
Incorporating Observed and Unobserved Heterogeneity 

in Urban Work Travel Mode Choice Modeling  

Chandra R. Bhat

Department of Civil Engineering

The University of Texas at Austin

Abstract

An individual's intrinsic mode preference and responsiveness to level-of-service

variables affects her or his travel mode choice for a trip. The mode preference and

responsiveness will, in general, vary across individuals based on observed (to an analyst) and

unobserved (to an analyst) individual characteristics. The current paper formulates a

multinomial-logit based model of travel mode choice that accommodates variations in mode

preferences and responsiveness to level-of-service due to both observed and unobserved

individual characteristics. The model parameters are estimated using a maximum simulated log-

likelihood approach. The model is applied to examine urban work travel mode choice in a

multiday sample of workers from the San Francisco Bay area.
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IntroductionIntroductionIntroductionIntroduction

Most work travel mode choice models are based on the random utility maximization

(RUM) framework of microeconomic theory. The RUM framework assumes that an individual's

choice of mode on any choice occasion is a reflection of underlying indirect utilities associated

with each of the available modes and that the individual selects the alternative which provides

her or him the highest utility (or least disutility). The indirect utility that an individual associates

with each mode is not observed to the demand analyst, who then assumes that this utility is

composed of three components: a) an intrinsic individual-specific mode bias term that varies

across individuals and that represents the bias of the individual toward the mode due to observed

and unobserved (to the analyst) individual factors (such as sex, lifestyle and culture), b) the

utility that the individual derives from observable (to an analyst) level-of-service characteristics

offered by the mode for the individual's trip, and c) a mean-zero random term that captures the

effect of unobserved modal characteristics and/or unknown measurement error in modal level-

of-service attributes (more generally, this final third term represents the effects of all omitted

variables which are not individual-specific). Ideally, we should obtain individual-specific

parameters for the first two utility components; that is, for the intrinsic mode biases and for the

subjective evaluations of modal level-of-service attributes. However, the data used for mode

choice estimation is usually cross-sectional or comprises very few observations on each

individual. This precludes estimation at the individual level and constrains the modeler to pool

the data across individuals. In such pooled estimations, the analyst should in some way

accommodate taste differences (i.e., heterogeneity in intrinsic mode biases and heterogeneity

in responsiveness to level-of-service attributes) across individuals. In particular, if the

assumption of taste homogeneity is imposed when there is taste heterogeneity, the result is

inconsistent model parameter estimates and even more severe inconsistent choice probability

estimates (see Chamberlain, 1980; the reader is also referred to Hsiao, 1986 and Diggle et al.,

1994 for a detailed discussion of heterogeneity bias in discrete-choice models). 
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Taste heterogeneity may be incorporated in travel mode choice models by introducing

observed individual socio-economic characteristics as alternative-specific variables and by

interacting level-of-service variables with observed individual characteristics (such as using a

"travel cost over income" specification or using a market segmentation scheme). However, it

is very likely that taste heterogeneity will remain even after accounting for differences in

observed individual characteristics (see Fischer and Nagin, 1981). This taste heterogeneity due

to unobserved individual attributes is generally ignored in travel mode choice modeling.

In this paper, we formulate a multinomial-logit based model of work travel mode choice

that accommodates taste heterogeneity due to both observed and unobserved individual

attributes.  The formulation ensures the correct sign on the level-of-service parameters (for

example, a negative coefficient on the time and cost variables) for all individuals. The model

takes the form of a random-coefficients logit (or RCL) structure. The RCL structure has been

known for a long time, but there have been few applications of this structure. The primary

reason is that the choice probabilities in the RCL structure do not have a closed-form expression

and generally involve high dimensional integration. However, in the past few years, the advent

of simulation techniques to approximate integrals has facilitated the application of the RCL

structure (see Bhat, 1996; Ben-Akiva and Bolduc, 1996; Brownstone and Train, 1996; and

Train, 1997).  

The mode choice model in this paper is estimated from repeated work travel mode

choices of workers obtained from a multi-day travel survey conducted in the San Francisco Bay

area. It is important to note that repeated mode choice data from workers is needed to

accommodate unobserved variations in intrinsic mode biases across individuals. In conventional

cross-sectional work mode choice models which use a single observation for each individual,

it is impossible to separate out the effect of unobserved heterogeneity in intrinsic bias from the

effect of omitted variables that are generic to all choice occasions (see Bhat, 1996 for an

application that allows variation in level-of-service responsiveness, but is unable to
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accommodate unobserved heterogeneity in intrinsic mode preferences since it uses cross-

sectional data).

The rest of this paper is organized as follows. The next section discusses the formulation

and estimation of the RCL model used in the paper. Section 2 presents the empirical results

obtained from applying the model to an urban mode choice context. The final section provides

a summary of the research findings.

1.  Model Formulation1.  Model Formulation1.  Model Formulation1.  Model Formulation

We develop the model formulation assuming that all alternatives are available on all

choice occasions. Extension of the formulation to the case where only a subset of alternatives

are available on some choice occasions is straightforward. 

The utility that an individual q associates with an alternative i on choice occasion

t may be written in the following form:

(1)

where is a vector of observed variables (including alternative specific constants), is

a corresponding coefficient vector which may vary over individuals but does not vary across

alternatives or time, and is an unobserved extreme value random term that captures the

idiosyncratic effect of all omitted variables which are not individual-specific. is assumed

to be a) identically and independently distributed (iid) across all choice occasions and b)

independent of

A number of different specifications may be used for the coefficient vector in

equation (1). To facilitate the following discussion, we partition the coefficient vector :

(2)
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where is the coefficient sub-vector on the alternative specific constants and is the

coefficient sub-vector on the level-of-service variables. One possible specification is then to

write each element of the as a deterministic function of an observed vector of

individual characteristics ( ), and to maintain a fixed value (across individuals)

on the level-of-service coefficients ( ). This specification corresponds to the standard

multinomial logit (or MNL) model and is the one generally adopted in mode choice modeling.

A second specification is similar to the first, except that it relaxes the assumption of

homogeneity (across individuals) in response to level-of-service changes by specifying the

level-of-service coefficient associated with the kth level-of-service variable (k=1,2,...K)

as a function of an observed vector of individual attributes: . The

'+' sign is applied for a non-negative response coefficient (such as the coefficient on frequency

of service) and the '-' sign is applied for a non-positive response coefficient (such as the

coefficient on travel time or travel cost). This second specification corresponds to a multinomial

logit model with parameters entering the utility non-linearly. We will refer to this specification

as the deterministic coefficients logit (DCL) model. A third specification superimposes random

(unobserved) heterogeneity over the deterministic (observed) heterogeneity of the second

specification: and , where are

assumed to be normally distributed across individuals. We will refer to this specification as the

random coefficients logit (RCL) model. Our RCL model specification differs from (and is more

general than) the RCL model specification used by Revelt and Train (1997), Jain et al. (1994),

Mehndiratta (1996), Train (1998), and Ben-Akiva and Bolduc (1996). Specifically, these other

studies do not allow the distribution of the random taste coefficients to vary based on observed

individual characteristics.

In the RCL specification of this paper, we assume that the elements in each of the

random vectors are independent of the
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elements in the other vector, and that each element in a vector is independent from other

elements in that vector.

The normal distribution assumption for the elements in the vector in the RCL model

implies a log-normal distribution for the level-of-service coefficients. Specifically, the kth level-

of-service coefficient is log-normally distributed with the following properties (see Johnson and

Kotz, 1970): a) Median = , b) mode = , c) mean =  and

d) variance = , where is the

variance of the kth element of the vector An useful property of the log-normal distribution

is that the ratio of two independent log-normally distributed variables is also log-normally

distributed. Therefore, a log-normal distribution assumption for the level-of-service coefficients

implies a log-normal distribution for the money value of time, which is obtained as the ratio of

the travel time and travel cost coefficients (Ben-Akiva et al., 1993, on the other hand, specify

a log-normal distribution for the money value of time by imposing the a priori assumption that

the cost coefficient is fixed, while allowing the travel time coefficient to be lognormally

distributed; the specification in this paper is more general than the one used by Ben-Akiva et

al.).

The coefficient vector in the RCL model depends on both observed and unobserved

individual attributes, as indicated earlier. The assumptions about the functional form of this

dependence, and the distributional assumptions regarding the unobserved attributes, implies that

varies in the population with density , where is a vector of the true

parameters (mean and variance) characterizing the distribution (to be precise in notation, we

should subscript the distribution function by an index for the elements of , since

different elements may follow different distributions; however, for convenience, we forego this

notational formality). Conditional on , we get the familiar multinomial logit form for the

probabilities:
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(3)

The unconditional probability of choosing alternative i on choice occasion t for a randomly

selected individual q can now be obtained by integrating the conditional multinomial choice

probabilities in equation (3) over all possible values of :

(4)

The disaggregate-level self- and cross-elasticities are cumbersome though straightforward to

compute from the choice probability expression in equation (4). The aggregate-level elasticities

may be computed from the disaggregate-level elasticities in the usual way (see Ben-Akiva and

Lerman, 1985, page 113).

To develop the likelihood function for parameter estimation, we need the probability of

each sample individual's sequence of observed travel mode choices. Let Tq denote the number

of choice occasions observed for individual q. Conditional on , the likelihood function for

individual q's observed sequence of choices is:

(5)

The unconditional likelihood function of the choice sequence is:

(6)

The goal of the maximum likelihood procedure is to estimate . The log-likelihood function

is
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The log-likelihood function involves the evaluation of a multi-dimensional integral.

Conventional quadrature techniques cannot compute the integrals with sufficient precision and

speed for estimation via maximum likelihood when the dimensionality of the integration is

greater than 2 (see Revelt and Train, 1997 and Hajivassiliou and Ruud, 1994). 

We apply Monte Carlo simulation techniques to approximate the integrals in the log-

likelihood function and maximize the resulting simulated log-likelihood function. The

simulation procedure is similar to the one used by Revelt and Train (1997). For a given value

of the parameter vector , we draw a particular realization of from its distribution and

subsequently compute the individual likelihood function (equation 5). We then repeat

this process M times for each individual for the given value of the parameter vector . The

individual likelihood function is then approximated by averaging over the different

values:

(7)

where is the simulated likelihood function for the qth individual's sequence of choices

given the parameter vector , is the m-th draw from , and M is the number

of repetitions (or draws of . is an unbiased estimator of the actual likelihood

function . It's variance decreases as M increases. It also has the appealing properties of

being smooth (i.e., twice differentiable) and being strictly positive for any realization of the

finite M draws.  The former property is important since it implies that conventional gradient-

based optimization methods can be used in the maximization of the simulated log-likelihood

function. The latter property ensures that the simulated log-likelihood function is always

defined.

The simulated log-likelihood function is constructed as:

(8) 
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The parameter vector is estimated as the vector value that maximizes the above simulated

function. Under rather weak regularity conditions, the maximum simulated log-likelihood

(MSL) estimator is consistent, asymptotically efficient, and asymptotically normal (see

Hajivassiliou and Ruud, 1994 and Lee, 1992). However, the MSL estimator will generally be

a biased simulation of the maximum log-likelihood (ML) estimator because of the logarithmic

transformation in the log-likelihood function. This bias decreases as the number of repetitions

increase. Brownstone and Train (1997) have shown the bias to be negligible with as few as 125

repetitions in the context of the RCL model. Earlier applications of the RCL model have

employed about 250-500 draws (see McFadden and Train, 1997; Revelt and Train, 1997;

Brownstone and Train, 1997; and Bhat, 1998), and this range is now generally used as the norm

for RCL model estimation. In the current paper, we use 1000 repetitions for accurate

simulations of the individual log-likelihood functions and to reduce simulation variance of the

SML estimator.

All estimations and computations were carried out using the GAUSS programming

language on a personal computer.  Gradients of the simulated log-likelihood function with

respect to the parameters were coded.

2.  Empirical Analysis of Urban Mode Choice2.  Empirical Analysis of Urban Mode Choice2.  Empirical Analysis of Urban Mode Choice2.  Empirical Analysis of Urban Mode Choice

2.1.  Data and Empirical Specification2.1.  Data and Empirical Specification2.1.  Data and Empirical Specification2.1.  Data and Empirical Specification

In the empirical analysis of this paper, we apply the random coefficients logit model to

examine the urban work travel mode choice behavior of commuters in the San Francisco Bay

area. The data source for the analysis is the San Francisco Bay Area Household Travel Survey

conducted by the Metropolitan Transportation Commission (MTC) in the Spring and Fall of

1990 (see White and Company, Inc., 1991 for details of survey sampling and administration

procedures). This survey collected a multiple-weekday (either three-day or five-day) travel diary
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for some households, and it is this multi-day sample that is used here. In addition to the travel

diary, the survey also collected individual and household socio-demographic information. 

In this paper, we examine mode choice among five travel modes: drive alone, shared-ride

with 2 people, shared-ride with 3 or more individuals, transit, and walk (these five modes

account for about 99% of all modes chosen for the work trip in the Bay area). The sample

comprises 520 individuals, who are observed to make a total of 2806 home-based work trips.

About 78% of individuals in the sample used the same commute mode on all their choice

occasions, while the remainder used a mixture of commute modes. Among individuals who used

some combination of modes, the most frequent combinations were a) drive alone and shared-

ride with 2 people (57% of combination users), b) drive alone and shared-ride with 3 or more

people (10% of combination users), and c) shared-ride with 2 people and shared-ride with 3 or

more people (8% of combination users). 

The motorized travel modes available for any home-based work trip were determined

from household vehicle holding information (for the drive alone mode) and the origin and

destination of the trip (for the transit mode). The walk mode was considered to be available to

an individual if the walk time was less than 1 hour (this estimate was based on an examination

of the distribution of walk times for those work trips for which the walk mode was chosen; the

maximum walk time if walk was chosen was 56 minutes).

Level of service data were generated for each zonal pair in the study area and by peak

and off-peak periods. These data were appropriately appended to the home-based trips based

on the origin-destination and time of day of trips. Three level-of-service variables were used in

the current analysis: travel cost, in-vehicle travel time, and out-of-vehicle travel time. A detailed

description of the procedures and assumptions employed in arriving at the level-of-service data

is beyond the scope of the current paper, but is available in Purvis (1996). Table 1 presents the

mode availability shares, mode choice shares, and the descriptive statistics for the level-of-

service measures in the sample.
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A number of variables associated with individual socio-demographics and trip

characteristics were considered for accommodating observed taste heterogeneity. We arrived

at the final variable specification based on a systematic process of eliminating variables found

to be statistically insignificant in previous specifications. The variables in the final specification

for capturing observed heterogeneity in intrinsic preferences included: a) vehicles per worker

in the household, b) a San Francisco downtown destination indicator that identified whether a

trip terminated in the San Francisco downtown area, c) a Central Business District (CBD)

destination flag that indicated whether a trip terminated in a CBD, and d) a San

Francisco/Berkeley origin indicator that identified whether a trip originated in the superdistricts

of San Francisco or Berkeley (the CBD districts include the San Francisco superdistricts, except

the downtown superdistrict which has an extremely high employment density and is identified

separately, and the superdistricts of San Jose and Oakland; the superdistrict classification is

based on a 34 system categorization developed by the Metropolitan Transportation

Commission).

2.2.  Empirical Results2.2.  Empirical Results2.2.  Empirical Results2.2.  Empirical Results

We present the results for three models here: a) the multinomial logit (MNL) model, b)

the deterministic-coefficients logit (DCL) model in which observed heterogeneity in the level-

of-service coefficients is added to the MNL model while at the same time ensuring negative

coefficients on the cost and time variables for all individuals, and c) the random-coefficients

logit (RCL) model in which unobserved heterogeneity is superimposed on the DCL model (see

section 1). The results are shown in Table 2. We maintain the car mode as the base in

accommodating differences in intrinsic mode preferences across individuals. To identify the

model parameters in the RCL model, we also have to normalize the standard deviation of the

distribution of one of the mode preference terms. While many normalizations are possible, we

adopt a normalization value of zero since the MNL model and the DCL model are nested within

the resulting RCL model. An additional issue is that the estimation results for the RCL model
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are not invariant to the alternative whose standard deviation is normalized to zero (see Ben-

Akiva and Bolduc, 1996). So, the analyst must attempt to normalize the standard deviation for

the alternative with the minimum variance. In mode choice modeling, we expect the drive alone

mode to have minimum variance in intrinsic preference (across individuals) since unobserved

modal factors such as comfort and privacy are likely to vary least across individuals for the

drive alone mode. Hence, we normalize the variance of the intrinsic preference term for the

drive alone mode to zero.  

The multinomial logit (MNL) model results in Table 2 show that as the ratio of the

number of vehicles to workers in a household increases, it is less likely that the transit or walk

modes will be chosen relative to the drive alone mode (there was no significant difference due

to this variable on the preference for drive alone and the shared-ride modes). There is a

preference for the transit mode over all other modes for trips that end in the San Francisco

downtown area. This preference for transit is also present, albeit to a lesser extent, for trips that

terminate in other Central Business District (CBD) areas. The walk mode is preferred over other

modes for trips originating in the San Francisco and Berkeley superdistricts. The level-of-

service parameters have the expected signs for the cost and out-of-vehicle variables. The

coefficient on the in-vehicle travel time variable, however, had a small positive value and was

very insignificant; hence, it is not included in the MNL model.

The deterministic-coefficients logit (DCL) model provides results similar to the MNL

model for the non-level of service parameters. As indicated in section 1, the negative sign on

the cost and time variables is ensured in the DCL model by specifying the response parameters

as , where is a constant and is a relevant vector of

individual attributes. Thus, a negative sign on the coefficient of an individual attribute

corresponding to the time and cost response parameters implies a lower response sensitivity and

a positive effect indicates a higher response sensitivity. The results show that women are more

sensitive to cost than men. We did not find any significant variation in the sensitivity to in-
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vehicle travel time due to individual characteristics. However, unlike in the MNL model, the

implied parameter on the in-vehicle time variable in the DCL model has the appropriate sign

(the implied parameter value is -exp(-3.9536) = -0.0192). Also, the parameter on the in-vehicle

time variable in the DCL model has a rather small standard error of 0.43. Thus, the standard

error of the implied in-vehicle time parameter of -0.0192 is 0.00825, which indicates that the

effect of in-vehicle time is statistically significant (the t-statistic with respect to zero is 2.32).

Finally, the sensitivity to out-of-vehicle travel time decreases with travel distance.

The mean coefficients of the non-level of service variables in the random-coefficients

logit (RCL) model are, in general, higher in magnitude than the DCL model. This is because the

RCL model decomposes the unobserved portion of utility into individual-specific heterogeneity

and an idiosyncratic effect of all remaining omitted variables. The non-level of service

parameters in the RCL model are normalized with respect to the variance of only the second

unobserved component, while the parameters in the DCL model are normalized with respect to

the variance of the sum of all unobserved components. The reader will note also that the

estimated standard deviations characterizing the unobserved heterogeneity distributions are

highly significant in the RCL model (except for the walk constant heterogeneity). 

To obtain an intuitive characterization of the responsiveness to level-of-service variables

among the different models, we compute the average of the response coefficients and implied

money values of travel time across individuals in the sample for the DCL model. For the RCL

model, we compute three summary measures to characterize the log-normal distribution of the

response coefficients and implied money values of time. Specifically, we compute the mode

(point at which the density function peaks), median (50th percentile value), and mean of the log-

normally distributed response coefficients and money values of time conditional on the observed

characteristics of each individual in the sample and then average these values across individuals.

The results are shown in Table 3.
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Between the DCL and MNL models, the DCL model implies about the same (average)

cost sensitivity and a higher (average) out-of-vehicle travel time sensitivity relative to the MNL.

The RCL model shows variation in the average values of the mode, median, and mean for the

response coefficients due to the significant unobserved variation in sensitivity across

individuals. The higher value for the mean of the response coefficients relative to the median

and mode (and for the median relative to the mode) in the RCL model is a result of the left skew

and long right tail of the log-normal distribution. It is interesting to note that even the mode of

each response coefficient in the RCL model is greater than the corresponding coefficient value

implied by the DCL model. In section 4.3, we examine the implications for policy analysis of

the differences in responsiveness estimates among the MNL, DCL, and RCL models. 

The (average) implied values of in-vehicle time from the DCL model (see bottom of

Table 3) is $8.45. The (average) value of out-of-vehicle travel time from the DCL model is

larger than that from the MNL model. In the RCL model, the mode, median, and mean money

values of time show considerable variation. This is again a reflection of the substantial

unobserved variation in the money values of time across individuals. Comparing the results

from the DCL and RCL models, we find that the (average) median value of the money values

of time in the RCL model are larger than the corresponding (average) deterministic values from

the DCL model. Thus, among individuals with the same observed characteristics, the RCL

model shows that more than 50% of individuals have values of in-vehicle and out-of-vehicle

times greater than the fixed values suggested by the DCL model. Because of the long right-hand

tail of the log-normal distribution, the (average) mean values of time from the RCL model are

much higher than the (average) values of time from the DCL model.

The differences in empirical results among the MNL, DCL and RCL models suggest the

need to apply formal statistical tests to determine the structure that is most consistent with the

data. Table 4 below provides the log-likelihood value at convergence and the adjusted likelihood

ratio index ( ) for the different models.
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The models may be statistically compared using nested likelihood ratio tests. The result

of such a test between the MNL and DCL models leads to the rejection of the MNL model; that

is, the test provides strong evidence that there is variation in the responsiveness across

individuals due to observed individual factors (the likelihood ratio test value is 34.4 which is

larger than the chi-squared statistic with 2 degrees of freedom at any reasonable level of

significance). A further likelihood ratio test between the DCL and RCL models leads to the

clear rejection of the hypothesis that there is no preference and response heterogeneity due to

unobserved individual characteristics (the test value is 1,521 which is larger than the chi-

squared statistic with 7 degrees of freedom at any reasonable level of significance). Indeed, the

improvement in data fit is dramatic when we accommodate unobserved heterogeneity (earlier

studies such as the ones by Ben-Akiva et al., 1993 and Revelt and Train, 1997 have also found

substantial improvements in model fit after accommodating unobserved heterogeneity in model

parameters). The empirical results, taken together, indicate that both the MNL and DCL models

are mis-specified.

2.3.  Policy Implications2.3.  Policy Implications2.3.  Policy Implications2.3.  Policy Implications

Most transportation congestion management actions attempt to effect a change in mode

choice during the peak period by influencing the level-of-service variables. For example,

congestion-pricing and parking-pricing schemes rely on the use of monetary disincentives for

use of the drive alone mode. Improvements to transit service may involve more frequent service

and more extensive route coverage (thereby decreasing transit out-of-vehicle travel time by

reducing wait time and walking time, respectively), or introduction of additional express

services (thereby reducing in-vehicle travel time). Employer-based monetary incentives to use

non-drive alone modes may involve subsidizing transit fares or lowering high-occupancy

vehicle parking costs. Conversion of existing general lanes to high-occupancy vehicle (HOV)

use lanes on expressways increases in-vehicle travel time by the drive alone mode, while
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decreasing in-vehicle travel times by high-occupancy vehicles. The implementation of all of

these policies can be reflected through changes in the appropriate level-of-service variables in

travel mode choice models.

In this section, we present the substantive policy implications obtained from the MNL,

DCL, and RCL models regarding the effect of changes in level-of-service of the different non-

walk modes on drive alone mode share. The substantive implications are examined in terms of

the aggregate-level self and cross-elasticity effects which provide the proportional change in the

expected market share of the drive alone mode in response to a uniform percentage change

(across all individuals) in the level-of-service measures of non-walk modes. 

Table 5 shows the elasticity effects. All the models show that the drive alone self-

elasticities are much higher in magnitude than the cross-elasticities of other modes on the drive

alone mode; this result emphasizes the potential effectiveness of solo-auto use disincentives in

reducing drive alone mode share. The drive alone self-elasticities also indicate that an increase

in out-of-vehicle travel time (for example, due to an employer-based trip-reduction plan that

aims at making drive alone parking far removed from the work place) is the most effective

means of reducing drive alone mode share.

Between the deterministic-coefficients logit (DCL) and multinomial logit (MNL)

models, the DCL model shows a lower cost self-elasticity and a higher out-of-vehicle time self-

elasticity (the MNL in-vehicle time self-elasticity is zero because the in-vehicle time variable

does not appear in the MNL model). The random-coefficients logit (RCL) model suggests larger

self-elasticities for all level-of-service variables relative to the MNL and DCL models. The

drive alone cost (out-of-vehicle time) self-elasticity suggested by the RCL model is 53% (108%)

and 90% (80%) higher than the cost (out-of-vehicle time) self-elasticity from the MNL model

and the DCL model, respectively. The in-vehicle time self-elasticity from the RCL model is

137% higher than that from the DCL model. In summary, the MNL and DCL models
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substantially underestimate the decrease in drive alone mode share in response to auto-use

disincentives.

The cross-elasticities in Table 5 show that, in general, reducing the cost of non-drive

alone modes will have a smaller impact on drive alone mode share than reducing travel times

of non-drive alone modes. Further, improvements in the "shared-ride with 2 people" mode level

of-service appears to be very effective in reducing drive alone share. This finding is useful

because it suggests exploring the possibility of extending the cost and time benefits which are

presently limited to the "shared-ride with 3+ people" mode in the Bay area to the "shared-ride

with 2 people" mode. Currently, tolls on most bridges and roads are waived, and a travel time

bonus is provided (by allowing toll booth queues to be bypassed), for the "shared-ride with 3+

people" mode, but not for the "shared-ride with 2 people" mode.

The cross-elasticity estimates do not show much variation between the MNL and DCL

models. However, as in the case of the self-elasticities, the RCL cross-elasticities are larger than

those from the other two models. This is particularly so for the cross-elasticities of the drive

alone mode with respect to improvements in the shared-ride modes, where the RCL cross-

elasticities are about 120-180% higher than those from the DCL model. In summary, the MNL

and DCL models considerably underestimate the decrease in drive alone mode share due to

incentives for the use of non-drive alone modes, particularly those associated with

improvements in the shared-ride modes. 

 

3.  Summary and Conclusions3.  Summary and Conclusions3.  Summary and Conclusions3.  Summary and Conclusions

This paper has formulated a multinomial-logit based model of travel mode choice that

accommodates observed and unobserved taste variations, and ensures the correct sign on the

level-of-service measures for all individuals. 

The maximum-likelihood estimation of the random-coefficients mode choice model

requires the evaluation of a multi-dimensional integral for the choice probabilities. The multi-
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dimensional integral cannot be evaluated analytically since it does not have a closed-form

solution. In the empirical application of this paper, there are three level-of-service variables and

up to five available alternatives, necessitating the evaluation of a 7-dimensional integral for the

choice probabilities. We employ a simulated maximum-likelihood procedure in which the multi-

dimensional integral is evaluated using Monte-Carlo techniques.

We have applied a) the multinomial logit without variation in level-of-service

coefficients (i.e., the MNL model), b) the multinomial logit model with variation in level-of-

service coefficients due to observed individual attributes (i.e, the deterministic coefficients logit

or DCL model) and c) the proposed multinomial logit model which superimposes unobserved

variation in intrinsic mode preferences and level-of-service responsiveness across individuals

(i.e, the random-coefficients logit or RCL model) to the estimation of multi-day urban travel

mode choice in the San Francisco Bay area. The DCL and RCL models show significant

differences in sensitivity to level-of-service variables based on observed traveler attributes, thus

rejecting the level-of-service homogeneity assumption of the MNL model. In addition, the RCL

model indicates significant unobserved variation (across individuals) in intrinsic mode

preferences and level-of-service responsiveness. A comparison of the average response

coefficients (across individuals in the sample) among the MNL, DCL and RCL models shows

that the RCL model implies substantially higher sensitivity to level-of-service variables and

higher monetary values of time than the other two models.

In an empirical comparison of data fit, we found that the RCL model provides a dramatic

improvement in fit relative to the DCL model. The DCL model, in turn, rejects the MNL model

based on a likelihood ratio test. Thus, the MNL and the DCL models are mis-specified.

The substantive policy implications of changes in modal level-of-service on travel mode

shares are quite different among the MNL, DCL, and RCL models. In this paper, we have

focused on the effect of level-of-service changes for the alternative modes on drive alone mode

share. Our results indicate that the MNL and DCL models underestimate the decrease in drive
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alone market share in response to auto-use disincentives. The MNL and DCL models also

underestimate the decrease in drive alone mode share in response to improvements in shared-

ride and transit level-of-service. These results imply that the simpler MNL and DCL models

provide inappropriate evaluations of policy actions aimed at alleviating urban traffic congestion

problems.

Overall, the empirical results emphasize the need to accommodate observed and

unobserved heterogeneity across individuals in urban mode choice modeling. Specifically, not

accounting for such heterogeneity is likely to have serious consequences on data fit as well as

on policy conclusions regarding the effectiveness of auto-use disincentive and rideshare-use

incentive programs. Of course, the extent to which ignoring unobserved heterogeneity affects

model fit and policy conclusions is dependent on the model specification. As the ability to

explain variations in mode choice behavior as a function of observed individual characteristics

improves, the consequences of not accommodating unobserved heterogeneity decrease.

However, as in the current paper, there will almost always be quite substantial variations not

explainable even by the best systematic specification of the effect of observed individual

characteristics. Thus, it behooves the analyst to accommodate unobserved heterogeneity.

The random-coefficients logit model in the current paper is more general in specification

than most previous applications of random-coefficients in economics and transportation.

However, it is still restrictive in at least two respects. First, we have assumed specific

distributional forms for the unobserved heterogeneity associated with the alternative specific

constants and the level-of-service coefficients. A more general approach would adopt a non-

parametric form for the unobserved heterogeneity. Problems with the non-parametric form,

however, are that a) the non-negative restrictions on the cost/time parameters have to be

imposed explicitly which can lead to difficulty in estimation and b) it does not provide an

analytic distribution for the money value of travel time, an important consideration in economic

and social benefit-cost analysis. Second, we have assumed the random-coefficients to be
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mutually independent. More generally, the random-coefficients can be specified to be correlated

and originating from a multi-variate joint distribution. But assuming correlated random

components destroys the appealing result that the implied money values of travel time (obtained

as the ratio of travel time coefficients and the travel cost coefficient) have a tractable log-normal

distribution.

Notwithstanding the problems associated with adopting a non-parametric distributional

form for model coefficients and correlated random components, these two generalizations are

useful avenues for future empirical research in travel choice modeling. 
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     1The availability shares represent the share of home-based work trips for which the mode is available. 

     2The numbers in the table for the modal level-of-service measures denote one-way mean (no parenthesis) and standard deviation (parenthesis)
values across trips for which the mode is available. The relative magnitudes of the level-of-service variables across modes varies substantially
based on the origin and destination of trips. These variations are not borne out by the mean statistics presented in the table. For example, the
mean drive alone cost for trips destined to the San Francisco downtown area is $6.60, while the corresponding mean transit cost is only $1.49.

     3The shared-ride mode with three or more individuals (shared ride-3+ mode)is exempt from most bridge and other tolls in the San Francisco
Bay area; hence the substantially lower average cost of the "shared ride-3+" mode compared to the drive alone and "shared ride-2" modes. 

Table 1. Sample Statistics

Mode
Availability

shares1

Mode choice
shares

Total cost 
(in cents)2

In-vehicle time
(in mins.)2

Out-of-vehicle
time (in mins.)2

Drive alone 0.94 0.73 77 (138) 10.33  (8.2)  3.30  (1.8)

Shared-ride - 2 1.00 0.11 60 (110) 15.75  (9.0) 3.90  (2.3)

Shared-ride - 3+ 1.00 0.03 34  (62)3 17.40  (8.1) 3.90  (2.3)

Transit 0.87 0.10 97  (48) 16.30 (14.0) 25.82 (10.6)

Walk 0.42 0.03 0   (0) 0.00  (0.0) 26.34 (11.0)
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Table 2. Urban Mode Choice Estimation Results

Parameter 
affecting...

Parameter on...
Multinomial Logit

(MNL)
Determ.-Coeffs.

Logit (DCL)
Random-Coeffs.

Logit (RCL)
Parm. t-stat. Parm. t-stat. Parm. t-stat.

Intrinsic 
mode 
preferences

Mode Constants

SR - Mean -2.135 -32.41 -2.031 -20.53 -5.340 -8.30

- S.D. -  - - - 4.538  8.64

SR-3+ - Mean -3.338 -30.23 -3.191 -22.21 -8.945 -5.54

- S.D. - - - - 5.040  7.10

TR - Mean -1.609  -5.27 -1.120 -3.11 -0.911 -0.27

- S.D. - - - - 4.716  4.40

Walk - Mean -0.028 -0.08 0.877  1.91 3.291  1.02

- S.D. - - - - 3.762  4.11

Vehicles per worker

Transit -0.749  -4.80 -0.796  -3.96 -2.752 -1.45

Walk -0.802  -4.21 -0.834 -4.42 -2.036 -3.50

SF downtown dest. indicator

Transit  2.915  9.90  2.527  8.03 4.552  2.32

CBD destination indicator

Transit  1.824  6.90  1.607   5.26  2.718  1.83

SF/Berkeley Origin indicator

Walk  1.673   6.62  1.670   5.90  3.217   2.08 

Response to
level-of-
service 
measures

Travel Cost

Constant1 -0.002 -5.52 -7.020 - -6.248 -

Female - - 1.174  2.91  1.800  2.01

Std. deviation - - - -  0.909  4.41

In-vehicle time

Constant1 - - -3.954 - -2.500 -

Std. deviation - - - -  0.709  2.15

Out-of-vehicle time

Constant1 -0.071 -8.56 -2.088 - -0.877 -

Travel distance - -0.083 -3.39 -0.071 -2.45

Std. deviation - - - -  0.609  4.94

Notes:1The coefficients on the level-of-service constants for the MNL model represent the direct (and invariant across
individuals) effect of the level-of-service variable on modal utility. The coefficients reported on the constants and other
variables for the DCL model are such that the exponent of the sum of the linear combination of the coefficients with the
corresponding variables provides the sensitivity to level-of-service. The coefficients reported on the constants and other
variables for the RCL model are such that the exponent of the sum of the linear combination of the coefficients with the
corresponding variables provides the median sensitivity to level-of-service (across individuals). We do not report any
t-statistics for the constants in the DCL and RCL models because the only reasonable test of the constant parameters
would be against a value of negative infinity. The estimated standard errors of the constant parameters are very small
relative to their estimated magnitudes.
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Table 3. Comparison of Response Coefficients and Implied Money Values of Time

Level-of-service/ Money value
of time

Average response coefficient values and average implied values of time across

Multinomial-
logit (MNL)

Deterministic-
coeff. logit (DCL)

Random-coefficients logit (RCL)

Mode Median Mean

Level-of-service variable

Travel cost (cents) -0.0020 -0.0019 -0.0030 -0.0068 -0.0103

In-vehicle time (minutes)  - -0.0192 -0.0497 -0.0821 -0.1055

Out-of-vehicle time (minutes) -0.0708 -0.0843 -0.2963 -0.2963 -0.3568

Money value of time

In-vehicle time ($/hr) -  8.45  3.94 14.89 28.93

Out-of-vehicle time ($/hr) 21.24 36.83 16.06 53.23 96.91
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Table 4. Measures of Data Fit 

Summary statistic MNL DCL RCL

Log-likelihood value at convergence1 -1832.14 -1814.94 -1054.33

Number of parameters2  7 10 17

Adjusted likelihood ratio index 0.1859 0.1922 0.5258

1 The log-likelihood value at zero is -4012.13 and the log-likelihood value with only the
intrinsic mode bias constants and no preference heterogeneity is -2259.03. 
2 The number of parameters excludes the intrinsic mode constants.
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Table 5. Aggregate-Level Elasticity Effects on Drive Alone Mode Share in Response to Changes in Level-of-Service of Non-
Walk Modes

Level-of-service variable MNL model DCL model RCL model

Drive alone mode
Increase in cost -0.0465 -0.0378 -0.0718
Increase in IVTT  0.0000 -0.0398 -0.0945
Increase in OVTT -0.0535 -0.0622 -0.1121

Shared-ride mode with 2 people   
Decrease in cost -0.0080 -0.0068 -0.0184
Decrease in IVTT  0.0000 -0.0309 -0.0763
Decrease in OVTT -0.0240 -0.0274 -0.0597

Shared-ride mode with 3+ people
Decrease in cost -0.0016 -0.0013 -0.0047
Decrease in IVTT -0.0000 -0.0109 -0.0305
Decrease in OVTT -0.0076 -0.0085 -0.0217

Transit mode
Decrease in cost -0.0084 -0.0076 -0.0091
Decrease in IVTT -0.0000 -0.0147 -0.0241
Decrease in OVTT -0.0477 -0.0483 -0.0592


