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1.  INTRODUCTION

In this chapter, we provide an overview of the motivation for, and structure of, advanced discrete

choice models derived from random-utility maximization. The discussion is intended to familiarize readers

with structural alternatives to the multinomial logit. Before proceeding to review advanced discrete choice

models, we first summarize the assumptions of the multinomial logit (MNL) formulation. This is useful since

all other random-utility maximizing discrete choice models focus on relaxing one or more of these

assumptions. 

There are three basic assumptions which underlie the MNL formulation. The first assumption is that

the random components of the utilities of the different alternatives are independent and identically distributed

(IID) with a Type I extreme-value (or Gumbel) distribution. The assumption of independence implies that

there are no common unobserved factors affecting the utilities of the various alternatives. This assumption

is violated, for example, if a decision-maker assigns a higher utility to all transit modes (bus, train, etc.)

because of the opportunity to socialize or if the decision maker assigns a lower utility to all the transit modes

because of the lack of privacy. In such situations, the same underlying unobserved factor (opportunity to

socialize or lack of privacy) impacts the utilities of all transit modes. As indicated by Koppelman and Sethi

(2000), presence of such common underlying factors across modal utilities has implications for competitive

structure. The assumption of identically distributed (across alternatives) random utility terms implies that

the extent of variation in unobserved factors affecting modal utility is the same across all modes. In general,

there is no theoretical reason to believe that this will be the case. For example, if comfort is an unobserved

variable whose values vary considerably for the train mode (based on, say, the degree of crowding on

different train routes) but little for the automobile mode, then the random components for the automobile

and train modes will have different variances. Unequal error variances have significant implications for

competitive structure.

The second assumption of the MNL model is that it maintains homogeneity in responsiveness to

attributes of alternatives across individuals (i.e., an assumption of response homogeneity). More specifically,

the MNL model does not allow sensitivity (or taste) variations to an attribute (for example, travel cost or
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travel time in a mode choice model) due to unobserved individual characteristics. However, unobserved

individual characteristics can and generally will affect responsiveness. For example, some individuals by

their intrinsic nature may be extremely time-conscious while other individuals may be “laid back” and less

time-conscious. Ignoring the effect of unobserved individual attributes can lead to biased and inconsistent

parameter and choice probability estimates (see Chamberlain, 1980). 

The third assumption of the MNL model is that the error variance-covariance structure of the

alternatives is identical across individuals (i.e., an assumption of error variance-covariance homogeneity).

The assumption of identical variance across individuals can be violated if, for example, the transit system

offers different levels of comfort (an unobserved variable) on different routes (that is, some routes may be

served by transit vehicles with more comfortable seating and temperature control than others). Then, the

transit error variance across individuals along the two routes may differ. The assumption of identical error

covariance of alternatives across individuals may not be appropriate if the extent of substitutability among

alternatives differs across individuals. To summarize, error variance-covariance homogeneity implies the

same competitive structure among alternatives for all individuals, an assumption which is generally difficult

to justify.

The three assumptions discussed above together lead to the simple and elegant closed-form

mathematical structure of the MNL. However, these assumptions also leave the MNL model saddled with

the “independence of irrelevant alternatives” (IIA) property at the individual level (Luce and Suppes, 1965;

see also Ben-Akiva and Lerman, 1985 for a detailed discussion of this property). Thus, relaxing the three

assumptions may be important in many choice contexts.

In this chapter, we focus on three classes of discrete choice models which relax one or more of the

assumptions discussed above and nest the multinomial logit model. The first class of models, which we will

label as heteroscedastic models, relax the identically distributed (across alternatives) error term assumption,

but do not relax the independence assumption (part of the first assumption above) or the assumption of

response homogeneity (second assumption above).  The second class of models, which we will refer to

as Generalized Extreme Value (or GEV) models relax the independently distributed (across alternatives)

assumptions, but do not relax the identically distributed assumption (part of the first assumption above) or
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the assumptions of response homogeneity (second assumption). The third class of models, which we will

label as flexible structure models, are very general; models in this class are flexible enough to relax the

independence and identically distributed (across alternatives) error structure of the MNL  as well as to relax

the assumption of response homogeneity. We do not focus on the third assumption implicit in the MNL

model since it can be relaxed within the context of any given discrete choice model by parameterizing

appropriate error structure variances and covariances as a function of individual attributes (see Bhat, 1997

for a detailed discussion of these procedures).

The rest of this paper is structured in three sections. Section 2 discusses heteroscedastic models.

Section 3 focuses on GEV models. Section 4 presents flexible structure models. The final section concludes

the paper. Within each of Sections 2, 3, and 4, the material is organized as follows. First, possible model

formulations within that class are presented and a preferred model formulation is selected for further

discussion. Next, the structure of the preferred model structure is provided, followed by the estimation of

the structure, a brief discussion of transport applications of the structure, and a detailed presentation of

results from a particular application of the structure in the travel behavior field.

2.  HETEROSCEDASTIC  MODELS

2.1  Model Formulations

Three models have been proposed that allow non-identical random components. The first is the

negative exponential model of Daganzo (1979), the second is the oddball alternative model of Recker

(1995) and the third  is the heteroscedastic extreme-value (HEV) model of Bhat (1995).

Daganzo (1979) used independent negative exponential distributions with different variances for

the random error components to develop a closed-form discrete choice model which does not have the

IIA property. His model has not seen much application since it requires that the perceived utility of any

alternative not exceed an upper bound (this arises because the negative exponential distribution does not

have a full range). Daganzo's model does not nest the multinomial logit model.

Recker (1995) proposed the oddball alternative model which permits the random utility variance

of one “oddball” alternative to be larger than the random utility variances of other alternatives. This situation



4

might occur because of attributes which define the utility of the oddball alternative, but are undefined for

other alternatives. Then, random variation in the  attributes that are defined only for the oddball alternative

will generate increased variance in the overall random component of the oddball alternative relative to

others. For example, operating schedule and fare structure define the utility of the transit alternative, but are

not defined for other modal alternatives in a mode choice model. Consequently, measurement error in

schedule and fare structure will contribute to the increased variance of transit relative to other alternatives.

Recker’s model has a closed-form structure for the choice probabilities. However, it is restrictive in

requiring that all alternatives except one have identical variance.

Bhat (1995) formulated the heteroscedastic extreme-value (HEV) model which assumes that the

alternative error terms are distributed with a type I extreme value distribution. The variance of the

alternative error terms are allowed to be different across all alternatives (with the normalization that the

error terms of one of the alternatives has a scale parameter of one for identification). Consequently, the

HEV model can be viewed as a generalization of Recker's oddball alternative model. The HEV model does

not have a closed-form solution for the choice probabilities, but involves only a one-dimensional integration

regardless of the number of alternatives in the choice set. It also nests the multinomial logit model and is

flexible enough to allow differential cross-elasticities among all pairs of alternatives. In the rest of our

discussion of heteroscedastic models, we will focus on the HEV model.

2.2  HEV Model Structure

The random utility of alternative i, Ui, for an individual in random utility models takes the form (we

suppress the index for individuals in the following presentation) :

(1)

where is the systematic component of the utility of alternative  i (which is a function of observed

attributes of alternative i and observed characteristics of the individual), and is the random component

of the utility function. Let C be the set of alternatives available to the individual. Let the random components

in the utilities of the different alternatives have a type I extreme value distribution with a location parameter
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equal to zero and a scale parameter equal to for the ith alternative. The random components are

assumed to be independent, but non-identically distributed. Thus, the probability density function and the

cumulative distribution function of the random error term for the ith alternative are:

(2)

The random utility formulation of Equation (1), combined with the assumed probability distribution

for the random components in Equation (2) and the assumed independence among the random components

of the different alternatives, enables us to develop the probability that an individual will choose alternative

i from the set C of available alternatives:

(3)

where are the probability density function and cumulative distribution function of the

standard type I extreme value distribution, respectively, and are given by (see Johnson and Kotz, 1970):

(4)

Substituting in Equation (3), the probability of choosing alternative i can be re-written as

follows:

(5)

If the scale parameters of the random components of all alternatives are equal, then the probability

expression in Equation (5) collapses to that of the multinomial logit (the reader will note that the variance

of the random error term of alternative i is equal to where is the scale parameter).
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The HEV model discussed above avoids the pitfalls of the IIA property of the multinomial logit

model by allowing different scale parameters across alternatives. Intuitively, we can explain this by realizing

that the error term represents unobserved characteristics of an alternative; that is, it represents uncertainty

associated with the expected utility (or the systematic part of utility) of an alternative. The scale parameter

of the error term, therefore, represents the level of uncertainty. It sets the relative weights of the systematic

and uncertain components in estimating the choice probability. When the systematic utility of some

alternative l changes, this affects the systematic utility differential between another alternative i and the

alternative l. However, this change in the systematic utility differential is tempered by the unobserved

random component of alternative i. The larger the scale parameter (or equivalently, the variance) of the

random error component for alternative i, the more tempered is the effect of the change in the systematic

utility differential (see the numerator of the cumulative distribution function term in Equation (5) and smaller

is the elasticity effect on the probability of choosing alternative i. In particular, two alternatives will have the

same elasticity effect due to a change in the systematic utility of another alternative only if they have the

same scale parameter on the random components. This property is a logical and intuitive extension of the

case of the multinomial logit in which all scale parameters are constrained to be equal and, therefore, all

cross-elasticities are equal.

Assuming a linear-in-parameters functional form for the systematic component of utility for all

alternatives, the relative magnitudes of the cross-elasticities of the choice probabilities of any two

alternatives i and j with respect to a change in the kth level of service variable of another alternative l

(say, ) are characterized by the scale parameter of the random components of alternatives i and j:

(6)

2.3  HEV Model Estimation

The HEV model can be estimated using the maximum likelihood technique. Assume a linear-in-

parameters specification for the systematic utility of each alternative given by for the qth

individual and ith alternative (we introduce the index for individuals in the following presentation since the

purpose of the estimation is to obtain the model parameters by maximizing the likelihood function over all
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individuals in the sample). The parameters to be estimated are the parameter vector and the scale

parameters of the random component of each of the alternatives (one of the scale parameters is normalized

to one for identifiability). The log likelihood function to be maximized can be written as:

(7)

where is the choice set of alternatives available to the qth individual and is defined as follows: 

(8)

T h e

log likelihood function in Equation (7) has no closed-form expression, but can be estimated in a straight-

forward manner using Gaussian quadrature. To do so, define a variable .

Then, and . Also define a function as:  

(9)

Then we can re-write Equation (7) as

(10)

The expression within braces in the above equation can be estimated using the Laguerre Gaussian

quadrature formula, which replaces the integral by a summation of terms over a  certain number (say K)

of support points, each term comprising the evaluation of the function Gqi(.) at the support point k multiplied

by a probability mass or weight associated with the support point (the support points are the roots of the

Laguerre polynomial of order K and the weights are computed based on a set of theorems provided by

Press et al., 1992; page 124).
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2.4  Transport Applications

The HEV model has been applied to estimate discrete choice models based on revealed choice

(RC) data as well as stated choice (SC) data.

The multinomial logit, alternative nested logit structures, and the heteroscedastic model are

estimated using RC data in Bhat (1995) to examine the impact of improved rail service on inter-city

business travel in the Toronto-Montreal corridor. The nested logit structures are either inconsistent with

utility maximization principles or are not significantly better than the multinomial logit model. The

heteroscedastic extreme value model, however, is found to be superior to the multinomial logit model. The

heteroscedastic model predicts smaller increases in rail shares and smaller decreases in non-rail shares than

the multinomial logit in response to rail-service improvements. It also suggests a larger percentage decrease

in air share and a smaller percentage decrease in auto share than the multinomial logit.

Hensher et al. (1999) applied the HEV model to estimate an inter-city travel mode choice model

from a combination of RC and SC choice data (they also discuss a latent-class HEV model in their paper

that allows taste heterogeneity in a HEV model). The objective of this study was to identify the market for

a proposed high-speed rail service in the Sydney-Canberra corridor. The revealed  choice set includes four

travel modes: air, car, bus or coach, and conventional rail. The stated choice set includes the four RC

alternatives and the proposed high speed rail alternative. Hensher et al. estimate a pooled RC/SC model

which accommodates scale differences between RC and SC data as well as scale differences among

alternatives. The scale for each mode turns out to be about the same across the RC and SC data sets,

possibly reflecting a well-designed stated choice task  that captures variability levels comparable to actual

revealed choices. Very interestingly, however, the scale for all non-car modes are about equal and

substantially lesser than that of the car mode. This indicates  much more uncertainty in the evaluation of non-

car modes compared to the car mode.  

Hensher (1997) has applied the HEV model in a related stated choice study to evaluate the choice

of fare type for intercity travel in the Sydney-Canberra corridor conditional on the current mode used by

each traveler. The current modes in the analysis include conventional train, charter 
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coach, scheduled coach, air and car. The projected patronage on a proposed high-speed rail mode is

determined based on the current travel profile and alternative fare regimes.

Hensher (1998), in another effort, has applied the HEV model to the valuation of attributes (such

as the value of travel time savings) from discrete choice models. Attribute valuation is generally based on

the ratio of two or more attributes within utility expressions. However, using a common scale across

alternatives can distort the relative valuation of attributes across alternatives. In Hensher’s empirical

analysis, the mean value of travel time savings for public transport modes is much lower when a HEV model

is used compared to a MNL model because of confounding of scale effects with attribute parameter

magnitudes. In a related and more recent study, Hensher (1999) applied the HEV model (along with other

advanced models of discrete choice such as the multinomial probit and mixed logit models which we discuss

later) to examine valuation of attributes for urban car drivers.  

Munizaga et al. (2000) evaluated the performance of several different model structures (including

the HEV and the multinomial logit model) in their ability to replicate heteroscedastic patterns across

alternatives. They generated data with known heteroscedastic patterns for the analysis. Their results show

that the multinomial logit model does not perform well and does not provide accurate policy predictions

in the presence of heteroscedasticity across alternatives, while the HEV model accurately recovers the

target values of the underlying model parameters.

2.5  Detailed Results From an Example Application

Bhat estimated the HEV model using data from a 1989 Rail Passenger Review conducted by VIA

Rail (the Canadian national rail carrier). The purpose of the review was to develop travel demand models

to forecast future intercity travel and estimate shifts in mode split in response to a variety of potential rail

service improvements (including high-speed rail) in the Toronto-Montreal corridor (see KPMG Peat

Marwick and Koppelman, 1990 for a detailed description of this data). Travel surveys were conducted

in the corridor to collect data on intercity travel by four modes (car, air, train and bus). This data included

socio-demographic and general trip-making characteristics of the traveler, and detailed information on the

current trip (purpose, party size, origin and destination cities, etc.). The set of modes available to travelers
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1 The adjusted likelihood ratio index is defined as follows:

for their intercity travel was determined based on the geographic location of the trip. Level of service data

were generated for each available mode and each trip based on the origin/destination information of the trip.

Bhat focused on intercity mode choice for paid business travel in the corridor. The study is confined

to a mode choice examination among air, train, and car due to the very few number of individuals choosing

the bus mode in the sample and also because of the poor quality of the bus data (see Forinash and

Koppelman, 1993).

Five different models were estimated in the study: a multinomial logit model, three possible nested

logit models, and the heteroscedastic extreme value model. The three nested logit models were: a) car and

train (slow modes) grouped together in a nest which competes against air, b) train and air (common

carriers) grouped together in a nest which competes against car, and c) air and car grouped together in a

nest which competes against train. Of these three structures, the first two seem intuitively plausible, while

the third does not.

The final estimation results are shown in Table 1 for the multinomial logit model, the nested logit

model with car and train grouped as ground modes, and the heteroscedastic model. The estimation results

for the other two nested logit models are not shown because the logsum parameter exceeded one in these

specifications. This is not globally consistent with stochastic utility maximization (McFadden, 1978; Daly

and Zachary, 1978).

A comparison of the nested logit model with the multinomial logit model using the likelihood ratio

test indicates that the nested logit model fails to reject the multinomial logit model (equivalently, notice the

statistically insignificance of the log sum parameter relative to a value of 1). However, a likelihood ratio test

between the heteroscedastic extreme value model and the multinomial logit strongly rejects the multinomial

logit in favor of the heteroscedastic specification (the test statistic is 16.56 which is significant at any

reasonable level of significance when compared to a chi-squared statistic with two degrees of freedom).

Table 1 also evaluates the models in terms of the adjusted likelihood ratio index ( ).1 These values
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where L(M) is the model log-likelihood value, L(C) is the log-likelihood value with only alternative specific constants and an IID error
covariance matrix, and K is the number of parameters (besides the alternative specific constants) in the model. 

again indicate that the heteroscedastic model offers the best fit in the current empirical analysis (note that

the nested logit model and the heteroscedastic models can be directly compared to each other using the

non-nested adjusted likelihood ratio index test proposed by Ben-Akiva and Lerman (1985); in the current

case, the heteroscedastic model specification rejected the nested specification using this non-nested

hypothesis test).

In the subsequent discussion on interpretation of model parameters, the focus will be on the

multinomial logit and heteroscedastic extreme value models. The signs of all the parameters in the two

models are consistent with a priori expectations (the car mode is used as the base for the alternative

specific constants and alternative specific variables). The parameter estimates from the multinomial logit and

the heteroscedastic model are also close to each other. However, there are some significant differences.

The heteroscedastic model suggests a higher positive probability of choice of the train mode for trips which

originate, end, or originate and end at a large city. It also indicates a lower sensitivity of travelers to

frequency of service and travel cost; i.e., the heteroscedastic model suggests that travelers place

substantially more importance on travel time than on travel cost or frequency of service. Thus, according

to the heteroscedastic model, reductions in travel time (even with a concomitant increase in fares) may be

a very effective way of increasing the mode share of a travel alternative. The implied cost of in-vehicle travel

time is $14.70 per hour in the multinomial logit and $20.80 per hour in the heteroscedastic model. The

corresponding figures for out-of-vehicle travel time are $50.20 and $68.30 per hour, respectively.

The heteroscedastic model indicates that the scale parameter of the random error component

associated with the train (air) utility is significantly greater (smaller) than that associated with the car utility

(the scale parameter of the random component of car utility is normalized to one; the t-statistics for the train

and scale parameters are computed with respect to a value of one). Therefore, the heteroscedastic model

suggests unequal cross-elasticities among the modes.

Table 2 shows the elasticity matrix with respect to changes in rail level of service characteristics

(computed for a representative inter-city business traveler in the corridor) for the multinomial logit and
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2 Since the objective of the original study for which the data were collected was to examine the effect of alternative improvements
in rail level of service characteristics, we focus on the elasticity matrix corresponding to changes in rail level of service here.

heteroscedastic extreme value models.2 Two important observations can be made from this table. First,

the multinomial logit model predicts higher percentage decreases in air and car choice probabilities and a

higher percentage increase in rail choice probability in response to an improvement in train level of service

than the heteroscedastic model. Second, the multinomial logit elasticity matrix exhibits the IIA property

because the elements in the second and third columns are identical in each row. The heteroscedastic model

does not exhibit the IIA property; a one percent change in the level of service of the rail mode results in a

larger percentage change in the probability of choosing air than auto. This is a reflection of the lower

variance of the random component of the utility of air relative to the random component of the utility of car.

We discuss the policy implications of these observations in the next section.

The observations made above have important policy implications at the aggregate level (these

policy implications are specific to the Canadian context; caution must be exercised in generalizing the

behavioral implications based on this single application). First, the results indicate that the increase in rail

mode share in response to improvements in the rail mode is likely to be substantially lower than what might

be expected based on the multinomial logit formulation. Thus, the multinomial logit model overestimates the

potential ridership on a new (or improved) rail service and, therefore, overestimates revenue projections.

Second, the results indicate that the potential of an improved rail service to alleviate auto-traffic congestion

on intercity highways and air-traffic congestion at airports is likely to be lesser than that suggested by the

multinomial logit model. This finding has a direct bearing on the evaluation of alternative strategies to

alleviate intercity travel congestion. Third, the differential cross-elasticities of air and auto modes in the

heteroscedastic logit model suggests that an improvement in the current rail service will alleviate air-traffic

congestion at airports more so than alleviating auto-congestion on roadways. Thus, the potential benefit

from improving the rail service will depend on the situational context; that is, whether the thrust of the

congestion-alleviation effort is to reduce roadway congestion or to reduce air traffic congestion. These

findings point to the deficiency of the multinomial logit model as a tool to making informed policy decisions

to alleviate intercity travel congestion in the specific context of Bhat’s application.
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3.  THE GEV CLASS OF MODELS

The GEV class of models relaxes the IID assumption of the MNL by allowing the random

components of alternatives to be correlated, while maintaining the assumption that they are identically

distributed (i.e., identical, non-independent random components). This class of models assumes a type I

extreme value (or Gumbel) distribution for the error terms. All the models belonging to this class nest the

multinomial logit and result in closed-form expressions for the choice probabilities. In fact, the MNL is also

a member of the GEV class, though we will reserve the use of the term “GEV class” to those models that

constitute generalizations of the MNL.

The general structure of the GEV class of models was derived by McFadden (1978) from the

random utility maximization hypothesis, and generalized by Ben-Akiva and Francois (1983). Several

specific GEV structures have been formulated and applied within the GEV class, including the Nested Logit

(NL) model (Williams, 1977; McFadden, 1978; Daly and Zachary, 1978), the Paired Combinatorial Logit

(PCL) model (Chu, 1989; Koppelman and Wen, 2000), the Cross-Nested Logit (CNL) model (Vovsha,

1997), the Ordered GEV (OGEV) model (Small, 1987), the Multinomial Logit-Ordered GEV (MNL-

OGEV) model (Bhat, 1998c), and the Product Differentiation Logit (PDL) model (Bresnahan et al., 1997),

and the Generalized Nested Logit (GNL) model (Wen and Koppelman, 2001). 

The nested logit (NL) model permits covariance in random components among subsets (or nests)

of alternatives (each alternative can be assigned to one and only one nest). Alternatives in a nest exhibit an

identical degree of increased sensitivity relative to alternatives not in the nest (Williams, 1977; McFadden,

1978; Daly and Zachary, 1978). Each nest in the NL structure has associated with it a dissimilarity (or

logsum) parameter that determines the correlation in unobserved components among alternatives in that nest

(see Daganzo and Kusnic, 1993). The range of this dissimilarity parameter should be between 0 and 1 for

all nests if the NL model is to remain globally consistent with the random utility maximizing principle. A

problem with the NL model is that it requires a priori specification of the nesting structure. This requirement

has at least two drawbacks. First, the number of different structures to estimate in a search for the best

structure increases rapidly as the number of alternatives increases. Second, the actual competition structure

among alternatives may be a continuum that cannot be accurately represented by partitioning the

alternatives into mutually exclusive subsets.
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3 The reader will note that the nested logit model cannot accommodate such a correlation structure because it requires alternatives
to be grouped into mutually exclusive nests. 

The paired combinatorial logit (PCL) model initially proposed by Chu (1989) and recently

examined in detail by Koppelman and Wen (2000) generalizes, in concept, the nested logit model by

allowing differential correlation between each pair of alternatives (the nested logit model, however, is not

nested within the PCL structure). Each pair of alternatives in the PCL model has associated with it a

dissimilarity parameter (subject to certain identification considerations that Koppelman and Wen are

currently studying) that is inversely related to the correlation between the pair of alternatives. All dissimilarity

parameters have to lie in the range of 0 to 1 for global consistency with random utility maximization.

Another generalization of the nested logit model is the cross-nested logit (CNL) model of Vovsha

(1997). In this model, an alternative need not be exclusively assigned to one nest as in the nested logit

structure. Instead, an alternative can appear in different nests with different probabilities based on what

Vovsha refers to as allocation parameters. A single dissimilarity parameter is estimated across all nests in

the CNL structure. Unlike in the PCL model, the nested logit model can be obtained as a special case of

the CNL model when each alternative is unambiguously allocated to one particular nest. Vovsha proposes

a heuristic procedure for estimation of the CNL model. This procedure appears to be rather cumbersome

and its heuristic nature makes it difficult to establish the statistical properties of the resulting estimates.

The ordered GEV model was developed by Small (1987) to accommodate correlation among the

unobserved random utility components of alternatives close together along a natural ordering implied by

the choice variable (examples of such ordered choice variables might include car ownership, departure time

of trips, etc.). The simplest version of the OGEV model (which Small refers to as the standard OGEV

model) accommodates correlation in unobserved components between the utilities of each pair of adjacent

alternatives on the natural ordering; that is, each alternative is correlated with the alternatives on either side

of it along the natural ordering.3 The standard OGEV model has a dissimilarity parameter that is inversely

related to the correlation between adjacent alternatives (this relationship does not have a closed form, but

the correlation implied by the dissimilarity parameter can be obtained numerically). The dissimilarity

parameter has to lie in the range of 0 to 1 for consistency with random utility maximization.
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The MNL-OGEV model formulated by Bhat (1998c) generalizes the nested logit model by

allowing adjacent alternatives within a nest to be correlated in their unobserved components. This structure

is best illustrated with an example. Consider the case of a multi-dimensional model of travel mode and

departure time for nonwork trips. Let the departure time choice alternatives be represented by several

temporally contiguous discrete time periods in a day such as a.m. peak (6a.m.-9a.m.), a.m. mid-day

(9a.m.-12 noon), p.m. mid-day (12 noon-3p.m.), p.m. peak (3p.m.-6p.m.), and other (6p.m.-6a.m.). An

appropriate nested logit structure for the joint mode-departure time choice model may allow the joint choice

alternatives to share unobserved attributes in the mode choice dimension, resulting in an increased sensitivity

among time-of-day alternatives of the same mode relative to the time-of-day alternatives across modes.

However, in addition to the uniform correlation in departure time alternatives sharing the same mode, there

is likely to be increased correlation in the unobserved random utility components of each pair of adjacent

departure time alternatives due to the natural ordering among the departure time alternatives along the time

dimension. Accommodating such a correlation generates an increased degree of sensitivity between

adjacent departure time alternatives (over and above the sensitivity among non-adjacent alternatives)

sharing the same mode. A structure that accommodates the correlation patterns just discussed can be

formulated by using the multinomial logit (MNL) formulation for the higher-level mode choice decision and

the standard ordered generalized extreme-value (OGEV) formulation (see Small, 1987) for the lower-level

departure time choice decision (i.e., the MNL-OGEV model).

More recently, Wen and Koppelman (2001) proposed a general GEV model structure, which they

referred to as the General Nested Logit (GNL) model. Swait (2001), independently, proposed a similar

structure, which he refers to as the choice set Generation Logit (GenL) model; Swait’s derivation of the

GenL model is motivated from the concept of latent choice sets of individuals, while Wen and Koppelman’s

derivation of the GNL model is motivated from the perspective of flexible substitution patterns across

alternatives.  Wen and Koppelman (2001) illustrate the general nature of the GNL model formulation by

deriving the other GEV model structures mentioned earlier as special restrictive cases of the GNL model

or as approximations to restricted versions of the GNL model. 

The GNL model is conceptually appealing because it is a very general structure and allows

substantial flexibility. However, in practice, the flexibility of the GNL model can be realized only if one is
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able and willing to estimate a large number of dissimilarity and allocation parameters. The net result is that

the analyst will have to impose informed restrictions on the general GNL model formulation that are

customized to the application context under investigation.

The advantage of all the GEV models discussed above is that they allow relaxations of the

independence assumption among alternative error terms while maintaining closed-form expressions for the

choice probabilities. The problem with these models is that they are consistent with utility maximization only

under rather strict (and often empirically violated) restrictions on the dissimilarity parameters. The origin of

these restrictions can be traced back to the requirement that the variance of the joint alternatives be

identical in the GEV models. In addition, the GEV models do not relax the response homogeneity

assumption discussed in the previous section. 

In the rest of the discussion on GEV models, we will focus on the GNL model since it subsumes

other GEV models proposed to date as special cases.

3.2  GNL Model Structure

The GNL model can be derived from the GEV postulate using the following function:

(11)

where Nm is the set of alternatives belonging to nest m, represents an allocation parameter characterizing

the portion of alternative i assigned to nest m (0< <1; = 1  ?  i), and is a dissimilarity

parameter for nest m (0< ?1). Then it is easy to verify that G is non-negative, homogenous of degree

one, tending toward + ?  when any argument yi  tends toward + ? , and whose nth non partial derivatives

are non-negative for odd n and non-positive for even n because 0< <1. Thus the following function

represents a cumulative extreme-value distribution:

(12)
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To obtain the probability of choice for each alternative i in the GNL model, consider a utility maximizing

decision process where the utility of each alternative i (U i) is written in the usual form as the sum of a

deterministic component (Vi) and a random component Ei . If the random components follow the CDF in

Equation (12), then, by the GEV postulate, the probability of choosing the ith alternative is: 

(13)

The cross elasticity of a pair of alternatives i and j, which appear in one or more common nests, is

(14)

If the two alternatives i and j do not appear in any common nest, the cross-elasticity reduces to zero. Wen

and Koppelman also demonstrate that the correlation between two alternatives i and j is a function of both

the allocation parameters and the dissimilarity parameters.

3.3  GNL Model Estimation

The GNL model may be estimated using the commonly-used maximum likelihood method. The

parameter to be estimated in the GNL structure include variable coefficients, the dissimilarity

parameters (m=1,2,...,M), and the allocation parameters , i=1,2,...I, m=1,2,...M). All the

dissimilarity and allocation parameters need to be between 0 and 1, and the allocation parameters for each

alternative should sum to 1. Wen and Koppelman used a constrained maximum likelihood procedure to

estimate the model. It should be noted that the maximum number of dissimilarity parameters that can be

estimated is one less than the number of pairs of alternatives.
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3.4  GNL Model Applications

The GNL model was proposed recently by Wen and Koppelman. The results of their application

are discussed in detail in the next section. In most practical situations, the analyst will have to impose

informed restrictions on the GNL formulation. Such restrictions might lead to models such as the PCL, the

OGEV, the MNL-OGEV, and the CNL models. In addition, the NL model can also be shown to be

essentially the same as a restricted version of the GNL. Since there have been several applications of the

NL model, and we have reviewed studies that have used the other GEV structures, we proceed to a

detailed presentation of the GNL model by Wen and Koppelman.

3.5  Detailed Results From an Application of the GNL Model

Wen and Koppelman use the same Canadian rail data set used by Bhat (1995) and discussed in

Section 2.5. They examined intercity mode choice in the Toronto-Montreal corridor. The universal choice

set includes air, train, bus, and car. 

Table 3 shows the results that Wen and Koppelman obtained from the GNL model and the MNL

model. Wen and Koppelman also estimated several NL structures, a PCL model, and CNL models.

However, the GNL model provided better data fit in their application context.

Table 3 provides the expected impacts of the level of service variables. The table also indicates that

the model parameters tend to be smaller in magnitude in the GNL model relative to the MNL. However,

the values of time are about the same from the two models. Most importantly, the differences in coefficient

between the two models, combined with the correlation patterns generated by the GNL model, are likely

to produce different mode share forecasts in response to policy actions or investment decisions.

4.  FLEXIBLE STRUCTURE MODELS

The HEV and GEV class of models have the advantage that they are easy to estimate; the

likelihood function for these models either includes a one-dimensional integral (in the HEV model) or is in

closed-form (in the GEV models). However, these models are restrictive since they only partially relax the

IID error assumption across alternatives. In this section, we discuss model structures which are flexible

enough to completely relax the independence and identically distributed error structure of the MNL as well
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as to relax the assumption of response homogeneity. This section focuses on model structures that explicitly

nest the MNL model.

4.1  Model Formulations

Two closely-related model formulations may be used to relax the IID (across alternatives) error

structure and/or the assumption of response homogeneity: the mixed multinomial logit (MMNL) model and

the mixed GEV (MGEV) model. 

The mixed multinomial logit (MMNL) model is a generalization of the well-known multinomial logit

(MNL) model. It involves the integration of the multinomial logit formula over the distribution of unobserved

random parameters. It takes the structure shown below:

(15)

where is the probability that individual q chooses alternative i, is a vector of observed variables

specific to individual q and alternative i, represents parameters which are random realizations from a

density function f(.), and is a vector of underlying moment parameters characterizing f(.).

The MMNL model structure of Equation (15) can be motivated from two very different (but

formally equivalent) perspectives. Specifically, a MMNL structure may be generated from an intrinsic

motivation to allow flexible substitution patterns across alternatives (error-components structure) or from

a need to accommodate unobserved heterogeneity across individuals in their sensitivity to observed

exogenous variables (random-coefficients structure), as we discuss later in Section 4.2 (of course, the

MMNL structure can also accommodate both a non IID error structure across alternatives as well as

response heterogeneity).

The MGEV class of models use a GEV model as a core, and superimposes a mixing 

distribution on the GEV core to accommodate response heterogeneity and/or additional

heteroscedasticity/correlation across alternative error terms. A question that arises here is as follows: Why

would one want to consider an MGEV model structure when a MMNL model can already capture

response heterogeneity and any identifiable pattern of heteroscedasticity/ correlation across alternative error
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terms? That is, why would one want to consider a GEV core to generate a certain inter-alternative error

correlation pattern when such a correlation pattern can be generated as part of a MMNL model structure?

Bhat and Guo (2002) provide situations where an MGEV model may be preferred to an equivalent

MMNL model. Consider, for instance, a model for household residential location choice. It is possible, if

not very likely, that the utility of spatial units that are close to each other will be correlated due to common

unobserved spatial elements. A common specification in the spatial analysis literature for capturing such

spatial correlation is to allow alternatives that are contiguous to be correlated. In the MMNL structure, such

a correlation structure will require the specification of as many error components as the number of pairs

of spatially-contiguous alternatives. In a residential choice context, the number of error components to be

specified will therefore be very large (in the 100s or 1000s). This will require the computation of very high

dimensional integrals (in the order of 100s of 1000s) in the MMNL structure. On the other hand, a carefully

specified GEV model can accommodate the spatial correlation structure within a closed-form formulation.

However, the GEV model structure cannot accommodate unobserved random heterogeneity across

individuals. One could superimpose a mixing distribution over the GEV model structure to accommodate

such heterogeneity, leading to a parsimonious and powerful MGEV structure. 

In the rest of this section, we will focus on the MMNL model structure, since all the concepts and

techniques for the MMNL model are readily transferable to the MGEV model structure. 

4.2  MMNL Model Structure

In this section, we discuss the MMNL structure from an error components viewpoint as well as

from a random-coefficient viewpoint.

4.2.1  Error-components structure

The error components structure partitions the overall random term associated with each

alternative's utility into two components: one component which allows the unobserved error terms to be

non-identical and non-independent across alternatives, and the other which is specified to be independent

and identically (type I extreme-value) distributed across alternatives. Specifically, consider the following

utility function for individual q and alternative i:
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(16)

where are the systematic and random components of utility, and is further partitioned

into two components, . is a vector of observed data associated with alternative i,

some of whose elements might also appear in the vector is a random vector with zero mean. The

component induces heteroscedasticity and correlation across unobserved utility components of the

alternatives. Defining and we obtain the MMNL model structure for the

choice probability of alternative i for individual q.

The emphasis in the error-components structure is to allow a flexible substitution pattern among

alternatives in a parsimonious fashion. This is achieved by the “clever” specification of 

the variable vector combined with (usually) the specification of independent normally distributed

random elements in the vector  For example, may be specified to be a row vector of dimension

M with each row representing a group m (m=1,2,..M) of alternatives sharing common unobserved

components. The row(s) corresponding to the group(s) of which i is a member take(s) a value of one and

other rows take a value of zero. The vector (of dimension M) may be specified to have independent

elements, each element having a variance component . The result of this specification is a covariance

of among alternatives in group m and heteroscedasticity across the groups of alternatives. This

structure is less restrictive than the nested logit structure in that an alternative can belong to more than one

group. Also, by structure, the variance of the alternatives are different. More general structures for in

Equation (16) are presented by Ben-Akiva and Bolduc (1996) and Brownstone and Train (1999). 

4.2.2  Random-coefficients structure

The random-coefficients structure allows heterogeneity in the sensitivity of individuals to exogenous

attributes. The utility that an individual q associates with alternative i is written as:

(17)

where is a vector of exogenous attributes, is a vector of coefficients that varies across individuals

with density , and is assumed to be an independently and identically distributed (across
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alternatives) type I extreme value error term. With this specification, the unconditional choice probability

of alternative i for individual q is given by the mixed logit formula of Equation (15). While several density

functions may be used for f(.), the most commonly used is the normal distribution. A log-normal distribution

may also be used if, from a theoretical perspective, an element of beta has to take the same sign for every

individual (such as a negative coefficient for the travel time parameter in a travel mode choice model).

The reader will note that the error-components specification in Equation (16) and the random-

coefficients specification in Equation (17) are structurally equivalent. Specifically, if is distributed with

a mean of and deviation , then Equation (17) is identical to Equation (16) with

However, this apparent restriction for equality of Equations (16) and (17) is purely

notational. Elements of that do not appear in can be viewed as variables whose coefficients are

deterministic in the population, while elements of that do not enter in may be viewed as

variables whose coefficients are randomly distributed in the population with mean zero (with cross-sectional

data, the coefficients on the alternative-specific constants have to be considered as being deterministic).

Due to the equivalence between the random-coefficients and error-components formulations, and

the more compact notation of the random-coefficients formulation, we will use the latter formulation in the

discussion of the estimation methodology for the mixed logit model in the next section.

4.3  MMNL  Estimation Methodology

This section discusses the details of the estimation procedure for the random-coefficients mixed-

logit model using each of  three methods: the cubature method, the Pseudo-Monte Carlo (PMC) method,

and the Quasi-Monte Carlo (QMC) method. 

Consider Equation (17) and separate out the effect of variables with fixed coefficients (including

the alternative specific constant) from the effect of variables with random coefficients:

(18)

where is the effect of variables with fixed coefficients. Let so

that In this notation, we are implicitly assuming that

the are independent of one another. Even if they are not, a simple Choleski decomposition can be
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undertaken so that the resulting integration involves independent normal variates (see Revelt and Train,

1998). is a standard normal variate. Further, let

The log-likelihood function for the random-coefficients logit model may be written as:

(19)

where represents the standard normal cumulative distribution function and

(20)

The cubature method, the Pseudo-Monte Carlo (PMC)  method, and the Quasi-Monte Carlo (QMC)

method represent three different ways of evaluating the multi-dimensional integral involved in the log-

likelihood function.

4.3.1   Polynomial-based cubature method

To apply the cubature method, define for all q. Then, the log-likelihood function in

Equation (19) takes the following form:

(21)

The above integration is now in an appropriate form for application of a multi-dimensional product formula

of the Gauss-Hermite quadrature (see Stroud, 1971).
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4.3.2   Pseudo-random Monte Carlo (PMC) method

This technique approximates the choice probabilities by computing the integrand in Equation (19)

at randomly chosen values for each . Since the terms are independent across individuals and

variables, and are distributed standard normal, we generate a matrix s of standard normal random numbers

with Q*K elements (one element for each variable and individual combination) and compute the

corresponding individual choice probabilities for a given value of the parameter vector to be estimated. This

process is repeated R times for the given value of the parameter vector and the integrand is approximated

by averaging over the computed choice probabilities in the different draws. This results in an unbiased

estimator of the actual individual choice probabilities. It's variance decreases as R increases. It also has the

appealing properties of being smooth (i.e., twice differentiable) and being strictly positive for any realization

of the finite R draws. The parameter vector is estimated as the vector value that maximizes the simulated

log-likelihood function. Under rather weak regularity conditions, the PMC estimator is consistent,

asymptotically efficient, and asymptotically normal. However, the estimator will generally be a biased

simulation of the maximum likelihood (ML) estimator because of the logarithmic transformation of the

choice probabilities in the log-likelihood function. The bias decreases with the variance of the probability

simulator; that is, it decreases as the number of repetitions increase.

4.3.3   Quasi-random Monte Carlo (QMC) method

The quasi-random Halton sequence is designed to span the domain of the S-dimensional unit cube

uniformly and efficiently (the interval of each dimension of the unit cube is between 0 and 1). In one

dimension, the Halton sequence is generated by choosing a prime number r (r>=2) and expanding the

sequence of integers 0,1,2,...,g,...,G in terms of the base r:

(22)

Thus, g (g=1,2,...G) can be represented by the r-adic integer string The Halton sequence in

the prime base r is obtained by taking the radical inverse of g (g=1,2,...G) to the base r by reflecting

through the radical point: 



25

(23)

The sequence above is very uniformly distributed in the interval (0,1) for each prime r. The Halton

sequence in K dimensions is obtained by pairing K one-dimensional sequences based on K pairwise

relatively prime integers (usually the first K primes):

(24)
 

The Halton sequence is generated number-theoretically rather than randomly and so successive points at

any stage “know” how to fill in the gaps left by earlier points, leading to a uniform distribution within the

domain of integration.

The simulation technique to evaluate the integral in the log-likelihood function of Equation (19)

involves generating the K-dimensional Halton sequence for a specified number of “draws” R for each

individual. To avoid correlation in simulation errors across individuals, separate independent draws of R

Halton numbers in K dimensions are taken for each individual. This is achieved by generating a Halton

“matrix” Y of size G x K, where G = R*Q+10 (Q is the total number of individuals in the sample). The first

ten terms in each dimension are then discarded because the integrand may be sensitive to the starting point

of the Halton sequence. This leaves a (R*Q) x K Halton matrix which is partitioned into Q sub-matrices

of size R x K, each sub-matrix representing the R Halton draws in K dimensions for each individual (thus,

the first R rows of the Halton matrix Y are assigned to the first individual, the second R rows to the second

individual, and so on).

The Halton sequence is uniformly distributed over the multi-dimensional cube. To obtain the

corresponding multivariate normal points over the multi-dimensional domain of the real line, the inverse

standard normal distribution transformation of Y is taken. By the integral transform

result, provides the Halton points for the multi-variate normal distribution (see Fang and

Wang, 1994; Chapter 4). The integrand in Equation (19) is computed at the resulting points in the columns

of the matrix X for each of the R draws for each individual and then the simulated likelihood function is

developed in the usual manner as the average of the values of the integrand across the R draws.
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Bhat (2001) proposed and introduced the use of the Halton sequence for estimating the mixed logit

model and conducted Monte Carlo simulation experiments to study the performance of this quasi-Monte

Carlo (QMC) simulation method vis-a-vis the cubature and pseudo-Monte Carlo (PMC) simulation

methods (this study, to the author’s knowledge, is the first attempt at employing the QMC simulation

method in discrete choice literature). Bhat’s results indicate that the QMC method out-performs the

polynomial-cubature and pseudo-Monte Carlo (PMC) methods for mixed logit model estimation. Bhat

notes that this substantial reduction in computational cost has the potential to dramatically influence the use

of the mixed logit model in practice. Specifically, given the flexibility of the mixed logit model to

accommodate very general patterns of competition among alternatives and/or random coefficients, the use

of the QMC simulation method of estimation should facilitate the application of behaviorally rich structures

for discrete choice modeling. Another subsequent study by Train (1999) confirms the substantial reduction

in computational time for mixed logit estimation using the QMC method. Hensher (1999) has also

investigated Halton sequences and compared the findings with random draws for mixed logit model

estimation. He notes that the data fit and parameter values of the mixed logit model remain almost the same

beyond 50 Halton draws. He concludes that the quasi-Monte Carlo method “is a phenomenal development

in the estimation of complex choice models”.

4.3.4   Scrambled and randomized QMC method

Bhat (2002) notes that a problem with the Halton sequence is that there is strong correlation

between higher coordinates of the sequence. This is because of the cycles of length r for the prime r. Thus,

when two large prime-based sequences, associated with two high dimensions, are paired, the

corresponding unit square face of the S-dimensional cube is sampled by points that lie on parallel lines. For

example, the fourteenth dimension (corresponding to the prime number 43) and the fifteenth dimension

(corresponding to the prime number 47) consist of 43 and 47 increasing numbers, respectively. This

generates a correlation between the fourteenth and fifteenth coordinates of the sequence. This is illustrated

diagrammatically in the first plot of Figure 1. The consequence is a rapid deterioration in the uniformity of

the Halton sequence in high dimensions (the deterioration becomes clearly noticeable beyond five

dimensions).
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Number theorists have proposed an approach to improve the uniformity of the Halton sequence

in high dimensions. The basic method is to break the correlations between the coordinates of the standard

Halton sequence by scrambling the cycles of length r for the prime r. This is accomplished by permutations

of the coefficients bl in the radical inverse function of Equation (23). The resulting scrambled Halton

sequence for the prime r is written as:

(25)

where is the operator of permutations on the digits of the expansion (the standard Halton

sequence is the special case of the scrambled Halton sequence with no scrambling of the

digits Different researchers (see Braaten and Weller, 1979; Hellekalek, 1984; Kocis and Whiten,

1997) have suggested different algorithms for arriving at the permutations of the coefficients bl in Equation

(25). The permutations used by Braaten and Weller are presented in the Appendix for the first ten prime

numbers. Braaten and Weller have also proved that their scrambled sequence retains the theoretically

appealing N -1 order of integration error of the standard Halton sequence.

An example would be helpful in illustrating the scrambling procedure of Braaten and Weller. These

researchers suggest the following permutation of (0,1,2) for the prime 3: (0,2,1). As indicated earlier, the

5th number in base 3 of the Halton sequence in digitized form is 0.21. When the permutation above is

applied, the 5th number in the corresponding scrambled Halton sequence in digitized form is 0.21, which

when expanded in base 3 translates to 1 x 3-1 + 2 x 3-2 = 5/9. The first 8 numbers in the scrambled

sequence corresponding to base 3 are 2/3, 1/3, 2/9, 8/9, 5/9, 1/9, 7/9, 4/9. 

The Braaten and Weller method involves different permutations for different prime numbers. As

a result of this scrambling, the resulting sequence does not display strong correlation across dimensions as

does the standard Halton sequence. This is illustrated in the second plot of Figure 1, which plots 150

scrambled Halton points in the fourteenth and fifteenth dimensions. A comparison of the two plots in Figure

1 clearly indicates the more uniform coverage of the scrambled Halton sequence relative to the standard

Halton sequence.
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In addition to the scrambling of the standard Halton sequence, Bhat also suggests a randomization

procedure for the Halton sequence based on a procedure developed by Tuffin (1996). The randomization

is useful because all QMC sequences (including the standard Halton and scrambled Halton sequences

discussed above) are fundamentally deterministic. This deterministic nature of the sequences does not

permit the practical estimation of the integration error. Theoretical results exist for estimating the integration

error, but these are difficult to compute and can be very conservative. 

The essential concept of randomizing QMC sequences is to introduce randomness into a

deterministic QMC sequence that preserves the uniformly distributed and equidistribution properties of the

underlying QMC sequence (see Shaw, 1988; Tuffin, 1996). One simple way to introduce randomness is

based on the following idea.  Let be a QMC sequence of length N over the S-dimensional cube

{0,1}S and consider any S-dimensional uniformly distributed vector in the S-dimensional cube (u

?{0,1}S). is a matrix of dimension N x S, and u is a vector of dimension 1xS. Construct a new

sequence where {.} denotes the fractional part of the matrix within

parenthesis, represents the kronecker or tensor product, and is a unit column vector of size N

(the kronecker product multiplies each element of u with the vector 1(N) ). The net result is a

sequence whose elements are obtained as if 

and if  It can be shown that the sequence so formed is also a QMC

sequence of length N over the S-dimensional cube {0,1}S. Tuffin provides a formal proof for this result,

which is rather straightforward but tedious. Intuitively, the vector u simply shifts the points of each

coordinate of the original QMC sequence by a certain value. Since all the points within each

coordinate are shifted by the same amount, the new sequence will preserve the equidistribution property

of the original sequence. This is illustrated in Figure 2 in two dimensions. The first diagram in Figure 2 plots

100 points of the standard Halton sequence in the first two dimensions. The second diagram plots 100

points of the standard Halton sequence shifted by 0.5 in the first dimension and 0 in the second dimension.

The result of the shifting is as follows. For any point below 0.5 in the first dimension in the first diagram (for

example, the point marked 1), the point gets moved by 0.5 toward the right in the second diagram. For any

point above 0.5 in the first dimension in the first diagram (such as the point marked 2), the point gets moved

to the right, hits the right edge, bounces off this edge to the left edge, and is carried forward so that the total
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distance of the shift is 0.5 (another way to visualize this shift is to transform the unit square into a cylinder

with the left and right edges “sewn” together; then the shifting entails moving points along the surface of the

cylinder and perpendicular to the cylinder axis). Clearly, the two-dimensional plot in the second diagram

of Figure 2 is also well-distributed because the relative positions of the points do not change from that in

Figure 1; there is simply a shift of the overall pattern of points. The last diagram in Figure 2 plots the case

where there is a shift in both dimensions; 0.5 in the first and 0.25 in the second. For the same reasons

discussed in the context of the shift in one dimension, the sequence obtained by shifting in both dimensions

is also well-distributed. 

It should be clear from above that any vector u ?{0,1}S can be used to generate a new QMC

sequence from an underlying QMC sequence. An obvious way of introducing randomness is then to

randomly draw u from a multidimensional uniform distribution. 

An important point to note here is that randomizing the standard Halton sequence as discussed

earlier does not break the correlations in high dimensions because the randomization simply shifts all points

in the same dimension by the same amount. Thus, randomized versions of the standard Halton sequence

will suffer from the same problems of non-uniform coverage in high dimensions as the standard Halton

sequence. To resolve the problem of non-uniform coverage in high dimensions, the scrambled Halton

sequence needs to be used.

Once a scrambled and randomized QMC sequence is generated, Bhat proposes a simulation

approach for estimation of the mixed logit model that is similar to the standard Halton procedure discussed

on the previous section.

4.3.5    Bayesian estimation of MNL

Some recent papers (Brownstone, 2000; Train, 2001) have considered a Bayesian estimation

approach for MMNL model estimation as opposed to the classical estimation approaches discussed above.

The general results from these studies appear to suggest that the classical approach is faster when mixing

distributions with bounded support such as triangulars are considered, or when there is a mix of fixed and

random coefficients in the model. On the other hand, the Bayesian estimation appears to be faster when

considering the normal distribution and its transformations, and when all coefficients are random and are
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correlated with one another. However, in the overall, the results suggest that the choice between the two

estimation approaches should depend more on interpretational ease in the empirical context under study

rather than computational efficiency considerations.

4.4  Transport Applications

The transport applications of the mixed multinomial logit model are discussed under two headings:

error-components applications and random-coefficients applications.

4.4.1  Error-components applications

Brownstone and Train (1999) applied an error-components mixed multinomial logit structure to

model households’ choices among gas, methanol, compressed natural gas (CNG), and electric vehicles,

using stated choice (SC) data collected in 1993 from a sample of households in California. Brownstone

and Train allow non-electric vehicles to share an unobserved random component, thereby increasing the

sensitivity of non-electric vehicles to one another compared to an electric vehicle. Similarly, a non-CNG

error component is introduced. Two additional error components related to the size of the vehicle are also

introduced: one is a normal deviate multiplied by the size of the vehicle and the second is a normal deviate

multiplied by the luggage space. All these error components are statistically significant, indicating non-IIA

competitive patterns. 

Brownstone et al. (2000) extended the analysis of Brownstone and Train (1999) to estimate a

model of choice among alternative-fuel vehicles using both stated choice and revealed choice (RC) data.

The RC data was collected about 15 months after the SC data, and recorded actual vehicle purchase

behavior since the collection of the SC data. Brownstone et al. (2000) maintain the error-components

structure developed in their earlier study, and also accommodate scale differences between RC and SC

choices. 

Bhat (1998a) applied the mixed multinomial logit (MMNL) model to a multi-dimensional choice

situation. Specifically, his application accommodates unobserved correlation across both dimensions in a

two-dimensional choice context. The model is applied to an analysis of travel mode and departure time

choice for home-based social-recreational trips using data drawn from the 1990 San Francisco Bay Area
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household survey. The empirical results underscore the need to capture unobserved attributes along both

the mode and departure time dimensions, both for improved data fit as well as for more realistic policy

evaluations of transportation control measures.

4.4.2  Random-coefficients applications

There have been several applications of the mixed multinomial logit model motivated from a

random-coefficients perspective.

Bhat (1998b) estimated a model of inter-city travel mode choice that accommodates variations in

responsiveness to level-of-service measures due to both observed and unobserved individual

characteristics. The model is applied to examine the impact of improved rail service on weekday, business

travel in the Toronto-Montreal corridor. The empirical results show that not accounting adequately for

variations in responsiveness across individuals leads to a statistically inferior data fit and also to

inappropriate evaluations of policy actions aimed at improving inter-city transportation services. 

 Bhat (2000) formulated a mixed multinomial logit model of multi-day urban travel mode choice

that accommodates variations in mode preferences and responsiveness to level-of-service. The model is

applied to examine the travel mode choice of workers in the San Francisco Bay area. Bhat’s empirical

results indicate significant unobserved variation (across individuals) in intrinsic mode preferences and level-

of-service responsiveness. A comparison of the average response coefficients (across individuals in the

sample) among the fixed-coefficient  and random-coefficient models shows that the random-coefficients

model implies substantially higher  monetary values of time than the fixed-coefficient  model. Overall, the

empirical results emphasize the need to accommodate observed and unobserved heterogeneity across

individuals in urban mode choice modeling.

Train (1998) used a random-coefficients specification to examine the factors influencing anglers’

choice of fishing sites.  Explanatory variables in the model include fish stock (measured in fish per 1000 feet

of river), aesthetics rating of fishing site, size of each site, number of camp grounds and recreation access

at site, number of restricted species at the site, and the travel cost to the site (including the money value of

travel time). The empirical results indicate highly significant taste variation across anglers in the sensitivity
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to almost all the factors listed above. In this study as well as Bhat’s (2000) study, there is a very dramatic

increase in data fit after including random variation in coefficients.

Mehndiratta (1997) proposed and formulated a theory to accommodate variations in the resource

value of time in time-of-day choice for inter-city travel. Mehndiratta then proceeded to implement his

theoretical model using a random-coefficients specification for the resource value of disruption of leisure

and sleep. He uses a stated choice sample in his analysis.

Hensher (2000) undertakes a stated choice analysis of the valuation of non-business travel time

savings for car drivers undertaking long distance trips (up to three hours) between major urban areas in

New Zealand. Hensher disaggregates overall travel time into several different components, including free

flow travel time, slowed-down time, and stop time. The coefficients of each of these attributes are allowed

to vary randomly across individuals in the population. The study finds significant taste heterogeneity to the

various components of travel time, and adds to the accumulating evidence that the restrictive travel time

response homogeneity assumption undervalues the mean value of travel time savings.

In addition to the studies identified in Sections 4.4.1 and 4.4.2, some recent studies have included

both inter-alternative error correlations (in the spirit of an error-components structure) as well as

unobserved heterogeneity among decision-making agents (in the spirit of the random coefficients structure).

Such studies include Hensher and Greene (2000), Bhat and Castelar (2002), and Han and Algers (2001).

4.5  Detailed Results From an Example Application

Bhat uses an error components motivation for the analysis of mode and departure time choice for

social-recreational trips in the San Francisco Bay area. Bhat suggests the use of a MMNL model to

accommodate unobserved correlation in error terms across both the model and temporal dimension

simultaneously. The data for this study are drawn from the San Francisco Bay Area Household Travel

Survey conducted by the Metropolitan Transportation Commission (MTC) in the Spring and Fall of 1990.

The modal alternatives include drive alone, shared-ride, and transit. The departure time choice is

represented by six time-periods: early morning (12:01a.m.-7a.m.), a.m. peak (7:01a.m.-9a.m.), a.m.

offpeak (9:01a.m.-12noon), p.m. offpeak (12:01p.m.-3p.m.), p.m. peak (3:01p.m.-6p.m.), and evening

(6:01p.m.-12 midnight). For some individual trips, modal availability is a function of time-of-day (for
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example, transit mode may be available only during the a.m. and p.m. peak periods). Such temporal

variations in modal availability are accommodated by defining the feasible set of joint choice alternatives

for each individual trip. Level of service data were generated for each zonal pair in the study area and by

five time periods: early morning, a.m. peak, mid-day, p.m. peak, and evening. The sample used in Bhat’s

paper comprises 3000 home-based social/recreational person-trips obtained from the overall single-day

travel diary sample. The mode choice shares in the sample are as follows: drive alone (45.7%), shared-ride

(51.9%) and transit (2.4%). The departure time distribution of home-based social-recreational trips in the

sample is as follows: Early morning (4.6%), a.m. peak (5.5%), a.m. offpeak (10.3%), p.m. offpeak

(17.2%), p.m. peak (16.1%), and evening (46.3%).

Bhat estimated four different models of mode-departure time choice: (1) the multinomial logit

(MNL) model, (2) the mixed multinomial logit model which accommodates shared unobserved random

utility attributes along the departure time dimension only (the MMNL-T model), (3) the mixed multinomial

logit model which accommodates shared unobserved random utility attributes along the mode dimension

only (the MMNL-M model), and (4) the proposed mixed multinomial logit model which accommodates

shared unobserved attributes along both the dimensions of mode and departure time (the MMNL-MT

model). In the MMNL models, the sensitivity among joint choice alternatives sharing the same mode

(departure time) were allowed to vary across modes (departure times). It is useful to note that such a

specification generates heteroscedasticity in the random error terms across the joint choice alternatives. In

the MMNL-T and MMNL-MT models, the shared unobserved components specific to the morning

departure times (i.e., early morning, a.m. peak, and a.m. offpeak periods) were statistically insignificant.

Consequently, the MMNL-T and MMNL-MT model results restricted these components to zero.

The level-of-service parameter estimates, implied money values of travel time, data fit measures,

and the variance parameters in from the different models are presented in Table 4. The signs

of the level-of-service parameters are consistent with a priori expectations in all the models. Also, as

expected, travelers are more sensitive to out-of-vehicle travel time than in-vehicle travel time. A comparison

of the magnitudes of the level-of-service parameter estimates across the four specifications reveals a

progressively increasing magnitude as we move from the MNL model to the MMNL-MT model (this is

an expected result since the variance before scaling is larger in the MNL model compared to the mixture
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models, and in the MMNL-M and MMNL-T models compared to the MMNL-MT model; see Revelt

and Train, 1998 for a similar result). The implied money values of in-vehicle and out-of-vehicle travel times

are lesser in the mixed multinomial logit models relative to the MNL model.

The four alternative models in Table 4 can be evaluated formally using conventional likelihood ratio

tests. A statistical comparison of the multinomial logit model with any of the mixture models leads to the

rejection of the multinomial logit. Further likelihood ratio tests among the MMNL-M, MMNL-T, and

MMNL-MT models result in the clear rejection of the hypothesis that there are shared unobserved

attributes along only one dimension; that is, the tests indicate the presence of statistically significant shared

unobserved components along both the mode and departure time dimensions (the likelihood ratio test

statistic in the comparison of the MMNL-T model with the MMNL-MT model is 14.2; the corresponding

value in the comparison of the MMNL-M model with the MMNL-MT model is 23.8; both these values

are larger than the chi-squared distribution with 3 degrees of freedom at any reasonable level of

significance). Thus, the MNL, MMNL-T, and MMNL-M models are mis-specified.

The variance parameters provide important insights regarding the sensitivity of joint choice

alternatives sharing the same mode and departure time. The variance parameters specific to departure times

(in the MMNL-T and MMNL-MT models) show statistically significant shared unobserved attributes

associated with the afternoon/evening departure periods. However, as indicated earlier, there were no

statistically significant shared unobserved components specific to the morning departure times (i.e., early

morning, a.m. peak, and a.m. offpeak periods). The implication is that home-based social-recreational trips

pursued in the morning are more flexible and more easily moved to other times of the day than trips pursued

later in the day. Social-recreational activities pursued later in the day may be more rigid because of

scheduling considerations among household members and/or because of the inherent temporal “fixity” of

late-evening activities (such as attending a concert or a social dinner). The magnitude of the departure time

variance parameters reveal that late evening activities are most rigid, followed by activities pursued during

the p.m. offpeak hours. The p.m. peak social-recreational activities are more flexible relative to the p.m.

offpeak and late-evening activities. The variance parameters specific to the travel modes (in the MMNL-M

and MMNL-MT models) confirm the presence of common unobserved attributes among joint choice

alternatives that share the same mode; thus, individuals tend to maintain their current travel mode when
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confronted with transportation control measures such as ridesharing incentives and auto-use disincentives.

This is particularly so for individuals who rideshare, as can be observed from the higher variance associated

with the shared-ride mode relative to the other two modes. In the context of home-based social-

recreational trips, most ridesharing arrangements correspond to travel with children and/or other family

members; it is unlikely that these ridesharing arrangements will be terminated after implementation of

transportation control measures such as transit-use incentives.

The different variance structures among the four models imply different patterns of inter-alternative

competition. To demonstrate the differences, Table 5 presents the disaggregate self- and cross-elasticities

(for a person-trip in the sample with close-to-average modal level-of-service values) in response to peak

period pricing implemented in the p.m. peak (i.e., a cost increase in the “drive alone-p.m. peak”

alternative). All morning time periods are grouped together in the table since the cross-elasticities for these

time periods are the same for each mode (due to the absence of shared unobserved attributes specific to

the morning time periods).

The MNL model exhibits the familiar Independence from Irrelevant Alternatives (IIA) property

(that is, all cross-elasticities are equal). The MMNL-T model shows equal cross-elasticities for each time

period across modes, a reflection of not allowing shared unobserved attributes along the modal dimension.

However, there are differences across time periods for each mode. First, the shift to the shared ride-p.m.

peak and transit-p.m. peak is more than to the other non-p.m. peak joint choice alternatives. This is, of

course, because of the increased sensitivity among p.m.-peak joint choice alternatives generated by the

error variance term specific to the p.m. peak period. Second, the shift to the evening-period alternatives

are lower compared to the shift to the p.m. offpeak period alternatives for each mode. This result is related

to the heteroscedasticity in the shared unobserved random components across time periods. The variance

parameter in Table 4 associated with the evening period is higher than that associated with the p.m. offpeak

period; consequently, there is less shift to the evening alternatives (see Bhat, 1995 for a detailed discussion

of the inverse relationship between cross-elasticities and the variance of alternatives). The MMNL-M

model shows, as expected, a heightened sensitivity of drive alone alternatives (relative to the shared-ride

and transit alternatives) in response to a cost increase in the DA-p.m. peak alternative. The higher variance

of the unobserved attributes specific to shared-ride (relative to transit; see Table 4) results in the lower
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cross-elasticity of the shared-ride alternatives compared to the transit alternatives. The MMNL-MT model

shows higher cross-elasticities for the drive alone alternatives as well as for the non-drive alone p.m. peak

period alternatives since it allows shared-unobserved attributes along both the mode and time dimensions.

The drive-alone p.m. peak period self-elasticities in Table 5 are also quite different across the

models. The self-elasticity is lower in the MMNL-T model relative to the MNL mode. The MMNL-T

model recognizes the presence of temporal rigidity in social-recreational activities pursued in the p.m. peak.

This is reflected in the lower self-elasticity effect of the MMNL-T model. The self-elasticity value from the

MMNL-M model is larger than that from the MMNL-T model. This is because individuals are likely to

maintain their current travel mode (even if it means shifting departure times) in the face of transportation

control measures. But the MMNL-T model accommodates only the rigidity effect in departure time, not

in travel mode. As a consequence, the rigidity in mode choice is manifested (inappropriately) in the

MMNL-T model as a low drive alone p.m.-peak self-elasticity effect. Finally, the self-elasticity value from

the MMNL-MT model is lower than the value from the MMNL-M models. The MMNL-M model ignores

the rigidity in departure time; when this effect is included in the MMNL-MT model, the result is a depressed

self-elasticity effect. 

The substitution structures among the four models imply different patterns of competition among

the joint mode-departure time alternatives. We now turn to the aggregate self- and cross-elasticities to

examine the substantive implications of the different competition structures for the level-of-service variables.

Table 6 provides the cost elasticities obtained for the drive alone and transit joint-choices in

response to a congestion pricing policy implemented in the p.m. peak. The aggregate cost elasticities reflect

the same general pattern as the disaggregate elasticities discussed earlier. Some important policy-relevant

observations that can be made from the aggregate elasticities are as follows. The DA-p.m. peak self-

elasticities show that the MNL and MMNL-T models under-estimate the decrease in peak period

congestion due to peak-period pricing, while the MMNL-M model over-estimates the decrease. Thus,

using the DA-p.m. peak cost self-elasticities from the MNL and MNL-T models will make a policy analyst

much more conservative than (s)he should be in pursuing peak-period pricing strategies. On the other hand,

using the DA-p.m. peak cost self-elasticity from the MMNL-M model provides an overly-optimistic

projection of the congestion alleviation due to peak period pricing. From a transit standpoint, the MNL and
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MMNL-T under-estimate the increase in transit share across all time periods due to p.m. peak period

pricing. Thus, using these models will result in lower projections of the increase in transit ridership and

transit revenue due to a peak period pricing policy. The MMNL-M model under-estimates the projected

increase in transit share in all the non-evening time periods, and over-estimates the increase in transit share

for the evening time period. Thus, the MNL, MMNL-T, and MMNL-M models are likely to lead to

inappropriate conclusions regarding the necessary changes in transit provision to complement peak-period

pricing strategies.

5.  CONCLUSIONS

This paper presents the structure, estimation techniques, and transport applications of three classes

of discrete choice models: heteroscedastic models, GEV models, and flexible structure models. Within each

class, alternative formulations are discussed. The formulations presented are quite flexible (this is especially

the case with the flexible structure models), though estimation using the maximum likelihood technique

requires the evaluation of one-dimensional integrals (in the heteroscedastic extreme value model) or multi-

dimensional integrals (in the flexible model structures). However, these integrals can be approximated using

Gaussian quadrature techniques or simulation techniques. In this regard, the recent use of quasi-Monte

Carlo (QMC) simulation techniques seems to be particularly effective.

The advanced model structures presented in this chapter should not be viewed as substitutes for

careful identification of systematic variations in the population. The analyst must always explore alternative

and improved ways to incorporate systematic effects in a model. The flexible structures can then be super-

imposed on models that have attributed as much heterogeneity to systematic variations as possible. Another

important issue in using flexible structure models is that the specification adopted should be easy to

interpret; the analyst would do well to retain as  simple a specification as possible while attempting to

capture the salient interaction patterns in the empirical context under study.

The confluence of continued careful structural specification with the ability to accommodate very

flexible substitution patterns/unobserved heterogeneity should facilitate the application of behaviorally rich

structures in transportation-related discrete choice modeling in the years to come.
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Appendix

Permutations for Scrambled Halton Sequences

Prime r Permutation of (0  1  2  ...  r-1)

2 (0  1)

3 (0  2  1)

5 (0  3  1  4  2)

7 (0  4  2  6  1  5  3)

11 (0  5  8  2  10  3  6  1  9  7  4)

13 (0  6  10  2  8  4  12  1 9  5  11  3  7)

17 (0  8  13  3  11  5  16  1  10  7  14  4  12  2  15  6  9)

19 (0  9  14  3  17  6  11  1  15  7  12  4  18  8  2  16  10  5  13)

23 (0  11  17  4  20  7  13  2  22  9  15  5  18  1  14  10  21  6  16  3  19  8  12)

29 (0  15  7  24  11  20  2  27  9  18  4  22  13  26  5  16  10  23  1  19  28  6  14  17  3  25  12  8)

Source: Braaten and Weller (1979)
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4The logsum parameter is implicitly constrained to one in the multinomial logit and heteroscedastic model specifications. The t-statistic for the logsum parameter in the nested logit is
with respect to a value of one.

5The scale parameters are implicitly constrained to one in the multinomial logit and nested logit models and explicitly constrained to one in the constrained “heteroscedastic” model.
The t-statistics for the scale parameters in the heteroscedastic model are with respect to a value of one.

6The log likelihood value at zero is -3042.06 and the log likelihood value with only alternative specific constants and an IID error covariance matrix is -2837.12.

Table 1. Intercity mode choice estimation results

Variable
Multinomial Logit

Nested Logit with Car
and Train Grouped

Heteroscedastic Extreme
Value Model

Parameter t-statistic Parameter t-statistic Parameter t-statistic

Mode Constants (car is base)
Train -0.5396  -1.55 -0.6703  -2.14 -0.1763  -0.42
Air -0.6495  -1.23 -0.5135  -1.31 -0.4883  -0.88

Large City Indicator (car is base)
Train  1.4825   7.98  1.3250   6.13  1.9066   6.45
Air  0.9349   5.33  0.8874   5.00  0.7877   4.96

Household Income (car is base)
Train -0.0108  -3.33 -0.0101  -3.30 -0.0167  -3.57
Air  0.0261   7.02  0.0262   7.42  0.0223   6.02

Frequency of service  0.0846  17.18  0.0846  17.67  0.0741 10.56
Travel Cost -0.0429 -10.51 -0.0414 -11.03 -0.0318  -5.93
Travel Time

In-Vehicle -0.0105 -13.57 -0.0102 -12.64 -0.0110  -9.78
Out-of-Vehicle -0.0359 -12.18 -0.0353 -13.86 -0.0362  -8.64

logsum Parameter4  1.0000 -  0.9032   1.14  1.0000 -
Scale Parameters (car parm.= 1)5

Train  1.0000 -  1.0000 -  1.3689   2.60
Air  1.0000 -  1.0000 -  0.6958   2.41

Log Likelihood At Convergence6 -1828.89 -1828.35 -1820.60
Adjusted L'hood Ratio Index 0.3525 0.3524 0.3548
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Table 2. Elasticity matrix in response to change in rail service for multinomial logit and heteroscedastic models 

Rail Level of Service
Attribute

Multinomial Logit Model Heteroscedastic Extreme Value
Model

Train Air Car Train Air Car

Frequency  0.303 -0.068 -0.068  0.205 -0.053 -0.040

Cost -1.951  0.436  0.436 -1.121  0.290  0.220

In-Vehicle Travel Time -1.915  0.428  0.428 -1.562  0.404  0.307

Out-of-Vehicle Travel Time -2.501  0.559  0.559 -1.952  0.504  0.384

Note: The elasticities are computed for a representative intercity business traveler in the corridor.
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Table 3. Comparison between MNL and GNL model estimates

Variable
MNL model GNL model

Parameter Std error Parameter Std error
Mode constants
    Air  8.2380 0.429 6.2640 0.321
    Train  5.4120 0.267 4.9810 0.285
    Car  4.4210 0.301 5.1330 0.253
    Bus (base)
Frequency  0.0850 0.004 0.0288 0.002
Travel cost -0.0508 0.003 -0.0173 0.002
In-vehicle time -0.0088 0.001 -0.0031  0.0002
Out-of-vehicle time -0.0354 0.002 -0.0110 0.001
Logsum parameters
    Train-car 0.0146 0.002
    Air-car 0.2819 0.032
    Train-car-air 0.0100 --
Allocation parameters
    Train-car nest

Train 0.2717 0.033
Car 0.1057 0.012

    Air-car nest
Air 0.6061 0.040
Car 0.4179 0.046

    Train-car-cir nest
Train 0.5286 0.031
Car 0.2741 0.029
Air 0.3939 0.041

    Train nest 0.1998 0.025
    Car nest 0.2024 0.032
    Bus nest 1.0000
Log-likelihood at convergence -2784.6 -2711.3
Likelihood ratio index
    vs. zero 0.4896 0.5031
    vs. market share 0.3205 0.3382
Value of time (per hour)
    In-vehicle time C$ 10 C$ 11
    Out-of-vehicle time C$ 42 C$ 38
Significance test rejecting MNL
model (?2, DF, Sig.)

-- 146.6, 11, <0.0001

Source: Wen and Koppelman (2001)
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7The entries in the different columns correspond to the parameter values and their t-statistics (in parenthesis).

8Money value of out-of-vehicle time is computed at the mean travel distance of 6.11 miles.

9The LL (Log-Likelihood) at equal shares is -8601.24 and the LL with only alternative specific constants and an IID error covariance matrix is -6812.07 

Table 4. Level of service parameters, implied money values of travel time, data fit measures, and error variance parameters

Attributes/data fit measures MNL model MMNL-T model MMNL-M model
MMNL-MT

model

Level of service7

Travel cost (in cents) -0.0031 (-3.13) -0.0036 (-3.02) -0.0044 (-2.88) -0.0045 (-2.83)

Total travel time (in mins.) -0.0319 (-3.15) -0.0336 (-2.87) -0.0382 (-3.22) -0.0408 (-3.33)

Out-of-vehicle time/distance -0.2363 (-3.42) -0.2429 (-4.82) -0.2508 (-4.19) -0.2589 (-4.26)

Implied money values of time ($/hr)

In-vehicle travel time  6.17  5.60  5.21  5.44

Out-of-vehicle travel time8 13.66 12.23 10.80 11.09

LL at Convergence9 -6393.6 -6382.9 -6387.7 -6375.8

Error variance parameters

?pm offpeak - 0.8911 (2.76) - 0.9715 (2.96)

?pm peak - 0.7418 (2.83) - 0.3944 (1.88)

?evening - 1.9771 (2.70) - 1.6421 (3.02)

?drive alone - 0.6352 (1.91) 0.5891 (1.98)

?shared ride - 1.9464 (3.06) 1.9581 (3.20)

?transit - 0.7657 (1.73) 0.7926 (2.07)
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1The morning periods include early morning, a.m. peak, and a.m. off-peak. The cross-elasticities for the morning periods within each mode with respect to a p.m. peak cost increase in
the drive alone mode are the same in the mixture logit models because of the absence of shared unobserved attributes specific to the morning time periods. 

Table 5. Disaggregate travel cost elasticities in response to a cost increase in the drive alone (DA) mode during p.m. peak

Effect on Joint Choice
Alternative

MNL model MMNL-T model MMNL-M model MMNL-MT model

DA-morning periods1  0.0072  0.0085  0.0141  0.0165

DA-p.m. offpeak  0.0072  0.0060  0.0141  0.0131

DA-p.m. peak -0.1112 -0.0993 -0.1555 -0.1423

DA-evening  0.0072  0.0042  0.0141  0.0099

SR-morning periods1  0.0072  0.0085  0.0059  0.0072

SR-p.m. offpeak  0.0072  0.0060  0.0059  0.0055

SR-p.m. peak  0.0072  0.0120  0.0059  0.0079

SR-evening  0.0072  0.0042  0.0059  0.0045

TR-morning periods1  0.0072  0.0085  0.0119  0.0131

TR-p.m. offpeak  0.0072  0.0060  0.0119  0.0106

TR-p.m. peak  0.0072  0.0120  0.0119  0.0150

TR-evening  0.0072  0.0042  0.0119  0.0082
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Table 6. Aggregate travel cost elasticities in response to a cost increase in the drive alone (DA) mode during p.m. peak

Effect on Joint Choice
Alternative

MNL model MMNL-T model MMNL-M model MMNL-MT model

Drive alone (DA) alternatives

early morning  0.0146  0.0202  0.0290  0.0392

a.m. peak  0.0125  0.0166  0.0259  0.0334

a.m. offpeak  0.0121  0.0155  0.0250  0.0317

p.m. offpeak  0.0123  0.0136  0.0254  0.0265

p.m. peak -0.1733 -0.1536 -0.2355 -0.2192

evening  0.0146  0.0088  0.0293  0.0204

Transit (TR) alternatives

early morning  0.0197  0.0260  0.0280  0.0371

a.m. peak  0.0188  0.0237  0.0283  0.0358

a.m. offpeak  0.0163  0.0195  0.0236  0.0291

p.m. offpeak  0.0168  0.0175  0.0246  0.0251

p.m. peak  0.0218  0.0393  0.0333  0.0485

evening  0.0205  0.0120  0.0299  0.0203


