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ABSTRACT 
The rise of ride-hailing services has presented a number of challenges and opportunities in the 
urban mobility sphere.  On the one hand, they allow travelers to summon and pay for a ride through 
their smartphones while tracking the vehicle’s location. This helps provide mobility for many who 
are traditionally transportation disadvantaged and not well served by public transit. Given the 
convenience and pricing of these mobility-on-demand services, their tremendous growth in the 
past few years is not at all surprising.  However, this growth comes with the risk of increased 
vehicular travel and reduced public transit use, increased congestion, and shifts in mobility patterns 
that are difficult to predict.  Unfortunately, data about ride-hailing service usage are hard to find; 
service providers typically do not share data and traditional survey data sets include too few trips 
for these new modes to develop significant behavioral models.  As a result, transport planners have 
been unable to adequately account for these services in their models and forecasting processes.  In 
an effort to better understand the use of these services, this study employs a data fusion process to 
gain deeper insights about the characteristics of ride-hailing trips and their users. Trip data made 
publicly available by RideAustin is fused with census and parcel data to infer trip purpose, 
origin/destination information, and user demographics. The fused data is then used to estimate a 
model of frequency of ride-hailing trips by multiple purposes.  
 
Keywords: ride-hailing services, trip characteristics, user characteristics, mobility patterns, data 
fusion, secondary data. 
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1. INTRODUCTION 
Ride-hailing services have experienced very rapid growth in the past few years.  Among all new 
mobility services, ride-hailing has the highest penetration in the United States and a number of 
other countries.  In 2017, Uber alone had more than 10 times the number of active subscribers of 
all North American car-sharing programs taken together (1, 2). The level of market penetration 
and adoption of these services reflects the convenience that they offer to users as a reliable, lower 
cost (compared to traditional taxi services), on-demand, and door-to-door transportation service. 
Furthermore, these services do not require subscription fees and involve minimal cognitive and 
physical efforts on the part of the traveler when compared to other alternatives, such as driving or 
taking the bus. 
 Despite the rapid growth of these services in the urban transportation ecosystem, very little 
is known about the trips undertaken by these services and the travelers who use these services on 
a regular or irregular basis. As a result, many researchers in the travel behavior field have attempted 
to study ride-hailing trips through a variety of primary or secondary data sets that contain any 
information about these trips. Although ride-hailing companies undoubtedly collect user 
information and detailed trip characteristics, such data is usually not shared due to privacy 
concerns and proprietary value. There is, therefore, a significant gap in knowledge regarding the 
characteristics of ride-hailing trips and users, and this study employs a data fusion exercise in an 
effort to shed deep insights about these aspects of ride-hailing services. In particular, the study 
involves the use of data on more than one million trips undertaken using RideAustin, a ride-hailing 
company that began servicing the Austin, Texas metropolitan area during a period when the bigger 
service providers, Uber and Lyft, had temporarily ceased operations in the region.  The trip data 
furnished by RideAustin does not contain any information about trip purpose or the traveler.  In 
order to infer trip purpose, the fuzzy location coordinates are superimposed on a parcel map to 
check land use characteristics of trip origins and destinations. Trip coordinates of frequent users 
are mapped in order to infer home locations; and the inferred home location information is fused 
with census block group data to impute users’ characteristics. Through such data fusion exercises, 
this study aims to provide detailed profiles of ride-hailing service users, at least in the context of 
RideAustin.   

The results of the data fusion exercise are used to draw some conclusions on the nature of 
ride-hailing trips and users. In order to characterize and understand factors that contribute to 
various types of ride-hailing trips, a multivariate ordered probit model is estimated and presented; 
this model essentially estimates the number of ride-hailing trips for each purpose (location) while 
accounting for error correlations that may exist across trip purposes.   
 The remainder of this paper is organized as follows.  The next section offers a more detailed 
review of recent literature. Section 3 offers a description of the RideAustin data, and the data fusion 
methodology adopted in this study. Section 4 presents a descriptive characterization of ride-hailing 
trips. Section 5 describes the modeling effort undertaken in this study. Conclusions are presented 
in Section 6.   
 
2. REVIEW OF RECENT WORK ON RIDE-HAILING SERVICE USAGE 
It should be recognized that a growing body of literature has been devoted to the study of ride-
hailing services.  Given the scarcity of publicly available data from service providers, many studies 
rely on specialized user surveys (3) or special purpose online surveys (4-8). Other studies have 
utilized the limited information available in large scale household travel surveys (9, 10) or 
aggregate data released by service providers (11, 12).  More recently, some studies have begun to 
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utilize data released by ride-hailing companies (13-17). A few of these prior studies are discussed 
in greater detail in this section.  

Kooti et al. (13) analyze large scale data covering 59 million rides over a span of seven 
months. The data were extracted from e-mail receipts sent by Uber and collected on Yahoo servers, 
allowing the researchers to examine the role of demographics (e.g., age and gender) on 
participation in the ride-sharing economy. They also examine the influence of surge pricing and 
income on ride-hailing service usage and present comparisons of usage patterns by age group, 
gender, and income. Gerte et al. (14) used one year Uber data for New York City, aggregated by 
taxi zone and by week (weekly pick up counts per taxi zone in the borough of Manhattan) to model 
ride-hailing trip generation.  
 Lavieri et al. (16) used six months’ worth of trip data from an Austin-based ride-hailing 
company, RideAustin, together with secondary data sets such as traffic analysis zone (TAZ) level 
demographic data, census data, and General Transit Feed Specification (GTFS) data, to estimate a 
spatially lagged multivariate count model, which was used to estimate the number of trips 
generated in a specific zone, and a fractional split model to spatially allocate the trips based on the 
characteristics of candidate destination zones that attract ride-hailing trips. Komanduri et al. (15) 
conduct an exploratory analysis of the same RideAustin data and examine several characteristics 
of ride-hailing use, such as trip-making patterns by month and day of the week; and average trip 
distances and durations. Zheng et al. (17) use ride-hailing data provided by DiDi (based in China) 
and questionnaire data collected from passengers to explore the short, medium, and long-term 
impacts of ride-hailing on personal vehicle usage and vehicle ownership.  

In general, it appears that ride-hailing services not only serve as a substitute for traditional 
taxi, auto, and public transit trips (3, 6, 8, 17), but also induce new trips that would not have taken 
place in the absence of such services.  Rayle et al. (3) reports that around eight percent of users 
indicated that their last ride-hailing trip would not have been performed if the service were not 
available. Lavieri and Bhat (8) report that six percent of the ride-hailing trips in their sample were 
induced, and most of them had shopping/errand trip purposes. There is also some evidence to 
suggest that ride-hailing services are used to compensate for poor transit access and level of service 
(5, 16).  
 A few studies have attempted to characterize users of ride-hailing services and the types of 
trips that they are undertaking when using the services. Although there are some disparate findings 
reported in the literature, the general pattern reported in various studies is that ride-hailing services 
are used to a greater degree by younger adults (18-30 years), individuals residing in urban areas, 
those with a college education, and people residing in medium to high income households (4, 5, 9, 
13). The evidence suggests that the majority of ride-hailing users own personal vehicles (4, 9), but 
vehicle ownership is lower among frequent users of ride-hailing services (4, 6, 8). Additionally, 
when asked if they had made the choice to dispose one or more vehicles, frequent users were more 
likely to answer in the affirmative (5). 
 Ride-hailing services appear to be most used for trips that are social-recreational in nature 
(3, 7, 8). For the cases where ride-hailing is being used as a substitute for driving a private car, the 
most frequent motivations include the desire to avoid the hassle of parking and/or to avoid driving 
while intoxicated (5). Kooti et al. (13) found that, although older riders use ride-hailing services 
less frequently than younger individuals, they tend to make longer trips and choose more expensive 
services. 
 Overall, it can be seen that there is a growing body of literature devoted to understanding 
the characteristics of and demand for trips by ride-hailing services.  This study aims to add further 
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insights in this domain by fusing publicly available ride-hailing trip data with secondary data 
sources. 
  
3. DATA DESCRIPTION AND DATA FUSION METHODOLOGY 
This section provides a description of the data sets used in this study and the data fusion 
methodology adopted to obtain a more complete profile and characterization of ride-hailing usage. 
A map of Austin’s central area can be seen in Figure 1. 
 
3.1. Brief Description of Datasets 
Several public data sets were compiled to undertake the analysis in this paper.  They are as follows: 
 

 RideAustin Data: The primary data source originated from RideAustin, a ride-hailing 
company operating in Austin, Texas. RideAustin entered the market in late May 2016, 
shortly after Uber and Lyft shut down their operations in the city due to disputes over local 
regulations. The RideAustin data (18) contains trip-level information, including the spatial 
coordinates and timestamps of pickups and drop-offs as well as anonymized user IDs that 
allow for the identification of the multiple rides performed by each user. To protect users’ 
privacy, RideAustin truncated the location coordinates at the third decimal place. The 
original dataset contains trips that occurred between June 4, 2016 and April 13, 2017. Since 
ridership during the first few months was limited, the analysis in this paper only includes 
data from August 1, 2016 onwards. RideAustin held approximately one third of the market 
share of all ride-hailing trips performed in Austin during this period. 
  

 Austin Zoning and Parcel Data: The City of Austin provided parcel-level data with 
zoning information for Austin’s central area, in which most of the RideAustin trips took 
place. Although very detailed, the zoning and parcel data required extensive processing in 
order to be usable for the current study. After processing, the zoning and parcel data was 
used to infer trip purpose or location type. This data was also used to infer the residence 
location for frequent users of ride-hailing services.  
 

 2016 American Community Survey: The 2016 American Community Survey (ACS) data 
provided by the Census Bureau was used to derive socio-economic and demographic 
profiles of locations where frequent ride-hailing users were believed to reside.  After 
inferring the household locations of frequent users, their demographic characteristics were 
imputed using the ACS data.  

 
3.2. Data Fusion Methodology 
The data fusion and imputation methodology consisted of a series of logical steps.  First, trip 
purpose/location type was inferred and appended to the ride-hailing trip records by mapping 
coordinates to the parcel level land use data, similar to Bohte and Maat (19). This was done to 
better characterize how, when, and why ride-hailing trips were made. After purpose/location 
information was inferred, the household locations were derived for frequent riders. By mapping 
locations that are visited very frequently by the same users and examining the land use/parcel 
profile of those frequently visited locations, it was possible to identify travelers’ potential 
residential locations.  Finally, these riders (whose residence locations were inferred and identified) 
had their demographic characteristics imputed from the 2016 ACS data based on their household 
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location mapped to census block groups. The fully fused and integrated data set was eventually 
analyzed to quantify the number of ride-hailing trips undertaken for various trip purposes 
(locations). A multivariate ordered probit model was then estimated to identify factors that 
influence number of trips by purpose (location).    
 
3.2.1. Inferring Trip Purpose and Location Type 
Trip purposes were inferred and assigned based on mapping origin and destination coordinates in 
the RideAustin data to the City of Austin’s zoning and parcel database. Using land use information 
in the parcel map, trip purposes and location types were classified into one of the following six 
groups: 
  

 Residential: These are mostly residential areas, where a rider is probably going to or 
leaving a residence (either their own or somebody else’s).  It should be noted that this area 
may also contain educational establishments such as schools.  

 Commercial: These are mostly commercial areas with shops, restaurants, or bars. Trips 
to/from this location type are likely to be for shopping as well as social-recreation activities. 
This category might also include trips by employees of commercial establishments, but 
these seem much less likely than customers. 

 Work: Trips marked with this location type or purpose are associated with industrial areas 
and office buildings, rendering the identification of this trip purpose quite straightforward. 

 Education: These parcels mainly encompass trips from/to the University of Texas central 
campus area and the Texas School for the Deaf. As mentioned above, grade schools and 
other more common educational establishments are likely to be located in the Residential 
land use category.  

 CBD (Central Business District)/DMU (Downtown Mixed Use): Given the mixed use of 
Austin’s central business district (CBD), inferring actual trip purposes is not trivial. These 
areas include shops, bars, restaurants, houses (mostly apartment complexes) and office 
buildings. Therefore, this location type was treated as a separate category to avoid potential 
confounding effects due to the presence of mixed land uses.   

 Airport: Trips to and from the airport were marked as a separate category given the ease of 
identifying their purpose.  

 Recreation: These trips have origins or destinations in green areas and public parks; 
therefore the trip purpose is quite easily identifiable as recreation.  

 Other: Trips that had no associated zoning information and therefore could not have their 
purpose inferred were marked with the “Other” trip purpose. 

 
These categories were defined as a direct consequence of the land use classifications in the 

parcel/zoning data. The categories listed above are those that represented a reasonable aggregation 
of the original zoning designations in the parcel data.  

The spatial coordinates of trip origins and destinations were truncated to the third decimal 
place in the RideAustin data. Given the spatial fuzziness associated with such truncated values, 
square buffers were created by taking the coordinates and adding/subtracting 0.0005 degrees 
(which translates to a square with approximate side dimensions of 100 meters). This buffer size 
was adopted to encompass the entire region in which a trip may have originated or terminated.   
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The square buffer of a trip location was then spatially cross-referenced with the 
zoning/parcel file to obtain a list of the location’s potential land uses. In cases where multiple uses 
were found, locations were randomly assigned to one single use. This was done at the individual-
location level.  
 
3.2.2. Inferring Residential Location 
A user’s residential location was inferred by analyzing each individual’s most visited location.  
Given that this process of residential location identification was based on users making multiple 
trips to the same place, it was possible to infer residential locations only for the most frequent ride-
hailing users.  For each rider, the most frequented location was identified; if the most frequented 
location was visited more than 10 times within the time span of the data set and belonged to a 
“residential” area, then this location was designated as the rider’s household location. The 
frequency of 10 visits was set based on the distribution of frequency of visits (by the same person) 
to different locations.  In general, it was found that only a small fraction of locations (users) met 
the criteria of being visited 10 or more times and fell within a residential area.  It was therefore 
considered safe to designate these locations as residential locations for this subset of users.   
 The square buffers corresponding to these locations were cross-referenced with the Census 
block groups.  For buffers that intersected multiple block groups, the final association was made 
by randomly assigning the location to one of the intersected block groups.  The random association 
was done in proportion to the intersected area as illustrated in Figure 2.   
 In the example shown in Figure 2, the buffer of Location A (LOC A) intersects three block 
groups (BG1, BG2, and BG3).  Suppose 60 percent of the buffer falls within BG1, 10 percent falls 
within BG2, and 30% falls within BG3. Location A is randomly assigned to one of the block 
groups using the proportions as probabilities; thus the probability that Location A would be 
assigned to BG1 is 0.6, BG2 is 0.1, and BG3 is 0.3. This process is repeated for every square buffer 
(location).  
 The association between locations and block groups allowed the fusion of block group 
demographic data to the RideAustin location data. Demographic data, aggregated from the 2016 
American Community Survey database, was appended to each identified residential location based 
on the block group to which it was assigned.  Then, proportions of various demographic segments 
(e.g., age, gender, race) were calculated, and a random proportion-based assignment procedure 
was implemented to assign demographic information to each frequent rider for whom a residential 
location was identified.  The segments for age and sex were considered jointly, as were the 
segments for race and Hispanic ethnicity. All other demographic segments were considered 
independently. After imputing rider demographics, the total number of trips for each trip 
purpose/location category was computed and grouped into frequency categories. It is these 
grouped frequencies that served as the dependent variables for the multivariate ordered probit 
model estimated in this study.  
   
4. DESCRIPTIVE SUMMARY OF RIDE-HAILING TRIPS 
The final trip data set with inferred trip purposes had 1,475,596 trips and 258,022 unique riders or 
users.  The final “frequent rider” data set (which includes only those individuals for whom census 
demographic information could be imputed) contains 13,895 riders. Table 1 (Section A) presents 
the overall profile of the entire set of ride-hailing trips for which trip purpose/location information 
was appended.    
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It can be seen that a majority of the trips (over 55 percent) are made at night between the 
hours of 10 PM and 7 AM.  The remaining trips are rather evenly distributed among other periods 
of the day. In addition, a large proportion of trips (approximately 46 percent) is made on weekend 
days (Saturday and Sunday) with another 15.3 percent of trips made on Friday.  Only 38 percent 
of trips are made on Monday through Thursday. An examination of the trip purpose/location 
distribution shows that trip origins and destinations are rather symmetric (signifying two-way or 
round-trip travel by the ride-hailing service) in their distributions, with high concentrations of trips 
in the CBD/DMU, residential, and commercial categories. Together, these three categories account 
for more than 75 percent of the trip origins/destinations of ride-hailing trips. It appears that 
individuals use the ride-hailing services to a greater degree on weekend nights to travel between 
residential areas (home locations) and commercial areas or CBD/DMU establishments. This 
signifies that individuals are using these services primarily for social-recreational trips on 
weekends, possibly to avoid driving under the influence of alcohol. Generally, work, airport, 
education, and recreation (visits to green spaces and parks) purposes account for only small 
fractions of the ride-hailing trips analyzed in this study. Another interesting finding is that about 
one-third of the users are single-time users; nearly one half of the users are infrequent users (2-10 
times per year); and the remaining 17 percent of users are weekly or monthly users. In general, it 
appears that many users are single time or infrequent users of ride-hailing services (although that 
could change as market penetration and adoption continues to grow). 
 Table 1 (Section B) also presents a profile of frequent ride-hailing users. It should be 
recalled that only records of frequent users of the ride-hailing service could be geo-tagged with a 
home location and appended with census demographic data. Thus, the sample size for this table is 
just 13,895, which corresponds to the number of frequent users with an identified residential 
location obtained using the procedures outlined in the previous section.   
 The imputation process predicts that frequent users are more likely to be younger cohorts 
with just eight percent of users being 65 years or above in age.  It also shows that the split between 
males and females is virtually equal. A vast majority seem not to have children in the household, 
suggesting that ride-hailing services are used to a greater degree by individuals in earlier lifecycle 
stages. About 85 percent of the frequent users make use of the service on a weekly basis. The 
imputation also suggests that the majority of users are White, and less than five percent are 
Black/African American, suggesting that there may be some equity concerns in the use of ride-
hailing services. The income distribution suggests that nearly one-half of the frequent users have 
a household income less than $50,000 per year. This finding is rather counter to previous literature 
that suggests ride-hailing users are of higher income strata. It is possible that individuals in lower 
income households (which may be vehicle deficient) find this service useful and reasonably cost-
effective in meeting mobility needs, particularly in areas where transit service is not reliable and 
does not provide high levels of service.   
 
5. ANALYSIS OF RIDE-HAILING SERVICE USAGE PATTERNS 
To further understand the influence of various socio-economic and demographic factors on the 
number of ride-hailing trips by destination trip purpose/location type, a multivariate ordered probit 
model was specified and estimated in this study. The number of ride-hailing trips undertaken by 
riders for each destination purpose/location type was computed and then modeled as a function of 
demographic variables. The modeling framework accounts for correlations among unobserved 
effects (error terms), essentially recognizing that there may be common unobserved attributes 
affecting the number of trips undertaken for different purposes/locations. For this analysis, trips to 
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“Residential” locations were excluded from the model to focus the analysis on travel undertaken 
to places other than home. In addition, the analysis excludes trips with a classification of “Other” 
because of the lack of information about this trip category. 

Given that the individuals in the data set presented a wide range of trip counts and that the 
data set is considerably large (13,000+ riders), the higher trip counts were aggregated into 
categories. These categories are not identical across all destination purposes, but were set such that 
approximately 200 riders would fall into each category, thus enabling a more computationally 
feasible model estimation process. The final table containing the number of individuals per 
frequency category was omitted for the sake of brevity. 
 
5.1. Modeling Framework 
The modeling framework used in this study is very similar to that presented in Ferdous et al. (20). 
Let q be an index for individuals (q = 1, 2, …, Q), and let i be the index for destination purpose (i 
= 1, 2, …, I, where I denotes the total number of destination purposes for each individual; in the 
current study, I = 6). Let the number of frequency categories for destination purpose i be Ki + 1 
(i.e., the frequency categories of destination purpose i are indexed by k and belong in {0, 1, 2, …, 
Ki}). Following the usual ordered response framework notation, it is possible to write the latent 
propensity ( *

qiy ) for each destination purpose as a function of relevant covariates and relate this 

latent propensity to the observed frequency outcome ( qiy ) through threshold bounds (see 

McKelvey and Zavoina (21)): 

 * ,'
qi i qi qi qiy y k  β x  if  * 1k k

i qi iy     (1) 

where qix  is a (L×1) vector of exogenous variables (not including a constant), iβ  is a 

corresponding (L×1) vector of coefficients to be estimated, qi  is a standard normal error term, 

and k
i  is the lower bound threshold for frequency category k of destination purpose i  

(   101210   ,  ;... ii K
ii

K
iiii   for each destination purpose i). The qi  terms are 

assumed independent and identical across individuals (for each and all i). Due to identification 
restrictions, the variance of each qi  term is normalized to 1. However, correlations are allowed in 

the qi  terms across destination purposes i for each individual q. Specifically, define 

1 2 3( , , , , ) '.q q q q qI      Then, q  is multivariate normal distributed with a mean vector of zeros 

and a correlation matrix as follows: 

 
12 13 1

21 23 2

1 2 3

~ 

10

10
~ , ,  or ,

10

I

I
q q

I I I

N N

  
  

  

   
   
   
   
   
     

0 Σ





    



              (2) 

The off-diagonal terms of Σ  capture the error covariances across the underlying latent 
continuous variables of the different destination purposes; that is, they capture the effect of 
common unobserved factors influencing the propensity of usage of ride-hailing for each 
destination purpose. Thus, if 12  is positive, it implies that individuals with a higher than average 

propensity in their peer group to engage in ride-hailing trips for the first destination purpose are 
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also likely to have a higher than average propensity to engage in ride-hailing trips for the second 
destination purpose. If all the correlation parameters (i.e., off-diagonal elements of Σ ), which can 
be stacked into a vertical vector Ω, are identically zero, the model system in Equation (1) collapses 
to independent ordered response probit models for each destination purpose.  

The parameter vector of the multivariate probit model is 
,)  ; ..., , ,  ; ..., , ,( 2121  ΩII θθθβββδ  where ) ..., , ,( 21  iK

iiii θ  for Ii ..., ,2 ,1 . Let the actual 

observed frequency category for individual q and destination purpose i be mqi, and let 
)| ..., , ,( 21 ΣII vvv  represent the standard I-variate normal probability density function computed 

at the abscissae values of 1 2, ,  ..., Iv v v , and with a correlation matrix Σ . Then, the likelihood 

function for individual q may be written as follows: 

) ..., , ,Pr()( 2211 qIqIqqqqq mymymyL δ  
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Calculating the high-order I-dimensional rectangular integral above can prove to be 
computationally challenging. In order to sidestep these problems, this study employs a pairwise 
marginal likelihood estimation approach, which involves using a composite marginal approach 
based on bivariate margins (see Ferdous et al. (20) for details). 

 
5.2. Model Estimation Results 
Model estimation results are presented in Table 2. All statements made in this section are 
predicated on the assumption that the imputation process was indeed appropriate. Also, we 
suppress the threshold values (in the ordered-response models) in Table 2 to conserve on space 
and reduce clutter. All of these threshold values were, however, statistically significant. The results 
show patterns that are largely consistent with expectations, given the nature of the data set and the 
geographic context from which it is derived.  Alternative model specifications were tested and the 
final model specification that was adopted is presented in the table.  The model exhibits a goodness 
of fit that is typical of models of this nature.  Log likelihood values and the value of the likelihood 
ratio test (LRT) statistic are presented at the bottom of the table. All model coefficients were found 
to be statistically significant, generally indicating that socio-demographic variables are key 
determinants of number of ride-hailing trips undertaken by individuals for various 
purposes/locations. A number of error correlation terms (just above the goodness-of-fit measures) 
are significant, suggesting that a multivariate ordered response model that accommodates error 
correlations is appropriate in this particular context. The correlations suggest the presence of 
significant unobserved attributes that simultaneously affect multiple ordinal response variables. 
For example, it is found that the error correlation for Recreation and CBD/DMU is positive and 
significant (0.304 with a t-stat of 36.342). This signifies that unobserved attributes that contribute 
to recreational trips are positively correlated with unobserved attributes that contribute to 
CBD/DMU trips. This positive correlation may arise due to unobserved personality traits that 
affect both of these trip purposes/locations. For instance, an individual who is outgoing and seeks 
adventure and out-of-home recreational activities may undertake more recreational trips and more 
CBD/DMU trips (to frequent establishments that are in Downtown).  
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 Compared with younger individuals aged 18-24 years, older age groups are less inclined 
to undertake ride-hailing trips for work, education, and commercial purposes. However, they are 
more inclined to undertake ride-hailing trips for airport and CBD/DMU purposes. This is 
consistent with expectations, especially in light of the pattern seen for income. Essentially, younger 
people have lower incomes and are hence inclined to undertake ride-hailing trips for more 
utilitarian purposes when compared with older and higher income individuals. Higher income 
individuals are also likely to have greater access to an automobile, thus reducing the need to utilize 
these services for utilitarian trips. Conversely, older age groups are likely to have higher incomes 
than younger individuals; they are likely to engage in more airport trips and CBD/DMU trips – 
both of which are likely to increase with income levels.  Higher income individuals probably use 
their own personal vehicles for utilitarian trip purposes, but utilize ride-hailing services to a greater 
degree (than lower income individuals) for the sake of convenience and to avoid driving under the 
influence.   
 Somewhat similar to income trends, minorities exhibit a propensity to make fewer ride-
hailing trips for airport and CBD/DMU than White individuals. Hispanics are less inclined to make 
ride-hailing trips for all purposes except the commercial trip purpose; it is possible that Hispanics 
rely on the service to a greater degree than their non-Hispanic counterparts for shopping and 
running errands. The presence of children in the household contributes to lower propensity to make 
ride-hailing trips; households with children are likely to own personal vehicles and use their own 
vehicles for trip-making. A few findings merit further investigation. For example, it is found that 
minorities are inclined to make more work and commercial trips than White individuals. It is 
possible that minorities have fewer personal cars and hence use RideAustin to a greater degree for 
these utilitarian purposes. 
 Vehicles owned seem to have heterogeneous impacts: higher vehicle ownerships are 
associated with increased ride-hailing trips to the airport, CBD/DMU and to recreational sites, 
while also being associated with fewer ride-hailing trips to work, educational and commercial 
establishments.  
 Here we also have evidence of the question of whether or ride-hailing services substitute 
or induce transit use. For work trips, ride-hailing seems to be more common with individuals who 
live in locations with less access to transit (i.e. larger distances to transit stops), suggesting that the 
pattern in this case is substitutional. However, for all other purposes/locations, the association is 
reversed, suggesting that there might be a synergetic effect between ride-hailing and transit. 
 Finally, individuals who live in denser neighborhoods are associated with higher levels of 
ride-hailing to work, CBD/DMU, education and commerce, while also being associated with fewer 
trips to the airport and to recreational locations. 
 
6. DISCUSSION AND CONCLUSIONS 
The motivation for this study stems from the very limited knowledge about the characteristics of 
trips undertaken by ride-hailing services and the characteristics of their users. Despite the 
enormous growth in the use of ride-hailing services, there is a limited understanding of the nature 
of these trips due to the scarcity of detailed data about such trips. In addition, metropolitan planning 
organizations are unable to adequately account for the demand for ride-hailing services in their 
travel demand forecasting models. In an effort to shed light on the nature and characteristics of 
ride-hailing trips, this study involves the fusion of trip level data made available by a ride-hailing 
company with land use and parcel data to infer trip purpose and location information. The study 
also involves the identification of frequent users of the ride-hailing service and the determination 
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of their home locations based on a set of criteria that help isolate the residential location for such 
frequent users.  The data fusion methodology presented in the paper then involves fusing socio-
demographic data from the American Community Survey with frequent service users in the ride-
hailing trip database to obtain their demographic profiles.   
 The data used in this study originated from RideAustin, a service provider in the Austin 
metropolitan area in the United States. The trip origins and destinations were mapped to a land use 
parcel and zoning map to determine the purpose and location type for all trip origins and 
destinations. Analysis of the augmented data showed that large percentages of trips either come 
from or go to residential locations, commercial locations, and CBD/DMU (Downtown Mixed Use) 
locations. Trips in this data set appear to be largely taking place at night and on weekends, 
suggesting that they are undertaken for social purposes and a desire to avoid driving under the 
influence. Frequent users of the service (for whom residential locations could be identified and 
census demographic data could be appended) appeared more likely to be young or middle-aged, 
White, non-Hispanic, and in lower income households with no children. It appears that lower 
income individuals are more inclined to use the service because they may have vehicle availability 
constraints, and the ride-hailing service essentially lifts that constraint by providing on-demand 
mobility.  
 A multivariate ordered probit model was estimated to examine the influence of different 
variables on the number of ride-hailing trips undertaken by frequent users of the system for various 
trip purposes/locations. It is found that socio-demographic variables are important determinants of 
trip frequencies. Findings largely corroborated what was found in the descriptive analysis, but 
provided deeper insights into the differential effects of various socio-demographic variables on the 
numbers of ride-hailing trips for different trip purposes. For example, lower income individuals 
appear to make more ride-hailing trips than their richer counterparts for utilitarian purposes, while 
higher income individuals are prone to making more ride-hailing trips for airport, CBD/DMU, and 
recreational purposes.   
 The paper presents a data fusion methodology that agencies can potentially implement in 
their own jurisdictions (as long as they can obtain some trip data from a ride-hailing service 
company). Through the use of the data fusion methodology, it is possible to answer questions on 
why (for what purpose) ride-hailing services are used, where ride-hailing users reside, and how 
many ride-hailing trips will be undertaken in different time periods. Answers to such questions 
can help shape transport policy and enhance the ability of travel forecasting models to reflect the 
demand for ride-hailing services. For example, the analysis shows that ride-hailing services are 
being used heavily at nights and on weekends.  This may call for the development of special night 
or weekend travel forecasting models so that bottlenecks and congestion points can be better 
identified, predicted, and managed before issues arise. Similarly, minorities and low income 
individuals are not making the same number of ride-hailing trips for discretionary purposes as their 
higher income counterparts. Policies that aim to make these services more accessible and 
affordable to minorities and lower income individuals may go a long way in enabling their 
participation in social and recreational activities that enhance quality of life. The quantification of 
the number of ride-hailing trips by purpose/location is of direct application in travel forecasting 
models that purport to estimate travel demand in a region.   
 The methodology presented in this paper constitutes a promising start to fusing multiple 
data sources to paint a more holistic picture of demand for emerging mobility services. However, 
a number of limitations and caveats apply. The methodology presented in this paper, although 
quite robust and logical, has not been empirically tested and verified against a validation sample. 
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As such, the accuracy of the fused data remains uncertain until comparisons against real-world 
data can be made, which point to validation efforts being a promising area for future research. The 
algorithms embedded in the methodology (in terms of matching trip locations to census block 
groups and parcels, or attributing socio-demographic data to specific users) can be further 
enhanced to make them more robust and sophisticated through the use of repeated simulations and 
more advanced  matching algorithms. The data generated by the imputation method is stochastic 
in nature, potentially introducing errors into the multivariate ordered probit model. The influence 
of these errors might be reduced by estimating models for each of the repeated simulations and 
reporting the models’ the average effects. Furthermore, the data is drawn from a very specific 
vendor in a specific location; hence the findings and results presented in this study may not be 
generalizable across multiple geographic contexts. These limitations should be addressed in future 
research efforts. 
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TABLE 1 Characteristics of All Ride-Hailing Trips (Section A) and of Frequent Ride-Hailing Users (Section B) 
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Time of Day % Month % 
Trip Location/Purpose 

Origin Destination

Morning peak (7am-10am) 8.76 Aug '16 2.51 % % 
Morning off peak (10am-4:30pm) 13.82 Sep '16 6.46 Airport 4.10 5.94
Evening peak (4:30pm-7:30pm) 11.50 Oct '16 13.05 CBD/DMU 21.51 22.48
Evening off peak (7:30pm-10pm) 10.72 Nov '16 10.69 Education 1.33 1.27
Night (10pm-7am) 55.20 Dec '16 10.71 Residential 35.95 32.62
Day of the Week % Jan '17 13.21 Recreation 4.92 5.29
Monday to Thursday 38.36 Feb '17 14.58 Commercial 22.11 21.60
Friday 15.32 Mar '17 21.35 Work 7.12 7.00
Saturday to Sunday 46.32 Apr '17 7.44 Other 2.96 3.80
Residential Densities and Distances to Transit Mean Rider Frequency (n=258,022) % 
Residential density at origin (pop/km²) 2,508 Single time 33.77
Residential density at destination (pop/km²) 2,376 Infrequent (2 to 10 per year) 49.36
Distance to closest transit stop at orig. (km) 0.33 Monthly (11 to 24 per year) 10.45
Distance to closest transit stop at dest. (km) 0.38 Weekly (25+ per year) 6.42
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) Age % Race % 

Age 18 to 24 22.99 White 78.58
Age 25 to 44 46.77 Black / African American 5.18
Age 45 to 64 21.76 Asian 6.71
Age 65 and up 8.48 Other (including mixed race) 9.53
Gender % Household Income % 
Female 48.31 Below $50,000 46.95
Male 51.69 Between $50,000 $99,999 26.41
Has a Child in the Household % Between $100,000 $149,999 12.49
No 83.92 $150,000 and above 14.15
Yes 16.08 Vehicles in Household % 
Frequency of Use % 0 vehicles 9.54
Monthly (11 to 24 per year) 14.29 1 vehicle 47.82
Weekly (25+ per year) 85.71 2 or more vehicles 42.64
Is Hispanic % Continuous Variables Mean 
No 74.72 Residential density (pop/km²) 3142.57
Yes 25.28 Distance to closest transit stop (km) 0.28
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TABLE 2 Results of Multivariate Ordered Response Model for Number of Trips by Location/Purpose 

Variables 
Work Airport CBD/DMU Education Commercial Recreation 

Value t-stat Value t-stat Value t-stat Value t-stat Value t-stat Value t-stat 
Age (Base: Between 18 and 24)                         
Between 25 and 44 -0.132 -33.802 0.176 43.008 0.111 21.392 -0.470 -83.465 -0.090 -17.214     
Between 45 and 64 -0.132 -33.802 0.176 43.008 0.130 21.988 -0.470 -83.465 -0.041 -6.843     
65 and older -0.132 -33.802 0.176 43.008 0.160 21.483 -0.470 -83.465 -0.077 -10.140     
Gender (Base: Female)                         
Male 0.013 3.467     0.029 8.084 0.031 5.836     0.046 12.320 
Race (Base: White)                         
Black/African American 0.016 1.914 -0.234 -25.375 -0.193 -24.053     0.046 5.737 -0.077 -8.940 
Asian 0.113 14.923 -0.034 -6.315     0.032 3.199 0.017 2.349     
Other 0.045 7.135 -0.034 -6.315 -0.049 -8.027         -0.051 -7.713 
Hispanic Ethnicity (Base: No)                         
Yes -0.044 -9.770 -0.073 -15.844 -0.126 -29.992 -0.113 -17.837 0.036 8.780 -0.041 -9.335 
Presence of Children in Household (Base: No)                     
Yes -0.077 -14.689 -0.041 -7.616 -0.158 -31.852 -0.104 -12.885 -0.021 -4.234 -0.065 -12.372 
Income (Base: Up to $49,999)                         
Between $50,000 and $99,999 0.034 7.171 0.066 13.282     -0.108 -15.611 -0.045 -10.195 0.032 8.151 
Between $100,000 and $149,999 -0.043 -6.971 0.153 24.130 0.094 17.597 -0.145 -20.065 -0.073 -12.753 0.032 8.151 
$150,000 or more -0.065 -10.836 0.229 38.671 0.255 50.010 -0.145 -20.065 -0.115 -20.684 0.032 8.151 
Vehicles in Household (Base: 0 vehicles)                       
1 vehicle -0.026 -5.465 0.029 4.219 0.071 11.310 -0.095 -14.794 -0.017 -2.715 0.040 6.060 
2 or more vehicles -0.026 -5.465 0.029 4.219 0.020 3.101 -0.095 -14.794 -0.047 -7.325 0.020 2.978 
Continuous Variables                         
Residential density (pop x 1.000/km²) 0.015 22.968 -0.005 -6.667 0.013 21.084 0.031 39.219 0.016 25.404 -0.005 -7.993 
Distance to closest transit stop (km) 0.073 17.955 -0.156 -37.673 -0.383 -101.848 -0.261 -40.162 -0.165 -40.876 -0.191 -39.508 
Correlation Terms                         
Airport -0.048 -4.181                     
CBD/DMU 0.044 4.510 0.183 18.163                 
Education 0.084 5.558                     
Commercial 0.257 30.271 -0.035 -3.241 0.050 5.474 0.161 12.055         
Recreation 0.095 8.628 0.098 8.685 0.324 40.483 0.063 4.361 0.133 13.619     
Goodness-of-Fit Statistics: Predicted Log likelihood of Full Model: -140,427 
                                            Predicted Log likelihood of Null Model (only thresholds and no correlation terms):  -152,241 
                                            Likelihood Ratio Test Statistic (2) = 23,628; p-value = 0.000 
All coefficients are statistically significant at the 0.05 level 
Variables with identical values represent categories that were combined during estimation due to not being statistically different from each other 

 


