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Abstract  

The use of simulation techniques has been increasing in recent years in the transportation 

and related fields to accommodate flexible and behaviorally realistic structures for analysis of 

decision processes. This paper proposes a randomized and scrambled version of the Halton 

sequence for use in simulation estimation of discrete choice models. The scrambling of the 

Halton sequence is motivated by the rapid deterioration of the standard Halton sequence's 

coverage of the integration domain in high dimensions of integration. The randomization of the 

sequence is motivated from a need to statistically compute the simulation variance of model 

parameters. The resulting hybrid sequence combines the good coverage property of quasi-Monte 

Carlo sequences with the ease of estimating simulation error using traditional Monte Carlo 

methods. The paper develops an evaluation framework for assessing the performance of the 

traditional pseudo-random sequence, the standard Halton sequence, and the scrambled Halton 

sequence. The results of computational experiments indicate that the scrambled Halton sequence 

performs better than the standard Halton sequence and the traditional pseudo-random sequence 

for simulation estimation of models with high dimensionality of integration.  

 

Keywords: Maximum simulated likelihood estimation, pseudo-random sequences, quasi-random 

sequences, hybrid sequences, multinomial probit model, mixed logit model, mixed probit model.  
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1. Introduction  

The use of simulation methods to estimate econometric models with analytically 

intractable criterion functions has grown rapidly in the past decade. To some extent, this has 

been due to the availability of faster computers. But researchers have also strived to improve the 

efficiency of simulation techniques so that, in combination with faster computing power, 

simulation methods are effective and feasible to implement even for large scale model systems.  

Simulation methods are now routinely applied in the estimation of limited-dependent and 

discrete choice models in the economics, marketing, and transportation fields. Such methods 

obviate the need to impose a priori behavioral restrictions on the mechanism underlying the 

decision process being examined. Many analytically tractable models, though elegant and simple 

in structure, maintain restrictions that are difficult to justify. For example, in a discrete choice 

context, the multinomial logit model has a simple form, but is saddled with the independence 

from irrelevant alternatives (IIA) property. Relaxing such rigid behavioral restrictions tends to 

lead to analytically intractable models. Some of these analytically intractable models, such as the 

heteroscedastic extreme value (HEV) model formulated by Bhat in 1995, involve a single-

dimensional integral that can be evaluated accurately using well-established quadrature 

techniques. However, quadrature formulas are unable to compute integrals with sufficient 

precision and speed for estimation of models with higher than 1-2 dimensions of integration (see 

Hajivassiliou and Ruud, 1994). In fact, because of the curse of dimensionality, the quadrature 

method is literally useless in high dimensions. Two broad simulation methods are available in 

high dimensions: (a) Monte Carlo methods and (b) Quasi-Monte Carlo methods. Each of these is 

discussed in the next two sections. Section 1.3 discusses a hybrid of the Monte-Carlo and Quasi-

Monte Carlo methods. 
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1.1 The Monte-Carlo method  

The Monte-Carlo simulation method (or “the method of statistical trials”) to evaluating 

multidimensional integrals entails computing the integrand at a sequence of “random” points and 

computing the average of the integrand values. The basic principle is to replace a continuous 

average by a discrete average over randomly chosen points. Of course, in actual implementation, 

truly random sequences are not available; instead, deterministic pseudo-random sequences which 

appear random when subjected to simple statistical tests are used (see Niederreiter, 1995 for a 

discussion of pseudo-random sequence generation). This pseudo-Monte Carlo (or PMC) method 

has a slow asymptotic convergence rate with the expected integration error of the order of N 
-0.5

 

in probability (N being the number of pseudo-random points drawn from the s-dimensional 

integration space). Thus, to obtain an added decimal digit of accuracy, the number of draws 

needs to be increased hundred fold. However, the PMC method's convergence rate is remarkable 

in that it is applicable for a wide class of integrands (the only requirement is that the integrand 

have a finite variance; see Spanier and Maize, 1994). Further, the integration error can be easily 

estimated using the sample values and invoking the central limit theorem, or by replicating the 

evaluation of the integral several times using independent sets of PMC draws and computing the 

variance in the different estimates of the integrand. 

 

1.2 The quasi-Monte Carlo method  

The quasi-Monte Carlo method is similar to the Monte Carlo method in that it evaluates a 

multidimensional integral by replacing it with an average of values of the integrand computed at 

discrete points. However, rather than using pseudo-random sequences for the discrete points, the 

quasi-Monte Carlo approach uses “cleverly” crafted non-random and more uniformly distributed 
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sequences (labeled as quasi-Monte Carlo or QMC sequences) within the domain of integration. 

The underlying idea of the method is that it is really inconsequential whether the discrete points 

are truly random; of primary importance is the even distribution (or maximal spread) of the 

points in the integration space. The convergence rate for quasi-random sequences is, in general, 

faster than for pseudo-random sequences. In particular, the theoretical upper bound of the 

integration error for reasonably well-behaved smooth functions is of the order of N–1 in the QMC 

method, where N is the number of quasi-random integration points. However, a limitation of the 

QMC method is that there is no practical way of statistically estimating the error in integration, 

because of the deterministic nature of the QMC sequences. Theoretical results are available to 

compute the upper bound of the error using a well-known theorem in number theory referred to 

as the Koksma-Hlawka inequality (Zaremba, 1968). This inequality provides the upper bound of 

the integration error as a function of the discrepancy of the QMC sequence and the variation of 

the integrand in the sense of Hardy and Krause (Niederreiter, 1992, Chapter 4; a sequence with 

high discrepancy is not as well distributed over the integration space as a sequence with low 

discrepancy). However, computing this theoretical error bound is not practical and, in fact, is 

much more complicated than evaluating the integral itself (Owen, 1997; Tuffin, 1996). Besides, 

the upper bound of the integration error from the theoretical result can be very conservative 

(Owen, 1998). 

  

1.3 The hybrid method and the research objectives of the current paper  

The discussion in the previous two sections indicates that quasi-MC sequences provide 

better accuracy than PMC sequences, while PMC sequences provide the ability to estimate the 

integration error easily. To take advantage of the strengths of each of these two methods, it is 
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desirable to develop hybrid or randomized QMC sequences (see Owen, 1995 for a history of 

such hybrid sequences). The essential idea is to introduce some randomness into a QMC 

sequence, while preserving the equidistribution property of the underlying QMC sequence. Then, 

by using several independent randomized QMC sequences, one can use standard statistical 

methods to estimate integration error.  

The development of randomized QMC (RQMC) sequences has been the subject of 

interest in number theory for several decades now (see Cranley and Patterson, 1976 for one of 

the earliest references to such sequences). However, it is only in the past few years that number 

theorists have made significant advances in RQMC techniques (Owen, 1997, 1998; Morohosi 

and Fushimi, 1998; Hickernell and Yue, 2000; Yue and Hickernell, 2001). Much of this literature 

is focused on theoretical analysis to prove that specific types of randomization techniques retain 

the good properties of the underlying QMC sequence that form the basis for randomization. 

Some studies (for example, Tuffin, 1996 and Okten, 1996) have also conducted numerical 

experiments to examine the variance reduction due to the use of RQMC sequences compared to 

PMC sequences.  

All the number-theoretical studies discussed above have focused on the use of RQMC 

sequences for accurate evaluation of a single multidimensional integral. In contrast, the focus of 

the current research is on the use of RQMC sequences for simulation estimation of an 

econometric discrete choice model. In such a simulation context, the objective is to accurately 

estimate underlying model parameters through the evaluation of multiple multidimensional 

integrals, each of which involves a parameterization of the model parameters and the data.  

The specific objectives of this study are threefold. The first objective is to propose the use 

of a randomized and scrambled version of the Halton sequence for simulation estimation of 
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econometric models. The Halton sequence is a QMC sequence that belongs to the family of r-

adic expansion of integers. The second objective is to develop an evaluation framework for 

comparing the performance of alternative simulation methods in a discrete choice context. The 

third objective is to undertake computational experiments to compare the performance of the 

pseudo-random sequence, the randomized standard Halton sequence, and the randomized 

scrambled Halton sequence.  

The rest of the paper is structured as follows. The next section discusses the basic 

structure of the Halton sequence. Section 3 presents a randomization scheme for any QMC 

sequence. Section 4 describes the use of the randomized Halton sequence for choice model 

estimation. Section 5 describes the evaluation framework, including the design for the numerical 

experiments in the paper. Section 6 presents the computational results. The final section closes 

the paper.  

 

2. The Halton Sequence  

This section presents two versions of the Halton sequence: the standard Halton sequence 

(Section 2.1) and a scrambled Halton sequence (Section 2.2).  

 

2.1 The standard Halton sequence  

The standard Halton sequence is designed to span the domain of the S-dimensional unit 

cube uniformly and efficiently (the interval of each dimension of the unit cube is between 0 and 

1). In one dimension, the standard Halton sequence is generated by choosing a prime number r 

(r 2) and expanding the sequence of integers 1, 2, …g, ...G in terms of the base r:  ≥

l
l

L

l
rgbg )(

0
∑
=

= , where 1)(0 −≤≤ rgbl  and ,          (1) 1+≤≤ LL rgr
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and l is an index of the power to which the base is raised.  The first condition in the above 

equation indicates that the digits  in the base expansion cannot exceed the base value less 

one.  The second condition determines the largest value of l (i.e., L) in the expansion of the 

integer g in the base r.  Thus, g (g = 1, 2,…,G) can be represented in digitized form by the r-adic 

integer string .  The Halton sequence in the prime base r is obtained by 

taking the radical inverse of g (g = 1, 2,…,G) to the base r by reflecting through the radical point: 

)(gbl

)()()...()( 011 gbgbgbgb LL −

 .           (2)  1
1

0
10 )(  basein   )()...()(0)( −−

=
∑=⋅= l

L

l
Lr rgbrgbgbgbgϕ

As an example of the sequence, consider the prime number 3 and the integer 5.  The 

integer 5 can be written in base 3 as .  Thus, the digitized form of the integer 5 

in base 3 is 12.  The radical inverse function corresponding to the integer 5 in base 3 is then 

obtained by reflecting the number 12 about the “decimal point” as 0.21 and expanding 0.21 in 

base 3 as .  The number 7/9 then forms the fifth number in the Halton 

sequence.  The values for other integers can be obtained similarly.  The first 8 numbers in the 

sequence corresponding to base 3 are 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9.  As should be clear, 

new numbers added to the sequence tend to fill in the gaps left by the previous numbers, making 

for well-distributed coverage in the interval (0,1).  The reader will also note that the sequence 

corresponding to the prime 3 comprises cycles of length 3 of monotonically increasing numbers 

(after adding a phantom value of zero at the beginning of the sequence).  More generally, the 

sequence corresponding to the prime r comprises cycles of length r of monotonically increasing 

numbers. 

01 32315 ×+×=

9/73132 21 =×+× −−

 The standard Halton sequence in S dimensions is obtained by pairing S one-dimensional 

sequences based on S pairwise relatively prime integers,  (usually the first S primes).  Srrr ,...,, 21
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The Halton sequence is based on prime numbers, since the sequence based on a non-prime 

number will partition the unit space in the same way as each of the primes that contribute to the 

non-prime number.  Thus, the gth multidimensional point of sequence is as follows: 

 ))(),...,(),(()(
21

gggg
Srrr ϕϕϕϕ = .              (3) 

The standard Halton sequence of length N is finally obtained as ])(,...,)2(,)1([)( ′′′′= nN ϕϕϕψ .  

Of course, once the standard Halton sequence is generated for the unit cube, the corresponding 

sequence for any other integration domain can be obtained using the integral transform result.  

For example, the multivariate normal standard Halton points over the dimensional domain of the 

real line can be obtained as , where )( )(1)( NNX ψ−Φ= Φ  is the standard cumulative normal 

distribution function (see Fang and Wang, 1994; Chapter 4). 

 

2.2 The Scrambled Halton sequence 

 A problem with the standard Halton sequence discussed above is that there is a strong 

correlation between higher coordinates of the sequence.  This is because of the cycles of length r 

for the prime r.  Thus, when two large prime-based sequences, associated with two high 

dimensions, are paired, the corresponding unit square face of the S-dimensional cube is sampled 

by points that lie on parallel lines.  For example, the fourteenth dimension (corresponding to the 

prime number 43) and the fifteenth dimension (corresponding to the prime number 47) consist of 

43 and 47 increasing numbers, respectively.  This generates a correlation between the fourteenth 

and fifteenth coordinates of the sequence.  This is illustrated diagrammatically in the first plot of 

Figure 1.  The consequence is a rapid deterioration in the uniformity of the Halton sequence in 

high dimensions (the deterioration becomes clearly noticeable beyond five dimension).  
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 Number theorists have proposed an approach to improve the uniformity of the Halton 

sequence in high dimensions.  The basic method is to break the correlations between the 

coordinates of the standard Halton sequence by scrambling the cycles of length r for the prime r.  

This is accomplished by permutations of the coefficients  in the radical inverse function of 

Equation (2).  The resulting scrambled Halton sequence for the prime r is written as: 

lb

 ,               (4) 1

0
))(()( −−

=
∑= l

lr

L

l
r rgbg σϕ

where rσ  is the operator of permutations on the digits of the expansion  (the standard 

Halton sequence is the special case of the scrambled Halton sequence with no scrambling of the 

digits ).  Different researchers (see Braaten and Weller, 1979; Hellekalek, 1984; Kocis and 

Whiten, 1997) have suggested different algorithms for arriving at the permutations of the 

coefficients  in Equation (4).  The algorithm adopted in the current study corresponds to that 

of Braaten and Weller, who developed permutations that minimize the discrepancy of the 

resulting scrambled sequence for each prime r.  These permutations are presented in the 

Appendix A for the first ten prime numbers.  Braatan and Weller have also proved that their 

scrambled sequence retains the theoretically appealing  order of integration error of the 

standard Halton sequence. 

)(1 gb

)(1 gb

lb

1−N

An example would be helpful in illustrating the scrambling procedure of Braaten and 

Weller. These researchers suggest the following permutation of (0,1,2) for the prime 3: (0,2,1). 

As indicated earlier, the 5th number in base 3 of the Halton sequence in digitized form is 0.21. 

When the permutation above is applied, the 5th number in the corresponding scrambled Halton 

sequence in digitized form is 0.21, which when expanded in base 3 translates to 
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9/53231 21 =×+× −− . The first 8 numbers in the scrambled sequence corresponding to base 3 

are 2/3, 1/3, 2/9, 8/9, 5/9, 1/9, 7/9, 4/9.  

The Braaten and Weller method involves different permutations for different prime 

numbers. As a result of this scrambling, the resulting sequence does not display strong 

correlation across dimensions as does the standard Halton sequence. This is illustrated in the 

second plot of Figure 1, which plots 150 scrambled Halton points in the fourteenth and fifteenth 

dimensions. A comparison of the two plots in Figure 1 clearly indicates the more uniform 

coverage of the scrambled Halton sequence relative to the standard Halton sequence.  

 
3. Randomization of QMC Sequences  

All QMC sequences (including the standard Halton and scrambled Halton sequences 

discussed above) are fundamentally deterministic. This deterministic nature of the sequences 

does not permit the practical estimation of the integration error. Theoretical results exist for 

estimating the integration error, but these are difficult to compute and can be very conservative.  

The essential concept of randomizing QMC sequences is to introduce randomness into a 

deterministic QMC sequence that preserves the uniformly distributed and equidistribution 

properties of the underlying QMC sequence (see Shaw, 1988; Tuffin, 1996). One simple way to 

introduce randomness is based on the following idea. Let )( Nψ  be a QMC sequence of length N 

over the S-dimensional cube {0,1}S and consider any S-dimensional uniformity distributed vector 

in the S-dimensional cube .  )}1,0{( Su∈ )( Nψ  is a matrix of dimension , and u is a vector 

of dimension .  Construct a new sequence 

SN ×

S×1 { })()()( 1 NNN u ⊗+= ψχ , where {.} denotes the 

fractional part of the matrix within parenthesis, ⊗  represents the kronecker or tensor product, 

and  is a unit column vector of size N (the kronecker product multiplies each element of u )(1 N
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with the vector ).  The net result is a sequence  whose elements )(1 N )(Nχ nsχ  are obtained as 

sns u+ψ  if 1≤+ sns uψ , and 1−+ sns uψ  if 1>+ sns uψ .  It can be shown that the sequence 

 so formed is also a QMC sequence of length N over the S-dimensional cube {0,1}S.  Tuffin 

provides a formal proof for this result, which is rather straightforward but tedious.  Intuitively, 

the vector u simply shifts the points within each coordinate of the original QMC sequence 

)(Nχ

)( Nψ  

by a certain value.  Since all points within each coordinate are shifted by the same amount, the 

new sequence will preserve the equidistribution property of the original sequence.  This is 

illustrated in Figure 2 in two dimensions.  The first diagram in Figure 2 plots 100 points of the 

standard Halton sequence in the first two dimensions.  The second diagram plots 100 points of 

the standard Halton sequence shifted by 0.5 in the first dimension and 0 in the second dimension.  

The result of shifting is as follows.  For any point below 0.5 in the first dimension in the first 

diagram (such as the point marked 1), the point gets moved by 0.5 toward the right in the second 

diagram.  For any point above 0.5 in the first dimension in the first diagram (such as the point 

marked 2), the point gets moved to the right, hits the right edge, bounces off this edge to the left 

edge, and is carried forward so that the total distance of the shift is 0.5 (another way to visualize 

this shift is to transform the unit square into a cylinder with the left and right edges “sewn” 

together; then the shifting entails moving points along the surface of the cylinder and 

perpendicular to the cylinder axis).   Clearly, the two-dimensional plot in the second diagram of 

Figure 2 is also well-distributed because the relative positions of the points do not change from 

that in Figure 1; there is simply a shift of the overall pattern of points. The last diagram in Figure 

2 plots the case where there is a shift in both dimensions; 0.5 in the first and 0.25 in the second. 

For the same reasons discussed in the context of the shift in one dimension, the sequence 

obtained by shifting in both dimensions is also well-distributed.  
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It should be clear from above that any vector can be used to generate a new 

QMC sequence from an underlying QMC sequence. An obvious way of introducing randomness 

is then to randomly draw u from a multidimensional uniform distribution.  

Su }1,0{∈

An important point to note here is that randomizing the standard Halton sequence as 

discussed earlier does not break the correlations in high dimensions because the randomization 

simply shifts all points in the same dimension by the same amount. Thus, randomized versions of 

the standard Halton sequence will suffer from the same problems of non-uniform coverage in 

high dimensions as the standard Halton sequence. To resolve the problem of non-uniform 

coverage in high dimensions, the scrambled Halton sequence needs to be used.  

 
 
4. Use of the Randomized QMC Sequence in Model Estimation  

The focus of theoretical and empirical work in the mathematical field, in the context of 

QMC sequences and their randomized versions, has been on evaluating a single 

multidimensional integral accurately. However, as discussed earlier, the focus in model 

estimation is on evaluating underlying model parameters that appear in the integrands of several 

multidimensional integrals. The intent in the latter case is to estimate the model parameters 

accurately, and not expressly on evaluating each integral itself accurately.  

McFadden (1989) suggested simulation techniques using the pseudo-Monte Carlo (PMC) 

method for model parameter estimation in discrete response models. The method is based on 

drawing S random multidimensional points from the domain of integration for each observation 

in the estimation sample, and evaluating the contribution of each observation to the criterion 

function by averaging the value of the criterion function over the N random draws. The N 

random points are drawn independently for each observation. Because of the independent draws 
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across observations, and because each observation contributes to the criterion function, 

simulation errors in the evaluation of individual contributions average out. Thus, a much smaller 

number of draws per observation is sufficient to estimate the model parameters accurately than 

would be necessary to evaluate each individual observation’s contribution to the criterion 

function accurately. The simulation variance in parameter estimates can be estimated in a 

straightforward manner in the PMC approach by generating several independent sets of N*Q 

random multidimensional points (Q being the number of observations in the sample), estimating 

the model parameters for each set of points, and computing the standard deviation across the sets 

of model parameter estimates.   

Bhat (2001) proposed a simulation approach for discrete response models that uses quasi-

Monte Carlo (QMC) sequences. In his approach, Bhat generates a multidimensional QMC 

sequence of length N*Q, then uses the first N points to compute the contribution of the first 

observation to the criterion function, the second N points to compute the contribution of the 

second observation, and so on. This technique is also based on averaging out of simulation errors 

across observations. But rather than being random sets of points across observations, each set of 

N points fills in the gaps left by the sets of N points used for previous observations. 

Consequently, the averaging effect across observations is stronger when using QMC sequences 

than when using the PMC sequence. Train (1999) illustrates this effect very effectively and 

clearly by showing that the correlation in simulated probabilities between successive 

observations is negative and quite high when using the Halton sequence, but is close to zero 

when using the PMC sequence. In addition to the stronger averaging out effect across 

observations, the QMC sequence also provides more uniform coverage over the domain of the 

integration space for each observation compared to the PMC sequence. This enables more 
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accurate computations of the probabilities for each observation with fewer points (i.e., smaller N) 

when QMC sequences are used. Of course, the presumption here is that the QMC sequence is 

well distributed in the integration space. As suggested earlier, this may not be so for the standard 

Halton sequence in high dimensions. Because the scrambled sequence provides better coverage, 

we expect it to perform better than the standard Halton sequence in high dimensions.  

 The simulation variance in parameters cannot be computed with the QMC sequences 

because of the deterministic nature of QMC sequences. However, randomized versions of the 

QMC can be used for this purpose. Essentially, several independent sets of N*Q 

multidimensional QMC points are generated using the randomization technique discussed in 

Section 3. The model parameters are estimated for each set of points and the variance across the 

sets of model parameter estimates is computed. 

  

5. Evaluation Framework  

A challenge in evaluating alternative simulation methods for estimation is to propose a 

setting in which the underlying model parameters associated with a given sample can be obtained 

exactly. Then, one can evaluate the ability of alternative simulation methods to recover the actual 

model parameters. In earlier simulation-related studies, the “true” model parameters have been 

obtained using a very large number of draws.  For example, Bhat (2001) uses 20,000 random 

draws to estimate the parameters of a mixed logit model and declares the resulting estimates as 

the “true” parameter values.  Similarly, Hajivassiliou et al. (1996) use 20,000 draws to estimate 

“true” parameters of an autoregressive random-effects model.  However, the resulting parameter 

values may not be the true values because of simulation error even with 20,000 draws.  This is 

high. 
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 In the current paper, we propose a discrete choice model setting in which the true 

underlying model parameters associated with a given data sample can be obtained quickly and 

accurately.  Specifically, we consider a random-coefficients formulation in which the utility that 

an individual q associates with alternative i is written as: 

 qiqiqqi xU εβ +′=                        (5) 

where  is a column vector of exogenous attributes, qix qβ  is a column vector corresponding 

coefficients that varies across individuals with density )(βf , and qiε  is assumed to be an 

independently and identically distributed (across alternatives) normal error term with a variance 

of one.  In addition, we assume that each element of β  is normally distributed and that the 

elements of β  are independent of one another and the error term.  Next, define a vector θ  that 

includes the means of standard deviations of the normal distributions characterizing the elements 

of β .  With this specification, the choice probability of alternative for individual q can be 

computer in one of two ways:  (a) using a mixed probit framework or (b) using a multinomial 

probit (MNP) framework.  These two methods are discussed in the two subsequent sections.  

Section 5.3 discusses the experimental design in the current paper. 

i

 

5.1 The mixed probit framework 

 The unconditional choice probability of alternative for individual q corresponding to 

Equation (5) is given by the following mixed probit formula (see Train, 1995): 

i

 ,                         (6) )()|()()( βθββθ
β

dfLP qiqi ∫
+∞

−∞=

=

where 
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 .                      (7) [ ] )()(}{)( qiqiqiqjqi
ij

qi dxxL
qi

εεφεβββ
ε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′−′Φ= ∏∫

≠

∞

−∞=

The integral involved in )(βqiL  is only one-dimensional because of the IID normal distribution 

assumption for the error terms. The integral in Equation (6), on the other hand, is S-dimensional 

and is due to the random coefficients specification for the model parameters (s is the number of 

elements in β ). 

The focus of the experimental setting in the current paper is to evaluate the ability of 

alternative sequences (the PMC sequence, the randomized standard Halton sequence, and the 

randomized scrambled Halton sequence) to accurately recover the true mean and standard 

deviation of the random coefficients (i.e., the true value for θ ) using the maximum likelihood 

method. The single-dimensional integral in )(βqiL  is evaluated accurately using Gauss-Hermite 

quadrature, so that differences in the ability to recover the random coefficients can be attributed 

entirely to the sequence used in the evaluation of the multidimensional integral in Equation (6). 

Thus, for each draw of β  from an underlying θ  vector, )(βqiL  is evaluated using the quadrature 

method. The draws of β  for an underlying value of the vector θ  are based on the sequences 

discussed earlier. The sequences are generated using specialized code written by the author in the 

GAUSS matrix programming language (the code may be downloaded from the author’s web site 

at www.ce.utexas.edu/prof/bhat/home.html). 

 The reader will note that assuming that the error terms are identical and independently 

distributed with a Gumbel distribution in Equation (5) leads to a mixed logit framework.  The 

mathematical expressions for choice probabilities are simpler in the mixed logit than the mixed 

probit framework.  However, we use the mixed probit framework here because the choice 

probabilities in the resulting model can be written using a MNP framework.  When the number 
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of alternatives is small, the choice probabilities and the model parameters can be estimated 

accurately in the MNP framework (as we discuss in the next section), and can serve as the yard 

stick for evaluating the performance of alternative sequences for simulation estimation in the 

mixed probit framework. 

 

5.2 The MNP framework 

 The model of Equation (5) can be estimated in another way by combining the random 

part of the coefficient vector with the error term, and explicitly recognizing the resulting 

correlations across alternatives.  This formulation results in the traditional multinomial probit 

model (see Hausman and Wise, 1978).  To explicate this formulation, define a  matrix 

 and define 

SI ×

),...,,( 21 ′′′′= qIqqq xxxX 1×I  column vectors  and qU qε  obtained by stacking the 

utility values and error terms, respectively, of the I alternatives.  In vector form, Equation (5) 

may be written as: 

 )()( qqqqqqqq XXXU εδαεδα ++=++= ,                        (8) 

where α  is the vector of mean values of the elements of β  and qδ  is the vector of unobserved 

random deviations from the mean for individual q.  Let αqq XV =  and let qδ  be a realization 

from an underlying S-variate normal distribution with a mean vector of 0 and a variance matrix 

given by  (in the current formulation, δΣ δΣ  is a diagonal matrix with the sth diagonal element (s 

= 1, 2, …, S) being the variance in the sth element of the random parameter vector β ).  From 

Equation 8, the variance-covariance matrix of the utility vector U  is q qqqq IDX X +′Σ=Σ

ID

δ , 

where  represents an identity matrix of size I.  The expression for the probability of q
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individual q choosing alternative can be reduced to an i )1( −I

II ×− )1(

qiqiqiqiIqi VWWFP

 integral by defining the following 

 matrix operator (see Daganzo, 1979, pp. 43-44): 

 
  1 2 3 … i–1 i i+1 … I–1 I 
1  1 0 0 ... 0 -1 0 ... 0 0 
2  0 1 0 ... 0 -1 0 ... 0 0 
3  0 0 1 ... 0 -1 0 ... 0 0 
     …    …   

i–1  0 0 0 ... 1 -1 0 ... 0 0 
i  0 0 0 ... 0 -1 1 ... 0 0 

i+1  0 0 0 ... 0 -1 0 ... 0 0 
     …    …   

I–2  0 0 0 ... 0 -1 0 ... 1 0 
I–1  0 0 0 ... 0 -1 0 ... 0 1 

 

 

 

                           (9) =∆ i

 

 

 

 

Then, it can be shown that the required probability for alternative i  is as follows: 

        (10)  .' and     where),,(1 iqΩ∆=Ω−= − iqi ∆Σ∆=

),(1 qiqiI WF Ω−−  refers to the cumulative distribution function of the -variate normal 

random variable with mean vector given by 

)1( −I

qiW−  and covariance matrix given by qiΩ . The 

expression in Equation (10) is, in general, quite difficult to compute.  However, when the 

number of alternatives I is less than or equal to 4, one can compute the probabilities using well-

developed and very accurate routines for evaluating the bivariate and trivariate cumulative 

normal distribution functions. 

 

5.3 Experimental design 

 The discussion in the two previous sections on estimating a random-coefficients model 

with a probit kernel forms the basis for the experimental setting in this paper.  Specifically, we 
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generate a sample of 2000 observations with 10 independent variables for three alternatives.  The 

values for each of the 10 independent variables for the first two alternatives are drawn from a 

standard univariate normal distribution, while the corresponding values for each independent 

variable for the third alternative are drawn from a univariate normal distribution with mean 0.5 

and standard deviation of 1.  The coefficient to be applied to each independent variable for each 

observation is also drawn from a standard univariate normal distribution (i.e., );1,0(~ Nqsβ  q = 

1,2,…, Q and s = 1,2,…, S).  Finally, values of the error term qiε  in Equation (5) are generated 

from a standard univariate normal distribution and the utility of each alternative is computed 

based on Equation (5).  The alternative with the highest utility for each observation is then 

identified as the chosen alternative. 

 The data sample generated above is used to estimate the mean and standard deviations of 

the random coefficients using the mixed probit framework as well as the traditional MNP 

framework.  The mixed probit framework requires the computation of a 10-dimensional integral 

for each observation and provides a good setting to evaluate the performance of the PMC 

sequence, the randomized standard Halton sequence, and the randomized scrambled Halton 

sequence. The traditional MNP framework, on the other hand, requires only the computation of a 

bivariate cumulative normal distribution, and provides the true parameter estimates from the 

sample.  

An issue that needs to be resolved in the mixed probit framework is the number of 

quadrature points to use in the internal one-dimensional integration in )(βqiL  (see Equation 6).  

This one-dimensional integration is a consequence of the probit kernel used for the error terms 

qiε . It is important that the one-dimensional integration be evaluated accurately so that the ability 

to recover the parameters of the random-coefficients can be solely attributed to the type of 
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sequence used to evaluate the outer 10-dimensional integral. In the current paper, we used 10-

point Gauss-Hermite quadrature to evaluate the inner one-dimensional integral. This decision 

was based on a test of the accuracy of different numbers of quadrature points. Specifically we 

generated a data sample exactly as discussed earlier in this section, except that we retained fixed 

coefficients for β  in Equation (5). The estimates for β  can then be obtained accurately using a 

simple IID multinomial probit (MNP) model. The estimates can also be obtained using Equation 

(6), except that the outer integral is not present. The inner integral can be computed using 

different quadrature points to determine the number needed for accurate parameter estimation. In 

our analysis, we found that the parameter estimates from 10-point quadrature were almost 

exactly the same as the actual values from a MNP model (the mean percentage difference across 

all model parameters was 0.002 between the MNP and 10-point quadrature estimations; 8 of the 

10 parameters had identical values, while the other two differed by 0.01%).  

 

6. Computational Results and Comparative Performance  

All the numerical estimation methods were implemented using the GAUSS matrix 

programming language. The log-likelihood function and the gradients of the function with 

respect to relevant parameters were coded.  

The estimation of the true parameter values from the MNP estimation served as the 

benchmark to compare the performances of the pseudo-random Monte Carlo (PMC) method, the 

randomized standard Halton method, and the randomized scrambled Halton method. For the 

PMC estimations, we considered three different numbers of draws: 250, 500, and 1000. We did 

not go beyond 1000 draws because computation time starts to increase quite substantially beyond 

this many number of draws in high dimensions. For each number of draws, we estimated the 
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model 10 times using different random seeds to estimate simulation variance. For the Halton and 

scrambled Halton methods, we considered 50, 100, and 150 draws. Again, for each number of 

draws, we estimated the model 10 times by generating 10 randomized sequences as discussed in 

Section 4.  

The performance evaluation of the alternative simulation techniques was based on four 

criteria: (a) ability to recover the true model parameters, (b) ability to estimate the overall log-

likelihood function accurately, (c) ability to reproduce individual (i.e., observation-specific) 

likelihood function values, and (d) ability to replicate the individual logarithm of the likelihood 

function. For each of these criteria, the evaluation of the proximity of estimated and true values 

was based on two performance measures: (a) root mean square error and (b) mean absolute 

percentage error. Further, for each criterion-performance measure combination, we computed 

three properties: (a) bias, or the difference between the mean of the relevant values across the 10 

runs and the true values, (b) simulation variance, or the variance in the relevant parameters 

across the 10 runs, and (c) total error, or the difference between the estimated and true values 

across all runs.  

Tables 1 through 4 present the computational results. In each table, the error measures 

decrease in magnitude with higher number of draws within each of the PMC, standard Halton, 

and scrambled Halton sequences. However, the decrease in error measures is much more rapid 

for the Halton sequences compared to the PMC sequence. For example, in Table 1, the RMSE 

for total error decreases from 0.114 to 0.076 as the number of PMC draws is increased from 250 

to 1000. However, the RMSE decreases much more sharply from 0.191 to 0.064 as the number 

of scrambled Halton draws is increased from 50 to 150. A similar result can be noticed in the 

mean absolute percentage error measure. These results are a consequence of additional Halton 

 



 21

draws being strategically located to improve the coverage of the sampling domain, so that each 

additional draw of the Halton sequence contributes more to error reduction than does a random 

draw. The result is particularly noticeable in the bias of the model parameters. The reduction in 

bias is quite gradual with higher number of PMC draws; however, the bias decreases by about 

half or more for each additional 50 Halton draws. Between the standard and scrambled Halton 

sequences, the error measures in Table 1 are lower for each number of draws for the scrambled 

Halton sequence. This can be attributed to the more uniform coverage of the scrambled Halton 

sequence relative to the standard Halton sequence in high dimensions. Again, the difference in 

the two Halton sequences is particularly apparent in the bias measure. The standard Halton 

sequence maintains a reduction by about half for each additional 50 draws, while the scrambled 

Halton sequence shows a nonlinear reduction; an increase from 50 to 100 draws reduces bias by 

half, while the increase from 100 to 150 draws reduces the bias by more than a third.  

Table 2 presents the results for the overall log-likelihood function value. The RMSE and 

MAPE performance measures show that all the different sequences do reasonably well in 

estimating the overall log-likelihood function value. However, the Halton sequences again 

exhibit higher rates of decrease in error than does the PMC sequence. A peculiar result in Table 2 

is that the bias and total error for the MAPE performance measure is exactly identical for 50 

scrambled Halton draws (both the bias and total error values are 0.173). This is because the log-

likelihood value at convergence is overestimated in magnitude (relative to the actual value) by 

each of the 10 scrambled Halton runs.  

Tables 3 and 4 provide the results for the individual likelihood and log-likelihood 

functions, respectively. The RMSE in these tables may appear smaller than the values for the 

overall log-likelihood function value in Table 2, but this is deceiving because the RMSE values 
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in Tables 3 and 4 are computed at the individual level, while those in Table 2 correspond to the 

aggregate log-likelihood value across all individuals. The MAPE provides a better perspective 

here, and indicates that the average percentage error is higher in the computation of individual 

likelihood values than in the overall likelihood function. This is to be expected because of the 

averaging out effect of simulation errors across individuals in the computation of the overall log-

likelihood. Between the individual likelihood and log-likelihood values, the error in the latter is 

higher than in the former because of the logarithm transformation, which accentuates differences 

in the untransformed likelihood values.  

To summarize, three important overall observations may be made from Tables 1 through 

4. First, the standard Halton and scrambled Halton sequences provide more “bang for the buck” 

compared to the PMC sequence; much fewer Halton draws are necessary to provide the same 

level of accuracy as a higher number of PMC draws. Second, the scrambled Halton sequence is 

the most effective in high dimensions. In particular, about 100 scrambled draws appear to 

provide the same level of accuracy and precision as 150 standard Halton draws or 500 PMC 

draws, and 150 scrambled draws provide a higher level of accuracy and precision than 1000 

PMC draws. Third, a comparison of the MAPE values across the tables shows that the individual 

and overall likelihood function values are more accurately estimated than the model parameter 

values. This suggests a rather flat likelihood function near the optimum; that is, closeness of 

likelihood function values to the true likelihood value does not immediately imply closeness in 

model parameters too.  

 
7. Summary and Conclusions  

The use of simulation techniques for estimating discrete choice and other econometric 

models has been increasing in recent years to accommodate more behavioral realism in decision 
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structures. Most of the simulation techniques used to date are based on pseudo-random draws or 

its variants such as importance sampling. Bhat (2001) proposed the use of a quasi-random Monte 

Carlo (QMC) method (specifically, the standard Halton method) for discrete choice models. 

However, there are two problems with the use of the standard Halton sequence. First, the Halton 

sequence's coverage of the integration domain deteriorates quite rapidly in high dimensions. 

Second, the standard Halton sequence is deterministic, and so does not permit the computation of 

statistical error bounds. This paper proposes the use of a scrambled Halton sequence to ensure 

good coverage of the integration domain even in high dimensions. In addition, it proposes the 

use of a randomization technique along with the Halton sequence to facilitate the estimation of 

simulation error.  

The paper develops an evaluation framework for assessing the performance of the PMC 

sequence, the standard Halton sequence, and the scrambled Halton sequence. The results of the 

analysis indicate that the standard Halton sequence is not as good as the scrambled sequence in 

high dimensions. However, the standard Halton sequence still is to be preferred over the PMC 

sequence, given that it provides better accuracy with fewer draws. But the effectiveness of the 

standard Halton sequence is not as good as the results in Bhat (2001) and Train (1999). The 

results in these earlier papers suggest that 100 standard Halton draws provide about the same 

level of accuracy in model parameters as about 1000 PMC draws. But these results were in the 

context of a low level of dimensionality (1-5 dimensions).  In the current paper, which considers 

10 dimensions of integration, the results suggest that it take about 150 standard Halton draws to 

get the same comparable level of accuracy as 500 PMC draws. On the other hand, it takes only 

100 scrambled Halton draws to achieve the same degree of accuracy and precision as 150 
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standard draws or 500 PMC draws, and 150 scrambled Halton draws provides a better degree of 

accuracy and precision than 1000 PMC draws.  

This paper contributes to the existing small body of literature on the use of quasi-Monte 

Carlo sequences for econometric model estimation. It also generates several research issues that 

need careful investigation in the future. First, there is a need to evaluate alternative quasi-Monte 

Carlo sequences such as the Faure sequence and (t,m,s)-net sequences (see Niederreiter and 

Xing, 1998). Second, the method used here to randomize a QMC sequence is based on Tuffin 

(1996), but other methods have also been proposed (see Owen, 1997; Wang and Hickernell, 

2000). A comparison of alternative randomization schemes would be helpful. Third, the 

application of variance reduction techniques to randomized quasi-Monte Carlo estimators is 

another important research area. Fourth, there is a need to extend the scope of the current 

analysis to include different orders of dimension (such as 10, 20, 30, etc.) to examine the impact 

of dimensionality on the performance of alternative sequences. Fifth, it would be useful to 

examine the effectiveness of quasi-Monte Carlo sequences within a Bayesian estimation 

framework for complex discrete choice models (see Brownstone, 2000 and Train, 2001 for 

reviews of Bayesian estimation for discrete choice models).  

In closing, it is only fair to acknowledge that our knowledge of QMC sequences for 

econometric model estimation is still quite limited. Recent studies by Bhat (2001), Train (1999), 

and Hensher (1999) have investigated the performance of the standard Halton sequences for 

discrete choice models with low dimensionality (<5) of integration. The current paper has added 

to this literature by examining the performance of a scrambled and randomized Halton sequence 

in 10 dimensions. All these studies point quite clearly to the value of QMC sequences in model 

estimation. However, substantially more computational and empirical research into the use of 
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QMC sequences is needed in different settings (such as different patterns of correlation among 

exogenous variables, independent trials of performance using different simulated data sets, and 

different model structures) to draw more definitive conclusions. Notwithstanding this caveat, the 

current paper provides a first, but rather clear, indication that scrambled Halton sequences 

perform better than the standard Halton and PMC sequences when the dimensionality involved 

in model estimation is of the order of 10. 
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Prime r Permutation of (0  1  2  ... r-1) 

2 (0  1) 

3 (0  2  1) 

5 (0  3  1  4  2) 

7 (0  4  2  6  1  5  3) 

11 (0  5  8  2  10  3  6  1  9  7  4) 

13 (0  6  10  2  8  4  12  1  9  5  11  3  7) 

17 (0  8  13  3  11  5  16  1  10  7  14  4  12  2  15  6  9) 

19 (0  9  14  3  17  6  11  1  15  7  12  4  18  8  2  16  10  5  13) 

23 (0  11  17  4  20  7  13  2  22  9  15  5  18  1  14  10  21  6  16  3  19  8  12) 

29 (0  15  7  24  11  20  2  27  9  18  4  22  13  26  5  16  10  23  1  19  28  6  14  17  3  25  12  8) 

Permutations for Scrambled Halton Sequences 

Appendix  

 Source: Braaten and Waller (1979)  
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Figure 1.  150 Draws of Standard and Scrambled Halton Sequence
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Figure 2.  Shifting the Standard Halton Sequence
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Table 1.  Evaluation of Ability to Recover Model Parameters 

Pseudo-Random Monte 
Carlo (PMC) Estimation Standard Halton Estimation Scrambled Halton 

Estimation Performance 
Measure Estimator Property 

250         500 1000 50 100 150 50 100 150

Bias          0.054 0.041 0.035 0.204 0.102 0.068 0.166 0.084 0.026

Simulation Variance          0.100 0.080 0.067 0.117 0.101 0.074 0.094 0.073 0.058RMSE1 

Total Error          0.114 0.090 0.076 0.235 0.143 0.100 0.191 0.111 0.064

Bias          6.939 6.178 5.330 26.450 13.670 6.784 21.930 11.577 3.368

Simulation Variance          13.030 10.160 8.259 15.939 14.202 10.402 13.097 10.577 8.034MAPE2 

Total Error          14.315 11.934 9.461 28.227 19.618 12.097 24.280 12.612 8.622

 
1 
RMSE: Root Mean-Square Error

  

2
 MAPE: Mean Absolute Percentage Error  
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Table 2.  Evaluation of Ability to Estimate Overall Log-Likelihood Function Value 

Pseudo-Random Monte 
Carlo (PMC) Estimation Standard Halton Estimation Scrambled Halton 

Estimation Performance 
Measure Estimator Property 

250         500 1000 50 100 150 50 100 150

Bias          1.300 1.253 1.191 3.132 1.870 1.196 2.323 1.366 0.599

Simulation Variance          2.132 1.723 1.417 2.424 2.478 2.225 1.982 1.798 1.502RMSE1 

Total Error          2.497 2.131 1.851 3.961 3.105 2.526 3.053 2.258 1.616

Bias          0.097 0.093 0.089 0.233 0.139 0.089 0.173 0.102 0.044

Simulation Variance          0.139 0.110 0.086 0.145 0.156 0.129 0.137 0.123 0.075MAPE2 

Total Error          0.161 0.127 0.109 0.269 0.178 0.161 0.173 0.136 0.079

 
1 
RMSE: Root Mean-Square Error 

2
 MAPE: Mean Absolute Percentage Error  
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Table 3.  Evaluation of Ability to Estimate Individual Likelihood Function 

Pseudo-Random Monte 
Carlo (PMC) Estimation Standard Halton Estimation Scrambled Halton 

Estimation Performance 
Measure Estimator Property 

250         500 1000 50 100 150 50 100 150

Bias          0.007 0.005 0.004 0.011 0.007 0.005 0.011 0.006 0.003

Simulation Variance          0.020 0.014 0.010 0.027 0.018 0.014 0.025 0.015 0.008RMSE1 

Total Error          0.021 0.015 0.011 0.030 0.020 0.015 0.028 0.016 0.008

Bias          1.397 0.985 0.719 2.394 1.390 1.01 2.588 1.273 0.624

Simulation Variance          3.751 2.596 1.872 5.140 3.555 2.700 4.658 2.668 1.647MAPE2 

Total Error          3.999 2.791 2.006 5.757 3.832 2.892 5.389 2.950 1.798

 
1 
RMSE: Root Mean-Square Error

  

2
 MAPE: Mean Absolute Percentage Error  
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Table 4.  Evaluation of Ability to Estimate Individual Log-Likelihood Function 

Pseudo-Random Monte 
Carlo (PMC) Estimation Standard Halton Estimation Scrambled Halton 

Estimation Performance 
Measure Estimator Property 

250         500 1000 50 100 150 50 100 150

Bias          0.024 0.017 0.012 0.048 0.028 0.018 0.046 0.021 0.009

Simulation Variance          0.064 0.043 0.032 0.089 0.065 0.057 0.085 0.048 0.026RMSE1 

Total Error          0.069 0.046 0.034 0.101 0.071 0.060 0.097 0.052 0.028

Bias          2.874 2.061 1.658 5.809 3.051 2.149 5.595 2.207 1.201

Simulation Variance          7.693 5.403 3.971 11.627 7.509 5.739 10.068 5.917 3.635MAPE2 

Total Error          8.231 5.811 4.477 12.886 8.164 6.148 11.743 6.212 3.811

 
1 
RMSE: Root Mean-Square Error

  

2
 MAPE: Mean Absolute Percentage Error  

 

 


