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TABLE 1. Stated Choice Experimental Design 

Experimental Design Attribute and Levels 

Regular Vehicles (RV) Autonomous Vehicle (AV) SAV 

Fixed cost 
per month 

Variable 
travel cost 
per mile 

Fixed cost 
per month 

Variable 
travel cost 
per mile 

Variable 
travel cost 
per mile 

Waiting time 

$200 
$300 
$500 

$0.25 
$0.50 
$0.75 

$150   $200 
$225   $250 
$300   $375 
$500   $625 

$0.25 
$0.50 
$0.75 

$1.50 
$2.25 
$3.00 

3 minutes 
6 minutes 
9 minutes 

Scenario Example 
Suppose AVs are now available for purchase, lease/rent, or to use via automated ride-hailing 
services, and half of the vehicles on the streets are AVs. What would you do when faced with 
your next car purchase decision in each of the following scenarios? Please rank the alternatives 
based on your preference (1=most preferred; 3=least preferred). Please do not give the same 
rank to multiple alternatives. 

Option A Option B Option C 

Buy a regular vehicle Buy an AV 
Don’t buy a vehicle and use 

AV ride-hailing/rental 
services 

$200/month + $0.50/mile $350/month + $0.50/mile $0/month + $2.25/mile 
Average wait time: 0 minutes Average wait time: 0 minutes Average wait time: 6 minutes 

 

Individual-level Sample Demographic Characteristics 
The sample descriptive statistics of the individual-level characteristics are presented in Table 2 
(see left panel), and compared, whenever possible, with the census population of the Austin-Round 
Rock, TX Metro Area, as estimated by the U.S. Census Bureau (2018). The table indicates a clear 
over-representation of women in our sample, relative to the 50-50 split as reflected in the Census 
data for the Austin-Round Rock region. Not surprisingly, given our social media-based recruitment 
efforts and University-based efforts, the sample is skewed toward younger individuals (58.4% of 
adults 18 years or over in the age group of 18-29 years in our sample, relative to 23.7% of adults 
over the age of 18 years in this age group according to the Census). The Census does not report 
the number of students in the region, which makes it rather difficult to compare employment rates 
between our sample and that from the Census, especially given that a number of students both 
characterize themselves as being a student as well as being employed. In terms of education levels, 
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again, our sample shows a markedly lower percentage of individuals who have completed high 
school or less (13.7% compared to 29.0% from the Census) and a higher percentage of individuals 
who have completed some college or technical school (35.4% relative to 25.0% from the Census). 
However, the distributions of those with an undergraduate degree or a graduate degree are very 
comparable to those from the Census.  

As for household characteristics (right panel of Table 2), our sample is definitively skewed 
toward low income households. While 43.4% of our sample live in households that make less than 
$50,000 a year, and 28.1% of our sample live in households with an annual income of $100,000 
or more, the corresponding percentages from the Census data are 31% and 38%, respectively. This 
lower income bias in our sample is consistent with the fact that many respondents were young 
and/or students. The average household size of sample respondents is close to three, while the 
corresponding figure from the Census data is 2.7 persons per household (the Census does not 
provide a breakdown by number of individuals in the household, and only provides an average 
household size value). Our sample and the Census align fairly well with regard to households with 
no children (83.1% compared to 81.3%). Finally, the Census provides no information on number 
of vehicles per household, though the low percentage of zero-vehicle households in our sample is 
to be expected.  

 



3 

Table 2. Sample Distribution of Exogenous Variables: Socio-Demographic and Household Related Characteristics 

Variable Count  %  Variable Count   % 

 Individual Demographics    Household Characteristics   
 Gender    Household annual income   
 Female 658 64.4  Less than $25,000 266 26.1 
 Male 363 35.6  $25,000 to $49,999 177 17.3 
 Age    $50,000 to $74,999 158 15.5 
 18 to 29 597 58.4  $75,000 to $99,999 133 13.0 
 30 to 39 118 11.6  $100,000 to $149,999 156 15.3 
 40 to 49 101   9.9  $150,000 to $249,999 92   9.0 
 50 to 64 104 10.2  $250,000 or more 39   3.8 
 65 or older 101   9.9  Household Size   
 Employment Type     Live alone 254 24.9 
 Student 530* 51.9  2 people 283 27.7 
 Employed 623* 61.0  3 people 150 14.7 
 Unemployed and not a student 138 13.5  4 or more people 334 32.7 
 Education    Children (<18 years) in Household    
 Completed high-school or less 140 13.7  Yes 172 16.9 
 Completed some college or technical school 361 35.4  No 849 83.1 
 Completed undergraduate degree 348 34.1  Vehicles per Household   
 Completed graduate degree 172 16.8  No vehicles 84   8.2 
    1 vehicle 250 24.5 
    2 vehicles 337 33.0 
    3 vehicles 211 20.7 
    4 or more vehicles 139 13.6 
*270 respondents were both employed and students 
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TABLE 3. Distribution of Attitudinal Indicators 

Indicators 
of… 

Attitudinal Indicator 

Response Category 

Total 
Strongly 
disagree 

Somewhat 
disagree 

Neutral 
Somewhat 

agree 
Strongly 

agree 
Frequency 
(Percent) 

Frequency 
(Percent) 

Frequency 
(Percent) 

Frequency 
(Percent) 

Frequency 
(Percent) 

Driving 
Control 

I will never ride in an AV 
361 

(35.4) 
266 

(26.0) 
234 

(22.9) 
100 
(9.8) 

60 
(5.9) 

1021 
(100.0) 

AVs will eliminate my joy of driving  
192 

(18.8) 
243 

(23.8) 
267 

(26.2) 
235 

(23.0) 
84 

(8.2) 
1021 

(100.0) 
When traveling in a vehicle, I prefer to be a driver 
rather than a passenger 

140 
(13.7) 

209 
(20.5) 

242 
(23.7) 

207 
(20.3) 

223 
(21.8) 

1021 
(100.0) 

AVs would make traveling by car less stressful for me  
117 

(11.5) 
186 

(18.2) 
289 

(28.3) 
284 

(27.8) 
145 

(14.2) 
1021 

(100.0) 

Mobility 
Control 

I definitely like the idea of owning my own car 
26 

(2.5) 
63 

(6.2) 
112 

(11.0) 
206 

(20.2) 
614 

(60.1) 
1021 

(100.0) 
Ride-hailing services allow me to live with fewer or no 
cars  

248 
(24.3) 

210 
(20.6) 

321 
(31.4) 

166 
(16.3) 

76 
(7.4) 

1021 
(100.0) 

I will use AV ride hailing services alone or with 
coworkers, friends, or family  

140 
(13.7) 

209 
(20.5) 

242 
(23.7) 

207 
(20.3) 

223 
(21.8) 

1021 
(100.0) 

Safety 
Concern 

I would feel comfortable having an AV pick up/drop 
off children without adult supervision 

341 
(33.4) 

301 
(29.5) 

201 
(19.7) 

128 
(12.5) 

50 
(4.9) 

1021 
(100.0) 

I am concerned about the potential failure of AV 
sensors, equipment, technology, or programs  

41 
(4.0) 

76 
(7.5) 

132 
(12.9) 

431 
(42.2) 

341 
(33.4) 

1021 
(100.0) 

I would feel comfortable sleeping while traveling in an 
AV  

284 
(27.8) 

277 
(27.1) 

192 
(18.8) 

179 
(17.6) 

89 
(8.7) 

1021 
(100.0) 

AVs would make me feel safer on the street as a 
pedestrian or as a cyclist  

156 
(15.3) 

293 
(28.7) 

291 
(28.5) 

193 
(18.9) 

88 
(8.6) 

1021 
(100.0) 

Technology 
Savviness 

I like to be among the first to have the latest technology 
58 

(5.7) 
185 

(18.1) 
202 

(19.8) 
416 

(40.7) 
160 

(15.7) 
1021 

(100.0) 
Learning how to use new technologies is often 
frustrating for me 

361 
(35.4) 

363 
(35.5) 

132 
(12.9) 

141 
(13.8) 

24 
(2.4) 

1021 
(100.0) 
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TABLE 4. Loadings of Latent Variables on Indicators 

Attitudinal Indicators 

Loading of Indicators on Latent Constructs 

Driving Control Mobility Control Safety Concern Tech-Savviness 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

I will never ride in an AV 0.782 17.74           

AVs will eliminate my joy of driving 0.632 14.74           

When traveling in a vehicle, I prefer to be a driver rather 
than a passenger 

0.422   8.75           

AVs would make traveling by car less stressful for me -0.826 -18.44           

I definitely like the idea of owning my own car     0.676 10.04       

Ride-hailing services allow me to live with fewer or no cars     -0.686 -9.42       

I will use AV ride hailing services alone or with coworkers, 
friends, or family 

    0.410 7.96     

I would feel comfortable having an AV pick up/drop off 
children without adult supervision 

        0.872 23.65   

I am concerned about the potential failure of AV sensors, 
equipment, technology, or programs 

        -0.483 -14.69   

I would feel comfortable sleeping while traveling in an AV         0.886 22.04   

AVs would make me feel safer on the street as a pedestrian 
or as a cyclist 

        0.796 21.73   

I like to be among the first to have the latest technology           0.341 8.62 

Learning how to use new technologies is often frustrating 
for me 

      -0.845 -11.29 
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Mathematical formulation of GHDM model for jointly modeling continuous, nominal, and 
ranked outcomes 
Let l be the index for the latent constructs (l=1,2,…L; L=4 in our analysis). Let the underlying 

stochastic latent construct be denoted by *
lz , and we write *

lz  as a linear function of covariates: 
* ,l lz  lα w      (1) 

where w is a ( 1)D  vector of observed covariates (excluding a constant), lα  is a corresponding 

( 1)D  vector of coefficients, and l  is a standard normally distributed random error term. For 

future use, we also define the ( )L D  matrix ),...,,( 21  Lαααα , and the )1( L  vectors 

) ,...,,( **
2

*
1  Lzzz*z  and )'.,,,,( 321 L η  In matrix form, we may write Equation (1) as: 

η αwz* .  (2) 

We consider a multivariate normal correlation structure for η to accommodate interactions among 

the unobserved latent variables: ],[~ Γ0η LLMVN , where L0  is an )1( L  column vector of zeros, 

and Γ is )( LL correlation matrix. Equation (2) constitutes the structural equations model (SEM) 

component of the model.  

Of course, we do not observed the latent construct vector *z . However, we can consider 

the point values (say *
lz

c  for each latent construct *
lz ) obtained from the confirmatory factor 

analysis as manifestations of the stochastic latent construct *
lz . Define the ( 1)L vector 

* * *
1 2

( , ,..., ) '.
Lz z z

c c cc Then, the first component of the measurement equation model may be written 

as  *c z . This component, in our model system, comprises four continuous dependent outcome 
variables. Next, let there be G nominal and rank-ordered dependent outcome variables for an 
individual, and let g be the index for these variables ),...,3 ,2 ,1( Gg  . For our analysis, G=3 (one 

unordered nominal outcome corresponding to the duration to adoption or DAD choice and two 
rank-ordered outcomes corresponding to the responses to the two questions related to AV 
adoption). Also, let Ig be the number of alternatives corresponding to the gth variable (Ig 3) and 
let gi  be the corresponding index ) ,...,3 ,2 ,1( gg Ii  . In our analysis, Ig =3 for all 1,  2,  3g   since 

all the variables have 3 alterntives each. Consider the gth variable and assume the usual random 
utility structure for each alternative gi : 

,)(
ggggg gigigigigiU  *zβxb                                                                            (3) 

where x is an )1( A  vector of exogenous variable (including a constant), 
ggib  is an )1( A  column 

vector of corresponding coefficients, and 
ggi is a normal error term. 

ggiβ  is an )( LN
ggi  -matrix 

of variables interacting with latent variables to influence the utility of alternative gi , and 
ggi  is an 

)1( 
ggiN -column vector of coefficients capturing the effects of latent variables and their 
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interaction effects with other exogenous variables. If each of the latent variables impacts the utility 
of the alternatives for each nominal variable purely through a constant shift in the utility function, 

ggiβ will be an identity matrix of size L, and each element of 
ggi  will capture the effect of a latent 

variable on the constant specific to alternative gi  of nominal variable g.  Let ),...,( 21 
ggIgg g   

1( gI  vector), and ),(~ gΛ0
gIMVNg . Taking the difference with respect to the first alternative, 

the only estimable elements are found in the covariance matrix gΛ


 of the error differences, 

),...,,( 32 ggIgg   g  (where )1,1  iggigi  . Further, the variance term at the top left 

diagonal of gΛ


 ),...,2 ,1( Gg   is set to 1 to account for scale invariance. gΛ  is constructed from 

gΛ


 by adding a row on top and a column to the left. All elements of this additional row and column 

are filled with values of zero. In addition, the usual identification restriction is imposed such that 
one of the alternatives serves as the base when introducing alternative-specific constants and 
variables that do not vary across alternatives (that is, whenever an element of x is individual-

specific and not alternative-specific, the corresponding element in 
ggib is set to zero for at least one 

alternative ).gi  To proceed, define ),...,,( 21 
ggIggg UUUU  1( gI  vector), 

1 2 3( , , ,..., )
gg g g g gI b b b b b  AI g (  matrix), and ),...,, 21 

ggIggg ββββ  













LN
g

g

g

I

i
gi

1

 matrix. 

Also, define the 













g

g

g

I

i
gig NI

1

matrix g , which is initially filled with all zero values. Then, 

position the )1( 1gN  row vector 1g   in the first row to occupy columns 1 to 1gN  , position the 

)1( 2gN  row vector 2g  in the second row to occupy columns 1gN +1 to ,21 gg NN   and so on 

until the )1(
ggIN  row vector 

ggI  is appropriately positioned.  Further, define )( ggg β 

LI g (  matrix), 



G

g
gIG

1


, 




G

g
gIG

1

),1(
~   GUUUU , ... ,, 21   1( G


 vector), 

),...,( 21  G 1( G


 vector), ),...,,( 21  Gbbbb AG 


(  matrix), ),...,,( 21  G LG 


(

matrix), and ),...,,(Vech 21 G   (that is,   is a column vector that includes all elements of the 

matrices G ,...,, 21 ). Then, in matrix form, we may write Equation (1) as: 

,  *zbxU                 where ),(~ Λ0GGMVN  .              
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1 12 13 14 1

2 23 24 2

3 34 3 ( matrix).

...

 
 
 
  
 
 
  

Λ Λ Λ Λ Λ

0 Λ Λ Λ Λ

Λ 0 0 Λ Λ Λ

0 0 0 0 Λ




 


     


G

G

G

G

G G  

The off-diagonal elements of the Λ matrix capture the correlations of the unobserved factors across 
the alternatives of the various nominal variables.  

To proceed further, we may write the components of the joint model as follows: 

(SEM component)  η*z αw ,                                                                                                  (4) 

 *c z   (MEM component), (5) 

,  *zbxU  (MEM component), (6) 

with  ( matrix), .Cov E E E L G   
          Λ



  




 

Ω in the equation above represents the ( L G


) correlation elements between the η and ε error 
elements (this recognizes the endogeneity of the latent constructs in the system). To develop the 
reduced form equations, replace the right side of the SEM component into the MEM components 
to obtain the following system: 

  ηc αw  (7) 

( )      U bx αw η bx αw η        (8) 

Now, consider the [( 1)]E  vector 
 

  
 

c
cU

U
 Let , ( )Gd IDEN  , an ( )E G


-matrix.  Define 

U

   
      

cB αw
B

B bx αw
  and  

'

   
        

Γ Ω +Γ

Ω + Γ
c cU

cU U

'

d d




 


  
.                          (9) 

Then ( , )cU E~ MVN B   is the multivariate joint distribution of the main outcomes and the latent 

factor continuous variables. 
 
GHDM Model estimation 
In the context of the nominal unordered variable in our analysis, i.e. the outcome related to the 
DAD dimension, assume that the individual under consideration chooses alternative gm

corresponding to the gth nominal outcome. Under the utility maximization theory, 
gg gmgi UU  must 

be less than zero for all gg mi   corresponding to the gth nominal variable, since the individual 
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chose alternative gm . Let )( gggmgimgi miUUu
gggg

 ,  and stack the latent utility differentials 

into a vector   



 


 ggmgImgmg miuuu

gggg
;,...,, 21gu . However, for the case of a rank-ordered 

nominal variable (along the AVD dimensions), the utility differentials are arrived at based on the 
order of the ranking. In particular, let rg be a specific rank ordering of the alternatives 

corresponding to the gth nominal variable. That is, 1
gr  is the first-ranked alternative, 2

gr  is the 

second-ranked alternative and so on. Rr  denotes the event that the alternatives are ranked in the 

order r by the individual. According to the random utility maximization framework, the following 

relationship must hold for Rr , 

2 1 3 2 1, : 0, 0,..., 0I Ig g
g g g g g gi i i i ig r r r r r ri

R U U U U U U      r  

The latent utility differentials for the rank-ordered nominal outcomes are stacked in a similar 

fashion as the unordered nominal outcome. Now, define      







 

 Guuuu ,...,, 21 , where the 

utility differentials can either be based on unordered nominal outcomes or rank-ordered nominal 

outcomes. We now need to develop the distribution of the vector  ,
 cu c u from that of 

 ,
 cU c U . To do so, define a matrix M of size        

L G L G . Fill this matrix with values 

of zero. Then, insert an identity matrix of size L into the first L rows and L columns of the matrix 
M. Next, consider the rows from 11 to 1  L L I , and columns from 11 to . L L I  These 

rows and columns correspond to the first nominal variable. If this nominal variable is a pure 

unordered (single choice) variable, insert an identity matrix of size )1( 1 I  after supplementing 

with a column of ‘-1’ values in the column corresponding to the chosen alternative. Next, rows 

1L I  through 1 2 2  L I I  and columns 1 1 L I  through 1 2 L I I correspond to the 

second nominal variable. Again position an identity matrix of size )1( 2 I  after supplementing 

with a column of ‘-1’ values in the column corresponding to the chosen alternative for the second 
nominal variable (if this variable is again an unordered single choice variable). However, if any of 
the nominal variables is a rank-ordered decision variable, then undertake the following method to 
fill in each of such sub-matrices: place a value of ‘–1’ at the column corresponding to the first 
ranked alternative and ‘1’ at the column corresponding to the second ranked alternative. Similarly, 
in the second row, place a value of ‘–1’ at the column corresponding to the second ranked 
alternative and ‘1’ at the column corresponding to the third ranked alternative. Continue this 
procedure for ( 1)gI  rows (if the gth nominal variable happens to be a rank-ordered variable). 

Therefore, based on whether the sub-matrix within the matrix M corresponds to an unordered 
nominal variable or a rank-ordered nominal variable, undertake one of the two respective ways as 
described to fill in these sub-matrices. Continue this procedure for all G nominal variables (again, 
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nominal variables here include both, unordered and rank-ordered variables). With the matrix M as 

defined, we can write ( , ), Ω


L G
cu ~ MVN B  where BB M~

 and  M M  . Next, partition the 

vector B
~

 into components that correspond to the mean of the vectors c (for the continuous latent 

variables) and u (for the nominal outcomes), and the matrix   into the corresponding variances 
and covariances: 

, ( ) 1
 

   
 

 


c

u

B
B L G

B
 vector,   and     

    

, ( ) ( )
 

     

   
 

c cu

cu u

L G L G
 


 

 vector 

 The conditional distribution of u, given c, is MVN with mean  1
  

  
   

u u cu c cB B c B 
 
and 

variance 1
        

 
    

u u cu c cu     . Then the likelihood function may be written as (where G~0  is a 

1
~G -column vector of zeros): 

  ( ) ( , ) Pr  ,    δ 0 
 

L c c G
L f c | B u   (10) 

     ( | , ) ( | , ) ,   

  
r

L c c u uG
D

f c B f r B dr 
     

 

where the integration domain rD  is simply the multivariate region of the elements of the u vector 

determined by the range ),( ~~ G0
G

  for the utility differences for the nominal outcomes. 

( | , ) 
L c cf c B   is the MVN density function of dimension L with a mean of  cB  and a covariance 

of c  
 , and evaluated at c. The likelihood function for a sample of Q decision-makers is obtained 

as the product of the individual-level likelihood functions. The above likelihood function involves 

the evaluation of a G -dimensional upper-truncated integral for each decision-maker, which can 
be computationally expensive. However, Bhat’s (2018) matrix-based approximation method for 
evaluating multivariate normal cumulative distribution (MVNCD) function was employed to 
evaluate this integral, which provides an efficient and tractable formulation to approximate high 
dimensional MVNCD integral. 
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