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ABSTRACT 
We analyse households’ vehicle ownership and usage decisions in California using the 2019 
California Vehicle Survey data. Different from earlier studies, we consider a vehicle type 
classification based on body type and fuel type, comprising gasoline vehicles, plugin hybrids, 
battery electric vehicles, and fuel cell electric vehicles. Further, we employ a two-stage multiple 
discrete-continuous choice framework that endogenously models the total annual vehicle mileage 
in the first stage and the allocation of the annual mileage to different vehicle types in a utility 
theoretic manner. In doing so, we extend the prior formulation of the two-stage model to relax the 
unit scale assumption on model stochasticity. The empirical analysis provides insights into the 
determinants of households’ proclivity for owning and using traditional (gasoline-based) and 
alterative fuelled vehicles. Policy simulations with the empirical model indicate that regional 
employment land-use densification and the provision of non-personal commute options can help 
reduce vehicle ownership levels and their usage, thereby potentially reducing total on-road 
emissions. 
 
Keywords: Vehicle ownership, vehicle usage, two-stage budgeting model, utility theory, 
alternative fuelled vehicles.   
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INTRODUCTION 
Background and Motivation 
Passenger mobility in the United States heavily relies on private motorized vehicle ownership (in 
the rest of this paper, we will use the label “vehicle” to refer to “motorized vehicle”). The 
dependence on personal vehicles in the U.S. may be attributed to several factors, including (a) 
inadequate public transport infrastructure (1), (b) the ease of accessibility to jobs and other 
opportunities that a personal vehicle provides in the non-compact geographic footprint of urban 
areas (2), (c) relatively low vehicle purchase costs compared to the rest of the world (3), and (d) 
an affective sense of pride and social status attached with vehicle ownership (4). But, at the same 
time, high vehicle ownership and use are also associated with high traffic congestion, high energy 
consumption, and high tailpipe emissions. In fact, household vehicle usage contributes to more 
than half the greenhouse (GHG) emissions from the transportation sector in the U.S. (5), thanks to 
the continued high share of conventional gasoline-powered vehicles (6). In this regard, policies 
aimed at mitigating GHG emissions and pollutants from household vehicles focus on accelerating 
the penetration (and use) of cleaner, alternative fuel-powered vehicles, such as plug-in hybrid 
electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs) 
(for instance, incentives under the California Clean Vehicle Rebate project (2016) and California’s 
Advanced Clean Cars II (2023) rule to phase out gasoline-powered vehicles by 2035). To aid such 
policy formulation, vehicle fleet ownership and usage models are often employed to investigate 
the influence of various factors on households’ vehicle fleet mix and miles travelled (7). Beyond 
policy considerations, such models are embedded within regional travel demand models to predict 
the evolution of regional vehicle fleets over time and their influence on regional travel demand 
(8). 
 From a methodological standpoint, studies have investigated households’ vehicle fleet 
holding and use decisions using discrete-continuous frameworks (9, 10). However, most such 
studies focus on decisions regarding the most recently purchased vehicle, ignoring the fleet mix 
held by many households in the U.S. that own multiple vehicles. Bhat and Sen (11), for the first 
time, used the multiple discrete-continuous (MDC) choice framework to model the simultaneous 
holding of multiple vehicles by the household and the mileage accrued on each vehicle type owned 
by the household. The MDC choice framework has garnered substantial attention since then to 
model household vehicle holdings and usage (2, 12, 13). However, a limitation of most former 
applications of MDC choice models is that they require information on the total mileage on 
vehicles as an exogenous input. But this is antithetical to the notion of predicting mileage on 
individual vehicles as part of the vehicle fleet model, constraining total mileage to be fixed across 
all vehicles owned. Such models do not accommodate the effect of changes in individual vehicle 
attributes, such as fuel economy, on total vehicle mileage. To overcome this shortcoming, some 
other studies include a non-zero mileage for non-motorized modes of travel as an essential outside 
good (an alternative that is always allocated a non-zero mileage) in the model, which helps 
accommodate an increase or decrease in the total mileage on motorized vehicles. In another study, 
Augustin et al. (14) developed a stochastic frontier approach to estimate an upper bound on the 
total mileage (i.e., a maximum possible mileage) that a household can accrue. Such an upper bound 
is utilized as the total mileage budget in an MDC choice model that is allocated to different vehicle 
choice alternatives and an outside good that represents the unconsumed portion of the budget. 
However, the stochastic frontier budget equation in the formulation is not necessarily consistent 
with the theory of utility maximization. Further, in most earlier MDC applications, the possibility 
that some households do not own a vehicle was not considered.  
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 Bhat (15) recently proposed a two-stage MDC choice model that allowed endogenous 
estimation of the budget with the allocation to the elementary alternatives, all within a utility 
maximization framework. This two-step formulation is based on the two-stage budget allocation 
framework (16, 17). Further, his formulation accommodates situations where none of the 
elementary alternatives are chosen for consumption (situations corresponding to zero budget) by 
employing statistical censoring through a Tobit-type (18) first stage budget equation. Such 
situations are common when analysing households’ vehicle holdings where it is likely that a 
household may not own any motorized vehicle.  
 
The Current Paper in Context 
In this paper, we present an application of Bhat’s (15) two-stage MDC model to analyse 
households’ vehicle holding and usage decisions in California using the 2019 California Vehicle 
Survey data (19). Different from the Bhat’s (15) application (also a vehicle fleet holding and usage 
application), we analyse households’ vehicle fleet mix comprising a more diverse choice set, with 
vehicle ownership classification based on body-type and fuel type, including traditional gasoline-
powered vehicles and electric and hybrid vehicles. Such an analysis sheds light on the factors that 
influence the ownership and usage decisions of traditional gasoline-powered vehicles as well as 
new, alternative-fuelled vehicles such as PHEVs, BEVs, and FCEVs. Such insights from our 
empirical analysis can potentially help in formulating programs that go beyond monetary 
incentives for reducing vehicle ownership and accelerating the adoption and usage of alternative-
fuelled vehicles. Finally, from a methodological standpoint, we also show how the two-stage MDC 
model is easily extended to relax the unit scale assumption in its prior formulation. 
 The rest of the paper is structured as follows. Section 2 discusses the empirical data used 
in this analysis. Section 3 presents the structure of the two-stage MDC model and discusses the 
nuances in relaxing the unit scale assumption. Section 4 presents empirical results. Section 5 
concludes the paper with a summary and some future research directions. 

 
DATA 
The data for the analysis is drawn from the 2019 California Vehicle Survey undertaken by the 
California Energy Commission (19) to understand shifts in both residential and commercial 
vehicle mix. For this study, we focus on the residential vehicle fleet mix, which comprises vehicle 
holdings of households spread across the 58 counties of California. Of the surveyed households, 
759 households owned PHEVs, BEVs, or FCEVs, based on an intentional oversampling of such 
households. Thus, different from previous studies (that typically define vehicle type choice 
alternatives as a combination of vintage and body type), we consider the motorized vehicles owned 
by the households as a combination of body type and fuel type, leading to the following 7 
alternative vehicle categories: a) Gasoline car (includes subcompact, compact, midsize, large, or 
sports cars that use conventional gasoline/diesel/flex fuel), b) Hybrid car (includes the above car 
categories, except with PHEV or hybrid-gas fuel options), c) Electric car (includes the above car 
categories with fully electric engines, or hydrogen cell (FCEV) or a plug-in with hydrogen cell 
(PFCEV) options), d) Gasoline SUV (includes sub-compact, compact, midsize or large cross-over 
sports utility vehicles (SUVs) that use gasoline/diesel/flex fuel options), e) ‘Hybrid+’ SUV 
(includes the SUV subcategories with PHEV/hybrid-gas fuel options, along with a miniscule 
proportion (<0.5%) of fully electric SUVs), f) Van (includes small and large vans with gas/diesel 
as the fuel options), and g) Pickup truck (includes small and large pickup trucks with gas/diesel as 
fuel options). In addition to the vehicle ownership and annual mileage on each vehicle in the 
household, a host of person, household and regional attributes were also collected in the survey.  
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After cleaning the data for missing/incorrect records, the final sample for analysis 
comprised vehicle ownership and annual mileage information of 2862 households. This sample of 
2862 households was further partitioned into an estimation sample comprising randomly selected 
2000 households and a holdout validation sample of the remaining 862 households. The details of 
the vehicle mix and the descriptive statistics of the sociodemographic attributes of the estimation 
sample are provided in Table 1. 

The percentage of households with zero-car ownership is a mere 3.85%, which is not 
surprising since the U.S. has a high personal vehicle ownership, and California has the highest 
total number of personal vehicle registrations among all states in the U.S. (20). As expected, 
gasoline car continues to be the largest owned vehicle category, with 56.25% of the households 
owning a gasoline car. This is followed by gasoline-powered SUVs, with 40.5% of the households 
owning a gas SUV. At the same time, the proportion of households owning a hybrid/electric car is 
small but not negligible, with close to 15% of the households owning an electric or hybrid car. 
This figure goes down to just around 4% in the case of hybrid SUVs. In sum, across all households, 
nearly 20% of the vehicle fleet is either hybrid or electric. Notably, this number is higher than the 
average penetration of electric vehicles (EVs) and hybrid cars in California (around 7% as per 
(20). This could be because the survey data oversampled households with at least one PEV or 
FCEV (leading to nearly 13% of the vehicle fleet being either electric or hybrid). Pickup trucks 
are owned by nearly 13% of the households in our sample, which is close to the proportion of 
pickup trucks in California (around 12%) (21). Only a small proportion of households in our 
sample (around 7%) own a passenger van. Interestingly, the average mileage on hybrid and electric 
cars and SUVs is higher than that on gasoline-powered vehicles. This is presumably because 
hybrid and electric vehicles are more fuel efficient. They are also likely to have been purchased 
more recently and therefore driven more. Overall, across all vehicle types, cars are the most driven, 
which is representative of the trends in vehicle usage in California. 
 In addition to the vehicle ownership and usage information, the fuel efficiency of the 
vehicles was also available in the data. The fuel efficiency was reported as miles per equivalent 
gallon (MPeG), which is the same as miles travelled per gallon of gasoline for gasoline fuelled 
vehicles. For other alternative fuelled vehicles, MPeG was determined using the gallon equivalent 
of the alternative fuel, which is the amount of alternative fuel that gives the same energy as one 
gallon of gasoline (see (22) for details). The fuel efficiency is the highest for the electric car (with 
MPeG of 81.7 miles per equivalent gallon of gasoline) and lowest for pickup trucks (with MPeG 
of 18.5 miles per gallon of gasoline). These values are consistent with the market standards, with 
electric cars having an efficiency of 2.5-3 miles per kWh (or 78-100 miles per equivalent gallon). 

In the context of sociodemographic attributes, the sample reasonably reflects the makeup 
of the population in California. 12.6% of the households in the sample have an income of more 
than $200,000, which is quite close to that in the California population, where 15% of the 
households belong to this income category (23). In the context of employment characteristics, 
nearly 70% of the households have at least one full-time or part-time worker, which is nearly 78% 
in the population (24). The average household size in our sample is 2.2, which is lower than the 
population's average household size of 2.9. The average number of driving license holders per 
household in our sample is around 1.9 which is close to the value of 2.1 in the California population 
(24). Nearly 61% of the housing in California are detached single houses (California housing 
statistics), which is well reflected in our sample, with 61.4% households living in detached houses.
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TABLE 1 Descriptive Statistics of the Estimation Sample 

Sample size: 2000 households Vehicle types 

 Gasoline car Hybrid car Electric car Gasoline SUV 
“Hybrid+” 

SUV 
Van 

Pickup 
truck 

Percentage of households with zero vehicle 3.85% 
Percentage of households with the vehicle 

category 
56.25 15.60 14.75 40.55 4.30 7.15 13.85 

Average annual mileage (miles) 10744 11444 11219 10271 10197 9972 9041 
Average total miles driven in a year (miles) 16052 
Average fuel efficiency (in miles per 

equivalent gallons) of the vehicle category  
25.8 49.30 81.71 22.83 46.40 21.77 18.51 

Exogenous variables 
Sample shares/Average 

values 
Exogenous variables 

Sample shares/Average 
values 

Household income  
Average number of driving licenses in the 

household 
1.9 

Income less than $25K 8.8% Single individual households 32.8% 
Income between $25K to $50K 16.6% Household type  
Income between $50K to $100K 31.9% Detached 61.4% 
Income between $100K to $200K 30.1% Apartments 26.1% 
Income more than $200K 12.6% Other 12.5% 

Presence of workers  Parking facilities  

at least 1 full time/part time worker 62.9% 

Absence of a covered parking in the vicinity of 
the household 

18.8% 

Absence of a parking facility with electrical 
charging (in office/frequently visited places) 

18.3% 

Household composition  Regional attributes  
Average household size 2.2 Average population density (person/ sq. miles) 2020.9 
Average number of children (with age less 

than 15 years) 
0.3 

Proportion of households in areas with 
population density > 2000 per sq. mile 

41.2% 

Household with children 15% Average employment density (person/sq. mile) 1048.4 

Average number of adults 1.9 
Proportion of households in areas with 

employment density > 500 per sq. mile 
57.3% 
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In the context of regional attributes, our sample households live in locations with an average 
population and employment densities of 2020.9 and 1048.4 persons per square mile, respectively. 
In contrast, the corresponding values for the state of California (averaged across all 58 counties) 
are 702.9 persons per sq. mile and 397.12 persons per sq. mile (24), indicating that our sample 
over-represents the urban population. 
 
MODEL STRUCTURE 
This section presents the model formulation for each of the two stages and the linking between the 
two stages.  
 
Fractional Split MDC Model for the Second Stage Allocation to Elemental Alternatives in 
the Product Group 
Consider the following constrained utility maximization problem for the second stage of the two-
stage formulation for the allocation among the inside goods for a product group: 

1

1

( ) ln 1

subject to 1 and 0

K
k

k k
k k

K

k k
k

f
U

f f

 




      
   

 





f


 
 (1) 

Here, ( )U f  is an increasing, continuously differentiable, and additively separable utility function, 

with kf
  being the fraction of the product group level budget allocated to an inside alternative k. In 

this utility function, k  are the satiation parameters and k  are the baseline preference parameters. 

k  are specified as  exp ' kω w  to accommodate heterogeneity in satiation due to alternative 

attributes and household characteristics in the vector kw . The baseline preference is expressed as: 

1
exp lnk k k kp 


    
 
β z  (2) 

where kz  is a set of attributes that characterize alternative k and the decision maker (including a 

constant), kp  is the unit price for good k, the inverse of ( 0)    is the coefficient on ln kp (called 

the price coefficient from now on), and k  is an error term to recognize the unobserved factors 

influencing the baseline preference. β  is the vector of parameters corresponding to the set of 

attributes kz . The identification considerations allow estimating only K–1 alternative specific 

coefficients of the variables in kz  that do not vary across alternatives. Note that in the above 

specification, Bhat (15) assumed the k  terms to be of type I extreme value distribution based on 

minimum (i.e., reverse Gumbel distribution). He also assumed the distributions to be of unit scale. 
However, we relax that assumption and show that one can freely estimate the scale parameter. To 
do so, we denote the scale parameter by  . Note that this scale of the error terms is different from 
that of 1 / , the coefficient on the logarithm of kp . That is, the   parameter is not the scale of 

the error terms. In fact, it is possible to estimate the price coefficient separately from the scale 
parameter if price variation exists across individuals for at least two alternatives. 
 One can set up the Karush-Kuhn-Tucker (KKT) conditions of optimality for the utility 
maximization problem in Equation (1) and derive the following likelihood function for the optimal 
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fractional allocations ( op
kf k ) among the elemental alternatives in the product group (see 15 and 

25 for the relevant derivations):  

 1 ,..., ,0,0,..., 0op op
ML f f   

| |1 1
( 1)

{ 1, 2,..., },| | 1

0
1 1

exp exp
| | ( 1)!
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M M
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where 
1 1

1
| |  ,  where  
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i
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  1
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c
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  

  , with 0
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ln 1
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k
k k

k

f
V


 
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 

β z


 (k = 1, 2, 3,…, K), and 0k kV  β z (k = 1, 2, 3,…, K). 

D in the above equation represents a specific combination of the vehicle segments, and |D| is the 
cardinality of the specific combination D. The above expression is the same as that of an MDCEV 
model with reverse Gumbel error terms and fractional allocations (25). 
 
Linking Function to Link the Second-Stage Model (for Fractional Allocations) with the First-
Stage Model (for Total Budget to the Product Group) 
Define the following quality-adjusted, scalar composite price index for each elementary inside 
good alternative: 
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1/
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1
ln ln ,
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or .
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
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  









 (4)  

In the above expression, the presence of k  allows for quality and scale adjustment. Also, the 

negative sign in “ ln k  ” ensures that as the good becomes more desirable (through an increase 

in baseline preference or a decrease in satiation), its quality-adjusted price index reduces. Notably, 
an increase in the unit price kp  of an alternative increases its quality-adjusted price, ceteris 

paribus, since an increase in kp  leads to a reduction in baseline preference. 1   represents the 

marginal utility of income. 
 Note that the above price-index, in its logarithmic form, is a quality- and scale-adjusted 
price-index. Specifically, the normalization by the scale parameter recognizes the need to scale the 
“signal” with the “noise”. In Equation (4), we write the normalized baseline preference parameter 
as: 

 1/ 1/ exp( ), exp( ) and .k
k k k k k k k

       


   β z  (5)   

with k  now standardized to unit scale.  
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Using the price-indices of all elemental alternatives within a product group, the fractional 
allocation to the alternatives in that product group can be derived, conditional on positive budget 
allocation to the product group, as below (see 15 for details): 

 
1/ 1

1/

1 1

, 1, 2,..., (for consumed goods)

0, 1, 2,..., (for non-consumed goods)

M

k k k j k j
j
j kop k

k M M

m j j
m j

op
k

f k M

f k M M K





     


  

 




 

  
 
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 
 
 

   



 





 (6) 

In the above expression, for notation convenience,   is denoted by  . 
Next, the price indices ( k ) of all inside goods within a product group can be aggregated 

using the following constant elasticity of substitution (CES) form (which is homogenous of degree 
1) to define a group-level price index (15): 

    1/ 1/

1 1

( ) exp( )
M M

k j j k k j
k j j

b

 
      

 


 

          
     
  π    (7) 

The product group-level price index defined above is used to link the second-stage fractional 
allocation to the first-stage budget allocation (i.e., to enable the second-stage allocation to 
influence the first-stage). However, to keep the fractional allocation to each good within the 
product group exogenous to the group-level budget (a requirement of the Gorman polar form), 
Bhat (15) used a different set of error terms (i.e., k  instead of k ) for the baseline preference 

parameters in the group-level price index. This helps avoid any correlation or influence of the 
group-level budget on the second-stage fractional allocation.  
The linking function, in logarithmic form, can then be rewritten as: 

    1/ 1/ln ( ) ln exp ln exp , where .k k k k k k k k
k k

b a a           
          

 π         (8) 

with k  following a standardized reverse Gumbel distribution, 1/
k

   representing the scale-

normalized deterministic part of the baseline preference parameter, and the scale of the error terms 
( ) also appearing in the term  . 
 
Structure of the First-Stage, Product Group-Level Budget Equation 
The group-level budget amount needs to be non-negative, with a positive probability of zero 
budget to the group. Consider the following Tobit-like equation: 

*

*

* *

ln ( ) ln exp( )

, with ln exp( )

0 if 0

if 0

k k
k

k k
k

y b a
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y
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y y
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    

         
         

  






θ s π θ s

θ s



 (9) 

In the above expression, s  is an exogenous variable vector, θ  is a corresponding coefficient 
vector,   is a scalar link parameter ( >0), and   is a random variable capturing the effects of 
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unobserved variables in the budget equation. The linking parameter appendage (i.e.,  ) to the error 
term   in the first line of Equation (9) is innocuous and is only for presentation ease in the 

characterization of the error term  . As the price of any inside good k ( kp ) decreases, or as the 

non-cost systematic (log) baseline utility element for any inside good k ( kβ z ) increases, the value 

of   falls, and the value of the budget allocated to group g, (i.e., y ) increases. 
 As in (15), we assume   to be reverse Gumbel distributed, however with scale , to derive 
the distribution of  . This new distribution, apparently not seen in the earlier statistical literature, 
was characterized by Bhat (15) as the minLogistic distribution, who derived its properties. The 
resulting cumulative distribution and probability density functions are closed-form expressions, 
pawing way to a simple likelihood expression, which is extendable to the case where the scale of 
the error terms of the MDC model are explicitly estimated. 
 
Model Estimation 
From the first and second stages of the two-stage model, collect the parameters to be estimated in 
a vector ( , , , , , )    r β γ θ . The likelihood of zero allocation to the product group (i.e., none of 
the inside goods from the product group are chosen for consumption) in the first stage is the 
expression below based on the properties of the minLogistic distribution: 

 
*

( )/

1

1
( 0) (0)

1
Ky

k
k

L y F
a e 



  
 θ s

 , with     . (10) 

The likelihood for allocation of a positive budget amount b  to the product group, along with that 
of the fractional allocations to the inside alternatives in product group is given by: 

      *

* * * *
2 2, ( ,..., ,0,0,...,0) = ( ) ,..., ,0,0,...,0M My

L y b f f f b L f f      (11) 

where, * ( )
y

f   is the density of *y , given by: 

        
* * *

( )/

( )/
( )/

1

1 1
( ) ( ) , ( )

1 1

t k
Ky y yt

tk k
k

k

a
f t e F t F t

a e a e






 

 
 



   
 



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                (12) 

and  * *
2 ,..., ,0,0,...,0ML f f   is the likelihood for the observed fractional allocation in the second 

stage, given by Equation (3). 
Once the parameters are estimated, the total budget and budget allocations to individual 

inside goods may be obtained using the procedures laid down in Bhat (15). 
 
EMPIRICAL ANALYSIS 
Estimation Results 
The two-stage MDC model is useful for analysing expenditures when data on unit prices are 
available. In our empirical case, information on fuel efficiency (in MPeG) for each vehicle type 
(that was owned by a household) was available as a proxy for price. In our estimation trials, we 
first started by using expenditure across each vehicle category and the total expenditure as the 
dependent variable. However, the estimated log-price coefficient turned out to be insignificant, 
possibly because of using aggregate price measures across vehicle categories that were not owned 
by the households (since information on fuel efficiency was available only for vehicles that were 
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owned by households). As a result, we resorted to using mileage accrued on each vehicle type and 
the total annual mileage as the dependent variable in our analysis. The empirical specification of 
the model was systematically built by considering each of the relevant attributes in the budget 
equation (i.e., the first stage) and the fractional split model (i.e., the second stage) and retaining 
those variables that were statistically significant with t-statistic of more than 1. The use of a low 
confidence interval is to guide future investigations of these variables in influencing vehicle fleet 
ownership and usage analysis with large national-level datasets. 
 
MDCEV Fractional Split Model Results 
The parameter estimates are provided in Table 2. The baseline preference constants (presented 
toward the end of the first row panel of Table 2) do not offer any substantive interpretation once 
other attributes are included in the specification. Household demographics significantly impact the 
vehicle type choice. As expected, high-income households (income > $100K) are more likely to 
own electric and hybrid variants of cars and SUVs. These results reaffirm findings from the 
literature that income is one of the most consequential determinants of (or a barrier to) EV 
ownership. This finding warrants the need for policies to address EV adoption equity concerns 
(26). Interestingly, low-income households (income < $50,000) have a lower preference for SUVs, 
probably owing to their higher cost. On the other hand, households with income more than $50,000 
prefer pickup trucks (see 27 for a similar finding). In the context of household composition, 
individuals living alone (i.e., single-person households) are more likely to own gasoline and 
electric cars, and less likely to own vans. This may be because owning smaller cars satisfies their 
travel needs without any hassles of owning and maintaining large-sized vehicles. Similar findings 
can be observed for women living alone, with a higher preference for gasoline and hybrid cars, 
and lower preference for pickup trucks. The presence of children (<15 years age) in the household 
results in a higher preference for vans and SUVs, presumably because such spacious vehicles are 
convenient for carpooling arrangements. Interestingly, the presence of an employed adult increases 
the preference for owning an electric vehicle (see 28 for a similar finding for German households). 
Surprisingly, the presence of employed individuals in the household also increases the preference 
for vans. This could be because of a seemingly increasing attraction towards nomadic lifestyle, 
where individuals undertake weekend getaways using larger sized vehicles (such as camper vans) 
(29). Additional evidence is needed to corroborate this hypothesis. 

Households living in detached housing units have a higher preference for larger vehicles 
and a lower preference for gasoline cars. Interestingly, the preference for owning larger vehicles 
(vans or pickup trucks) reduces if the household does not have access to covered parking. As 
expected, the absence of a charging facility in home-parking (or workplace parking or other 
frequently visited places) reduces the preference for owning an electric car. Finally, the regional 
attributes (population density and employment density) of household's location also influence car 
ownership and usage behaviour. Further, households located in regions of higher employment 
density (> 500 persons per sq. mile) are less likely to own pickup trucks and SUVs. This result is 
not surprising since households in regions of lower employment density are likely to be self-
employed in activities such as farming and construction, which require hauling material and 
manoeuvring in rugged terrains. 
   The parameters influencing the satiation functions ( k ) are reported in the lower pane of 

Table 2. The parameter estimates reveal that as household income decreases, more mileage is put 
on gasoline-powered vehicles. Households with employed individuals tend to put less mileage on 
SUVs and vans, conditional on owning these vehicle types. Interestingly, recall from the baseline 



 

10 

TABLE 2 Estimation Summary: Parameter Estimates of the Fractional Split Model 

 Parameter estimates (t-stats) 

Explanatory variables Gasoline car Hybrid car Electric car 
Gasoline 

SUV 
“Hybrid+” 

SUV 
Van 

Pickup 
truck 

Baseline preference function        
Household income characteristics (Base: 
Income more than $200K) 

       

Income less than $25K -- -1.26 (-3.10) -1.77 (-3.09) -1.02 (-3.02)* -1.02 (-3.02)* -- -- 
Income less than $25K to $50K -- -0.46 (-2.73) -0.88 (-3.13) -0.36 (-2.50) -0.50 (-2.28) -- -- 
Income less than $50K to $100K -- -0.07 (-1.10) -0.41 (-2.35) -- -0.19 (-1.83) -- 0.22 (1.74) 
Income between $100K to $200K -- -- -- -- -- -- 0.19 (1.60) 

Household composition        
Single person household 0.23 (2.18) -- 0.23 (2.11) -- -- -0.21 (-1.50) -- 
Single female household 0.13 (1.39) 0.23 (2.13) -- -- -- -- -0.49 (-2.18) 
Presence of children (age less than 15 

years) 
-- -- -- 0.19 (2.04) 0.10 (1.29) 0.15 (2.23) -- 

Presence of employed individuals -- -- 0.19 (1.94) -- -- 0.10 (1.40) -- 
Household structure (Base: 
Apartment/attached and other) 

       

Detached household -0.21 (-2.58) -- -- 0.09 (1.03) 0.25 (2.24) 0.22 (2.14) 0.34 (2.82) 
Parking facilities in the household        

Absence of a covered parking -- -- -- -0.19 (-2.22) -0.19 (-2.22) -0.20 (-1.91) -0.39 (-2.37) 
Absence of electric charging facility in 

the parking of home/workplace 
-- -- -0.18 (-1.89) N.A. -- N.A. NA 

Household’s regional attributes        
Employment density more than 500 
person/ sq. mile 

-- -- -- -0.08 (-1.51) -- -- -0.44 (-3.14) 

Constant -- -0.88 (-3.42) -0.94 (-3.28) -0.25 (-2.37) -1.44 (-3.46) -1.52 (-3.45) -1.01 (-3.35) 
Satiation function        
Household income characteristics ((Base: 
Income more than $200K)) 

       

Income less than $25K 0.68 (1.70) -- -- 1.84 (1.22) -- -- -- 
Income less than $25K to $50K 0.73 (2.92) 1.69 (1.93) -- 1.65 (3.51) -- -- -- 
Income less than $50K to $100K 0.57 (3.71) 1.63 (2.89) -- 0.62 (3.94) -- -- -- 
Income between $100K to $200K -- 1.53 (2.77) -- -- -- -- -- 

Household composition        
Presence employed individuals -- -- -- -0.47 (-2.81) -- -1.17 (-2.01) -- 

Regional attributes        
Employment density  -- -- -- -- -- 0.31 (1.61) 

Constant -0.02 (-0.98) 0.44 (1.06) 1.33 (2.30) 0.24 (0.60) 1.97 (3.72) 1.81 (2.82) 0.14 (0.37) 
--: Insignificant/same as the base category. *Same parameter across the alternatives
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preference parameter estimates that households with employed individuals had a higher preference 
for owning a van. Despite the high preference, such households are less likely to use them than 
households that do not have any employed individuals. This result reaffirms our earlier hypothesis 
that vans serve more of a leisurely purpose in households with employed individuals rather than 
providing day-to-day functionality. Finally, despite the lower preference for owning pickup trucks 
by households in regions of high employment densities, mileage accrued to these vehicles, if they 
are owned, is higher than that in regions of low employment densities. This is potentially because 
these vehicles typically serve the purpose of hauling goods and materials and therefore, would 
travel longer distances in urban regions with high employment density. 
 
Budget Equation Results 
The following Tobit budget equation (based on Equation (9)) was estimated: 

* 10.22 4.83(no. of driving licenses) 3.92(presence of workers) 4.24( (  < $25K))

5.90( ($25K $50K)) 3.16( (Household uses work shuttle) )

1.94( (Population density 2000/sq. mile)) 10.4

q q q q

q q

y I HInc

I HInc I

I

    

   

   2 ( 0.76 ln exp( ) ,k k
k

a
 

      


 (13) 

where index q represents a household, qHInc  represents the qth household’s annual income and, 

( )I   is an indicator function. 
Notably, the scale of the error terms in the fractional split MDCEV model ( ) is estimated 

with a value of 0.76 and a corresponding t-statistic 2.25 (against 1), indicating that the scale 
parameter is significantly different from 1 (with more than 95% confidence level). Also, the 
linking parameter is significantly different from 0 (with a value of 10.42 and a t-statistic of 37.36), 
indicating that the desirability of a vehicle type increases the total mileage driven by the household. 
These effects can potentially provide better insights from a policy standpoint. For instance, the 
densification of a region by increasing employment density may likely reduce the total mileage 
driven by households in that region. However, this effect could not be captured directly in the 
budget equation, with the corresponding parameter turning out insignificant. On the other hand, 
this effect is indirectly captured through the linking function, where an increase in employment 
density results in lower preference for gasoline SUVs and pickup trucks, thereby reducing the total 
price index.  
 The parameters offer intuitive insights into the annual mileage. As the number of valid 
driving license holders increases in the household, total annual mileage is also likely to increase. 
The same trend follows with the presence of workers in the household as well. In the context of 
annual household income, the annual mileage by high-income households (with income more than 
$50,000) is likely to be higher than low-income households. Intuitively, households where 
individuals use work shuttle to commute accrue lesser mileage Finally, households in regions with 
high population density (more than 2000 persons per sq. mile) are likely to drive less. 
 
Model Fit Statistics 
Likelihood-Based Goodness of Fit Statistics 
The log-likelihood of the final model (log-likelihood of -12429.02 with 72 parameters) is superior 
to the constant-only model (log-likelihood of -13150.50 with 16 parameters), indicating the 
importance of our empirical specification. Further, allowing free estimation of the scale parameter 
in the fractional split model generally improves the statistical fit of the model (final log-likelihood 
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of -12450.10 with unit scale assumption and a total of 71 parameters). This result is demonstrated 
by the superior fit of the model with free scale parameter when compared with the model with 
restricted scale parameter (corresponding likelihood ratio test with a test statistic of 42.16 is greater 
than the critical squared value for a single degree of freedom at any reasonable significance level). 
The same trend is also observed in the holdout sample (with an LRT test statistic of 4.48 which is 
greater than the critical chi-squared value for a single degree of freedom at 5% significance level), 
indicating the importance of freely estimating the scale parameter. Overall, freely estimating the 
scale parameter will generally result in improvement in likelihood-based model-fit measures. 
 
Non-Likelihood-Based Goodness of Fit Statistics 
To further assess the importance of freely estimating the scale parameter, we undertake a 
comparative assessment of the prediction performance of the estimated model on the holdout 
sample. The level of accuracy in the predicted vehicle holding pattern is computed using weighted 
mean absolute percentage error (MAPE), which is computed as: 

Weighted MAPE 100

i i
i

i i

ii

O P
O

O

O

 
 
  




, (14) 

where iO  is the observed share (or continuous mileage) and iP  is the predicted share (or continuous 

mileage) for alternative i.  
The predicted vehicle holding and usage pattern is presented in Table 3 (under the heading 

non-likelihood-based data fit). As indicated from the results, the discrete shares of vehicle holdings 
are predicted close to the observed vehicle holding patterns with the weighted MAPE of 5.19%. 
However, the predictions of mileage accrued to each of the vehicle category has a slightly 
magnified error of 8.67%. Despite this slight error, the total average mileage is predicted with great 
accuracy (a weighted percentage error of 1.57%). However, the number of households predicted 
with zero vehicle ownership was way off from the observed value (7.95% of households predicted 
with zero vehicle holdings as opposed to the observed value of 2.55%). This high error could be 
attributed to an inherent small proportion of households with zero car ownership. Overall, these 
predicted vehicle holding and usage patterns are reasonably close to the observed values in the 
holdout sample, with an overall weighted MAPE of 6.28%. In comparison, errors in predictions 
from the model with unit scale were slightly higher (a weighted MAPE of 7.03%). This result 
underscores the importance of freely estimating the scale parameter in the model. 

 
Policy Evaluation 
The two-stage MDC allows better evaluation of policies since it allows the possibility of both 
complementarity and/or substitution effects (through income effects). In this study, we undertake 
analysis of two specific policies that demonstrate the advantages of the two-stage MDC model. 
Specifically, we focus on understanding the effects of: (a) regional densification by increasing 
employment density, and (b) providing non-private commute opportunities to every household 
with employed individuals. In the context of quantifying changes in vehicle holdings due to 
densification of employment opportunities, households’ vehicle holdings and mileage decisions 
were compared between two scenarios: i) all households living in regions with employment density 
less than 500 persons per sq. mile, and ii) all households living in regions of employment density 
more than 500 persons per sq. mile. Similarly, in the context of providing non-private commute 
options to workers, vehicle holdings were forecasted for two scenarios: i) none of the households 
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TABLE 3 Non-Likelihood-Based Data Measures (Prediction Performance) and Policy Evaluations 

Non-likelihood-based data fit (holdout sample) Gasoline car 
Hybrid 

car 
Electric 

car 
Gasoline 

SUV 
“Hybrid+” 

SUV 
Van 

Pickup 
truck 

Observed in the holdout sample 
Percentage of zero-car households 2.55 
Percentage of households owning the vehicle type 56.72 14.50 13.10 41.29 3.71 7.07 16.24 
Average mileage on the vehicle type (in 1000 miles) 9.84 10.83 10.87 10.97 10.74 9.07 8.49 
Total average mileage driven (in 1000 miles) 15.53 
 Predictions from the two-stage MDCEV model with free scale parameter 

Percentage of zero-car households 7.95 
Percentage of households owning the vehicle type 56.02 14.86 13.48 38.41 3.96 6.68 13.3 
Average mileage on the vehicle type (in 1000 miles) 11.43 10.05 10.13 10.43 9.42 8.17 8.22 
Weighted MAPE Discrete WMAPE: 5.19%; Continuous WMAPE: 8.67%; Overall WMAPE: 6.28% 
Average total miles driven by a household (in 1000 miles) 15.29  

Policy evaluations 

Policy I: Employment densification of regions (Base case: Employment density <500 persons/sq. mile; Policy case: Employment density >500 persons/sq. mile 

% change in H.H.s with zero vehicle ownership 6.34 
% change in vehicle ownership 4.01 10.62 10.45 -3.79 -5.44 -0.12 -52.46 
% change in vehicle mileage accrued on each vehicle type# 6.51 21.15 11.91 -6.11 -8.63 1.51 -55.78 
% change in total average miles driven -1.60 

Policy II: Provision of non-private commute services (Base case: No household using work shuttle services; Policy case: All households with employed 
individuals using work shuttle 
% change in H.H.s with zero vehicle ownership 25.15 
% change in vehicle ownership -2.81 -5.23 -3.17 -1.71 -1.20 0.58 -1.06 
% change in vehicle mileage accrued on each vehicle type# -12.34 -14.74 -14.59 -10.87 -14.46 -7.61 -9.67 
% change in total average miles driven -12.11 

#Averaged across all households
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with employed individuals (full-time or part-time) using work shuttle, and ii) all households with 
employed individuals (full-time or part-time) using work-shuttle services. Considering the benefits 
of freely estimating the scale parameter, the policy evaluation is undertaken using the model that 
freely estimates the scale parameter. The results for the above two policy evaluations are provided 
in the second set of rows in Table 3 (under the heading Policy evaluations). 
 
Policy I: Effect of Employment Densification 
The effects of employment densification manifest as a reduction in ownership of gasoline SUVs 
and pickup trucks (see the set of rows in Table 3 under the heading Policy I). Interestingly, 
densification of employment opportunities also results in a reduction in ownership of hybrid SUVs, 
and vans as well (akin to a complementarity effect). At the same time, ownership of cars (across 
all three fuel categories) increases (akin to a substitution effect). Despite this increase in car 
ownership, the total vehicle ownership (indicated by an increase in the percentage of households 
with zero-car ownership) as well as the total average miles driven, reduces. This reduction in total 
vehicle ownership levels and miles driven is an indirect effect of employment densification 
(through the linking effect). From a policy standpoint, these findings are indicative that 
employment densification can be an important lever to control total miles driven and reduce total 
vehicle ownership. However, it can still result in an increase in ownership of small cars (both 
gasoline-powered and electric). Overall, with a decrease in ownership of SUVs, vans and trucks, 
the total on-road emissions in this scenario can potentially decrease since light-duty trucks are the 
biggest source of GHG emissions among all vehicle classes in the U.S. (30). 
 
Policy II: Effect of Provision of Non-Private Commute Options 
The effects of the provision of non-private commute options were evaluated through the usage of 
work shuttle services by households. The results of this policy evaluation are provided in the 
second set of rows under the heading Policy II in Table 3. The total average miles driven by 
households show a significant 12.1% decrease as households start using work shuttles (see the last 
row of Table 3). Interestingly, the use of work shuttles by workers also leads to a reduction in 
vehicle ownership, with the number of households with zero vehicles showing a significant 25% 
increase. This reduction in vehicle ownership also translates into a small reduction in vehicle 
ownership of each vehicle type. Therefore, from a policy standpoint, providing work shuttle 
services can potentially result in reduced total miles driven and vehicle ownership levels, thereby 
potentially reducing overall on-road GHG emissions. This result again highlights the importance 
of endogenous modelling of budget within the MDC model framework since the optimal 
allocations derived through the traditional MDC models are not sensitive to income effects. 
 
CONCLUSIONS 
This paper analyses households’ vehicle holdings and usage decisions in California using a two-
stage MDC choice model framework that allows endogenous estimation of the budget as well as 
the allocation of the budget to the elementary alternatives, all within a utility theoretic framework. 
In doing so, we revisit the prior formulation of the two-stage MDC model and relax the unit scale 
requirement in the model. With this extended formulation, the empirical assessment of households’ 
vehicle holding and usage in California is undertaken using the 2019 California Vehicle Survey 
data. The empirical results indicate that freely estimating the scale parameter improves model fit. 
Policy simulations using the empirical model indicated that regional densification measures, such 
as increasing employment density reduces ownership of SUVs, vans, and pickup trucks, while 
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increasing the ownership of passenger cars (both gasoline and electric). Despite this increase in 
passenger cars, the total vehicle ownership reduces as a result of employment densification. 
Further, provision of alternative, non-personal commute options (such as work shuttles) can 
significantly reduce personal vehicle ownership and miles travelled. Overall, both policies can 
potentially lead to reduction in total on-road emissions. 
 
ACKNOWLEDGMENTS 
This research was partially supported by the U.S. Department of Transportation through the Center 
for Understanding Future Travel Behavior and Demand (TBD) (Grant No. 69A3552344815 and 
No. 69A3552348320). All authors acknowledge the support from the Indian Ministry of Education 
through SPARC for encouraging international collaborations. The authors are grateful to Lisa 
Macias for her help in formatting this document. 
 
AUTHOR CONTRIBUTIONS 
The authors confirm contribution to the paper as follows: study conception and design: S. Saxena, 
C.R. Bhat, A.R. Pinjari; analysis and interpretation of results: S. Saxena, C.R. Bhat, A.R. Pinjari; 
draft manuscript preparation: S. Saxena, C.R. Bhat, A.R. Pinjari. All authors reviewed the results 
and approved the final version of the manuscript.  



 

16 

REFERENCES 

1. Mallett, W. J. (2018). Trends in public transportation ridership: Implications for federal 
policy. Washington, DC: Congressional Research Service. 

2. Morris, E. A., Blumenberg, E., and Guerra, E. (2020). Does lacking a car put the brakes on 
activity participation? Private vehicle access and access to opportunities among low-income 
adults. Transportation Research Part A, 136, 375-397. 

3. Andor, M. A., Gerster, A., Gillingham, K. T., and Horvath, M. (2020). Running a car costs 
much more than people think—stalling the uptake of green travel. Nature, 580(7804), 453-
455. 

4. Moody, J., and Zhao, J. (2020). Travel behavior as a driver of attitude: Car use and car pride 
in U.S. cities. Transportation Research Part F, 74, 225-236. 

5. Hula, A., Maguire, A., Bunker, A., Rojeck, T., and Harrison, S. (2022). The 2022 EPA 
Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology 
Since 1975 (No. EPA-420-R-22-029). 

6. Bleviss, D. L. (2021). Transportation is critical to reducing greenhouse gas emissions in the 
United States. Wiley Interdisciplinary Reviews: Energy and Environment, 10(2), e390. 

7. Zhang, W., Guhathakurta, S., and Khalil, E. B. (2018). The impact of private autonomous 
vehicles on vehicle ownership and unoccupied VMT generation. Transportation Research 
Part C, 90, 156-165. 

8. Kim, S. H., Mokhtarian, P. L., and Circella, G. (2020). Will autonomous vehicles change 
residential location and vehicle ownership? Glimpses from Georgia. Transportation Research 
Part D, 82, 102291. 

9. Fang, H. A. (2008). A discrete–continuous model of households’ vehicle choice and usage, 
with an application to the effects of residential density. Transportation Research Part 
B, 42(9), 736-758. 

10. Nguyen, N. T., Miwa, T., and Morikawa, T. (2017). Vehicle type choice, usage, and CO2 
emissions in Ho Chi Minh city: analysis and simulation using a discrete-continuous 
model. Asian Transport Studies, 4(3), 499-517. 

11. Bhat, C. R., and Sen, S. (2006). Household vehicle type holdings and usage: an application of 
the multiple discrete-continuous extreme value (MDCEV) model. Transportation Research 
Part B, 40(1), 35-53 

12. You, D., Garikapati, V. M., Pendyala, R. M., Bhat, C. R., Dubey, S., Jeon, K., and Livshits, 
V. (2014). Development of vehicle fleet composition model system for implementation in 
activity-based travel model. Transportation Research Record, 2430(1), 145-154. 

13. Vyas, G., Paleti, R., Bhat, C. R., Goulias, K. G., Pendyala, R. M., Hu, H. H., and Bahreinian, 
A. (2012). Joint vehicle holdings, by type and vintage, and primary driver assignment model 
with application for California. Transportation Research Record, 2302(1), 74-83. 

14. Augustin, B., Pinjari, A. R., Eluru, N., and Pendyala, R. M. (2015). Estimation of annual 
mileage budgets for a multiple discrete-continuous choice model of household vehicle 
ownership and utilization. Transportation Research Record, 2493(1), 126-135. 

15. Bhat, C.R., (2022). A new closed-form two-stage budgeting-based multiple discrete-
continuous model. Transportation Research Part B, 164, 162–92. 



17 

16. Rouwendal, J., and Boter, J. (2009). Assessing the value of museums with a combined discrete 
choice/count data model. Applied Economics, 41(11), 1417-1436. 

17. Hausman, J. A., Leonard, G. K., and McFadden, D. (1995). A utility-consistent, combined 
discrete choice and count data model assessing recreational use losses due to natural resource 
damage. Journal of Public Economics, 56(1), 1-30. 

18. Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica: 
Journal of the Econometric Society, 24-36. 

19. Transportation Secure Data Center. (2019). National Renewable Energy Laboratory. 
Accessed May 2023, https://nrel.gov/tsdc 

20. U.S. Department of Energy (2021). Vehicle Registration Counts by State. 
https://afdc.energy.gov/vehicle-registration Accessed July 2023. 

21. Blackley, J (2023). Which states drive the most pickup trucks? iSeeCars. 
https://www.iseecars.com/which-states-drive-the-most-pickup-trucks-studycks Accessed 
July 2023. 

22. California Energy Commission (2018). 2015-2017 California Vehicle Survey. RSG. 
https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/cec_2015-
2017_california_vehicle_survey_report.pdf Accessed July 2023. 

23. U.S. Census Bureau (2017-21). 
https://www.census.gov/quickfacts/fact/table/CA/INC110221. Accessed July 2023. 

24. Population and Census Data (2020). Employment Development Department. State of 
California. https://labormarketinfo.edd.ca.gov/Population_and_Census.html#POP. Accessed 
July 2023. 

25. Mondal, A., and Bhat, C. R. (2021). A new closed form multiple discrete-continuous extreme 
value (MDCEV) choice model with multiple linear constraints. Transportation Research Part 
B, 147, 42-66. 

26. Brecht, P. (2020). 2020-2023 Investment Plan Update for the Clean Transportation Program: 
Lead Commissioner Report. California Energy Commission. 

27. Brownstone, D., and Fang, H. (2014). A vehicle ownership and utilization choice model with 
endogenous residential density. Journal of Transport and Land Use, 7(2), 135-151. 

28. Plötz, P., Schneider, U., Globisch, J., and Dütschke, E. (2014). Who will buy electric vehicles? 
Identifying early adopters in Germany. Transportation Research Part A, 67, 96-109. 

29. Woofter, P. (2021). Van life on the rise – a camper van California road trip turned permanent. 
https://themilsource.com/2021/03/03/van-life-on-the-rise-a-camper-van-california-road-trip-
turned-permanent/ Accessed July 2023. 

30. Statista (2021). Greenhouse gas emissions from on-road vehicles in the United States. 
https://www.statista.com/statistics/1120499/us-road-vehicle-ghg-emissions-by-vehicle-
type/#:~:text=Light%2Dduty%20trucks%20in%20the,some%20374.2%20MtCO%E2%82%
82e%20that%20year. Accessed July 2023. 

 


