASHTO, 2010). The Highway Safety Manual approach is based on police-

reported vehicle accident data, and has used that empirical basis to provide a practical and readily 

accessible way of quantifying the likelihood of safety-related impacts of specific highway 

improvements. 

With regard to the likelihood of accidents, using police-reported accident data, studies 

commonly seek to model the number of accidents occurring on a highway entity, such as a segment 

of highway or intersection, over some specified time period using count-data or other statistical 

methods (Lord and Mannering, 2010). Explanatory variables may include roadway characteristics 

such as traffic volume, lane widths, pavement friction, highway grade and curvature, and so on. 

Regarding the injury severity of accidents (occupant injury levels such as no injury, possible injury, 

evident injury, disabling injury, and fatality), discrete-outcome statistical methods are typically 

applied (Savolainen et al., 2011). Information on injury severity is available only after an accident 

has occurred (thus conditioned on an accident having occurred). Using data conditioned on the 

fact that an accident has occurred, the explanatory variables can be expanded from the highway-
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segment data used in the accident-likelihood models to include accident-specific variables such as 

seat-belt use, blood-alcohol level of drivers, weather conditions at the time of the accident, and so 

on.  

As discussed earlier, the use of observed accidents, and particularly data conditioned on an 

accident having occurred, can be potentially problematic.3 For sure, the possibility of such 

selectivity would make the interpretation of the parameters difficult, specifically for weather-

related parameters and more so for some modes of highway travel (for example, motorcyclists are 

particularly likely to self-select in rain and snow as discussed in Mannering, 2018). More 

importantly, for forecasting with models estimated with traditional police data and even other real-

time data, anything that would shift the self-selectivity of road users in adverse weather or on 

unsafe routes would result in inaccurate predictions. As examples of this self-selectivity shift, 

newer vehicles with advanced safety features may make drivers more confident in adverse weather 

conditions, thus changing the mix of drivers in such conditions. Regarding route choice, safe 

drivers may seek to avoid dangerous roadway segments and intersections, but as congestion 

increases, they may alter their travel routes as they trade off time and safety and this, in turn, could 

change the mix of drivers on specific roadway segments. 

Methods to attempt to control for self-selectivity and related considerations are discussed 

in the next section. Data requirements and econometric complexities to implement these 

procedures for accident data analysis can be formidable obstacles. To circumvent data barriers, 

many economists have sought more simplistic causal-inference approaches to address 

                                                 
3 The authors gratefully acknowledge Clifford Winston of the Brookings Institution for identifying this potential 

issue in traditional safety modeling, and subsequent discussions. There is also the issue of under-reporting of 
accidents, particularly less severe accidents. That is, minor accidents are less likely to be reported to police, which 
in turn affects what the analyst sees as observed accidents. This is a known issue that has been shown to create 
model estimation problems as discussed in Mannering and Bhat (2014). 
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identification issues and uncover causality, particularly with the application of ordinary least-

squares regressions to choice applications (Dale and Krueger, 2002). This is generally done by 

using control variables such as indicator variables and fixed effects, with the intent of achieving 

the equivalent of a randomized trial where self-selectivity and endogeneity can be strictly 

eliminated (Angrist and Pischke, 2009; 2015; 2017). However, the generalizability of the fixed-

effects results can be questionable, and even in a truly randomized trial likely temporal shifts in 

observed behavior can make prediction problematic with ongoing temporal variations inducing 

unknown errors in fixed effects (Mannering, 2018). In the relatively complex non-linear models 

of the likelihood and severity of highway crashes that include many explanatory variables relating 

to roadway characteristics, traffic conditions, weather conditions, and vehicle and driver 

characteristics, identification of control variables and their incorporation into the model is much 

more challenging than the more aggregated-data methods applied by economists to address this 

problem. In addition, predictive application can be quite limited because the variables used as 

controls may also be of interest for predictive purposes. It is important to note that even analyses 

that consider the likelihood of an accident, such as accident frequency models, that typically 

include roadway characteristics and do not include any driver characteristics, are still potentially 

affected by selectivity. For example, safe drivers may choose to avoid roads with certain 

characteristics so the observed accidents on specific roads may not be drawn for a random sample 

of the driving population. Thus, an estimated parameter for a dangerous curve could theoretically 

be over stated since high-risk (more accident-likely) drivers may be overrepresented on that curve.4 

The potential bias that selectivity introduces and the effect it may have on prediction is not 

fully understood, though evidence of the potential biases due to ignoring self-selection has been 

                                                 
4 While such road selectivity among safe drivers may exist, the authors are unaware of any studies that have quantified 

this effect.  
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presented in Shin and Shankar (2013) in an analysis of accident severity likelihoods. But, as 

pointed out in Mannering (2018), the issue is likely to be very context dependent. For instance, 

because everyone has a chance of being involved in an accident (even the safest drivers), it may 

be that an accident data sample collected just so happens to include the full spectrum of individuals 

from the safest to the least safe. In addition, when considering the injury severities in an accident, 

it is not clear whether the drivers observed in accidents will have more severe injuries, less severe 

injuries, or about the same injuries relative to drivers not observed in accidents. For example, 

drivers frequently appearing in accident data bases may get involved in more accidents of lower-

injury severity than those less frequently involved in accidents. It is also important to note that in 

the cases just mentioned, the resulting injury severities are fundamentally different from traditional 

endogeneity applications that often have an outcome determined by a choice. In the case of vehicle 

accidents, once various driver actions are taken, the resulting injury severity is determined by 

physics where forces are transferred through the vehicle to its occupants (though even the physics 

involved in the crash are influenced by underlying risk profiles of the driver including vehicle 

choice and other factors). However, endogeneity of variables in accident data, where the self-

selection is based on a choice (such as wearing seat belts or not, or whether a motorist decides to 

drive at all or not in severe weather, or where traffic engineers choose to place specific types of 

traffic control devices, or where engineers decide to place additional lighting), is likely to be a 

more serious issue, as has been demonstrated by Eluru and Bhat (2007), Oh and Shankar (2011),  

and Bhat et al. (2014).  

What is clear, is that selectivity of any form (based on human choice or otherwise) should 

certainly be considered in the interpretation of any model results that use traditional accident data 
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(data that only includes accident-involved individuals), and even naturalistic driving and observed 

traffic data since selectivity on safe and less-safe routes could be a factor.  

 

4. Endogeneity, Unobserved Heterogeneity and Causality 

As just discussed, traditional statistical approaches to the analysis of highway safety data 

(based on observed accident data) have struggled with a variety of statistical issues, most notably 

endogeneity bias and omitted variables bias, because traditional statistical methods are often 

estimated with limited data for practical reasons. Despite these limitations, traditional models have 

the advantage of being accessible and easily applicable, and they have had a measurable real-world 

impact on highway safety practice. Nonetheless, traditional methods can be substantially enhanced 

in their value by recognizing elements of endogeneity and unobserved heterogeneity.  

Endogeneity considerations (including those involving self-selectivity as discussed earlier) 

may be handled in one of two broad ways (for more details, please see Bhat and Eluru, 2009). One 

approach is based off Heckman’s seminal work in the 1970s (Heckman, 1979), and has been 

extended to numerous transportation applications that have been undertaken over the years (for 

reviews see Mannering and Hensher, 1987; Washington et al., 2011). In particular, using variations 

of Heckman-style methods, transportation applications have considered a number of issues in this 

regard, such as selectivity bias corrections for vehicle usage models (Mannering and Winston, 

1985; Mannering, 1986a, 1986b; Oh and Shankar 2011; Shin and Shankar 2013), which are needed 

because, for example, individuals that own newer vehicles (which are capable of being driven 

more with fewer repairs) are a non-random, self-selected sample of higher-use vehicle owners. 

There has also been work with selectivity-bias corrections for average speed by route (Mannering 

et al., 1990), with the idea being that drivers attracted to specific routes are a non-random sample 
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(for example, faster drivers may be more likely to take freeways and slower drivers may be more 

likely to take arterials). The basis of the Heckman-style approach is to start with a probabilistic 

model that captures the selectivity process and then to incorporate the probability of the outcomes 

under consideration to correct the bias in the model that estimates the magnitude of the outcome. 

In the case of safety research, this would presumably start with a model that considered individuals’ 

overall probability of being accident involved (or, following the weather-related example earlier, 

the probability of a motorist driving in adverse weather), and then use this to correct statistical 

models to the overall frequency and severity of crashes as gathered from observed accidents. 

However, classic Heckman-style selectivity corrections are manageable because the equation 

being corrected is a simple linear model with a continuous variable (vehicle usage in miles driven 

per year, average speed in miles per hour, etc.). In the analysis of accident data, the likelihood of 

an accident and its resulting injury severities are typically modeled using non-linear count-data 

and discrete outcome models (Lord and Mannering, 2010; Savolainen et al., 2011), which makes 

a Heckman-style selectivity correction (using control function approaches) an econometric 

challenge, particularly if unobserved heterogeneity and other more advanced econometrics are 

involved in the model as well (Mannering and Bhat, 2014; Mannering et al., 2016).  

Another approach to handling endogeneity is inspired by the work of Heckman (1974) and 

Lee (1983). Rather than use a two-step Heckman type approach, this second approach models the 

potential endogenous variable jointly with the outcome of interest. While this second approach has 

been used in a general transportation context for a long time (see Hamed and Mannering, 1993, 

Bhat, 1996, and Bhat, 1998), the approach has only been relatively more recently applied to models 

in the safety literature (Eluru and Bhat, 2007, Bhat and Eluru, 2009, Oh and Shankar 2011, Spissu 

et al., 2009, Pinjari et al., 2009, Abay et al., 2013, and Bhat et al., 2014). Thus, for example, by 
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modeling seat belt use as well as injury severity in a joint model system (allowing for correlation 

in the error terms of the underlying equations determining these discrete outcomes, say because of 

aggressive/risky driving behavior), one can estimate the remaining “true” causal effect of seat belt 

use on injury severity (addressing also the situation that aggressive drivers are likely to be over-

represented in accident-only data). Importantly, through the use of copula methods employed in 

some of the more recent applications listed earlier of the joint approach, a variety of parametric 

distributions may be used to characterize the nature of the joint distribution of the errors in the 

joint system. While the Heckman-type control function approach is generally considered to be 

more robust to miss-specification of the error distributions, this issue is at least assuaged in the 

joint model system by testing different distributions forms through copulas and selecting the best 

fit copula (see Mannering and Bhat, 2014). Further, the joint model system is estimated in a “one-

shot deal” and does not incorporate corrections for the standard errors as needed in the second step 

of Heckman-type methods. The joint model approach also technically does not need the a priori 

identification of an instrument variable that affects the selection equation (seat belt use in the 

example above) but not the outcome equation (injury severity) because identification is facilitated 

through the assumed parametric distribution of the error terms. However, for stability purposes, 

having at least one variable affecting the selection equation but not the outcome equation is helpful 

even in the joint model approach, and such exclusion restrictions can be determined through 

empirical estimations.5   

While endogeneity models attempt to account for self-selectivity and related broader 

jointness issues, heterogeneity models (including random parameters models, latent class models 

                                                 
5 Identification ensures the parameters of interest are uniquely estimable (see for example, Manski 1995; Manski 

2009). Lavieri et al. (2016), based on the Generalized heterogeneous data model (GHDM) of Bhat (2015), extend 
this joint modeling approach by using a small set of common latent stochastic constructs affecting multiple 
outcomes to generate a parsimonious covariance matrix across the multiple outcomes.  
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and others) recognize the presence of countless factors that are unlikely to be observed by the data 

analyst (unobserved heterogeneity) and that influence accident likelihoods and resulting injury 

severities, despite the presence of a large number of potential explanatory variables. Because 

heterogeneity models have been the focus of an entire paper recently in the safety field (see 

Mannering et al., 2016), we do not expend too much space discussing the motivation and methods 

for such models here. But, using the random parameters application as an example, these 

heterogeneity models allow the effect of explanatory variables to vary from one accident to the 

next and from one roadway to the next in (or other units of observation for accident analysis, such 

as drivers, counties, vehicles, etc.). This can account for a vast variety of unobserved factors and 

can also potentially mitigate the selectivity issue (that riskier drivers will be over-represented) by 

giving different parameter values to different observations. However, restrictive distributional 

assumptions are often made, and prediction can be challenging due to the complexity of the models 

and the observation-specific estimated parameters. In the process of incorporating unobserved 

heterogeneity through random-parameter type specifications, it is important that observed 

heterogeneity not be given less attention. From a causality and policy insight perspective, it is 

critical that all sources of observed heterogeneity (through observed exogenous variables) be tested 

and specified first, and unobserved heterogeneity, as referred to in our label of “heterogeneity 

models”, be included to recognize the inevitable presence of the moderating effect of unobserved 

factors after accommodating for the presence of observed heterogeneity, rather than in-lieu of 

observed heterogeneity.  

 

5. Data Driven Methods, Big Data and Causality 
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Due to the structure of the models and estimation procedures, traditional statistical models 

and endogeneity/heterogeneity models have difficulties in processing very large amounts of data 

(big data). There are a number of data driven methods that have been applied to the analysis of 

accident data with the intent of uncovering correlations and developing accurate predictive models. 

Still, the field of accident analysis is ripe for additional applications of non-regression data-driven 

methods (which are often free from standard parametric assumptions used in traditional 

regressions). The class of non-regression methods is fairly broad, inclusive of: instance-based 

algorithms (such as K-nearest neighbor, or support vector machines, etc.); regularization 

algorithms (such as the least absolute shrinkage and selection operator); decision tree algorithms 

(such as classification and regression trees); Bayesian networks (such as naïve Bayes and Bayesian 

networks among others); clustering (K-means, expectations-maximization, etc.); association rule 

algorithms; artificial neural networks (such as back-propagation and stochastic gradient descent); 

deep learning algorithms (such as the convolutional neural network, deep belief network, etc.); 

dimensionality reduction algorithms (such as principal component analysis and its variants); 

ensembling algorithms (such as boosting and bagging, random forests); feature selection 

algorithms, reinforcement learners, natural language processing, and so on. In accident analysis, 

for example, outside of the numerous studies on regression applications, support vector machines 

have been employed (Li et al., 2008) for the estimation of both frequency and severity outcomes 

(Li et al, 2008; Li et al, 2011). In addition, artificial neural networks (Abdelwahab and Abdel-Aty, 

2001; Abdel-Aty and Pande, 2005; Chang 2005; Delen et al., 2006; Abdel-Aty et al., 2008;), 

support vector machines (Li et al., 2008; Yu and Abdel-Aty, 2013), Bayesian networks (Hossain 

and Muromachi, 2012; Sun and Sun, 2015), classification and regression trees and hierarchical 

tree-based regression (Karlaftis and Goulias, 2002), Bayesian neural networks (Riviere et al., 



20 

2006; Xie et al., 2007), deep belief networks (Pan et al., 2017) and classification trees (Pande and 

Abdel-Aty, 2006a,b) have been applied to evaluate real-time crash risk. 

While the “universe” of data-driven methods is rich for application to accident analysis, 

several limitations exist relative to traditional econometric and statistical methods. Better 

prediction is a potential benefit; and the field of statistical reasoning has provided excellent tools 

for improved “curve fitting” of observations in a fundamental sense. However, questions still 

remain regarding the appropriate measures of the inferential quality of the data-driven algorithms. 

First and foremost, among the measures, is the measure of “why?” Are the variables extracted 

from the data-driven methods able to provide insight into cause and effect that are robust over 

time, and transferable to other domains? The current answer is that to date no data-driven method 

has been shown to provide true cause and effect and true cause-and-effect transportability to 

another domain of search. That is, for example, even if the training dataset was exhaustively 

analyzed to reveal purported cause and effect, the algorithm would more than likely fail in a 

different learning scenario with a very different set of hidden causal relationships. Transfer 

learning, domain adaptation and intelligent causal rule generation are still well beyond the reach 

of the big-data/AI claims that are published in the literature. 

Most existing applications of data-driven methods in the accident-analysis field have also 

not really dealt with big data (where data-driven methods become the dominant approach), but 

instead have dealt with data sizes that place them in direct competition with other traditional 

statistical techniques. With traditional data sets (in terms of size), sophisticated forms of these data-

driven methods have been shown to predict accident data with comparatively high accuracy 

(earning high predictability marks in Figure 1). However, the inability to uncover causality and 

provide substantive inferences has been a historical weakness of these approaches, often earning 



21 

them a “black-box” designation because of the difficulty of unraveling how specific elements 

might influence predictions with these approaches (giving it low marks for causality in Figure 1). 

While data-driven methods are likely to become increasingly popular with the emergence of truly 

high dimensional big-data in transportation safety (National Academies, 2013), the fundamental 

limitations relating to causality must still be given consideration in the interpretation and 

application of results. The bottom line is that, while data-driven methods may do well in capturing 

associations between one variable and another (that is, how variation in a variable influences 

another variable), they do not intrinsically study the issue of what exactly is the root cause of why 

variation in one variable influences another variable. While one could claim that this is the same 

even with traditional “structure-based” econometric analyses, there is some level of domain theory 

and knowledge that underlies structure-based analyses that facilitates drawing more causal 

inferences (especially when endogeneity and heterogeneity issues are recognized). In particular, 

traditional structure-based methods are driven by well-informed causal frameworks based on 

domain knowledge. While the relationships implicit in these frameworks may be characterized as 

assumptions by some, it is important to note that assumptions need to be made in all kinds of 

analyses, including data-driven analyses (for example, regardless of the methods used, one has to 

define what are the outcome variables and what are the explanatory variables, and not every 

variable can be associated with each other variable).  

 

6. Discussion and Conclusions 

Safety analysts often face challenges in trading off the predictive capability of the 

methodological approach with its ability to uncover underlying causality. The trade-offs must 

consider available data in terms of the number of variables and number of observations as well as 

the intended use of the results. In some practical applications, highway safety engineers may need 
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to know highly specific information. For example, what impact would increasing the shoulder 

width from 4 to 6 feet on a two-lane rural road with specific traffic characteristics and geographic 

location have on the likelihood and resulting injury severity of crashes. Getting to this level of 

detail necessitates specific data requirements and advanced methodologies, and likely some 

compromise between predictive accuracy and underlying causality. Those who strongly support 

causality as the only correct approach are often highly critical of methods that do not fully address 

causality, sometimes arguing that no prediction is better than a prediction based on a flawed causal 

model (although they rarely if ever provide empirical evidence to support this argument). But this 

argument does not fully appreciate the potential benefits of having some level of predictive 

capability. In contrast, those who consider purely data-driven analyses neglect potential insights 

into underlying causality. Without an understanding of underlying causality, changes in vehicle 

technology, roadway features, and human behavior may fundamentally shift model parameters 

that would ultimately impact predictions and safety-policies.  

An ideal model would be one that uncovers causality, has excellent predictive capabilities, 

and is scalable to very large data. However, with currently available methods, safety analysts are 

often forced into a causality/prediction tradeoff that can entail serious compromises. Thus there is 

a clear need in the safety field to ground intrinsically predictive models within causal frameworks, 

while also taking insights from intrinsically predictive models (especially from big data) to 

improve upon causal structures through insights from associations involving variables not typically 

available in traditional safety data. One promising direction for future research would be a hybrid 

modeling approach of data-driven and statistical methods (with strong consideration to causal 

elements). Such a hybrid approach is likely to be perfected over time as integrative techniques are 

perfected and access to more and more big data becomes available. However, during this 
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development period it is important that strong domain knowledge remain at the front and center of 

all analytic approaches and their subsequent interpretations for predictions and policy actions.  
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Figure 1. Current modeling trade-offs between relative big-data suitability, predictive capability and causality/inference capability. 
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