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Abstract

This paper proposes the use of a quasi-random sequence for the estimation of the mixed

multinomial logit model. The mixed multinomial structure is a flexible discrete choice formulation

which accommodates general patterns of competitiveness as well as heterogeneity across

individuals in sensitivity to exogenous variables. The estimation of this model has been achieved

in the past using the pseudo-random maximum simulated likelihood method that evaluates the

multi-dimensional integrals in the log-likelihood function by computing the integrand at a sequence

of pseudo-random points and taking the average of the resulting integrand values. We suggest and

implement an alternative quasi-random maximum simulated likelihood method which uses cleverly

crafted non-random but more uniformly distributed sequences in place of the pseudo-random

points in the estimation of the mixed logit model. Numerical experiments, in the context of

intercity travel mode choice, indicate that the quasi-random method provides considerably better

accuracy with much fewer draws and computational time than does the pseudo-random method.

This result has the potential to dramatically influence the use of the mixed logit model in practice;

specifically, given the flexibility of the mixed logit model, the use of the quasi-random estimation

method should facilitate the application of behaviorally rich structures in discrete choice modeling.

Keywords: Mixed multinomial logit model, maximum simulated likelihood estimation, pseudo-

random sequences, quasi-random sequences, polynomial-based cubature, discrete choice analysis.
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1.  Introduction

The econometric field has seen the increasing use of models that involve analytically

intractable criterion functions during the estimation and inference process. The criterion function

depends on the inference approach adopted and may take the form of a log-likelihood function (for

the maximum likelihood inference approach), a pseudo-log likelihood function (for the pseudo-

maximum likelihood inference approach), or a conditional moment function (for the Generalized

Methods of Moments inference approach). The analytic intractability of the criterion function in

all these instances usually arises because of the presence of multi-dimensional integrals. 

The increasing use of models with analytically intractable criterion functions may be

attributed to two reasons. First, analysts are formulating and estimating models which do not

impose a priori behavioral restrictions on the mechanism underlying the decision process being

examined. Many analytically tractable models, though elegant and simple in structure, maintain

restrictions which are difficult to justify. For example, in a discrete choice context, the

multinomial logit model has a simple form, but is saddled with the independent from irrelevant

alternatives (IIA) property. Relaxing such rigid behavioral restrictions tends to lead to analytically

intractable models. Second, the tools available for data processing have seen dramatic

improvement over the past few years. This has made possible the implementation of numerical

methods to evaluate multi-dimensional integrals in criterion functions. 

The numerical methods to evaluate multi-dimensional integrals may be categorized into

three broad groups: a) multi-dimensional polynomial-based cubature methods, b) Monte Carlo

simulation methods, and c) quasi-Monte Carlo simulation methods. We discuss each of these

approaches in the subsequent paragraphs.
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The multi-dimensional polynomial-based cubature methods are extensions of the one-

dimensional quadrature principle. The theory of integration formulas in cubature methods are

closely related to the theory of orthogonal polynomials (see Stroud, 1971). However, the

construction of efficient integration formulas based on polynomial interpolation for multi-

dimensional integration is substantially more difficult than for single dimensional integration. An

important reason is that the theory of orthogonal polynomials is considerably more complex in

more than one variable than in just one variable (see Cools, 1992 and Cools and Rabinowitz,

1993). Consequently, polynomial interpolation-based integration is not generally considered for

multi-dimensional integration, though it is the method of choice for one-dimensional integration.

The one qualification to the above statement is when the region of integration is "nice" (say, the

s-cube or the s-sphere) and when the multi-dimensional integral can be transformed into the

product of s single integrals for which well-known Gaussian quadrature formulas exist. In such

situations, one can construct product formulas from s one-dimensional Gauss formulas each of

which use N points. The resulting product formula will contain Ns points. Unfortunately, this

number (Ns) increases very rapidly with N and s (for example, with 15 one-dimensional evaluation

points and just 3-dimensions for integration, the total number of points for the product formula

climbs to 3375!). Consequently, product formulas of one-dimensional Gauss formulas are unable

to compute integrals with sufficient precision and speed for optimization of the criterion function

in higher than 2 dimensions (see Hajivassiliou and Ruud, 1994; Sloan and Joe, Chapter 1, 1994).

The Monte-Carlo simulation method (or "the method of statistical trials") to evaluating

multi-dimensional integrals entails computing the integrand at a sequence of "random" points and

computing the average of the integrand values. The basic principle is to replace a continuous
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average by a discrete average over randomly chosen points. By the strong law of large numbers,

convergence is almost sure in this method. The Monte Carlo simulation method has a long history,

dating back to the work of Metropolis and Ulam (1949). The concept has been known even before

that, though the practical viability of the method had to wait till the turn to the computer era in

the early 50s (Halton, 1970 presents an exhaustive review of the history of the method). Of

course, in actual implementation, truly random sequences are not available; instead, deterministic

pseudo-random sequences which appear random when subjected to simple statistical tests are used

(see Niederreiter, 1995 for a discussion of pseudo-random sequence generation). This pseudo-

Monte Carlo (or PMC) method has a slow asymptotic convergence rate with the expected

integration error of the order of N-0.5 (N being the number of pseudo-random points drawn from

the s-dimensional integration space). Thus, to obtain an added decimal digit of accuracy, the

number of draws needs to be increased hundred fold. Also, the PMC method does not distinguish

between nicely behaved smooth integrands and poorly behaved non-smooth integrands. That is,

smooth functions are not integrated any more accurately or efficiently than non-smooth functions

(this is really the other side of the coin of the oft-touted advantage of the PMC method that it

works for any integrand with a finite variance; see Spanier and Maize, 1994). 

The quasi-Monte Carlo method is similar to the Monte Carlo method in that it evaluates

a multi-dimensional integral by replacing it with an average of values of the integrand computed

at discrete points. However, rather than using pseudo-random sequences for the discrete points,

the quasi-Monte Carlo approach uses "cleverly" crafted non-random and more uniformly

distributed sequences within the domain of integration. The underlying idea of the method is that

it is really inconsequential whether the discrete points are truly random; of primary importance
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     1The aforementioned convergence result for the QMC method holds only for integrands with bounded

variation in the sense of Hardy and Krause; this requirement of the integrand is more restrictive than the

finite variance requirement in the Monte Carlo method. But for most practical purposes, the restriction

is not of a serious nature (see Niederreiter, 1995 or Morokoff and Caflisch, 1994 for a more detailed

theoretical discussion). Also, the reader should note that the convergence result provided here is an upper

bound; in the average case, Wozniakowski (1991) has shown a much faster convergence rate for QMC

sequences. Further, Owen (1997, 1998) has shown recently that some scrambled versions of QMC

sequences have a convergence rate of the order of N-3.

is the even distribution (or maximal spread) of the points in the integration space. The sequences

used in the quasi-Monte Carlo (or QMC) method are labeled as quasi-random sequences, though

this is a misnomer since randomness plays no part in the construction of the sequences. The

convergence rate for quasi-random sequences is, in general, faster than for pseudo-random

sequences. In particular, the theoretical upper bound for the integration error in the QMC method

is of the order of N-1, where N is the number of quasi-random integration points.1 

To summarize, quasi-MC sequences are more uniformly distributed than random sequences

(a uniformly distributed sequence can loosely be described as one which assigns to each sub-

interval of the integration domain its "fair" percentage of points). Mathematicians use a measure

called "discrepancy" to assess the uniformity of a sequence; lower discrepancy values implies

greater uniformity. The discrepancy is directly related to the integration error bound and is of

order N-0.5 for the random sequences and of order N-1 for the quasi-random sequences. The lower

discrepancy of the quasi-random sequences results in lower integration error and faster

convergence rates. This is especially the case for well behaved and smooth integrands. Thus, for
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     2Theoretically speaking, the discrepancy of a quasi-random sequence also depends on the

dimensionality of the integration, with the discrepancy (or integration error) increasing with

dimensionality. However, in practice, studies (for example, see Papageorgiou and Traub, 1997 or Paskov,

1997) have shown the integration error to be independent of the number of dimensions. Sloan and

Wozniakowski (1998) have recently examined the reasons for this superior empirical performance of the

quasi-random sequences for high dimensionality of integration. 

a given error tolerance level, the quasi-random simulation of integrals for smooth integrands

requires significantly less number of simulation points or "draws" relative to the PMC method (see

Morokoff and Caflisch, 1995; Press et al., 1992, Chapter 7; Brately and Fox, 1988; and Bratley

et al., 1992).2

The appeal of the QMC method should be clear from the above discussion. The generation

and application of QMC sequences for multi-dimensional integration has been the subject of

intensive research in recent years in mathematics and physics (see, for example, Sloan and

Wozniakowski, 1998; Owen, 1998; Mullen et al., 1995; Kocis and Whiten, 1997). Krommer and

Ueberhuber (1994) provide an extensive review of quasi-random sequences. Against this backdrop

of literature extolling the much faster convergence rate and superior accuracy of QMC methods

over the PMC method, is the surprising lack of use of these methods in econometric model

estimation. While the use of simulation techniques in model estimation has been the focus of much

recent econometric work, almost all of this literature is based on the PMC method.

Econometricians have refined the PMC method using variation reduction techniques such as

stratified sampling, importance sampling, and antithetic variates (see, for example, Hajivassiliou
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et al., 1996); however, these are not specific to the PMC method and are as equally applicable

to QMC methods (see Spanier and Maize, 1994).

The objective of this paper is to compare the performance of the polynomial-based

cubature method (or simply the cubature method), the PMC method, and the QMC method using

numerical experiments. The comparison is conducted in the context of the maximum simulated

likelihood estimation of a mixed multinomial logit (MMNL) model. We use the MMNL model

form in the numerical analysis for two reasons. First, the MMNL model is a very flexible discrete

choice structure. As our review later indicates, it is becoming the method of preference to

accommodate unobserved taste variations and general error variance-covariance matrices. Second,

the integrands involved in the maximum likelihood estimation of the MMNL model have a

multinomial logit structure, which is a very nicely behaved, continuous, and smooth function.

Thus, the use of the QMC method would appear to be particularly suitable for the MMNL model.

In contrast, all previous applications of the MMNL structure have used the PMC method, except

for a very recent use of the QMC method in Bhat (1999a). If our numerical experiments indeed

show that the QMC method is very efficient in the MMNL context, it could lead to the more

widespread use of the flexible MMNL model.

There are several quasi-random sequences that may be employed in the QMC simulation

method. Among these sequences are those that belong to the family of r-adic expansion of

integers: the Halton, Faure, and Sobol sequences (see Bratley et al., 1992 for a good review). In

this paper, we will use the Halton sequence in the QMC simulation because of its conceptual

simplicity.
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The rest of this paper is structured as follows. The next section discusses the structure of

the mixed multinomial logit model. Section 3 presents the methodology to estimate the mixed logit

model using the cubature method, the PMC method, and the QMC method. Section 4 describes

the design for the numerical experiments. Section 5 identifies the performance criteria used in

comparing alternative methods and presents the experimental results. The final section closes the

paper.

2.  Mixed Multinomial Logit Model

The mixed Multinomial logit (MMNL) model is a generalization of the well-known

multinomial logit (MNL) model. It involves the integration of the multinomial logit formula over

the distribution of unobserved random parameters. It takes the structure shown below:

(1)

where is the probability that individual q chooses alternative i, is a vector of observedPqi xqi

variables specific to individual q and alternative i, represents parameters which are random$

realizations from a density function f(.), and is a vector of underlying moment parameters2

characterizing f(.).

The MMNL model structure of equation (1) can be motivated from two very different (but

formally equivalent) perspectives. Specifically, a MMNL structure may be generated from an

intrinsic motivation to allow flexible substitution patterns across alternatives (error-components

structure) or from a need to accommodate unobserved heterogeneity across individuals in their

sensitivity to observed exogenous variables (random-coefficients structure). 
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The error-components structure partitions the overall random term associated with each

alternative's utility into two components: one component which allows the unobserved error terms

to be non-identical and non-independent across alternatives, and the other which is specified to

be independent and identically (type I extreme-value) distributed across alternatives. Specifically,

consider the following utility function for individual q and alternative i:

 

(2)

where are the systematic and random components of utility, and is further(Nyqi and .qi .i

partitioned into two components, . is a vector of observed data associated withµNzqi and ,qi zqi

alternative i, some of whose elements might also appear in the vector is a random vectoryqi . µ

with zero mean. The component induces heteroscedasticity and correlation acrossµNzqi

unobserved utility components of the alternatives.  The emphasis in the error-components structure

is to allow a flexible substitution pattern among alternatives in a parsimonious fashion. This is

achieved by the "clever" specification of the variable vector combined with (usually) thezqi

specification of independent normally distributed random elements in the

vector Defining and we obtain the MMNL model structure forµ. $' ((N ,µN )N xqi' (y N
qi ,z

N
qi)

N
,

the choice probability of alternative i for individual q. Applications of the error-components

formulation include Brownstone and Train (1999) and Bhat (1998a, 1999b).

The random-coefficients structure allows heterogeneity in the sensitivity of individuals to

exogenous attributes. The utility that an individual q associates with alternative i is written as:

(3)

where is a vector of exogenous attributes, is a vector of coefficients that varies acrossxqi $q

individuals with density , and is assumed to be an independently and identicallyf ($ ) ,qi
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distributed (across alternatives) type I extreme value error term. With this specification, the

unconditional choice probability of alternative i for individual q is given by the mixed logit

formula of equation (1). While several density functions may be used for f(.), the most commonly

used is the normal distribution. A log-normal distribution may also be used if, from a theoretical

perspective, an element of beta has to take the same sign for every individual (such as a negative

coefficient for the travel time parameter in a travel mode choice model). Applications of the

random-coefficients formulation include Revelt and Train (1998), Train (1998), Bhat (1998b,

1999), and Ben-Akiva and Bolduc (1996).

The reader will note that the error-components specification in equation (2) and the

random-coefficients specification in equation (3) are structurally equivalent. Specifically, if is$q

distributed with a mean of and deviation , then equation (3) is identical to equation (2)( µ

with However, this apparent restriction for equality of equations (2) and (3) isxqi'yqi'zqi.

purely notational. Elements of that do not appear in can be viewed as variables whosexqi zqi

coefficients are deterministic in the population, while elements of that do not enter inxqi

may be viewed as variables whose coefficients are randomly distributed in the populationyqi

with mean zero.

In the numerical experiments in this paper, we use a random-coefficients interpretation of

the mixed-logit structure. However, the results from the experiments should be generalizable to

any model structure with a mixed-logit form.
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     3In this notation, we are implicitly assuming that the are independent of one another. Even if$qkNs

they are not, a simple Choleski decomposition can be undertaken so that the resulting integration involves

independent normal variates (see Revelt and Train, 1998). 
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3.  Estimation Methodology

This section discusses the details of the estimation procedure for the random-coefficients

mixed-logit model using each of the three methods: the cubature method, the PMC method, and

the QMC method. 

Consider equation (3) and separate out the effect of variables with fixed coefficients

(including the alternative specific constant) from the effect of variables with random coefficients:

(4)

where is the effect of variables with fixed coefficients. Let so"qi $qk - N(µk,Fk),

that 3 is a standard$qk ' µk%Fksqk (q'1,2,ÿ,Q; k'1,2,ÿ,K) . sqk (q'1,2,ÿ,Q; k'1,2,ÿ,K)

normal variate. Further, let  Vqi'"qi%'
k

µk xqik.

The log-likelihood function for the random-coefficients logit model may be written as:

(5)

where represents the standard normal cumulative distribution function andM (.)

(6)
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The cubature method, the PMC method, and the QMC method represent three different ways of

evaluating the multi-dimensional integral involved in the log-likelihood function.

3.1.  Polynomial-Based Cubature Method

To apply the cubature method, define for all q. Then, the log-likelihoodjk' sqk / 2

function in equation (5) takes the following form:

(7)

The above integration is now in an appropriate form for application of a multi-dimensional product

formula of the Gauss-Hermite quadrature (see Stroud, 1971).

3.2.  Pseudo-Random Monte Carlo (PMC) Method

This technique approximates the choice probabilities by computing the integrand in

equation (5) at randomly chosen values for each . Since the terms are independent acrosssqk sqk

individuals and variables, and are distributed standard normal, we generate a matrix s of standard

normal random numbers with Q*K elements (one element for each variable and individual

combination) and compute the corresponding individual choice probabilities for a given value of

the parameter vector to be estimated. We then repeat this process R times for the given value of

the parameter vector and approximate the integrand by averaging over the computed choice

probabilities in the different draws. This results in an unbiased estimator of the actual individual

choice probabilities. It's variance decreases as R increases. It also has the appealing properties of

being smooth (i.e., twice differentiable) and being strictly positive for any realization of the finite
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R draws. The parameter vector is estimated as the vector value that maximizes the simulated log-

likelihood function. Under rather weak regularity conditions, the PMC estimator is consistent,

asymptotically efficient, and asymptotically normal (see Hajivassiliou and Ruud, 1994 and

Lee, 1992). However, the estimator will generally be a biased simulation of the maximum

likelihood (ML) estimator because of the logarithmic transformation of the choice probabilities

in the log-likelihood function. The bias decreases with the variance of the probability simulator;

that is, it decreases as the number of repetitions increase.

An important point in implementation of the PMC method is that the same matrix s of

standard normal random numbers has to be used across iterations of the likelihood function

maximization for each of the R repetitions. This can be achieved by re-setting the seed to the same

pre-determined value at the beginning of each likelihood (and gradient) function evaluation. This

seed is automatically updated for each repetition within a single likelihood (and gradient) function

evaluation, and is updated to the same value for any repetition across function evaluations by

assigning the same initial seed value at each function evaluation.  

3.3.  Quasi-Random Monte Carlo (QMC) Method

The quasi-random Halton sequence is designed to span the domain of the S-dimensional

unit cube uniformly and efficiently (the interval of each dimension of the unit cube is between 0

and 1). In one dimension, the Halton sequence is generated by choosing a prime number r

(r>=2) and expanding the sequence of integers 0,1,2,..g,...G in terms of the base r:

(8)g ' 'L
l'0

bl r
l , where 0#bl# r&1 and r L#g< r L%1.
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Rg ' (nr1
(g),nr2

(g),ÿ,nrS
(g))

Thus, g (g=1,2,...G) can be represented by the r-adic integer string The Haltonblÿb1b0.

sequence in the prime base r is obtained by taking the radical inverse of g (g=1,2,...G) to the

base r by reflecting through the radical point: 

(9)nr (g) ' 0.b0b1ÿbL (base r) ' 'L
l'0

bl r
&l&1

The sequence above is very uniformly distributed in the interval (0,1) for each prime r. The

Halton sequence in K dimensions is obtained by pairing K one-dimensional sequences based on

K pairwise relatively prime integers,  (usually the first K primes):r1,r2,ÿ ,rS

  (10)

 The Halton sequence is generated number-theoretically rather than randomly and so

successive points at any stage “know” how to fill in the gaps left by earlier points, leading to a

uniform distribution within the domain of integration. This is illustrated in Figure 1, where we

have plotted 1000 points from a two-dimensional uniform pseudo-random sequence and

correspondingly 1000 points generated by a two-dimensional Halton sequence. The “clumping”

of points in the pseudo-random sequence is clearly noticeable, while the Halton sequence has a

much more even spread.

The simulation technique to evaluate the integral in the log-likelihood function of equation

(5) involves generating the K-dimensional Halton sequence for a specified number of "draws" R

for each individual. To avoid correlation in simulation errors across individuals, we make separate

independent draws of R Halton numbers in K dimensions for each individual. We achieve this by

generating a Halton "matrix" Y of size G x K, where G = R*Q+10 (Q is the total number of
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individuals in the sample). We then discard the first ten terms in each dimension because the

integrand may be sensitive to the starting point of the Halton sequence (see Morokoff and

Calflisch, 1995; Bratley et al., 1992). This leaves a (R*Q) x K Halton matrix which is partitioned

into Q sub-matrices of size R x K, each sub-matrix representing the R Halton draws in K

dimensions for each individual (thus, the first R rows of the Halton matrix Y are assigned to the

first individual, the second R rows to the second individual, and so on). It is important to note that

storing a matrix of size (R*Q) x K in memory may not require substantial memory space since

typically the number of repetitions R in the QMC estimation method is not high. Alternatively,

one could store the matrix on disk and extract the appropriate Q*K matrix corresponding to each

draw as needed during the likelihood function iterations. 

The Halton sequence is uniformly distributed over the multi-dimensional cube. To obtain

the corresponding multivariate normal points over the multi-dimensional domain of the real line,

we take the inverse standard normal distribution transformation of Y. By the integral transform

result, provides the Halton points for the multi-variate normal distribution (see FangX 'M&1(Y)

and Wang, 1994; Chapter 4). The integrand in equation (5) is computed at the resulting points in

the columns of the matrix X for each of the R draws for each individual and then the simulated

likelihood function is developed in the usual manner as the average of the values of the integrand

across the R draws.
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4.  Experimental Design

The data used in the numerical experiments are obtained from an intercity mode choice

survey conduced by VIA Rail (the Canadian national rail carrier) in 1989 to develop travel

demand models to forecast future intercity travel in the Toronto-Montreal corridor. We extracted

the level-of-service information for each of three modes (car, air and train) and for the trip of each

of 2000 weekday-business travelers from the data. The reason for using actual level-of-service

data in the experiments is to ensure that the simulation data resemble field data. However, the

choice process is generated by simulating the normally distributed random coefficients on the

level-of-service parameters. Thus, the experimental data may be characterized as "pseudo-

simulated" data, with independent variables obtained from an actual field survey, but the choice

being generated using an experimental design.

Five level-of-service variables are included in the vector of equation (3): line-haulxqi

cost, access cost, in-vehicle time, access time, and terminal time. To examine the performance

of the three alternative numerical estimation methods (i.e., the cubature method, the PMC method

and the QMC method) vis-a-vis the dimensionality of the integration, we started the experiments

by allowing the parameter on line-haul cost to be randomly (normal) distributed and maintaining

fixed coefficients on other variables (this leads to one-dimensional integration). Subsequently, we

generated new choice data by also allowing the coefficient on access cost to be randomly (normal)

distributed (leading to a two-dimensional integration). This process of adding random coefficients

was continued till all the level-of-service variables are random (leading to five-dimensional

integration). Thus, we generated five data sets, each data set representing a specific number of

underlying random coefficients in the choice process.  
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The mean (and standard deviations) of the coefficients adopted in the data generating

process are as follows: line-haul cost (-4.5 and 3), access cost (-6.0 and 4.5), in-vehicle time (-1

and 0.75), access time (-3 and 2.25), and terminal time (-2 and 1.5). The alternative specific

constants were assumed to be 3.5 (for the air mode) and -0.3 (for the train mode), with the car

mode being the base (the alternative specific constant values and the mean values of the level-of-

service coefficients used in the experiments were informed by a multinomial logit estimation on

the original data; the standard deviations used were obtained as roughly three-fourths of the mean

values). The reader will note that the standard deviation of a level-of-service coefficient applies

only if that coefficient is allowed to be random; if it is fixed in a particular experiment, the

corresponding standard deviation is zero.

The utility for each mode is computed based on equation (3) after generating values

for for each individual from the normal distribution and for from the standard type I$q ,qi

extreme value distribution. Then, the brand with the highest computed utility value is identified

as the chosen brand in the experiments. 

5.  Computational Results and Comparative Performance

5.1.  Background

The three numerical estimation methods were implemented using the GAUSS matrix

programming language. The log-likelihood function and the gradients of the function with respect

to relevant parameters were coded. Estimations were carried out using an Intel pentium II 300

Mhz. processor with 128 MB of RAM. The parameters used to generate the data were used as the



17

common starting point for all estimations. This allows a comparison of time to convergence across

estimations.

For the estimations involving one and two-dimensional integration, we used the results

from the 20 point cubature method as the benchmark for comparing the performance of alternative

methods. For estimations in three to five dimensions, we obtained benchmark results using the

PMC method with 20,000 draws. While there may be simulation error even when using 20,000

draws, it is expected that this error would be very small.

For one-dimensional integration, cubature estimation using 20 points can be achieved very

quickly and so we did not estimate models with lower number of cubature points. For two-

dimensional integration, we estimated models with 2, 4, and 10-point cubature. For three-

dimensional integration, we obtained results using 2- and 4- point cubature. For higher

dimensions, we estimated models with only 2-point cubature (more than 2 points of cubature

dramatically increases computational time). 

PMC estimation was based on four different numbers of draws: 250, 500, 1000, and 2000.

We used 250 draws as the minimum, though it is generally preferable to use higher number of

pseudo-random draws to reduce simulation variance. We did not go beyond 2000 draws because

computation time starts to increase quite substantially beyond this many number of draws. 

We estimated models with 25, 50, and 75 Halton points for one and two-dimensional

integration. For higher dimensions, we also estimated models with 100 and 125 Halton points.
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5.2.  Performance Criteria and Evaluation Results

To evaluate the performance of different methods, we used measures that indicate the

ability of each method to recover the "true" parameters and the choice probabilities as obtained

in the benchmark estimation. The evaluation of the proximity of estimated and true parameters

was based on the root mean square error as well as the mean absolute error ratio across

parameters. The evaluation of the ability to reproduce true choice probabilities was similarly based

on the root mean square error and mean absolute error ratio of computed choice probabilities (vis-

a-vis true choice probabilities) across modes and across individuals. Thus, four measures of

performance are used. These measures, and the time required for convergence of the maximum

likelihood iterations, were compared across methods

Tables 1 through 5 present the error measures for different dimensions of integration. In

all the tables, the error measures tend to become smaller as the number of cubature points or the

number of draws increase. For the PMC and QMC methods, this is not always the case. For

example, the parameter-based error measures increase between 500 and 1000 draws for the PMC

method in three dimensions (Table 3). Similarly, the parameter-based error measures increase

between 75 and 100 draws for the QMC method in three dimensions. These minor aberrations are

not surprising because of the way that draws are assigned to individuals. For example, in the case

of 75 Halton draws, the procedure involves drawing 75*N Halton points and assigning each set

of 75 points to each individual. Thus, the first 75 points get assigned to the first individual, the

second 75 points to the second individual, and so on. For 100 Halton draws, 100*N Halton points

are obtained and each set of 100 is assigned to an individual as before. Thus, in the sampling

scheme, moving from 75 to 100 draws does not imply maintaining the same 75 draws for each
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individual and supplementing this with an additional 25 draws. It involves a fresh set of points for

each individual, and therefore, there is always a small chance that fewer draws might provide

better results than a larger fresh set of draws. The important point to note, however, is that these

are minor aberrations to the more stable general trend of reduced errors with higher draws.

The results for one-dimensional integration (Table 1) indicate that with as few as 50 Halton

draws, the error measures from the QMC method are smaller than from 1000 draws of the PMC

method; those from 75 Halton draws are much smaller than from 2000 pseudo-random draws.

Besides, the times to convergence for the QMC method are considerably lesser than for the PMC

method. As indicated earlier, we are not presenting cubature results in one dimension because it

is easy to estimate one-dimensional integrals with a high number of cubature points. The

benchmark used for one-dimensional integration is 20 points, and this estimation takes just 7.5

minutes. Obviously, the cubature method is the preferred method for 1 dimensional integration,

but its effectiveness drops significantly beyond one-dimensional integration (as we will see later).

The QMC method, on the other hand, does not take significantly longer than the cubature method

and is also much more effective in higher dimensions. 

The maximum simulated likelihood estimation results for the mixed logit model with two-

dimensional integration are provided in Table 2. Polynomial-cubature methods with 2 and 4 points

converge quickly, but the associated error measures are rather large. The cubature technique is

quite accurate with 10 points, though it requires about 2.5 hours for convergence. However, 10

point cubature is superior to the 2000 draw PMC method both in terms of accuracy as well as

convergence time. Among all the three methods, the Halton method comes out as being a clear

winner; with as few as 75 draws, it is able to recover the true parameters and choice probabilities
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more accurately and in substantially less time than 10 point cubature or a 2000-draw PMC

method. 

In the case of three-dimensional integration, cubature-based estimation of the mixed logit

with more than 4 points becomes very expensive. Between the PMC and QMC methods, the QMC

method with as few as 75 draws is better than the PMC method with 1000 draws. Also, the QMC

method with 125 draws is far superior to the PMC method with 2000 draws, and takes less than

one-tenth the time required by the 2000-draw PMC method. 

Similar results may be observed for the estimation of the mixed logit model in four and

five-dimensions. A particularly important point in 4- and 5-dimensions is that the cubature method

beyond 2 points becomes very time-intensive, and estimation with just 2 points leads to very

substantial errors. 

Overall, the QMC method dominates the other two methods in performance. Also, it takes

substantially lesser time for convergence. This is a valuable finding. It suggests that the estimation

of the mixed logit model using the Halton method is very efficient and practical.  

6.  Summary and Conclusions

This paper proposes the use of a quasi-random Monte Carlo (QMC) method (specifically,

the Halton method) for the estimation of the flexible mixed logit model for discrete choice

analysis. The QMC method uses "cleverly" crafted non-random and uniformly distributed

sequences in the domain of integration. The basic idea of the method is that it is really

inconsequential whether the discrete points are truly random; of primary importance is the even

distribution (or maximal spread) of the points in the integration space.
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The results from our simulation experiments indicate that the QMC method out-performs

the polynomial-cubature and pseudo-Monte Carlo (PMC) methods for mixed logit model

estimation. In less than or equal to three dimensions, simulation estimation with as few as 75

Halton draws provides considerably better accuracy than with 2000 pseudo-random draws. In

higher dimensions (4-5), 100 Halton draws provide about the same level of accuracy as 2000

pseudo-random draws and 125 Halton draws provides much better accuracy at about one-tenth the

time required for convergence using 2000 pseudo-random draws. 

The experimental result have the potential to dramatically influence the use of the mixed

logit model in practice. Given the flexibility of the mixed logit model to accommodate very

general patterns of competition among alternatives and/or random coefficients, the use of the

QMC simulation method of estimation should facilitate the application of behaviorally rich

structures for discrete choice modeling.

The author is currently pursuing the comparison of potentially more efficient quasi-random

sequences than the Halton sequence used in the current paper.
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Table 1.  Maximum Simulated Likelihood Estimation Results for One Dimensional Integration

Evaluation Basis Performance
Measure

Pseudo-Random Monte Carlo (PMC) Estimation Quasi-Random Monte Carlo (QMC)
Estimation

Number of draws Number of draws

250 500 1000 2000 25 50 75

Parameters MAPE1 2.435 1.255 0.577 0.548 1.429 0.382 0.143

RMSE2 0.089 0.047 0.024 0.021 0.050 0.007 0.004

Choice probabilities MAPE 3.681 2.524 1.782 1.302 3.680 1.722 0.877

RMSE 0.010 0.007 0.005 0.004 0.010 0.004 0.002

Time to convergence (mins) 40.8 71.8 143.0 330.3 6.1 9.4 14.5

1Mean Absolute Percentage Error (MAPE), 2Root Mean Square Error

Table 2.  Maximum Simulated Likelihood Estimation Results for Two Dimensional Integration

Evaluation Basis Performance
Measure

Polynomial-Based Cubature
Estimation

Pseudo-Random Monte Carlo (PMC)
Estimation

Quasi-Random Monte
Carlo (QMC) Estimation

Number of cubature points Number of draws Number of draws

2 4 10 250 500 1000 2000 25 50 75

Parameters MAPE 17.640 6.923 0.867 6.857 1.237 1.632 1.114 2.891 1.315 0.695

RMSE   0.485 0.194 0.026 0.233 0.049 0.041 0.042 0.144 0.037 0.016

Choice probabilities MAPE   6.162 2.356 1.815 4.852 3.218 2.331 1.784 4.851 2.517 1.652

RMSE   0.015 0.009 0.004 0.014 0.010 0.007 0.005 0.014 0.007 0.004

Time to convergence (mins) 1.6 5.9 146.3 42.8 103.4 200.5 345.3 7.0 13.6 16.8



Table 3.  Maximum Simulated Likelihood Estimation Results for Three Dimensional Integration

Evaluation
Basis

Performance
Measure

Polynomial-Based
Cubature

Pseudo-Random Monte Carlo (PMC)
Estimation

Quasi-Random Monte Carlo (QMC) Estimation

Number of cubature
points

Number of draws Number of draws

2 4 250 500 1000 2000 25 50 75 100 125

Parameters MAPE 5.186 4.185 10.604 3.253 5.021 2.651 6.292 5.117 2.542 3.736 0.585

RMSE 0.167 0.123 0.322 0.106 0.163 0.063 0.148 0.100 0.088 0.098 0.013

Choice
probabilities

MAPE 3.532 1.815 5.403 3.649 2.626 1.787 5.846 3.565 2.599 1.768 1.411

RMSE 0.012 0.006 0.015 0.011 0.008 0.005 0.017 0.010 0.008 0.005 0.004

Time to convergence (mins) 3.0 65.0 48.4 99.5 193.0 409.0 7.4 14.2 21.3 32.7 35.7

Table 4.  Maximum Simulated Likelihood Estimation Results for Four Dimensional Integration

Evaluation
Basis

Performance
Measure

Polynomial-Based
Cubature Estimation

Pseudo-Random Monte Carlo (PMC)
Estimation

Quasi-Random Monte Carlo (QMC) Estimation

Number of cubature
points

Number of draws Number of draws

2 250 500 1000 2000 25 50 75 100 125

Parameters MAPE 17.563 18.970 10.036 11.975 9.044 21.189 29.171 18.248 10.796 4.32

RMSE  0.736  0.517  0.225  0.253 0.213 0.478 0.758 0.426 0.223 0.167

Choice
probabilities

MAPE  5.113  5.493  4.133  2.857 2.129 7.499 4.373 3.655 2.586 2.071

RMSE  0.015  0.017  0.012  0.009 0.006 0.022 0.012 0.010 0.007 0.006

Time to convergence (mins) 8.5 60.6 113.7 236.3 455.0 10.4 23.3 30.3 35.8 44.9



Table 5.  Maximum Simulated Likelihood Estimation Results for Five Dimensional Integration

Evaluation
basis

Performanc
e measure

Polynomial-Based
Cubature Estimation

Pseudo-Random Monte Carlo (PMC)
Estimation

Quasi-Random Monte Carlo (QMC) Estimation

Number of cubature
points

Number of draws Number of draws

2 250 500 1000 2000 25 50 75 100 125

Parameters MAPE 41.77 37.121 13.435 18.354 14.17 56.685 52.433 29.000 12.804 6.657

RMSE  0.742  0.687  0.360  0.306 0.221  0.945  0.791  0.424  0.240 0.134

Choice
probabilities

MAPE  4.862  6.665  4.771  3.332 2.418  8.812  5.073  3.905  3.090 2.283

RMSE  0.014  0.020  0.014  0.010 0.007  0.025  0.014  0.010  0.008 0.007

Time to convergence (mins) 26.9 73.7 121.7 283.7 501.0 14.5 24.0 36.1 47.9 59.3
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