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ABSTRACT 
Numerous programs aimed at enhancing the choice of bicycle and walk as modes of choice for 
children’s trips to and from school are being implemented by public agencies around the world.  
Disaggregate choice models capable of accounting for the myriad of factors that influence child 
school mode choice are needed to accurately forecast the potential impacts of such programs and 
policies.  This paper aims to present a school mode choice model that is capable of capturing the 
unobserved spatial interaction effects that may potentially influence household decision-making 
processes when choosing a mode of transportation for children’s trips to and from school.  For 
example, households that are geographically clustered close together in a neighborhood may 
interact or observe one another, and be influenced by each other’s actions.  In order to overcome 
the computational intractability associated with estimating a discrete choice model with spatial 
interaction effects, the paper proposes the use of a maximum approximated composite marginal 
likelihood (MACML) approach for estimating model parameters.  The model is applied to a 
sample of children residing in Southern California whose households responded to the 2009 
National Household Travel Survey in the United States.  It is found that spatial correlation 
effects are statistically significant, and that these effects arise from interactions among 
households that are geographically close to one another.  The findings suggest that public policy 
programs aimed at enhancing the use of bicycle and walk modes among children may see greater 
impact if targeted at the local neighborhood level as opposed to a more diffuse regional scale. 
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1. INTRODUCTION 
Much attention is being paid to the analysis of factors contributing to the travel mode choice 
behavior of children for the trip to and from school (1).  Major programs aimed at promoting 
walking and bicycling to school are in place, particularly in the United States, where a steady 
decline in the shares of walk and bicycle modes for school trips has been observed over the past 
few decades (2-4).  Examples of these programs include the US Department of Transportation 
Safe Routes to School program (http://www.saferoutesinfo.org) and the Walking School Bus 
initiative (http://www.walkingschoolbus.org).  Much of this interest stems from the desire to 
promote active transportation mode use among children with a view that the choice of such 
modes would substantially help fight childhood obesity, which has become a serious public 
health concern in the United States and elsewhere (5).  Several studies have shown that children 
who use active modes of transportation for the trip to and from school are likely to be more 
physically active during other periods of the day as well, thus increasing the overall physical and 
mental well-being of children (6-7).   

There are undoubtedly many factors that impact the choice of mode for the children’s 
trips to and from school.  Studies of children’s school mode choice show the important effects of 
home-school proximity, household socio-economic attributes, neighborhood built environment 
characteristics, and parental or caregiver perceptions of neighborhood safety and vehicular traffic 
conditions on the path to and from school.  A systematic review of the literature on this topic is 
provided by Pont et al. (8); some of the pertinent literature in this topic area is reviewed in more 
detail in the next section of this paper.  

What is found in the literature review is that many studies loosely acknowledge, but 
largely ignore or do not adequately account for, the spatial interaction effects that affect 
children’s mode choice to and from school.  Spatial interaction may occur in two possible ways – 
across spatial units (zones, neighborhoods, tracts, blocks) because units that are closer to one 
another share some common unobserved attributes, and/or across behavioral units (individuals, 
households) because behavioral units that are closer to one another in space may share common 
unobserved attributes that affect the way they behave. In the context of children’s school mode 
choice, a household’s mode choice decision related to child school trips may also be influenced 
by the actions and choices of other households and individuals in the same spatial cluster (say, a 
neighborhood).  For example, if parents find that many other children in the neighborhood walk 
to school, they may feel comfortable sending their own child by walk as well.  The Walking 
School Bus initiative is, in fact, founded on this principle of social interaction effects among 
households that are in close proximity of one another.   

Essentially spatial interaction among individuals may arise in the context of children’s 
mode choice to school in a number of ways.  Similarly, social interactions among parents in a 
neighborhood or whose children attend the same school could lead to exchange of information 
about characteristics of different modes thus contributing to a dependence in the mode utility 
functions of different individuals.  Another possible way in which such correlation can arise is 
one where other children in the same neighborhood using an active mode of transportation create 
a positive environment for the use of such modes by improving the safety of walking/bicycling 
in the neighborhood, and this might persuade other children and their caregivers to adopt non-
motorized modes of transportation for the trip to and from school.  Finally, similarities in the 
built environment attributes across households/individuals who are located in greater proximity 
of one another may also create interactions in the modal utilities of individuals.   
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Previous attempts to study school mode choice for children have not accounted for such 
spatial and social interaction effects, although some attempts have been made to consider spatial 
attributes in mode choice decisions (e.g., 9).  The accounting for such effects requires 
methodological advancements in the specification and estimation of discrete choice models; this 
paper is aimed at presenting a methodological framework and estimation approach that makes it 
possible to estimate mode choice models with spatial and social interaction effects.  Another 
major impediment to the development of mode choice models that account for spatial effects is 
that detailed spatial accessibility measures at small levels of geography are generally not 
available in most travel survey data sets.  In this particular study, disaggregate census tract-level 
spatial accessibility measures are computed based on Chen et al. (10) for a survey sample drawn 
from the 2009 US National Household Travel Survey (NHTS) and used in the study to 
disentangle unobserved spatial correlation effects from observable built environment attributes 
associated with household location.   

Following this brief introduction, an overview of the literature is offered in the next 
section.  The third section presents the modeling methodology adopted in the paper.  The fourth 
section provides a description of the data set while the fifth section summarizes model estimation 
results and study findings.  The sixth and final section offers concluding thoughts and directions 
for further research.   
 
2. ANALYSIS OF CHILDREN’S SCHOOL MODE CHOICE 
There has been considerable amount of research aimed at studying children’s school trip mode 
choice behavior.  Pont et al. (8) provides a systematic review of the literature on this topic and 
more broadly on the topic of active transportation among children.  Studies on children’s school 
mode choice span the globe as this is clearly an issue of interest in metropolitan contexts around 
the world.  In the US, an analysis by McDonald (2) of the series of national travel surveys from 
1969 through 2001 shows the substantial decline in active mode use over the past several 
decades.  In 1969, about 41 percent of students bicycled or walked to school; by 2001, that 
proportion had decreased to just about 13 percent.  McDonald (2) indicates that the increase in 
distance between home and school may account for about one-half of the decline in the use of 
active transportation modes to school.   

Distance between home and school is a critical factor affecting the use of non-motorized 
modes (11).  Ewing et al. (12) analyzed data from Gainesville (Florida) and found distance to be 
one of the most important factors in the choice of bicycle and walking modes.  Yeung et al. (13) 
report a similar result in an analysis of data from Brisbane, Australia.  However, unlike the US 
study, they did not find any significant difference in the body mass index (BMI) of children 
using active modes of transport versus those using motorized modes for travel to and from 
school.  Loucaides and Jago (7), analyzing data from Cyprus, find that overweight children who 
walked to school were more physically active in general when compared with overweight 
children who were driven to school.  However, no such difference was observed across normal 
weight children.  Cooper et al. (6) analyze a sample from Bristol, UK, and report that boys who 
walk to school are likely to be more physically active in general after school than those who used 
motorized modes of transport.  Such differences were not found among girls.   

There are several studies dedicated to analyzing the influence of the built environment 
attributes and street configuration on school mode choice.  The results are somewhat mixed, 
possibly due to the difficulty in measuring built environment attributes and appending such 
variables to individual person and household survey records.  For example, Yarlagadda and 
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Srinivasan (14) found strong impacts of socio-economic attributes and distance, but report that 
the impacts of travel time and built environment attributes are statistically insignificant.  
Similarly, McMillan (3) reports that urban form variables had a modest impact on mode choice; 
these variables had a relatively less impact than other variables representing socio-economic 
attributes, distance, and vehicular traffic conditions.  On the other hand, Boarnet et al. (15), in 
analyzing the impact of the Safe Routes to School program, found that sidewalk improvement, 
crossing improvements, and traffic control enhancements improved the odds of children 
switching to walk and bicycle modes.  Ewing et al. (12) also note that street density and sidewalk 
connectivity are influential in facilitating walking to school.   

Traffic safety and parental perception of crime against children (e.g., abduction, 
molestation) were found to be significant in a few studies.  Timperio et al. (16), in an analysis of 
data from Melbourne, Australia, found that parental perception of the number of children 
walking to school in the neighborhood, presence of lights and adequate crossings, and the 
presence of a busy roadway between the home and school impacted school mode choice.  
DiGuiseppi et al. (17), in a study of data from the UK find that adults accompanied 84 percent of 
children to and from school.  Only three percent of bicycle users were allowed to bicycle on 
main roads.  Ninety percent of parents were very or quite worried about abduction or molestation 
and an almost identical percentage were very or quite worried about traffic safety.  They found 
parental concerns about safety were strong predictors of school mode choice.    

Some studies have identified a few other factors influencing school mode choice.  
Weather conditions are cited as an important explanatory variable by Muller et al. (18) in a study 
conducted in Germany, while psychological and attitudinal factors are found to be significant by 
Black et al. (4) who report on a study conducted using data gathered from 51 schools in the UK.  
Zwerts et al. (19), in a study of Belgian students, find that students viewed the walking and 
bicycling experience en route to school as an important factor in the attractiveness of those 
modes.  Dellinger and Staunton (20) analyzed data from the US National Health survey 
(conducted by the Centers for Disease Control and Prevention).  They report that barriers to 
walking and bicycling among children were long distances, traffic danger, and adverse weather 
conditions.  They find that 85 percent of those who reported no barriers ended up using non-
motorized modes of transportation.   

The role of parental influence, intra-household interactions, and social networks is further 
brought out in other studies.  For example, the study by Yarlagadda and Srinivasan (14) 
explicitly focuses on the escort person for the school trip.  They report that the presence of 
multiple school-going children in the household increases the odds that the mother will drive the 
children to school.  This finding is in contrast to that reported by McDonald (21), who notes that 
having siblings increases the likelihood of walking and reduces the likelihood of being driven.  
These findings point to the need to further study the role of intra-household interactions in school 
mode choice behavior.  McMillan et al. (22) found that the odds of biking or walking to school 
are 40 percent lower in girls than boys, but note that the relationship is moderated by the 
caregiver’s own walking propensity and behavior.  Pooley et al. (23) examined GPS traces of 
school journeys of children in the UK and find great variability in the characteristics of school 
travel.  They attribute this variability to complex household interactions, family responsibilities, 
personal commitments, and personal preferences.  Zwerts et al. (19) note that the social aspect 
associated with walking or bicycling together is very important, particularly for girls.   

From the review of the literature, it is clear that several factors influence school mode 
choice for children. While some results are mixed, it is clear that home-to-school distance 
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(proximity), socio-economic characteristics, built environment attributes, street configuration, 
land use density and mix, and attitudes and perceptions of safety and crime are important 
determinants of school mode choice behavior.  While these studies acknowledge the potential 
importance of interactions within and outside the household arising from neighborhood effects, 
and a couple of studies attribute certain results obtained to intra-household interactions and 
neighborhood social networks, the studies do not explicitly account for interaction/social 
network effects in the modeling of school mode choice.  Mitra et al. (9) analyze data from 
Toronto and use spatial autocorrelation measures to identify zones with high walking rates.  
However, their study does not involve the estimation of a mode choice model in the presence of 
spatial interaction effects.  Ulfarsson and Shankar (24) also attempt to capture correlation effects, 
but the focus of their model specification is on accounting for correlations across alternatives 
using a covariance heterogeneity specification (as opposed to capturing interaction effects across 
behavioral units over space).  

This paper aims to fill a critical gap in the study of children’s school mode choice 
behavior by developing a model that accounts for spatial and social effects arising from 
interactions among household members and across households in geographical and social 
clusters, respectively.   
 
3. MODELING METHODOLOGY 
Spatial interaction effects may exist across discrete choice alternatives (e.g., 25-26) or across 
decision-makers (e.g., 27-28). The focus in this paper is on spatial and social interactions across 
decision makers. Interestingly, in the context of spatial interaction across decision makers, earlier 
studies have either focused on binary response models or ordered response models. In particular, 
spatial interaction across individuals has seldom ever been discussed in the context of unordered-
response models. However, spatial interaction in data may occur in unordered-response models 
for the same reasons (for example, diffusion effects, social spillover effects, and unobserved 
location-related effects) that these effects have been studied extensively in binary and ordered-
response models.  

In terms of estimation of binary and ordered-response discrete choice models with a 
general spatial structure, the analyst confronts, in the familiar probit model, a multi-dimensional 
integral over a multivariate normal distribution, which is of the order of the number of 
observational units in the data. While a number of approaches have been proposed to tackle this 
enormous multidimensional integration problem (e.g., 29-30), none of these methods are 
practically feasible for moderate-to-large samples as they are quite cumbersome from a 
computational standpoint.  In the context of unordered-response models, the situation becomes 
even more difficult – the likelihood function entails a multidimensional integral over a 
multivariate normal distribution of the order of the number of observational units factored up by 
the number of alternatives minus one. This situation, however, is relatively easily handled using 
the Maximum Approximated Composite Marginal Likelihood (MACML) estimation method 
proposed by Bhat (31). 
 
3.1 Model Formulation 
Consider a spatial lag model structure for unordered-response models as proposed by Bhat (31), 
where the dependencies in modal utilities across individuals is caused by a combination of direct 
spillover effects (utilities of individuals “rubbing” off on each other) and indirect unobserved 
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spatial/social effects. In such a model structure, the utility that an individual q associates with 
alternative i (i = 1, 2, …, I) is assumed to take the following form: 

1|| ),5.0,0(~  ; <+′+= ′′
′
∑ ρξξ NxbUwρU qiqiqiiqqq

q
qi ,  (1) 

In the above formulation qix  is a (K × 1)-column vector of exogenous attributes, b is a (K × 1)-
column vector of corresponding coefficients, qqw ′  is the spatial weight corresponding to 

individuals q and q′ , with 0=qqw  and 1=′
′
∑ qq

q

w  for each (and all) q. It is also assumed that 

qiξ  is independent and identically distributed across q and i. The above utility function may be 
equivalently written as: 
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observed sample (i.e., individual 1 choosing alternative 1m , individual 2 choosing alternative 

2m , …, individual Q choosing alternative Qm ) may then be written succinctly as Prob[y* < 0]. 

To write this likelihood function, note that the mean vector of *y  is 
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Then we can write ),(~ ΣBMVN*y , and the likelihood function of the sample is:  
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where Σ   covariance matrix of *y and Bhat (31) provides the equations for calculating this. 

QIF ∗− )1(  is the multivariate cumulative normal distribution of QI ∗− )1(  dimensions. Of course, 
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maximizing the above likelihood function requires the evaluation of an QI ∗− )1(  integral. 
Integrals of this high dimensionality are clearly impractical to evaluate using the usual Monte 
Carlo simulation methods. However, the maximum approximated composite marginal likelihood 
(MACML) estimation approach recently proposed by Bhat (31) can be used here. The MACML 
method is briefly described in the section below. 
 
3.2 The Maximum Approximated Composite Likelihood Approach 
In contrast to approaches that are based on evaluating the multidimensional integrals in the true 
likelihood function using simulation techniques, the MACML estimation approach for cross-
sectional unordered-response models with normally distributed mixing is based on analytic 
approximations to the multivariate normal cumulative distribution (MVNCD) functions in the 
true likelihood function. The approximation adopted by Bhat (31) relies only on bivariate and 
univariate standard normal cumulative distribution function computations and is computationally 
efficient.  The approximation is combined with the composite marginal likelihood (CML) 
estimation approach for the estimation of unordered-response models with normally distributed 
mixing. The MACML approach can be applied using simple optimization software for likelihood 
estimation. It also represents a conceptually simpler alternative to simulation techniques, and has 
the advantage of reproducibility of the results. The covariance matrix of the MACML estimator 
may be easily computed using the inverse of Godambe’s (32) sandwich information matrix (see 
Bhat, (31) for complete details). 

In the MAMCL estimation approach, a combination of the composite marginal likelihood 
method and the approximation method for multivariate normal orthant probabilities is used. The 
pairwise CML function for the sample is given by the expression below: 
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Each multivariate orthant probability above has a dimension equal to 2)1( ×−I , which can be 
computed using the approximation proposed by Bhat (31) in the MACML Approach. The 
variances and correlations in the bivariate and univariate cumulative normal distribution 
expressions in the approximation can be obtained as appropriate sub-matrices of .Σ  An issue that 
has a direct impact on computational time in the CML approach is the number of pairs 
(= 2/)1( −QQ  pairs) of 2)1( ×−I  multivariate probability computations.  

The framework discussed above is extendable to include social and other forms of 
dependence as well. This is because the weight matrix W that forms the basis for spatial 
dependence can also be the basis for more general forms of dependence. In fact, W itself can be 
parameterized as a finite mixture of several weight matrices (as in Yang and Allenby’s (33) 
application to the simple binary choice model), each weight matrix being related to a specific 

covariate k, i.e., ∑
=

=
K
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,ϕ where kϕ  is the weight on the kth covariate in determining 

dependency between individuals (∑
=

=
K

k
k

1
1ϕ ), and kW  is a measure of distance between 

individuals on the kth covariate. 
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4. DATA 
The data used in this study is derived from the California add-on sample of the 2009 National 
Household Travel Survey (NHTS) conducted in 2008-2009 in the United States.  Within the 
California add-on sample, the survey subsample of respondents from the Los Angeles – 
Riverside – Orange County region was extracted and used for the model estimation effort.  This 
selection process was done for several reasons.  First, the use of a national sample for studying 
school mode choice behavior may be inappropriate given that there are likely to be substantive 
geographic differences across the country. Spatial correlation effects are likely to be more 
localized in nature, calling for the use of data drawn from a more limited geographic region for 
analysis and model development.  Second, the use of a very large sample for model estimation 
would produce inflated test statistics that would affect inferences drawn from the model results.  
Finally, the authors have access to census tract-level accessibility measures and land use data for 
the Los Angeles region in conjunction with an ongoing activity-based model development effort 
underway for the Southern California Association of Governments (SCAG). 

The survey collects detailed socio-economic, demographic, and travel information for all 
household members in respondent households. The survey also collects information about usual 
travel characteristics by asking questions about travel undertaken in the past week.  Extensive 
descriptive statistical analysis was conducted on the data to understand mode choice patterns for 
children’s school trips and to identify explanatory factors that may influence such behavior.  For 
the sake of brevity, all of the analysis conducted is not described and presented here, but some 
highlights are noted to provide an overview of the data assembly process in a nutshell.   

The survey sample included 1192 children aged 5-15 years for whom school mode choice 
behavior could be analyzed.  Table 1 presents the overall average travel time to school, the 
average travel time by mode used, the overall median household income value, the median 
household income by mode used, and brief descriptive statistics of other household 
characteristics to which these children belong.  In general, the travel time to school ranges from 
about 10 minutes to 15 minutes with an overall average of 12.4 minutes.  Only the average bus 
travel time falls outside this range with an average value of just over 25 minutes. Those who 
walk and use the school bus report lower median household incomes than other groups. Thus, it 
is clear that mode choice to and from school is correlated with income; perhaps the lower car 
ownership in these households lead children to walk and use the school bus.  In general, the 
household characteristics show that households are larger than would be expected if one were 
analyzing the general population.  This is consistent with the fact that the analysis sample here is 
exclusively focusing on households with children going to school.  

The importance of distance in school mode choice behavior has been highlighted in 
previous research.  Table 2 presents modal split distributions by home-to-school distance bands. 
The association between home-school distance and modal split is readily apparent.  While the 
overall mode split for car is 44 percent, the highest among all modes, it is clear that walk is the 
predominant choice of mode at very short distances.  At distances less than a quarter-mile, 60 
percent of children walk to school and less than one-quarter take the car to school.  However, 13 
percent of children use a combination of car and walk (i.e., they take the car to school, but walk 
back home after school).  There is a dramatic increase in car mode share as distance increases; 
the car mode share nearly doubles to 46 percent at distances over a quarter-mile but under a half-
mile.  The car mode share continues to increase with distance and reaches nearly 75 percent at 
home-to-school distances in excess of two miles.  The school bus mode share also increases with 
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distance, consistent with expectations.  The bicycle mode share shows some fluctuations, with 
higher shares seen for very short trips under a quarter-mile, and mid-range distances of one-half 
to two miles.  The car-school bus combination shows a significant modal percent (6 percent) at 
longer distances, again consistent with expectations. Walk mode share dramatically drop off with 
increasing distances, with just about a one percent mode share for school trip distances greater 
than two miles.  One of the factors affecting the choice of active modes of transportation is that 
nearly 40 percent of the children live more than two miles away from their school. Only about 25 
percent of the children live within a half-mile of their school location. As schools get 
increasingly larger and cover larger boundary areas, this challenge may become more 
pronounced.   

An analysis of the data showed that some children use a combination of modes to 
commute to and from school.  In a cross-classification table of modes to and from school (the 
table is not presented here due to space considerations), the diagonal elements of the table show 
the largest figures as expected, signifying that the vast majority use the same mode to and from 
school.  Of the 1192 children, 1041 (87 percent) use the same mode to and from school.  More 
than one-half of the children use the car in both directions, while close to 20 percent walk in both 
directions.  Among the modal transition segments, the largest one (with 71 students) involves the 
use of the car to go to school and walking back home from school.  Other modal transitions are 
rather small, although the walk-car and car-school bus segments cannot be ignored.     

In preparing the final data set for model estimation, modes with very few observations 
were eliminated.  These included “other”, “school bus + walk”, and “bicycle + car”.  This left 
1143 students in the children sample.  After further cleaning the data set, removing observations 
with missing information and clearly miscoded values, and other reductions, 800 observations 
were retained for estimation.   
 In the survey, the walk travel time was reported for those children who walked to school. 
In addition, the distance between home and school was obtained for all the children in five 
distance bands (see Table 2). In examining the walk travel times and the distances to school for 
children who actually walked, we found that there was a good bit of variation in walk times 
within the sample of children who were in the same distance band. So, we decided, from an 
econometric efficiency perspective, to consider both travel time and travel distance in the 
specification. In doing so, we imputed the walk time to school for those children who did not 
walk to school by computing the mean walk travel time for children who do walk to school in the 
corresponding distance band.  However, as reported later, walk travel distance did not turn out to 
be significant after controlling for walk travel time. For other modes, we similarly developed 
imputation procedures to construct travel time values for all individuals (whether or not they 
used the mode), and considered both travel times and distances (in the five distance bands). 
Interestingly, for all the non-walk modes, the distance variable specification turned out to be 
better, presumably because of rounding and inaccuracy in trip time reporting for these relatively 
long trips.  

As mentioned earlier, there may be household interactions that affect choice of mode for 
school trips.  The bicycling and walking activity of adults in each household is reported in the 
survey as the number of bicycling and walking trips undertaken for various purposes in the 
previous week.  For this study, adults (parents) were classified as active bicyclists or walkers if 
they made at least five trips using the corresponding mode in the previous week, with at least one 
trip being made for a purpose other than to escort children to and from home. In other words, if 
the sole reason that an adult made bicycle or walk trips in the past week is to escort children, 



Sidharthan, Bhat, Pendyala, and Goulias   9 

then the person is not considered an active bicyclist or walker (to avoid potential endogeneity 
problems).  

The NHTS data set includes a set of attitudinal variables that capture individual attitudes 
and perceptions. In particular, the survey asks parents to rate a series of issues on a five-point 
scale with one meaning that the particular consideration is not an issue and five meaning that the 
consideration is a serious issue. Adults were asked to identify the extent to which each of the 
following considerations affected the decision to allow their child (children) to walk or bicycle 
between home and school: distance between home and school, amount of traffic along the route, 
the speed of traffic along the route, the violence or crime along the route, and poor weather or 
climate in the area.  A principal components factor analysis (without rotation) was undertaken to 
reduce these five attitudinal variables into a set of orthogonal factors.  The factor analysis yielded 
two factors, one corresponding to objectively measurable attributes such as distance, and speed 
and volume of traffic, and the other corresponding to more subjective measures of crime and 
weather. These factors were used in the model specification to capture effects of parental 
attitudes on school mode choice.       
 
5. MODEL ESTIMATION RESULTS 
A simple probit model that does not account for spatial/social interaction effects and the spatial 
interaction model were estimated, and the estimation results are presented in Table 3. A 
systematic procedure in which variables were entered in a stepwise manner and checked for their 
statistical significance and intuitive behavioral interpretation was followed to arrive at the final 
model specification.  Various forms of explanatory variables and interaction effects among them 
were tested to arrive at the best possible model specification that is parsimonious, and yet 
sensitive to a range of effects that one would expect to see in a mode choice model of the type 
developed in this paper.  

An examination of the alternative specific constants shows that, in general, the bicycle 
and car+walk combination modes are generally less preferred than other modes (though the 
constants also control for the range of exogenous variable values in the sample).  It is also found 
that there are substantial differences in the alternative specific constants between the probit 
model with no spatial/social effects and the spatial interaction model.  This is a first indication 
that ignoring spatial interaction effects, when in fact they are present, results in inaccurate 
estimates of preferences for alternative modes.  With respect to travel characteristics, findings 
are largely consistent with expectations.  As the time to walk increases, the utility of walking 
decreases. For distances less than two miles, the utility of school bus decreases; presumably the 
bus is of greater value when distances to school are more than two miles.  On the other hand, the 
utility of bicycle and car+walk combination modes is higher for distances within this range.   

Age and gender of the student are found to be statistically significantly associated with 
school mode choice.  The utility of bicycling, walking, or using a combination of car and walk 
increases with the age of the child.  In other words, older children are more likely to use non-
motorized modes of transportation than younger children, presumably because parents feel more 
comfortable letting older children use these modes.  It is interesting to note that the coefficient 
associated with age is substantially higher for the bicycle mode than for the walk modes, 
suggesting that the utility for bicycle increases more than for walk modes with increasing age.  A 
gender effect is apparent with females less likely to choose the bicycle than their male 
counterparts, a finding previously reported by McMillan et al. (22).  
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With respect to household demographics, higher household income and vehicle 
ownership is associated with greater propensity to use the car and lower utility for alternative 
modes – school bus and walk. This is consistent with previous research that also reports that 
households with higher levels of vehicle ownership are less likely to depend on alternative 
modes for transporting children to and from school (12, 21).  The presence of adult non-workers 
in the household positively impacts the use of the walk mode, perhaps because the adult non-
worker can accompany the child on the walk to and from school (alleviating safety concerns 
associated with having the child walk alone).  However, when there are one or more adult non-
workers in the household with a spare automobile, then the utility of car increases. The parental 
attitude is captured through the attitudinal factor that measures whether the parents considered 
distance and traffic conditions to be issues associated with having their child(ren) commute by 
walk or bicycle.  If the attitudinal factor value increases, then it means that the parents 
considered the issue to be more serious.  As expected, in households where parents had issues 
with distance and traffic conditions, the utility of walk for commuting to and from school 
decreases.  Interestingly, the subjective attitudinal factor (capturing weather and safety concerns) 
was not statistically significant.  Physically active parent, either by being active bicyclist or 
active walker, increases the probability of child using the corresponding modes themselves. 
However the relationship seems to be weak and the coefficients were insignificant at 0.05 level 
of significance. So these parameters are not included in the final results presented in this paper. 

Spatial factors play an important role in determining school mode choice.  The 
accessibility of the neighborhood is measured by the total amount of retail employment that can 
be reached within a 10-minute radius of the home location.  These accessibility measures were 
computed at the tract-level using block-level data about employment in different industry sectors 
obtained from the Southern California Association of Governments (SCAG).  In general, it is 
found that a higher level of neighborhood accessibility (measured in terms of retail employment) 
has a negative association with school bus mode utility.  It is possible that these households are 
in higher density areas more conducive to walking and bicycling, or have busy streets that 
motivate the use of the car.  This finding is consistent with that reported previously by Ulfarsson 
and Shankar (24), Yarlagadda and Srinivasan (14), and Ewing et al. (12).  

Spatial interaction effects were tested by specifying the weight matrix using both 
geographical proximity and demographic closeness as potential measures of the correlation. For 
geographic proximity, alternate specifications of distance (e.g., inverse of distance between 
individuals, inverse of exponentiated distance) and membership in a county (wij = 1 if i and j 
belong to the same county; wij = 0 otherwise) were used. The distance between individuals was 
obtained as the distance separation between the centroids of the tracts of the household locations 
of individuals. For demographic closeness, alternate specifications of income and age similarity 
were created using demographic distance measures. For each of these specifications, parameters 
were estimated independently using the MACML approach described in this paper. The social 
interaction effects turned out to be statistically insignificant in all demographic distance-based 
weight matrix specifications. The spatial interaction parameter was significant (and positive) for 
all geographic distance-based weight matrix specifications and the best CML was obtained for 
the specification using the inverse of distance as the spatial proximity measure. 

The spatial correlation parameter ρ is positive, high in magnitude (0.844), and statistically 
significant indicating that there is high degree of geographical interdependence in the choice of 
mode of travel to school. This indicates that the spatial lag model is more appropriate than the 
non-spatial independent multinomial probit (IMNP) model. Another way to demonstrate this is 
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to use the adjusted composite maximum likelihood ratio test (ADCLRT) statistic, which follows 
a chi-squared distribution (see 34, 31). This statistic returned a value of 17.2 for comparing the 
spatial lag model with the IMNP model, which is higher than the corresponding chi-squared 
table value with one degree of freedom at any reasonable level of significance. However, and 
very importantly, the difference between the IMNP model and the spatial lag model is not simply 
a matter of data fit. The effects of a change in variable on aggregate mode shares will be quite 
different between the two models, because the IMNP model ignores interdependence, while the 
spatial lag model accommodates spillover effects due to interactions between decision-agents 
and so may lead to relatively large changes in aggregate mode behavior despite only small 
changes in the underlying primitives (or determinants) of the behavior. To demonstrate this 
difference in effects between the IMNP and the spatial lag model, we examined the effect of a 
5% decrease in walk time to school (say due to better siting of schools relative to residences) and 
the impact of a 25% decrease in the level of negativity in parental attitude (in the context of 
distance and traffic conditions being deterrents) toward allowing children to travel to school by 
walk or bicycle.  The decrease in walk time is estimated to lead to a 0.29% decrease in car mode 
share according to the IMNP model, but a decrease in car mode share by almost 12% according 
to the spatial lag model. Similarly, the improvement in parental attitude toward non-motorized 
modes is estimated to decrease the car mode share by just 0.48% according to the probit model, 
but by 3.2% as per the spatial lag model. Clearly, the spillover effects are at work here, and the 
IMNP model provides estimates that are quite different than the spatial lag model.  

In summary, the spatial interdependence means that, for any individual, the utility of each 
alternative is positively (negatively) influenced by an increase (decrease) in the utility of 
corresponding alternatives for his/her geographical neighbors.  In other words, the spatial 
dependence in school mode choice appears to arise more from social interaction and 
neighborhood location effects associated with households geographically clustered closer 
together.  It is possible that parents of households living in a zone or tract or neighborhood 
interact with one another and share experiences about school travel of their children.  
Households may band together to facilitate walking and bicycling in a safe and secure way, but 
this interaction among households is more due to geographic proximity considerations as 
opposed to socio-economic similarity considerations (although it is plausible that households 
living within a neighborhood are at least somewhat homogeneous with respect to socio-economic 
characteristics).  When other children in the neighborhood use a mode like bicycling or walking, 
this creates a positive externality by improving the safety of bicycling and walking in the 
neighborhood, thus enhancing the utility of these modes for any particular household in the 
neighborhood.  As households in a geographical cluster are likely to deal with the same or 
similar built environment, it is not surprising that the geographic distance-based spatial 
interaction parameter turned out to be statistically significant.  
 
6. CONCLUSIONS 
This research has focused on the modeling of school trip mode choice behavior among children 
(less than 15 years of age) with a view to examine for the presence of spatial and social 
interaction effects that may impact such behavior.  These effects may arise due to interactions 
among households that are geographically or demographically similar to one another.  When 
such interaction effects are present, the modal utilities of individuals become dependent, thus 
violating the basic assumption of traditional discrete choice models which assume independence 
of error terms across observations.  The usual maximum likelihood estimation of a model that 
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accounts for global spatial/social effects is quite complex as one must evaluate very high 
dimensional integrals of a multivariate normal distribution to compute the likelihood function 
(the order of the integral is the number of observations multiplied by the number of alternatives 
minus one; in the empirical context of the current study, this translates to 4000-dimensional 
integrals).  In this paper, a maximum approximated composite marginal likelihood (MACML) 
approach recently developed by Bhat (31) is employed to estimate a school mode choice model 
that accounts for spatial interaction effects.   

In this paper, the MACML approach is applied to a sample of children in the Southern 
California (Los Angeles and surrounding cities) region of the United States using data collected 
as part of the 2009 National Household Travel Survey (NHTS).  The survey sample includes 800 
children who provided detailed mode choice information for the journey to and from school 
along with information about household member use of bicycle and walk modes, and parental 
concerns about the built environment in relation to their children’s use of bicycle and walk for 
traveling to and from school.  Both an independent probit model (that does not account for 
spatial interaction effects) and a spatial correlation model were estimated to see whether the 
spatial interaction effects are indeed significant and present.  It is found that the spatial 
correlation, arising from interactions among households that are geographically clustered, is 
statistically significant.   

The findings in this paper suggest that the consideration of spatial interaction effects is 
important in modeling mode choice behavior, particularly in the context of children’s school 
mode choice, where residential proximity-based interaction among households and children is 
likely to be prevalent.  Essentially, this means that programs aimed at enhancing bicycle and 
walk as modes of choice for the trip to and from school (such as Safe Routes to School program 
in the United States) should be focused in such a way that it maximizes the likelihood of 
interactions based on geographic proximity. That is, given that spatial interaction effects fade 
over distance (based on the inverse distance specification for the spatial weights), one can use an 
optimization program to define the boundaries of “fixed’ neighborhoods to maximize interaction 
effects.   

The current paper accommodates spatial dependence due to proximity in residential 
locations of children and social interaction effects. An avenue for future research would be to 
extend the dependence effects to include proximity in school locations of children, with the 
notion that peer effects at school may also impact children’s school mode choice. This additional 
effect can be accommodated in a straightforward manner in our methodology by defining 
another weight matrix kW  that corresponds to school location proximity, and considering this 
weight matrix as one additional finite mixture dimension affecting the overall weight matrix W 

( ∑
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).ϕ  However, this would require the identification of the schools that each child in 

the sample goes to, with a geo-coding of these school locations. This information is not available 
in the NHTS data used in the current analysis, but may be available in other activity-travel data 
sets in which each activity episode location is geo-coded. 
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TABLE 1  Sample Demographic Characteristics 

Characteristic Value 
Average travel time to school  (min) 12.4 
Average travel time to school by modal market segment (min)  

Car 10.9 
School Bus 25.8 
Bicycle 14.0 
Walk 12.1 
Car – School Bus 16.7 
Car – Walk  9.7 

Median household income $70,800 
Median household income by modal market segment (min)  

Car $78,000 
School Bus $50,300 
Bicycle $73,600 
Walk $54,700 
Car – School Bus $82,700 
Car – Walk  $68,400 

Number of household members 4.3 
Number of vehicles in household 2.4 
Number of bicycle trips in past week 1.3 
Number of walk trips in past week 4.0 
Number of adults in household 2.3 
Number of workers in household 1.5 

 
 
 

TABLE 2  School Mode Choice Distribution by Distance from Home to School 

Mode 
Distance home to school 

Total 
< ¼ mile ¼ - ½ mile ½ - 1 mile 1-2 miles > 2 miles 

Car 23.9% 46.2% 56.8% 68.5% 74.7% 44.3% 

School Bus - 2.5% 1.2% 7.6% 15.7% 33.8% 

Bicycle 2.5% 1.7% 4.9% 2.0% 0.5% 1.2% 

Walk 60.4% 37.0% 22.2% 10.4% 1.1% 7.0% 

Car-School Bus - - 0.6% 0.8% 6.4% 10.1% 

Car-Walk 13.2% 12.6% 14.2% 10.8% 1.6% 3.5% 

Total children 159 119 162 251 439 1130 

% by distance 14.1% 10.5% 14.3% 22.2% 38.8% 100% 
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TABLE 3  Model Estimation Results 

Variable 
Category Variable Mode Utility 

Equation 
Independent Probit Spatial Model 

Coef Est/std err Coef Est/std err

Alternative 
Specific constant 

School Bus   0.393  1.864  1.413  4.819 

Bicycle  -3.721 -4.724 -1.942 -2.845 

Walk   0.570  2.112  1.420  4.307 

Car + School Bus  -0.858 -5.424  1.133  0.869 

Car + Walk  -2.000 -6.814 -1.103 -3.837 

Trip 
Characteristics 

Time to walk Walk -0.061 -11.522 -0.063 -10.599 

Distance to school < 2 miles School Bus -0.542 -3.740 -0.521 -3.635 

Distance to school < 2 miles Bicycle, Car+Walk  1.099  6.458  1.123  5.908 

Distance to school < 2 miles Car+School Bus -1.629 -0.285 -1.725 -0.724 

Individual 
Demographics 

Age Bicycle  0.157  2.537  0.165  2.575 

Age Walk, Car+Walk  0.056  3.236  0.058  3.298 

Female child Bicycle -0.920 -2.164 -0.943 -2.519 

Household 
Demographics 

Household Income School Bus -0.107 -5.270 -0.103 -5.244 

Household Income Walk -0.065 -3.989 -0.063 -3.971 
Vehicles per capita in 
household Car  0.440  2.545  0.447  2.514 

Adult non-worker present 
in household Walk  0.301  2.186  0.318  2.194 

Adult non-worker present  
and #cars > #workers Car  0.308  3.243  0.313  3.214 

Parents Attitude Attitude towards walk/bicycle 
mode Walk -0.102 -1.919 -0.108 -1.953 

Accessibility of 
neighborhood 

Total amount of retail 
employment that can be 
reached in 10 minutes 

School Bus -0.055 -2.049 -0.044 -2.160 

Spatial 
Interaction 
parameter 

ρ  - -  0.844  6.447 

 CML  -584880.8 -580600.8 

 

 
 


