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1. INTRODUCTION

In this chapter, we provide an overview of the mativationfor, and structure of, advanced discrete
choice models derived from random+-utility maximization. The discusson is intended to familiarize readers
withgtructurd aternativesto the multinomid logit. Before proceeding to review advanced discrete choice
models, wefirg summarize the assumptions of the multinomia logit (MNL) formulation. Thisisusgful Snce
dl other random-utility maximizing discrete choice models focus on relaxing one or more of these
assumptions.

There are three basi ¢ assumptions whichunderlie the M NLL formulaion. Thefirst assumptionisthat
therandomcomponentsof the utilitiesof the different dternatives areindependent and identicaly distributed
(11D) witha Type| extreme-vaue (or Gumbe) distribution. The assumption of independence impliesthat
there are no common unobserved factors affecting the utilities of the various dternatives. This assumption
is violated, for example, if a decison-maker assgns a higher utility to dl trangt modes (bus, train, etc.)
because of the opportunity to socidize or if the decis onmaker assgns alower utility to dl the trandt modes
because of the lack of privacy. In such Stuations, the same underlying unobserved factor (opportunity to
socidize or lack of privacy) impactsthe utilitiesof al transit modes. As indicated by K oppelmanand Sethi
(2000), presence of suchcommonunderlying factors across modal utilities hasimplications for competitive
structure. The assumptionof identically distributed (across dternatives) random utility terms impliesthat
the extent of variationin unobserved factors affecting modd utility isthe same across dl modes. In generd,
thereisno theoretical reasonto believe that this will be the case. For example, if comfort isan unobserved
variable whose vaues vary consderably for the train mode (based on, say, the degree of crowding on
different train routes) but little for the automobile mode, then the random components for the automobile
and tran modes will have different variances. Unequd error variances have sgnificant implications for
competitive structure.

The second assumption of the MNL modd is thet it maintains homogeneity in responsiveness to

attributesof dternativesacrossindividuds (i .e., anassumptionof response homogeneity). Morespecificaly,

the MNL mode does not dlow sengtivity (or taste) variations to an attribute (for example, travel cost or
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travel time in amode choice modd) due to unobserved individuad characteristics. However, unobserved
individud characteristics can and generdly will affect responsiveness. For example, some individuds by
their intrindgc nature may be extremey time-conscious while other individuals may be “laid back” and less
time-conscious. Ignoring the effect of unobserved individua attributes can lead to biased and inconsstent
parameter and choice probability estimates (see Chamberlain, 1980).

The third assumption of the MNL model is that the error variance-covariance structure of the
dterndtivesisidentical acrossindividuds (i.e., anassumptionof error variance-covariance homogeneity).
The assumption of identica variance across individuads can be violated if, for example, the trangt system
offers different levels of comfort (anunobserved variable) on different routes (thet is, some routes may be
served by trangt vehicles with more comfortable seating and temperature control than others). Then, the
trangt error variance across individuas dong the two routes may differ. The assumption of identica error
covariance of dternatives across individuals may not be appropriate if the extent of subgtitutability among
dterndives differs across individuas. To summearize, error variance-covariance homogenety impliesthe
same competitive structure among dterndtives for dl individuas, an assumption whichis generdly difficult
to judtify.

The three assumptions discussed above together lead to the ample and elegant closed-form
mathematica structure of the MNL. However, these assumptions dso leave the MNL mode saddled with
the “independence of irrdevant dternatives’ (11A) property at the individud leve (L uce and Suppes, 1965;
seedso Ben-Akivaand Lerman, 1985 for adetailed discussion of this property). Thus, relaxing the three
assumptions may be important in many choice contexts.

Inthis chapter, we focus on three classes of discrete choice modes whichrelax one or more of the
assumptions discussed above and nest the multinomid logit modd. The firg class of models, whichwe will
label as heteroscedastic models, rel axtheidenticaly distributed (acrossdternatives) error termassumption,
but do not relax the independence assumption (part of the first assumption above) or the assumption of
response homogeneity (second assumption above). The second class of modds, which we will refer to
as Generdized Extreme Vaue (or GEV) modds rdax the independently distributed (across dternatives)
assumptions, but do not relax the identically distributed assumption (part of the first assumption above) or
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the assumptions of response homogeneity (second assumption). The third class of models, which we will
labd as flexible structure models, are very generd; models in this class are flexible enough to relax the
independenceand identically distributed (acrossdternatives) error structure of the MNL aswel asto relax

the assumption of response homogenety. We do not focus on the third assumption implicit in the MNL
mode since it can be relaxed within the context of any given discrete choice modd by parameterizing
appropriate error structure variances and covariancesas afunctionof individud attributes (see Bhat, 1997
for adetailed discussion of these procedures).

The rest of this paper is structured inthree sections. Section 2 discusses heteroscedastic models.
Section 3 focuseson GEV models. Section4 presentsflexible structure models. The find section concludes
the paper. Within each of Sections 2, 3, and 4, the material is organized as follows. Firgt, possible moddl
formulaions within that class are presented and a preferred modd formulation is selected for further
discussion. Next, the structure of the preferred modd structure is provided, followed by the estimation of
the structure, abrief discussion of transport applications of the structure, and a detailed presentation of
results from a particular application of the structure in the travel behavior field.

2. HETEROSCEDASTIC MODELS
2.1 Modd Formulations

Three modds have been proposed that alow non-identical random components. Thefirg isthe
negative exponentiad model of Daganzo (1979), the second is the oddball dternative moddl of Recker
(1995) and the third isthe heteroscedastic extreme-value (HEV) model of Bhat (1995).

Daganzo (1979) used independent negative exponentid didributions with different variances for
the random error components to develop a closed-form discrete choice mode which does not have the
[1A property. Hismodd has not seen much application snce it requires that the perceived utility of any
dternative not exceed an upper bound (this arises because the negative exponentia distribution does not
have afull range). Daganzo's model does not nest the multinomid logit modd.

Recker (1995) proposed the oddball dternative model which permits the randomutility variance

of one“oddbd|” dterndtive to be larger thanthe random utility variances of other dternatives. ThisStuation
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might occur because of attributes which define the utility of the oddball dternative, but are undefined for
other dternatives. Then, randomvariaioninthe attributes that are defined only for the oddball aternative
will generate increased variance in the overal random component of the oddball dterndive reative to
others. For example, operating schedule and fare structure define the utility of the trangt aternative, but are
not defined for other moda dternatives in a mode choice modd. Consequently, measurement error in
schedule and fare structure will contribute to the increased variance of trangit relative to other dternatives.
Recker’'s mode has a closed-form structure for the choice probabilities. However, it is redrictive in
requiring that al aternatives except one have identicd variance.

Bhat (1995) formulated the heteroscedastic extreme-vaue (HEV) mode which assumes that the
dternative error terms are distributed with a type | extreme vaue digtribution. The variance of the
dternative error terms are alowed to be different across dl dterndives (with the normdization that the
error terms of one of the adternatives has a scale parameter of one for identification). Consequently, the
HEV modd canbe viewed as a generdizationof Recker's oddball dternative mode. TheHEV mode does
not have a closed-form solutionfor the choice probabilities, but involves only a one-dimensiond integration
regardiess of the number of dterndtives in the choice sat. It aso nests the multinomid logit model and is
flexible enough to dlow differentid cross-eladticities among all pairs of aternatives. In the rest of our

discusson of heteroscedastic modd's, we will focus on the HEV modd.

2.2 HEV Modd Structure
The random utility of dternative i, U;, for an individua in random utility modes takes the form (we
suppress the index for individuas in the following presentation) :

U=Vte, )

where 7, is the sysematic component of the utility of alternative i (whichis a function of observed
atributes of dterndive i and observed characteristics of the individudl), and €, isthe random component
of the utility function. Let C be the set of dternativesavailable to the individual. L et the random components
in the utilities of the different dternativeshave atype | extreme vaue distribution with alocation parameter
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equal to zero and a scale parameter equal to 8, for the it alternative. The random components are
assumed to be independent, but non-identically distributed. Thus, the probability density function and the

cumulative digtribution function of the random error term for the it" dternative are:
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The random utility formulationof Equation (1), combined withthe assumed probability distribution
for therandomcomponentsin Equation (2) and the assumed i ndependence among the randomcomponents
of the different alternatives, enables us to develop the probability that anindividud will choose dternative
i @) fromtheset C of avalable aternatives
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where A () and A () are the probability densty function and cumulative digtribution function of the
gtandard type | extreme va ue distribution, respectively, and are given by (see Johnson and Kotz, 1970):
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Substituting w=¢&,/8, in Equation (3), the probability of choosing dternative i can be re-written as
follows
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If the scdle parameters of the random components of dl dternatives are equd, then the probability
expresson in Equation (5) collapses to that of the multinomia logit (the reader will note that the variance
oftherandomerrorterm e, of dternativeiisequalto U, = V; + €, where 0, isthescdeparameter).
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The HEV modd discussed above avoids the pitfals of the 1A property of the multinomia logit
model by dlowing different scde parameters across dterndives. Intuitively, we canexplain this by redizing
that the error term represents unobserved characteristics of andternative; that is, it represents uncertainty
associated with the expected utility (or the systematic part of utility) of anaternative. The scale parameter
of the error term, therefore, representsthe leve of uncertainty. It sets the relative weights of the systematic
and uncertain components in estimating the choice probability. When the systematic utility of some
dterndive | changes, this affects the systematic utility differentid between another dternative | and the
dternative |. However, this change in the systematic utility differentia is tempered by the unobserved
random component of dternativei. Thelarger the scde parameter (or equivdently, the variance) of the
random error component for dternative i, the more tempered is the effect of the change in the systematic
utility differentia (see the numerator of the cumulaive distributionfunctiontermin Equation (5) and smdler
isthe eadticity effect onthe probability of choosing dternativei. Inparticular, two dternatives will have the
same dadticity effect due to a change in the systemdtic utility of another dternative only if they have the
same scae parameter on the random components. This propertyisalogicd and intuitive extenson of the
case of the multinomid logit in which all scale parameters are congtrained to be equa and, therefore, dl
cross-eadiicities are equdl.

Assuming a linear-in-parameters functiond form for the systematic component of utility for al
dternatives, the relative magnitudes of the cross-eadticities of the choice probabilities of any two
dterndives i and j with respect to a change in the kth level of service varidble of another dterndive |
(say, xy ) are characterized by the scale parameter of the random components of dternativesi and j:
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2.3 HEV Mode Estimation

The HEV modd can be esimated using the maximum likelihood technique. Assume a linear-in-
parameters specification for the systematic utility of each aternative given by V= B’ Xy for the g
individual and i" aternative (we introduce the index for individuasin the following presentation since the
purpose of the estimation is to obtain the modd parameters by maximizing the likeihood function over al
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individuds in the sample). The parameters to be estimated are the parameter vector B and the scde
parameters of the random component of each of the alternatives (one of the scale parametersis normdized
to one for identifiability). The log likelihood function to be maximized can be written as:

w
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where C, isthechoice set of dternatives available to the g™ individud and Y isdefined asfollows
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log likelihood function in Equation (7) has no closed-form expression, but can be estimated in a Sraight-
fooward manne udng Gaussan quadrature. To do so, define a vaiable u = ™" .
Then, A wydw = - %du and w = -lnu . Also defineafunction G, &
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Then we can re-write Equation (7) as
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The expression within braces in the above eguation can be estimated using the Laguerre Gaussian
quadrature formula, which replaces the integral by a summation of terms over a certain number (say K)
of support points, eachterm comprising the evauaion of the functionG(.) at the support point k multiplied
by a probability mass or weight associated with the support point (the support points are the roots of the
Laguerre polynomid of order K and the weights are computed based on a set of theorems provided by
Presset al., 1992; page 124).



2.4 Transport Applications

The HEV modd has been applied to estimate discrete choice modds based on revealed choice
(RC) data as well as stated choice (SC) data.

The muitinomid logit, dternative nested logit structures, and the heteroscedastic model are
esimated usng RC data in Bhat (1995) to examine the impact of improved rail service on inter-city
business travel in the Toronto-Montred corridor. The nested logit structures are ether inconsstent with
utility maximization principles or are not sgnificantly better than the multinomid logit modd. The
heteroscedastic extreme value model, however, isfound to be superior to the multinomid logit mode. The
heteroscedastic model predicts smaler increasesinral shares and smdler decreases in non-rail sharesthan
the multinomid logit inresponseto rail-serviceimprovements. It dso suggestsalarger percentage decrease
inar share and asmaller percentage decrease in auto share than the multinomid logit.

Hensher et al. (1999) applied the HEV modd to estimate an inter-city travel mode choice modd
from a combination of RC and SC choice data (they aso discussalatent-classHEV modd in their paper
that alows taste heterogeneaity inaHEV model). The objective of this study was to identify the market for
aproposed high-gpeed rall serviceinthe Sydney-Canberracorridor. Therevealed choice setincludesfour
travel modes: air, car, bus or coach, and conventiond rail. The stated choice set includes the four RC
dternatives and the proposed high speed rail aternative. Hensher et al. estimate a pooled RC/SC model
which accommodates scale differences between RC and SC data as well as scale differences among
dternatives. The scale for each mode turns out to be about the same across the RC and SC data sets,
possbly reflecting awell-designed stated choicetask that captures variability levels comparable to actua
reveded choices. Very interesingly, however, the scae for al non-car modes are about equal and
substantidly lesser thanthat of the car mode. Thisindicates much moreuncertainty inthe eva uation of non-
car modes compared to the car mode.

Hensher (1997) has gpplied the HEV modd inarelated stated choice study to evauate the choice
of fare type for intercity travel in the Sydney-Canberra corridor conditiona on the current mode used by

eech traveler. The current modesin the andysisinclude conventiond train, charter
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coach, scheduled coach, ar and car. The projected patronage on a proposed high-speed ral mode is
determined based on the current travel profile and aterndtive fare regimes.

Hensher (1998), in another effort, has applied the HEV modd to the vauation of attributes (such
asthe vaue of travel time savings) from discrete choice modds. Attribute vauation is generaly based on
the ratio of two or more attributes within utility expressions. However, using a common scale across
dternatives can distort the rdative vauation of attributes across dternatives. In Hensher’'s empirical
andyss, the meanvdue of travel time savings for public transport modesismuchlower whenaHEV mode
is used compared to a MNL mode because of confounding of scale effects with attribute parameter
magnitudes. In areated and more recent sudy, Hensher (1999) applied the HEV model (aong withother
advanced modds of discretechoicesuchasthe multinomid probit and mixed logit modds whichwe discuss
later) to examine vauation of attributes for urban car drivers.

Munizaga et al. (2000) evauated the performance of severa different modd structures (induding
the HEV and the multinomid logit modd) in ther ability to replicate heteroscedastic patterns across
dternatives. They generated datawith known heteroscedastic patterns for the analysis. Thar resultsshow
that the multinomia logit modd does not perform wel and does not provide accurate policy predictions
in the presence of heteroscedagticity across aternatives, while the HEV model accurately recovers the
target vaues of the underlying modd parameters.

2.5 Detailed Results From an Example Application

Bhat estimated the HEV model using datafroma 1989 Rail Passenger Review conducted by VIA
Rall (the Canadian nationd rail carrier). The purpose of the review was to develop travel demand modds
to forecadt future intercity travel and estimate shiftsin mode split in response to a variety of potentid rail
service improvements (induding high-speed rall) in the Toronto-Montreal corridor (see KPMG Peat
Marwick and Koppelman, 1990 for a detailed description of this data). Travel surveys were conducted
inthe corridor to collect data on intercity travel by four modes (car, air, train and bus). This dataincluded
socio-demographic and generd trip-making characteristics of the traveler, and detailed informationonthe
current trip (purpose, party sze, originand destinationcities, etc.). The set of modes avallable to travelers
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for their intercity travel was determined based onthe geographic locationof the trip. Leve of service data
were generated for eachavailable modeand each trip based onthe origin/destinationinformetionof the trip.

Bhat focused onintercitymode choicefor pad businesstravel inthe corridor. The study is confined
to amode choice examinationamong air, train, and car due to the very few number of individuas choosing
the bus mode in the sample and dso because of the poor qudlity of the bus data (see Forinash and
Koppelman, 1993).

Five different models were estimated inthe study: amultinomid logit model, three possible nested
logit models, and the heteroscedastic extreme value modd. The three nested logit models were: a) car and
train (dow modes) grouped together in a nest which competes againgt air, b) train and air (common
carriers) grouped together in a nest which competes againgt car, and ¢) air and car grouped together in a
nest which competes againg train. Of these three structures, the first two seem intuitively plausible, while
the third does not.

The find estimation results are shown in Table 1 for the multinomid logit model, the nested logit
model with car and train grouped as ground modes, and the heteroscedastic modd. The estimation results
for the other two nested logit models are not shown because the logsum parameter exceeded one in these
gpecifications. Thisis not globaly consstent with stochadtic utility maximization (McFadden, 1978; Ddy
and Zachary, 1978).

A comparison of the nested logit modd with the multinomid logit modd using the likelihood retio
test indicatesthat the nested logit modd fallsto rgect the multinomid logit mode (equivaently, notice the
datidicaly inggnificance of the logsum parameter relative to avaue of 1). However, alikelihood ratio test
between the heteroscedastic extreme vaue model and the multinomid logit strongly rejects the multinomid
logit in favor of the heteroscedastic specification (the test statistic is 16.56 which is significant a any
reasonable levd of significance when compared to a chi-squared datistic with two degrees of freedom).
Table 1 dso evauates the modelsin terms of the adjusted likelihood retio index ( p2 ).! These vaues

! The adjusted likelihood ratio index is defined as follows:

o LOD-K
P Z©)
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agan indicate that the heteroscedastic model offers the best fit in the current empirical anays's (note that
the nested logit model and the heteroscedastic models can be directly compared to each other using the
non-nested adjusted likelihood ratio index test proposed by Ben-Akiva and Lerman (1985); inthe current
case, the heteroscedastic modd specification rejected the nested specification using this non-nested
hypothesis test).

In the subsequent discussion on interpretation of model parameters, the focus will be on the
multinomid logit and heteroscedadtic extreme value modds. The signs of dl the parameters in the two
models are condstent with a priori expectations (the car mode is used as the base for the alternative
gpecific constantsand dternative specific variables). The parameter estimates fromthe multinomid logit and
the heteroscedastic moded are aso close to each other. However, there are some significant differences.
The heteroscedastic model suggestsa higher positive probability of choice of the train modefor tripswhich
originate, end, or originate and end at a large city. It dso indicates a lower sengitivity of travelers to
frequency of service and travel cost; i.e., the heteroscedastic model suggedts that travelers place
subgtantialy more importance on travel time than on travel cost or frequency of service. Thus, according
to the heteroscedastic modd, reductionsintravel time (even with a concomitant increase in fares) may be
avery dfective way of incressngthemodeshare of atrave aternative. The implied cost of invehicle travel
time is $14.70 per hour in the multinomid logit and $20.80 per hour in the heteroscedastic modd. The
corresponding figures for out-of-vehicle travel time are $50.20 and $68.30 per hour, respectively.

The heteroscedastic mode! indicates that the scale parameter of the random error component
associated with the train (air) utility is Sgnificantly greater (smaller) thanthat associated with the car utility
(the scdle parameter of the random component of car utility is normaized to one; the t-statisticsfor the train
and scale parameters are computed withrespect to a value of one). Therefore, the heteroscedastic model
suggests unequa cross-eladticities among the modes.

Table 2 shows the dadticity matrix with respect to changesin rall level of service characteristics

(computed for a representative inter-city business traveler in the corridor) for the multinomia logit and

whereL (M) isthe model log-likelihood value, L(C) isthelog-likelihood valuewithonly alternative specific constantsand an 11D error
covariance matrix, and K is the number of parameters (besides the alternative specific constants) in the model.
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heteroscedastic extreme value models.? Two important observations can be made from thistable. Firgt,
the multinomid logit modd predicts higher percentage decreasesin air and car choice probabilitiesand a
higher percentage increase in rail choice probability in response to an improvement intrainlevel of service
than the heteroscedastic modd . Second, the multinomid logit eagticity matrix exhibits the [1A property
because the dementsinthe second and third columns are identica ineachrow. The heteroscedastic model
does not exhibit the 1A property; aone percent change in the leve of service of therall moderesultsin a
larger percentage change in the probability of choosing air than auto. This is a reflection of the lower
variance of the random component of the utility of air relative to the random component of the utility of car.
We discuss the policy implications of these observationsin the next section.

The observations made above have important policy implications at the aggregate level (these
policy implications are specific to the Canadian context; caution must be exercised in generdizing the
behaviord implications based on this Sngle gpplication). Firdt, the results indicate that the increase in rall
mode share in response to improvementsinthe rall modeislikdy to be subgtantidly lower thanwhat might
be expected based onthe multinomid logit formulation. Thus, the multinomid logit model overestimatesthe
potentid ridership on anew (or improved) rail service and, therefore, overestimates revenue projections.
Second, the resultsindicate that the potential of animproved rall service to dleviate auto-traffic congestion
on intercity highways and air-traffic congestion at airportsislikely to be lesser than that suggested by the
multinomid logit model. This finding has a direct bearing on the evauation of dternative dtrategies to
dleviae intercity travel congestion. Third, the differentid cross-dadticities of ar and auto modes in the
heteroscedastic logit modd suggests that an improvement in the current rail servicewill dleviaear-traffic
congestion at airports more so than dleviating auto-congestion on roadways. Thus, the potentid benefit
from improving the rail service will depend on the Situationa context; thet is, whether the thrust of the
congestion-dleviation effort is to reduce roadway congestion or to reduce ar traffic congestion. These
findings point to the deficiency of the multinomid logit modd as atool to makinginformed policy decisons
to dleviate intercity travel congestion in the specific context of Bhat' s gpplication.

2 Since the objective of the original study for which the data were collected was to examine the effect of alternative improvements
inrail level of service characteristics, we focus on the elasticity matrix corresponding to changesin rail level of service here.
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3. THE GEV CLASSOF MODELS

The GEV class of models relaxes the 11D assumption of the MNL by dlowing the random
components of dterndtives to be correlated, while maintaining the assumption that they are identically
digtributed (i.e., identical, non-independent random components). This class of modds assumes atype |
extreme vaue (or Gumbd) digtribution for the error terms. All the models belonging to this class nest the
multinomid logit and result in closed-formexpressions for the choice probabilities. Infact, the MNL isaso
amember of the GEV class, though we will reserve the use of the term “GEV class’ to those models that
condtitute generdizations of the MNL.

The generd structure of the GEV class of modds was derived by McFadden (1978) from the
random utility meximization hypothesis, and generaized by Ben-Akiva and Francois (1983). Severa
specific GEV structureshave beenformulated and applied withinthe GEV class, induding the Nested Logit
(NL) modd (Williams, 1977; McFadden, 1978; Day and Zachary, 1978), the Paired Combinatoria Logit
(PCL) modd (Chu, 1989; Koppemanand Wen, 2000), the Cross-Nested Logit (CNL) modd (Vovsha,
1997), the Ordered GEV (OGEV) modd (Smdl, 1987), the Multinomid Logit-Ordered GEV (MNL-
OGEV) modd (Bhat, 1998c), and the Product DifferentiaionLogit (PDL) mode (Bresnahanet al., 1997),
and the Generalized Nested Logit (GNL) mode (Wen and Koppelman, 2001).

The nested logit (NL) mode permits covariance inrandom components among subsets (or nests)
of dternatives (each dternative can be assigned to one and only one nest). Alternativesinanest exhibit an
identical degree of increased sengitivity relative to dternatives not inthe nest (Williams, 1977; M cFadden,
1978; Ddy and Zachary, 1978). Each nest in the NL Structure has associated with it a dissmilarity (or
logsum) parameter that determinesthe correl ationin unobserved componentsamong dternativesinthat nest
(see Daganzo and Kusnic, 1993). The range of this dissmilarity parameter should be between 0 and 1 for
dl nests if the NL modd is to remain globaly consstent with the random utility meximizing principle. A
problemwiththe NL modd isthat it requiresa priori specificationof the nesting structure. This requirement
has at least two drawbacks. First, the number of different structures to estimate in a search for the best
structureincreasesrapidly as the number of dternativesincreases. Second, the actua competitionstructure
among dternatives may be a continuum that cannot be accurately represented by partitioning the
dterndives into mutudly exclusve subsats.
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The paired combinatoria logit (PCL) modd initidly proposed by Chu (1989) and recently
examined in detail by Koppelman and Wen (2000) generdizes, in concept, the nested logit model by
dlowing differentid correlation between each pair of aternatives (the nested logit model, however, is not
nested within the PCL structure). Each pair of alternatives in the PCL mode has associated with it a
dissmilarity parameter (subject to certain identification considerations that Koppeman and Wen are
currently studying) that isinversdy related to the correl ationbetweenthe pair of aternatives. All dissmilarity
parameters haveto liein therange of 0to 1 for globa consstency with random utility maximization.

Another generdizationof the nested logit mode isthe cross-nested logit (CNL) mode of Vovsha
(1997). In this modd, an dternative need not be excdusvey assgned to one nest as in the nested logit
sructure. Instead, an aternative can appear in different nests with different probabilities based on what
Vovsharefersto as dlocation parameters. A sngle dissmilarity parameter is estimated across dl nestsin
the CNL structure. Unlike in the PCL model, the nested logit model can be obtained as a specia case of
the CNL model wheneach dternative is unambiguoudy alocated to one particular nest. Vovsha proposes
aheuridic procedure for estimationof the CNL model. This procedure appears to be rather cumbersome
and its heurigtic nature makes it difficult to establish the Satistical properties of the resulting estimates.

The ordered GEV modd was devel oped by Smdl (1987) to accommodate correlaion among the
unobserved random utility components of dternatives close together dong a naturd ordering implied by
the choice variable (examples of such ordered choicevariablesmightincdludecar ownership, departuretime
of trips, etc.). The aImplest verson of the OGEV mode (which Smdl refersto as the standard OGEV
modd) accommodates correl ationin unobserved components betweenthe utilitiesof each pair of adjacent
dternativeson the naturd ordering; thet is, eachdternative is correlated withthe dternativesonether sde
of it dong the natural ordering.® The standard OGEV modd has a dissmilarity parameter that isinversdy
related to the correl ation between adjacent aternatives (this relationship does not have a closed form, but
the correlation implied by the dissmilarity parameter can be obtained numericaly). The dissmilarity
parameter hasto liein the range of 0 to 1 for consstency with random utility maximization.

3 The reader will note that the nested logit model cannot accommaodate such a correlation structure because it requires alternatives
to be grouped into mutually exclusive nests.
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The MNL-OGEV model formulated by Bhat (1998c) generdizes the nested logit model by
dlowing adjacent dternatives withinanest to be correlated inther unobserved components. This structure
is best illugtrated with an example. Consider the case of amulti-dimensond model of travel mode and
departure time for nonwork trips. Let the departure time choice dternatives be represented by severa
temporaly contiguous discrete time periods in a day such as am. peak (6a.m.-9a.m.), am. mid-day
(9a.m.-12 noon), p.m. mid-day (12 noon-3p.m.), p.m. peak (3p.m.-6p.m.), and other (6p.m.-6a.m.). An
appropriatenestedlogit Sructurefor thejoint mode-departure time choi ce model may alow the joint choice
dternativesto shareunobserved attributesinthe mode choice dimenson, resultinginanincreased senstivity
among time-of-day dternatives of the same mode rdative to the time-of-day aternatives across modes.
However, inadditionto the uniformcorrel ationin departure time dternatives sharing the same mode, there
islikely to be increased correlation in the unobserved random utility componentsof each pair of adjacent
departure time dternatives due to the natura ordering among the departure time aternatives dong the time
dimengon. Accommodating such a correlaion generates an increased degree of sendtivity between
adjacent departure time dternatives (over and above the sengtivity among non-adjacent dternatives)
sharing the same mode. A dructure that accommodates the correlation patterns just discussed can be
formulated by using the multinomid logit (MNL ) formulationfor the higher-level mode choice decisonand
the standard ordered generdized extreme-value (OGEV) formulation (see Smdl, 1987) for thelower-level
departure time choice decision (i.e., the MNL-OGEV modd).

Morerecently, Wenand Koppel man (2001) proposed agenerd GEV model structure, whichthey
referred to as the General Nested Logit (GNL) model. Swait (2001), independently, proposed asmilar
dructure, which he refers to as the choice set Generation Logit (Genl) modd; Swait's derivation of the
Genl model is mativated fromthe concept of latent choi cesets of individuds, while Wenand Koppelman's
derivation of the GNL mode is motivated from the perspective of flexible subdtitution patterns across
dternatives. Wen and Koppeman (2001) illustrate the generd nature of the GNL model formulation by
deriving the other GEV modd structures mentioned earlier as specia redtrictive cases of the GNL mode
or as gpproximations to restricted versions of the GNL modd.

The GNL modd is conceptudly appeding because it is a very generd structure and alows
subgtantia flexibility. However, in practice, the flexibility of the GNL mode can be redized only if oneis



16

able and willingto estimate alarge number of dissmilarity and dlocation parameters. The net result is that
the anadyst will have to impose informed redtrictions on the generd GNL moded formulation that are
customized to the application context under investigation.

The advantage of dl the GEV modds discussed above is that they alow relaxations of the
independence assumptionamong aterndive error terms while maintaining closed-formexpressions for the
choice probabilities. The problemwiththese modes isthat they are consstent with utility maximizationonly
under rather gtrict (and oftenempiricaly violated) restrictions on the dissmilarity parameters. The origin of
these redirictions can be traced back to the requirement that the variance of the joint aternatives be
identicd in the GEV models. In addition, the GEV models do not relax the response homogeneity
assumption discussed in the previous section.

In the rest of the discusson on GEV models, we will focus on the GNL model since it subsumes
other GEV models proposed to date as specia cases.

3.2 GNL Modd Structure
The GNL modd can be derived from the GEV postulate using the following function:

Y @, v

i’e N,

G = 0.y Vp =E

(11)

whereN,istheset of dternativesbdongingtonestm,  represents an allocationparameter characterizing
theportionof dterndtive i assignedtonest m (0< e, <1 E e, =17?i),ad p,, isadissmilaity
parameter for netm (0< p,, ? 1). Thenitiseasy to verify thnz:t G isnon-negative, homogenous of degree
one, tending toward + ? when any argument y; tendstoward + ?, and whose n™ non partid derivatives

are non-negative for odd n and non-positive for even n because 0< p,, <1. Thusthe following function

represents a cumuletive extreme-val ue ditribution:

F = E1e 8P mpltz Y. (@ p-%mnr}’ (12)
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To obtain the probability of choice for each dternativei in the GNL modd, congder a utility maximizing
decision process where the utility of each dternative i (U,) is written in the usua form as the sum of a
deterministic component (V;) and arandom component E; . If the random componentsfollowthe CDF in

Equation (12), then, by the GEV postulate, the probability of choosing the i dterndiveis

D | er‘)up"'( Y e, er"')up"] P 1‘

P = mn i’eN'

R P @

m \ i'aN,

The cross dadticity of apair of dternativesi and j, which gppear in one or more common nests, is

B / %, (14)

If thetwo dternativesi and j do not gppear in any commonnes, the cross-easticity reducesto zero. Wen
and Koppelmanaso demongtrate that the correlationbetweentwo dternativesi and j isafunctionof both
the alocation parameters and the dissmilarity parameters.

3.3 GNL Moddl Estimation

The GNL model may be esimated using the commonly-used maximum likeihood method. The
parameter to be edsimated in the GNL dructure indude variable coefficients, the dissmilarity
parameters p,, (M=1,2,...,M), and the dlocation parameters &, , i=1,2,...I, m=1.2,..M). All the
dissmilarity and alocationparameters need to be between 0 and 1, and the dlocation parameters for each
dternative should sum to 1. Wen and Koppeman used a congtrained maximum likelihood procedure to
esimate the modd. It should be noted that the maximum number of dissmilarity parameters that can be
estimated is one less than the number of pairs of dterndtives.
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3.4 GNL Mode Applications

The GNL modd was proposed recently by Wenand Koppeman. The results of their application
are discussed in detail in the next section. In most practical Stuations, the andyst will have to impose
informed restrictions onthe GNL formulation. Such regtrictions might lead to modds suchasthe PCL, the
OGEV, the MNL-OGEV, and the CNL modds. In addition, the NL model can also be shown to be
essentidly the same as arestricted version of the GNL. Since there have been severa applications of the
NL modd, and we have reviewed studies that have used the other GEV structures, we proceed to a
detailed presentation of the GNL mode by Wen and Koppe man.

3.5 Detailed Results From an Application of the GNL Model

Wen and Koppelman use the same Canadian rail data set used by Bhat (1995) and discussed in
Section2.5. They examined intercity mode choice in the Toronto-Montreal corridor. The universa choice
st includesair, train, bus, and car.

Table 3 shows the results that Wen and K oppel man obtained fromthe GNL moded and the MNL
modd. Wen and Koppeman aso estimated several NL structures, a PCL mode, and CNL models.
However, the GNL modd provided better datafit in their application context.

Table 3 providesthe expected impacts of the levd of service variables. The table dso indicatesthat
the model parameters tend to be smaler in magnitude in the GNL mode rdative to the MNL. However,
the vauesof time are about the same from the two models. Most importantly, the differencesin coefficient
between the two models, combined with the correlation patterns generated by the GNL modd, arelikdy
to produce different mode share forecasts in response to policy actions or investment decisons.

4. FLEXIBLE STRUCTURE MODELS

The HEV and GEV class of modds have the advantage that they are easy to estimate; the
likelihood functionfor these modds either includes a one-dimensond integrd (in the HEV modd) or isin
closed-form (inthe GEV models). However, these modds are restrictive since they only partidly reaxthe
[ID error assumption across dternatives. In this section, we discuss modd structures which are flexible

enough to completely relax the independence and identically distributed error structure of the MNL aswell
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asto relax the assumption of response homogeneity. This sectionfocuses on model structuresthat explicitly
nest the MNL modd.

4.1 Mode Formulations

Two cosdy-related mode formulations may be used to relax the [1D (across dternatives) error
structure and/or the assumption of response homogeneity: the mixed multinomid logit (MMNL) model and
the mixed GEV (MGEV) modd.

The mixed multinomid logit (MM NL) model isageneraization of the well-known multinomid logit
(MNL) modd. Itinvolvesthe integrationof the multinomid logit formula over the distribution of unobserved
random parameters. It takes the structure shown below:

T Blxy
Pu® = [ LaBY® |0)dE), L@ = Ee—“ (15)
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where qu is the probability that individud q chooses dterndive i, x,, isavector of observed variables

a
spedifictoindividud g and dternativei, B represents parameters which are random redizations from a
density function f(.), and @ isavector of underlying moment parameters characterizing f(.).

The MMNL modd structure of Equation (15) can be motivated from two very different (but
formaly equivdent) perspectives. Specificdly, a MMNL structure may be generated from an intrinsic
motivation to alow flexible substitution patterns across dternatives (error-components structure) or from
a need to accommodate unobserved heterogeneity across individuds in their sengtivity to observed
exogenous variables (random-coefficients structure), as we discuss later in Section 4.2 (of course, the
MMNL structure can aso accommodate both a non 11D error structure across dternatives as well as
response heterogeneity).

The MGEV class of models use a GEV mode as a core, and superimposes amixing
digribution on the GEV core to accommodate response heterogeneity and/or additiona
heteroscedadticity/correl ationacross dternative error terms. A questionthat arises here is asfollows Why
would one want to consder an MGEV model structure when a MMNL model can already capture

responseheterogeneity and any identifiable patternof heteroscedaticity/ correl ationacrossdternative error
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terms? That is, why would one want to consder a GEV core to generate a certain inter-alternative error
correlation patternwhen such a correlation pattern can be generated as part of aMMNL modd structure?
Bhat and Guo (2002) provide Stuations where an MGEV model may be preferred to an equivaent
MMNL mode. Consider, for instance, amodd for household resdentia location choice. It is possible, if
not very likdy, that the utility of spatid units that are close to each other will be correlated due to common
unobserved spatial eements. A common specification in the spatia andysis literature for capturing such
gpatia correationistoalowaternativesthat arecontiguous to be correlated. Inthe MM NL structure, such
acorreation structure will require the specification of as many error components as the number of pairs
of gpatialy-contiguous dternatives. Inaresdentid choice context, the number of error components to be
specified will therefore be very large (inthe 100s or 1000s). Thiswill requirethe computation of very high
dimengondintegras(inthe order of 100s of 1000s) inthe MM NL structure. Onthe other hand, acarefully
specified GEV mode can accommodate the spatia correl ation structure within a closed-formformulaion.
However, the GEV mode structure cannot accommodate unobserved random heterogeneity across
individuas. One could superimpase amixing digtributionover the GEV mode structure to accommodate
such heterogeneity, leading to a parsmonious and powerful MGEV dructure.

In the rest of this section, wewill focus onthe MM NL modd structure, since al the concepts and
techniques for the MMNL mode are readily transferable to the MGEV modd structure.

4.2 MMNL Mode Structure
In this section, we discuss the MMNL structure from an error components viewpoint aswell as

from arandom-coefficient viewpoaint.

4.2.1 Error-components structure

The error components structure partitions the overdl random term associated with each
dternative's utility into two components. one component which dlows the unobserved error terms to be
non-identical and non-independent across dternatives, and the other which is specified to be independent
and identically (type | extreme-vaue) distributed across aternatives. Specificaly, consider the following
utility function for individud q and dternativei:
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Y.Vg:"'u'zqt"'eqt

where y'y o and a A€ the systemitic and random components of utility, and £, isfurther partitioned
into two components, 'z aamd e .z, isavector of observed data associated with altemative |,
some of whose e ements might al so appear in the vector Vo W isarandomvector withzero mean. The
component u'z“ inducesheteroscedasticity and correlation across unobserved utility components of the
dternatives. Defining B =¢y ,u') ad X = (yq’i,z;'.)l , Weobtainthe MMNL model structurefor the
choice probability of dternative i for individud q.

The emphass in the error-components structure is to allow a flexible subgtitution pattern among
dternatives in aparamonious fashion. Thisis achieved by the * clever” specification of
the variable vector Zg combined with (usudly) the specification of independent normaly distributed
random elementsinthevector . For example, z, may be specified to be arow vector of dimension
M with each row representing a group m (m=1,2,..M) of aternatives sharing common unobserved
components. The row(s) corresponding to the group(s) of whichi isa member take(s) a vaue of one and
other rowstakeavaue of zero. Thevector W (of dimenson M) may be specified to have independent
elements, each dement having a variance component oi . Thereault of this specificationis a covariance
of U:; among dternatives in group m and heteroscedasticity across the groups of dternatives. This
gructure is less redtrictive than the nested logit structure in that andternative can belong to morethan one
group. Also, by structure, the variance of the dternativesaredifferent. Moregenera structuresfor ' z, in
Equation (16) are presented by Ben-Akiva and Bolduc (1996) and Brownstone and Train (1999).

4.2.2 Random-coefficients structure

The random-coefficients structure dlows heterogeneity in the sengtivity of individud sto exogenous
atributes. The utility that anindividud g associates with dternative i iswritten as:
Up = Bexaten (17)

where Xq isavector of exogenous ttributes, B < isavector of coefficientsthat variesacrossindividuds
with density fB) , ad e o is assumed to be an independently and identicaly didributed (across
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dternatives) type | extreme vaue error term. With this specification, the unconditiona choice probability
of dterndivei for individua q is given by the mixed logit formula of Equation (15). While severa density
functions may be used for f(.), the most commonly used isthe normd distribution. A log-normal distribution
may aso be used if, fromatheoretica perspective, andement of beta has to take the same sign for every
individua (such as anegative coefficient for the travel time parameter in atrave mode choice modd).

The reader will note that the error-components specification in Equation (16) and the random-
coefficients specificationinEquation(17) are structuraly equivaent. Specificdly, if B q isdigtributed with
a mean of y and deviaion W , then Equation (17) is identicad to Equation (16) with

X =YV =Zy However, this apparent redtriction for equality of Equations (16) and (17) is purely

notationd. Elements of Xy that do not appear in z, Can be viewed as variableswhose coefficientsare
determinidtic in the population, while dements of Xy that do not enter in Vo MEY be viewed as
variableswhose coefficients are randomly distributed inthe popul ationwithmeanzero (withcross-sectional
data, the coefficients on the dternative-specific congtants have to be consdered as being deterministic).

Due to the equivaence between the random-coefficientsand error-components formulations, and
the more compact notation of the random-coefficients formulation, we will usethe latter formulationinthe
discusson of the estimation methodology for the mixed logit modd in the next section.

4.3 MMNL Estimation Methodology

This section discusses the details of the estimation procedure for the random-coefficients mixed-
logit modd using each of three methods: the cubature method, the Pseudo-Monte Carlo (PMC) method,
and the Quasi-Monte Carlo (QMC) method.

Consder Equation (17) and separate out the effect of variables with fixed coefficients (induding
the dternative specific congtant) from the effect of variables with random coefficients:

4
Up= @yt :-/_‘,1 Bottart €qn (18)
where e, is the effect of variables with fixed coefficients. Let B~ N(,,0p), sO

tha B ok = Hp T O @=1.2,..0.k=12,. K. In this notation, we are implicitly assuming that
the B qk" areindependent of one another. Evenif they are not, a smple Choleski decomposition canbe
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undertaken so that the resulting integration involves independent norma variates (see Revet and Train,
1998). 5k @=1.2,..0,k=1,2,. k) isastandard normd variate. Further, let Vqt ol + Mg X k-
E

The log-likelihood function for the random-coefficients logit model may be written as:
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where @ () represents the standard normal cumulative distribution function and
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1.2,..,0.i=1,2,..])

The cubature method, the Pseudo-Monte Carlo (PMC) method, and the Quasi-Monte Carlo (QMC)
method represent three different ways of evaduating the multi-dimensond integrd involved in the log-
likdihood function.

4.3.1 Polynomial-based cubature method

To gpply the cubature method, define @, = s'k/ ﬁ for dl g. Then, the log-likdlihood function in
Equation (19) takes the following form:
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The above integrationis now inan appropriate formfor goplication of amulti-dimensond product formula
of the Gauss-Hermite quadrature (see Stroud, 1971).
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4.3.2 Pseudo-random Monte Carlo (PMC) method

This technique approximates the choice probabilities by computing the integrand in Equation (19)
at randomly chosen velues for each 5, . Sincethe s, termsareindependent acrossindividuals and
variables, and are distributed standard normd, we generate amatrix s of standard norma randomnumbers
with Q*K dements (one dement for each variadle and individuad combinaion) and compute the
correspondingindividua choice probabilitiesfor agivenvaue of the parameter vector to be estimated. This
process is repeated R timesfor the given vaue of the parameter vector and the integrand is approximated
by averaging over the computed choice probailities in the different draws. This results in an unbiased
estimator of the actua individua choice probahilities. It's variance decreases as R increases. It dso hasthe
gppeding properties of being smooth (i.e., twicedifferentiable) and being Srictly postive for any redization
of thefinite R draws. The parameter vector is estimated as the vector vaue that maximizes the smulated
log-likelihood function. Under rather weak regularity conditions, the PMC edimator is consistent,
asymptoticdly efficent, and asymptoticdly normd. However, the estimator will generdly be a biased
smulaion of the maximum likelihood (ML) estimator because of the logarithmic transformation of the
choice probabilities in the log-likelihood function. The bias decreases with the variance of the probability

gmulator; that is, it decreases as the number of repetitions increase.

4.3.3 Quasi-random Monte Carlo (QMC) method

The quasi-random Halton sequence is designed to span the domain of the S-dimensiona unit cube
uniformly and efficiently (the interva of each dimension of the unit cube is between 0 and 1). In one
dimengon, the Halton sequence is generated by choosing a prime number r (r>=2) and expanding the
sequence of integers 0,1,2,...,9,...,G interms of the baser:

g=lénblr',wherc 0<by<r-1and rzsg<r1’*1. (22)
Thus, g (g=1,2,...G) can be represented by the r-adicinteger ring ;... b, b,. The Haltonsequencein
the prime base r is obtained by taking the radical inverse of g (g=1,2,...G) to the base r by reflecting
through the radicd point:
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9,8 = 0bob.. by (base 1y = 2 byr ™! (23)

The sequence above is very uniformly digtributed in the interval (0,1) for each prime r. The Halton
sequence in K dimengions is obtained by paring K one-dimensional sequences based on K pairwise

relaively primeintegers (usudly thefirg K primes):

Ve = @, @%,@...0, @) (24)

The Haton sequence is generated number-theoreticaly rather than randomly and so successive points at
any sage “know” how to fill in the gaps left by earlier points, leading to a uniform digtribution within the
domain of integration.

The smulation technique to evauate the integrd in the log-likelihood function of Equation (19)
involves generating the K-dimensona Halton sequence for a specified number of “draws’ R for each
individud. To avoid corrdaion in Smulation errors across individuds, separate independent draws of R
Halton numbers in K dimensions are taken for each individud. This is achieved by generating a Haton
“matrix” Y of 9ze G x K, where G = R* Q+10 (Q isthe total number of individuas inthe sample). The first
tentermsin each dimension are then discarded because the integrand may be sengtive to the Starting point
of the Halton sequence. This leaves a (R*Q) x K Haton matrix which is partitioned into Q sub-matrices
of sze Rx K, each sub-matrix representing the RHaton drawsin K dimensions for each individua (thus,
thefirg Rrows of the Halton matrix Y are assigned to the first individud, the second Rrowsto the second
individua, and so on).

The Halton sequence is uniformly distributed over the multi-dimensond cube. To obtain the
corresponding multivariate normd points over the multi-dimensond domain of the red ling, the inverse
gandard normd didribution transformation of Y is teken. By the integrd transform
result, ¥'= &1 (¥) provides the Halton pointsfor the multi-variate normal distribution (see Fang and
Wang, 1994; Chapter 4). The integrand in Equation (19) iscomputed at the resulting pointsinthe columns
of the matrix X for each of the R draws for each individua and then the smulated likeihood function is

developed in the usua manner as the average of the vaues of the integrand across the R draws.
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Bhat (2001) proposed and introduced the use of the Halton sequence for estimating the mixedlogit
model and conducted Monte Carlo smulation experiments to study the performance of this quas-Monte
Carlo (QMC) amulation method vis-a-vis the cubature and pseudo-Monte Carlo (PMC) simulation
methods (this study, to the author’s knowledge, is the first attempt a employing the QMC smulation
method in discrete choice literature). Bhat's results indicate that the QMC method out-performs the
polynomid-cubature and pseudo-Monte Carlo (PMC) methods for mixed logit model estimeation. Bhat
notesthat this substantial reductionincomputationa cost hasthe potentid to dramaticaly influence the use
of the mixed logit model in practice. Specificdly, given the flexibility of the mixed logit modd to
accommodate very generd patterns of competitionamong dternatives and/or random coefficients, the use
of the QM C smulation method of estimation should facilitate the gpplication of behaviordly richstructures
for discrete choice modding. Another subsequent study by Train (1999) confirms the substantial reduction
in computationa time for mixed logit estimation using the QMC method. Hensher (1999) has adso
investigated Halton sequences and compared the findings with random draws for mixed logit model
edimation. He notesthat the data fit and parameter vaues of the mixed logit modd remain dmost the same
beyond 50 Haltondraws. Heconcludesthat the quasi-Monte Carlo method “is a phenomena development
in the estimation of complex choice models’.

4.3.4 Scrambled and randomized QM C method

Bhat (2002) notes that a problem with the Halton sequence is that there is strong correlation
between higher coordinates of the sequence. Thisis because of the cyclesof lengthr for the primer. Thus,
when two large prime-based sequences, associated with two high dimensions, are paired, the
corresponding unit squareface of the S-dimensiona cubeis sampled by pointsthat lie on parald lines. For
example, the fourteenth dimension (corresponding to the prime number 43) and the fifteenth dimension
(corresponding to the prime number 47) consst of 43 and 47 increasing numbers, respectively. This
generatesacorrelation between the fourteenth and fifteenth coordinates of the sequence. Thisisillustrated
diagrammaticdly in thefirg plot of Figure 1. The consequenceis arapid deterioration in the uniformity of
the Halton sequence in high dimensons (the deterioration becomes clearly noticeable beyond five

dimensons).
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Number theorists have proposed an approach to improve the uniformity of the Haton sequence
inhighdimensions. The basic method is to break the correlations between the coordinates of the standard
Halton sequence by scrambling the cyclesof length r for the prime r. Thisis accomplished by permutations
of the coefficients by in the radical inverse function of Equation (23). The resulting scrambled Halton

sequence for the primer iswritten as
2 -1
tpr@ = IED or(bl@)r » (25)

where 6, is the operator of permutations on the digits of the expansion b,(g) (the standard Halton
sequence is the specid case of the scrambled Haton sequence with no scrambling of the
digits b;(g)). Different researchers(seeBraatenand Weller, 1979; Helleka ek, 1984; Kocisand Whiten,
1997) have suggested different dgorithms for arriving at the permutations of the coefficients b, in Equation
(25). The permutations used by Braaten and Weller are presented in the Appendix for the first ten prime
numbers. Braaten and Weler have dso proved that their scrambled sequence retains the theoretically
appealing N * order of integration error of the standard Halton sequence.

Anexample would be hdpful inillugtrating the scrambling procedure of Braatenand Weller. These
researchers suggest the following permutationof (0,1,2) for the prime 3: (0,2,1). Asindicated earlier, the
5" number in base 3 of the Halton sequence in digitized form is 0.21. When the permutation above is
applied, the 5™ number in the corresponding scrambled Halton sequence in digitized form is 0.21, which
when expanded in base 3 translates to 1 x 3 + 2 x 32 = 5/9. The firs¢ 8 numbers in the scrambled
sequence corresponding to base 3 are 2/3, 1/3, 2/9, 8/9, 5/9, 1/9, 7/9, 4/9.

The Braaten and Weller method involves different permutations for different prime numbers. As
aresult of this scrambling, the resulting sequence does not display strong correlation across dimensions as
does the standard Haton sequence. Thisis illustrated in the second plot of Figure 1, which plots 150
scrambled Halton pointsinthe fourteenth and fifteenthdimensions. A comparison of the two plotsin Figure
1 clearly indicates the more uniform coverage of the scrambled Halton sequence réelative to the standard

Halton sequence.
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In additionto the scrambling of the standard Halton sequence, Bhat dso suggests a randomi zation
procedure for the Halton sequence based ona procedure devel oped by Tuffin (1996). The randomization
is useful because dl QMC sequences (including the standard Halton and scrambled Halton sequences
discussed above) are fundamentaly deterministic. This deterministic nature of the sequences does not
permit the practical estimationof the integrationerror. Theoreticd resultsexis for estimating the integration
error, but these are difficult to compute and can be very conservative.

The essentia concept of randomizing QMC sequences is to introduce randomness into a
deterministic QM C sequencethat preserves the uniformly distributed and equidistribution properties of the
underlying QM C sequence (see Shaw, 1988; Tuffin, 1996). One Smple way to introduce randomness is
based on the fallowing idea. Let w(N) be a QM C sequence of length N over the S-dimensiond cube
{0,1}° and consder any Sdimensond uniformly distributed vector in the S-dimensiond cube (u
2{0,1}9). Wy isamatrix of dimension N x S, and u isa vector of dimension 1xS. Construct a new
sequence xm = {y ™y ® 1‘”’} , Where {.} denotes the fractiond part of the marix within
parenthesis, ® represents the kronecker or tensor product, and 1™ isaunit columnvector of sizeN
(the kronecker product multiplies each dement of u with the vector 1™ ). The net result is a
sequence x® whose elements y,, are obtained as W, +u, if W tu,s1,
ad Y, tu -1 if §  +u >1. It canbeshown that the sequence xm s0 formedisdsoa QMC
sequence of length N over the S-dimensiona cube { 0,1} 5. Tuffin provides aforma proof for this result,
which is rather sraightforward but tedious. Intuitively, the vector u smply shifts the points of each
coordinate of the origind QMC sequence w(M by a certain vaue. Since dl the points within each
coordinate are shifted by the same amount, the new sequence will preserve the equidistribution property
of the origind sequence. Thisisillugtrated in Figure 2 in two dimensions. Thefirg diagraminFigure 2 plots
100 points of the standard Halton sequence in the firg two dimensons. The second diagram plots 100
points of the standard Halton sequence shifted by 0.5 in the first dimensionand O inthe second dimenson.
Theresult of the shiftingisasfollows. For any point below 0.5 in the first dimensoninthe firs diagram (for
example, the point marked 1), the point gets moved by 0.5 toward the right inthe second diagram. For any
point above 0.5 inthe firs dimensoninthe firs diagram (suchasthe point marked 2), the point gets moved
to the right, hitsthe right edge, bounces off this edge to the left edge, and iscarried forward so that the total
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distance of the shift is 0.5 (another way to visudize this shift is to trandform the unit square into acylinder
withthe left and right edges“ sewn” together; thenthe shifting entails moving points aong the surface of the
cylinder and perpendicular to the cylinder axis). Clearly, the two-dimensiond plot in the second diagram
of Figure 2 is aso wdl-distributed because the rdative positions of the points do not change from that in
Figure 1; thereisamply ashift of the overdl| pattern of points. The last diagram in Figure 2 plots the case
where there is a shift in both dimensions; 0.5 in the firgt and 0.25 in the second. For the same reasons
discussed inthe context of the shift in one dimension, the sequence obtained by shiftinginboth dimensions
is aso well-distributed.

It should be clear from above that any vector u ?{ 0,1} S can be used to generate a new QMC
sequence from an underlying QM C sequence. An obvious way of introducing randomness is then to
randomly draw u from amultidimensond uniform digtribution.

An important point to note here isthat randomizing the standard Halton sequence as discussed
earlier does not break the correlations in high dimensions because the randomization amply shiftsdl points
in the same dimension by the same amount. Thus, randomized versions of the standard Halton sequence
will suffer from the same problems of non-uniform coverage in high dimensions as the standard Halton
sequence. To resolve the problem of non-uniform coverage in high dimensons, the scrambled Haton
sequence needs to be used.

Once a scrambled and randomized QMC sequence is generated, Bhat proposes a smulation
approachfor estimation of the mixed logit model that is Smilar to the standard Halton procedure discussed

on the previous section.

435 Bayesan esimation of MNL

Some recent papers (Brownstone, 2000; Train, 2001) have considered a Bayesian estimation
approachfor MM NL model estimationas opposed to the class ca estimationapproachesdiscussed above.
The generd results from these studies gppear to suggest that the classica approach is faster when mixing
distributions with bounded support suchastriangularsare consdered, or when there is amix of fixed and
random coefficients in the modd. On the other hand, the Bayesian estimation appears to be faster when
consdering the normal didtribution and its transformations, and when al coefficients are random and are
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correlated with one another. However, in the overal, the results suggest that the choice between the two
estimation approaches should depend more on interpretationa ease in the empirica context under study

rather than computational efficiency congderations.
4.4 Transport Applications
The transport applications of the mixed multinomid logit modd are discussed under two headings:

error-components gpplications and random-coefficients applications.

4.4.1 Error-components applications

Brownstone and Train (1999) applied an error-components mixed multinomid logit sructure to
mode households choices among gas, methanol, compressed natural gas (CNG), and eectric vehicles,
udng stated choice (SC) data collected in 1993 from a sample of householdsin Cdifornia. Brownstone
and Train alow non-electric vehicles to share an unobserved random component, thereby increasing the
sengtivity of non-eectric vehicles to one another compared to an dectric vehicle. Smilarly, a non-CNG
error component isintroduced. Two additional error componentsrelated to the Sze of the vehicle are dso
introduced: oneisanormd deviate multiplied by the Sze of the vehicle and the second isanormd deviate
multiplied by the luggage space. All these error components are datigticaly sgnificant, indicating non-11A
competitive patterns.

Browngtone et al. (2000) extended the analysis of Browngtone and Train (1999) to estimate a
model of choice among aternative-fuel vehicles using both stated choice and revealed choice (RC) data.
The RC data was collected about 15 months after the SC data, and recorded actua vehicle purchase
behavior since the collection of the SC data. Brownstone et al. (2000) maintain the error-components
gructure developed in their earlier sudy, and also accommodate scale differences between RC and SC
choices.

Bhat (1998a) gpplied the mixed multinomid logit (MMNL) modd to a multi-dimensond choice
stuation. Specificdly, his application accommodates unobserved correlation across both dimensionsin a
two-dimensiond choice context. The model is applied to an andyss of travel mode and departure time
choicefor home-based social-recresational trips usng data drawn from the 1990 San Francisco Bay Area
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household survey. The empirica results underscore the need to capture unobserved attributes along both
the mode and departure time dimensons, both for improved data fit aswell asfor more redidic policy

evauations of trangportation control measures.

4.4.2 Random-coefficients applications

There have been several gpplications of the mixed multinomid logit model motivated from a
random-coefficients perspective.

Bhat (1998b) estimated amodd of inter-city travel mode choicethat accommodates variaionsin
responsveness to leve-of-service measures due to both observed and unobserved individua
characteristics. The model is applied to examine the impact of improved rail service on weekday, business
travel in the Toronto-Montreal corridor. The empirica results show that not accounting adequately for
vaiaions in responsveness across individuds leads to a datisticaly inferior data fit and aso to
ingppropriate evauations of policy actions amed a improving inter-city transportation services.

Bhat (2000) formulated a mixed multinomid logit modd of multi-day urban travel mode choice
that accommodates variations in mode preferences and responsiveness to level-of-service. The modd is
applied to examine the travel mode choice of workers in the San Francisco Bay area. Bhat's empirical
resultsindicate 9gnificant unobserved variation (acrossindividuds) inintringc mode preferencesand levd-
of-service responsiveness. A comparison of the average response coefficients (across individuds in the
sample) among the fixed-coefficient and random-coefficient modds shows that the random-coefficients
model implies subgtantialy higher monetary values of time then the fixed-coefficient modd. Overdl, the
empirica results emphasize the need to accommodate observed and unobserved heterogeneity across
individuas in urban mode choice modding.

Train (1998) used a random-coefficients specification to examine the factors influencing anglers
choiceof fishing sites. Explanatory variablesinthemode includefish sock (measured infish per 1000 feet
of river), aestheticsrating of fishing Ste, Sze of each Ste, number of camp grounds and recresation access
at ste, number of restricted species at the Site, and the travel cost to the site (including the money vaue of
travel time). The empirica resultsindicate highly sgnificant taste variation across anglers in the sengtivity
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todmog dl the factorslisted above. In this study as well as Bhat's (2000) study, thereis avery dramatic
increase in data fit after including random variation in coefficients.

Mehndiratta(1997) proposed and formulated atheory to accommodate variaions in the resource
vaue of time in time-of-day choice for inter-city travel. Mehndiratta then proceeded to implement his
theoretica modd using a random-coefficients specification for the resource vdue of disruption of leisure
and deep. He uses adated choice samplein hisanayss.

Hensher (2000) undertakes a stated choice andyds of the vauation of non-businesstravel time
savingsfor car drivers undertaking long distance trips (up to three hours) between mgjor urban areasin
New Zedand. Hensher disaggregates overdl trave time into severd different components, including free
flowtravel time, d owed-down time, and stop time. The coefficients of each of theseattributesare dlowed
to vary randomly acrossindividuasin the population. The study finds sgnificant taste heterogeneity tothe
various components of travel time, and adds to the accumulating evidence that the restrictive travel time
response homogeneity assumption undervaues the mean vaue of trave time savings.

Inadditionto the studiesidentified in Sections 4.4.1 and 4.4.2, some recent studies have included
both inter-aternative error corrdations (in the spirit of an error-components structure) as well as
unobserved heterogeneity among decis on-making agents (inthe soirit of the random coefficients structure).
Such studiesindude Hensher and Greene (2000), Bhat and Castelar (2002), and Han and Algers(2001).

4.5 Detailed Results From an Example Application

Bhat usesan error components motivation for the andysis of mode and departure time choicefor
socid-recregtiond trips in the San Francisco Bay area. Bhat suggests the use of a MMNL model to
accommodate unobserved corrdation in error terms across both the model and tempora dimension
smultaneoudy. The data for this study are drawn from the San Francisco Bay Area Household Travel
Survey conducted by the Metropolitan Trangportation Commission(MTC) inthe Spring and Fl of 1990.
The modal dternatives indude drive done, shared-ride, and trandt. The departure time choice is
represented by six time-periods. early morning (12:0lam.-7am.), am. pesk (7:.0lam.-9am.), am.
offpeak (9:01am.-12noon), p.m. offpeak (12:01p.m.-3p.m.), p.m. peak (3:01p.m.-6p.m.), and evening
(6:01p.m.-12 midnight). For some individud trips, modd availability is a function of time-of-day (for
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example, trandt mode may be available only during the am. and p.m. peak periods). Such temporal
vaidionsin modd availability are accommodated by defining the feasible set of joint choice aternatives
for each individud trip. Level of service data were generated for each zond pair inthe study area and by
five time periods. early morning, am. peak, mid-day, p.m. peak, and evening. The sample used in Bhat's
paper comprises 3000 home-based socid/recreationa person-trips obtained from the overall single-day
travel diary sample. The mode choicesharesinthe sample are asfollows. drive done (45.7%), shared-ride
(51.9%) and trangit (2.4%). The departure time distribution of home-based socid-recregtiond tripsin the
sample is as follows: Ealy moming (4.6%), am. peak (5.5%), am. offpeak (10.3%), p.m. offpeak
(17.2%), p.m. peak (16.1%), and evening (46.3%).

Bhat estimated four different models of mode-departure time choice: (1) the multinomia logit
(MNL) modd, (2) the mixed multinomia logit model which accommodates shared unobserved random
utility attributes d ong the departure time dimension only (the MMNL-T modd), (3) the mixed multinomid
logit modd which accommodates shared unobserved random utility attributes aong the mode dimension
only (the MMNL-M modd), and (4) the proposed mixed multinomia logit modd which accommodates
shared unobserved attributes dong both the dimensons of mode and departure time (the MMNL-MT
modd). In the MMNL models, the senstivity among joint choice dternatives sharing the same mode
(departure time) were dlowed to vary across modes (departure times). It is useful to note that such a
gpecificationgenerates heteroscedasticity in the random error terms acrossthe joint choice dternatives. In
the MMNL-T and MMNL-MT models, the shared unobserved components specific to the morning
departure times (i.e., early morning, am. peak, and am. offpesk periods) were satisticaly insgnificant.
Consequently, the MMNL-T and MMNL-MT modd results restricted these components to zero.

The leve-of-service parameter estimates, implied money vaues of trave time, data fit measures,
and the variance parametersin [2 ] and [Q] fromthedifferent modelsarepresentedin Table 4. TheSgns
of the level-of-service parameters are congstent with a priori expectations in dl the modeds. Also, as
expected, travelersare more sengtive to out-of-vehicle trave timethanin-vehidetravel time. A comparison
of the magnitudes of the leve-of-service parameter estimates across the four specifications reveds a
progressively increasng megnitude as we move from the MNL mode to the MMNL-MT modd (this is
an expected result since the variance before scaling is larger in the MNL model compared to the mixture
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modds, and in the MMNL-M and MMNL-T models compared to the MMNL-MT model; see Revelt
and Train, 1998 for agmilar result). The implied money vauesof in-vehicle and out-of-vehicle travel times
are lessr in the mixed multinomid logit mode s relative to the MNL modd.

The four dternative moddsin Table 4 can be evaluated formally usng conventiond likelihood ratio
tests. A datistica comparison of the multinomid logit mode with any of the mixture models leads to the
rejection of the multinomia logit. Further likelihood retio tests among the MMNL-M, MMNL-T, and
MMNL-MT models result in the clear rgection of the hypothesis that there are shared unobserved
attributes dong only one dimengon; that is, the tests indicate the presence of atistically sgnificant shared
unobserved components aong both the mode and departure time dimensons (the likdihood ratio test
daidic inthe comparisonof the MMNL-T model withthe MMNL-MT modd is 14.2; the corresponding
vaue in the comparison of the MMNL-M mode with the MMNL-MT modd is 23.8; both these vaues
are larger than the chi-squared didribution with 3 degrees of freedom at any reasonable level of
sgnificance). Thus, the MNL, MMNL-T, and MMNL-M models are mis-specified.

The variance parameters provide important ingghts regarding the sengtivity of joint choice
dternatives sharingthe same modeand departure time. The variance parameters specific to departure times
(inthe MMNL-T and MMNL-MT models) show datisticaly sgnificant shared unobserved attributes
associated with the afternoon/evening departure periods. However, as indicated earlier, there were no
datigticaly significant shared unobserved components specific to the morning departure times (i.e., early
morning, am. peak, and am. offpeak periods). Theimplicationisthat home-based socia-recreationd trips
pursued inthe morning are more flexible and more easily moved to other times of the day thantrips pursued
later in the day. Social-recreationa activities pursued later in the day may be more rigid because of
scheduling cons derations among household members and/or because of the inherent tempora “fixity” of
late-evening activities (such asattending aconcert or asocia dinner). The magnitude of the departure time
variance parameters reved that late evening activitiesare most rigid, followed by activities pursued during
the p.m. offpeak hours. The p.m. pesk socid-recregtiond activities are more flexible rdative to the p.m.
offpeak and late-evening activities. The variance parameters specific to thetravel modes(inthe MM NL-M
and MMNL-MT modes) confirm the presence of common unobserved attributes among joint choice
dternatives that share the same mode; thus, individuas tend to maintain their current travel mode when
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confronted withtransportati on control measures such as ridesharing incentives and auto-use disincentives.
Thisis particularly so for individuas who rideshare, as can be observed fromthe higher variance associ ated
with the shared-ride mode rdlaive to the other two modes. In the context of home-based socid-
recreationa trips, most ridesharing arrangements correspond to travel with children and/or other family
members, it is unlikdy that these ridesharing arrangements will be terminated after implementation of
trangportation control measures such as trangt-use incentives.

The different variance structures among the four modesimply different patterns of inter-dternative
competition. To demondtrate the differences, Table 5 presentsthe disaggregate sdf- and cross-eladticities
(for a person-trip inthe sample with close-to-average modal |eve-of-service vaues) in response to pesk
period pricing implemented in the p.m. peak (.e., a cost increase in the “drive done-p.m. peak”
dternative). All morning time periods are grouped together inthe table since the cross-eadticities for these
time periods are the same for each mode (due to the absence of shared unobserved attributes specific to
the morning time periods).

The MNL mode exhibits the familiar Independence from Irrdlevant Alternatives (I1A) property
(thet is, dl cross-dadticitiesareequal). The MMNL-T modd shows equd cross-eladticities for each time
period across modes, areflectionof not alowing shared unobserved attributes aong the modal dimenson.
However, thereare differences across time periods for each mode. Firgt, the shift to the shared ride-p.m.
peak and trangt-p.m. peak is more than to the other non-p.m. peek joint choice dternatives. Thisis, of
course, because of the increased sengtivity among p.m.-peak joint choice dternatives generated by the
error variance term specific to the p.m. peak period. Second, the shift to the evening-period dternatives
arelower compared to the shift to the p.m. offpeak period dternativesfor eachmode. Thisresult isrelated
to the heteroscedadticity inthe shared unobserved random components across time periods. The variance
parameter in Table 4 associated withthe evening period is higher than that associated withthe p.m. offpeak
period; consequently, thereislessahift to the evening ternatives (see Bhat, 1995 for a detailed discussion
of the inverse rdationship between cross-eladticities and the variance of dternatives). The MMNL-M
model shows, as expected, a heightened sengtivity of drive done dternatives (rdative to the shared-ride
and trangt dterndives) inresponseto acost increasein the DA-p.m. peak dterndive. The higher variance
of the unobserved attributes specific to shared-ride (relative to transit; see Table 4) results in the lower
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cross-eladticity of the shared-ride dternatives compared to the trangt dternatives. The MMNL-M T mode
showshigher cross-eladticitiesfor the drive done aternatives aswell as for the non-drive done p.m. peak
period dternativessinceit alows shared-unobserved attributes dong both the mode and time dimensions.

The drive-dlone p.m. peak period sHf-dadticities in Table 5 are aso quite different across the
modds. The sdf-dadticity is lower in the MMNL-T modd reaive to the MNL mode. The MMNL-T
model recogni zesthe presence of temporal rigidity in socia-recreationd activities pursued inthep.m. peak.
Thisisreflected inthe lower self-eadticity effect of the MM NL-T modd. The sdlf-eadticity vaue from the
MMNL-M mode is larger than that from the MMNL-T modd. Thisis because individuds are likely to
maintain their current travel mode (even if it means shifting departure times) in the face of transportation
control measures. But the MMNL-T model accommodates only the rigidity effect in departure time, not
in travel mode. As a consequence, the rigidity in mode choice is manifested (ingppropriately) in the
MMNL-T model asalow drive done p.m.-pesk self-eladticity effect. Findly, the self-eladticity vdue from
theMMNL-MT mode islower thanthe vaue fromthe MM NL -M models. The MM NL-M mode ignores
therigidityindeparture time whenthis effect isincluded inthe MM NL-MT model, the result isadepressed
sdf-dadticity effect.

The subdtitution structures among the four modds imply different patterns of competition among
the joint mode-departure time aternatives. We now turn to the aggregate sf- and cross-dadticities to
examine the substantive implications of the different competitionstructuresfor thelevel -of -servicevariables.

Table 6 provides the cost dadticities obtained for the drive done and trangt joint-choices in
responseto a congestion pricing policy implemented inthe p.m. peak. The aggregate cost dadticitiesreflect
the same generd pattern as the disaggregate eadticities discussed earlier. Some important policy-reevant
observations that can be made from the aggregate eadticities are as follows. The DA-p.m. peak sdf-
eladicities show that the MNL and MMNL-T modes under-estimate the decrease in peak period
congestion due to pesk-period pricing, while the MMNL-M model over-estimates the decrease. Thus,
usngthe DA-p.m. peak cost sef-dadticitiesfromthe MNL and MNL-T modes will make apolicyandyst
muchmoreconservative than (s)he should be in pursuing peak-period pricing strategies. Onthe other hand,
usng the DA-p.m. peak cost sdf-dadticity from the MMNL-M mode provides an overly-optimistic
projection of the congestiondleviationdue to peak period pricing. Fromatrandt standpoint, the MNL and
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MMNL-T under-estimate the increase in trangt share across dl time periods due to p.m. peak period
pricing. Thus, usng these modds will result in lower projections of the increase in trangit ridership and
trangt revenue due to a peak period pricing policy. The MMNL-M mode under-estimates the projected
increaseintrangt share in dl the non-evening time periods, and over-estimatesthe increase intrangt share
for the evening time period. Thus, the MNL, MMNL-T, and MMNL-M modes are likdy to lead to
inappropriate conclusons regarding the necessary changesintrangt provisionto complement peak-period
pricing strategies.

5. CONCLUSIONS

This paper presentsthe structure, estimati ontechniques, and transport gpplications of three classes
of discrete choice models: heteroscedastic models, GEV models, and flexible structuremodels. Withineach
class, dternative formulaions are discussed. The formulaions presented are quiteflexible (thisisespecidly
the case with the flexible structure moddls), though estimation usng the maximum likdihood technique
requires the evauation of one-dimensiond integras (in the heteroscedastic extreme vaue modd) or mullti-
dimengond integras (inthe flexible model structures). However, theseintegrals canbe approximated usng
Gaussian quadrature techniques or smulation techniques. In this regard, the recent use of quas-Monte
Carlo (QMC) smulation techniques seemsto be particularly effective.

The advanced model structures presented in this chapter should not be viewed as substitutes for
careful identificationof systlematic variaions inthe population. The analyst must ways explore dternative
and improved ways to incorporate systematic effects in amodd. The flexible structures can then be super-
imposed onmode sthat have attributed as much heterogeneity to sysemétic variaions as possble. Another

important issue in usng flexible structure modess s that the specification adopted should be easy to
interpret; the anayst would do wel to retain as smple a specification as possible while attempting to
capture the salient interaction patternsin the empirica context under study.

The confluence of continued careful structura specification with the ability to accommodate very
flexible subtitution patterns/unobserved heterogeneity should facilitate the gpplication of behavioraly rich
dructures in trangportation-related discrete choice modeling in the years to come.
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Appendix

Permutations for Scrambled Halton Sequences

Primer Permutationof (0 1 2 ... r-1)

2 0 1)

3 (021

5 (031402

7 04261523

11 (058210361974

13 (0610284121951137)

17 (08133115161 107144122156)9)

19 0914317611 1157 1241882 16 10 5 13)

23 (011174207 132229155181 1410216 16 319 8 12
29 (0157241120227 91842213265 161023119286 14 17 3 25 12 8)

Source: Braaten and Weller (1979)
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Table 1. Intercity mode choice estimation results

Multinomial Lagit Nested Logit with Car Heteroscedastic Extreme
Vaidde and Train Grouped Vaue Model
Parameter t-statistic Parameter t-statistic Parameter t-Statistic

Mode Constants (car is base)

Train -0.5396 -1.55 -0.6703 -2.14 -0.1763 -0.42

Air -0.6495 -1.23 -0.5135 -1.31 -0.4883 -0.88
Large City Indicator (car is base)

Train 1.4825 7.98 1.3250 6.13 1.9066 6.45

Air 0.9349 5.33 0.8874 5.00 0.7877 4.96
Household Income (car is base)

Train -0.0108 -3.33 -0.0101 -3.30 -0.0167 -3.57

Air 0.0261 7.02 0.0262 7.42 0.0223 6.02
Freguency of service 0.0846 17.18 0.0846 17.67 0.0741 10.56
Travel Cost -0.0429 -10.51 -0.0414 -11.03 -0.0318 -5.93
Travel Time

In-Vehicle -0.0105 -13.57 -0.0102 -12.64 -0.0110 -9.78

Out-of-Vehicle -0.0359 -12.18 -0.0353 -13.86 -0.0362 -8.64
logsum Parameter? 1.0000 - 0.9032 1.14 1.0000 -
Scale Parameters (car parm.= 1)°

Train 1.0000 - 1.0000 - 1.3689 2.60

Air 1.0000 - 1.0000 - 0.6958 241
Log Likelihood At Convergence -1828.89 -1828.35 -1820.60
Adjusted L'hood Ratio Index 0.3525 0.3524 0.3548

“The logsum parameter isimplicitly constrained to one in the multinomial logit and heteroscedastic model specifications. The t-statistic for the logsum parameter in the nested logit is
with respect to a value of one.

5The scale parameters areimplicitly constrained to one in the multinomial logit and nested logit models and explicitly constrained to one in the constrained “ heteroscedastic” model.
The t-statistics for the scale parameters in the heteroscedastic model are with respect to avalue of one.

*The log likelihood value at zero is -3042.06 and the log likelihood value with only alternative specific constants and an 1D error covariance matrix is-2837.12.



Table 2. Elasticity matrix in response to changein rail service for multinomial logit and heter oscedastic models

Multinomial Logit Model Heteroscedastic Extreme Value

Rail Leve of Service Mode

Attribute

Train Air Ca Train Air Ca

Frequency 0.303 -0.068 -0.068 0.205 -0.053 -0.040
Cost -1.951 0.436 0.436 -1.121 0.290 0.220
In-Vehicle Travel Time -1.915 0.428 0.428 -1.562 0.404 0.307
Out-of-Vehicle Travel Time -2.501 0.559 0.559 -1.952 0.504 0.384

Note: The elasticities are computed for a representative intercity business traveler in the corridor.



Table 3. Comparison between MNL and GNL model estimates

. MNL model GNL mode
Vaidble
Parameter | Std error || Parameter Std error
Mode constants
Air 8.2380 0.429 6.2640 0.321
Tran 5.4120 0.267 4.9810 0.285
Car 4.4210 0.301 5.1330 0.253
Bus (base)
Freguency 0.0850 0.004 0.0288 0.002
Travel cost -0.0508 0.003 -0.0173 0.002
In-vehicle time -0.0088 0.001 -0.0031 0.0002
Out-of-vehicle time -0.0354 0.002 -0.0110 0.001
Logsum parameters
Train-car 0.0146 0.002
Air-car 0.2819 0.032
Train-car-air 0.0100 --
Allocation parameters
Train-car nest
Train 0.2717 0.033
Car 0.1057 0.012
Air-car nest
Air 0.6061 0.040
Car 0.4179 0.046
Train-car-cir nest
Train 0.5286 0.031
Car 0.2741 0.029
Air 0.3939 0.041
Train nest 0.1998 0.025
Car nest 0.2024 0.032
Bus nest 1.0000
Log-likelihood at convergence -2784.6 -2711.3
Likdihood ratio index
VS. Zero 0.4896 0.5031
vs. market share 0.3205 0.3382
Value of time (per hour)
In-vehicle time C$10 Cs11
Out-of-vehicle time C$42 C$38

Significance test rejecting MNL
model (7, DF, Sig.)

146.6, 11, <0.0001

Source: Wen and Koppelman (2001)




Table 4. Leve of service parameters, implied money values of travel time, data fit measures, and error variance parameters

Attributes/data fit measures MNL mode MMNL-T model MMNL-M model M '\fnl\(l):'dMT
Level of service/
Travel cost (in cents) -0.0031 (-3.13) -0.0036 (-3.02) -0.0044 (-2.88) -0.0045 (-2.83)

Total travel time (in mins.)
Out-of-vehicle time/distance

-0.0319 (-3.15)
-0.2363 (-3.42)

-0.0336 (-2.87)
-0.2429 (-4.82)

-0.0382 (-3.22)
-0.2508 (-4.19)

-0.0408 (-3.33)
-0.2589 (-4.26)

Implied money values of time ($/hr)

In-vehicle travel time 6.17 5.60 5.21 5.44
Out-of-vehicle travel time? 13.66 12.23 10.80 11.09
LL at Convergence’ -6393.6 -6382.9 -6387.7 -6375.8
Error variance parameters
2 offpesi - 0.8911 (2.76) - 0.9715 (2.96)
2 - 0.7418 (2.83) - 0.3944 (1.88)
Prvering - 1.9771 (2.70) - 1.6421 (3.02)
Prsivesdone - 0.6352 (1.91) 0.5891 (1.98)
Pevared ice - 1.9464 (3.06) 1.9581 (3.20)
P - 0.7657 (1.73) 0.7926 (2.07)

The entriesin the different columns correspond to the parameter values and their t-statistics (in parenthesis).
®Money vaue of out-of-vehicle timeis computed at the mean travel distance of 6.11 miles.

*TheLL (Log-Likelihood) at equal sharesis-8601.24 and the LL with only alternative specific constants and an 1D error covariance matrix is-6812.07
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Table 5. Disaggregate travel cost elasticitiesin responseto a cost increasein the drive alone (DA) mode during p.m. peak

i‘:::;;’\‘/;oi nt Choice MNL model MMNL-T model MMNL-M model MMNL-MT model
DA-morning periods! 0.0072 0.0085 0.0141 0.0165
DA-p.m. offpeak 0.0072 0.0060 0.0141 0.0131
DA-p.m. peak -0.1112 -0.0993 -0.1555 -0.1423
DA-evening 0.0072 0.0042 0.0141 0.0099
SR-morning periods* 0.0072 0.0085 0.0059 0.0072
SR-p.m. offpeak 0.0072 0.0060 0.0059 0.0055
SR-p.m. peak 0.0072 0.0120 0.0059 0.0079
SR-evening 0.0072 0.0042 0.0059 0.0045
TR-morning periods! 0.0072 0.0085 0.0119 0.0131
TR-p.m. offpeak 0.0072 0.0060 0.0119 0.0106
TR-p.m. peak 0.0072 0.0120 0.0119 0.0150
TR-evening 0.0072 0.0042 0.0119 0.0082

The morning periods include early morning, am. peak, and am. off-peak. The cross-elasticities for the morning periods within each mode with respect to a p.m. peak cost increasein
the drive alone mode are the same in the mixture logit models because of the absence of shared unobserved attributes specific to the morning time periods.



Table 6. Aggregatetravel cost elasticitiesin responseto a cost increasein the drive alone (DA) mode during p.m. peak

Effect on Joint Choice

Alternative MNL model MMNL-T model MMNL-M model MMNL-MT model
Drive alone (DA) alternatives

early morning 0.0146 0.0202 0.0290 0.0392
am. peak 0.0125 0.0166 0.0259 0.0334
am. offpeak 0.0121 0.0155 0.0250 0.0317
p.m. offpeak 0.0123 0.0136 0.0254 0.0265
p.m. peak -0.1733 -0.1536 -0.2355 -0.2192
evening 0.0146 0.0088 0.0293 0.0204
Transit (TR) alternatives

early morning 0.0197 0.0260 0.0280 0.0371
am. peak 0.0188 0.0237 0.0283 0.0358
am. offpeak 0.0163 0.0195 0.0236 0.0291
p-m. offpeak 0.0168 0.0175 0.0246 0.0251
p-m. peak 0.0218 0.0393 0.0333 0.0485
evening 0.0205 0.0120 0.0299 0.0203
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