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ABSTRACT 

This paper proposes a flexible econometric structure for injury severity analysis at the level of 

individual crashes that recognizes the ordinal nature of injury severity categories, allows 

unobserved heterogeneity in the effects of contributing factors, as well as accommodates spatial 

dependencies in the injury severity levels experienced in crashes that occur close to one another 

in space. The modeling framework is applied to analyze the injury severity sustained in crashes 

occurring on highway road segments in Austin, Texas. The sample is drawn from the Texas 

Department of Transportation (TxDOT) crash incident files from 2009 and includes a variety of 

crash characteristics, highway design attributes, driver and vehicle characteristics, and 

environmental factors. The results from our analysis underscore the value of our proposed model 

for data fit purposes as well as to accurately estimate variable effects. The most important 

determinants of injury severity on highways, according to our results, are (1) whether any vehicle 

occupant is ejected, (2) whether collision type is head-on, (3) whether any vehicle involved in 

the crash overturned, (4) whether any vehicle occupant is unrestrained by a seat-belt, and (5) 

whether a commercial truck is involved. 

 

Keywords: highway crash injury severity, generalized ordered response model, unobserved 

heterogeneity, spatial dependence, composite marginal likelihood, spatial econometrics.  
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1. INTRODUCTION 

1.1 Background 

Roadway crashes are the leading cause of death in the U.S. among individuals 5-24 years of age 

(Murphy et al., 2012), and impose a tremendous emotional and economic burden on society. 

This has led to substantial research investments to identify the risk factors associated with the 

occurrence of, and severity of injuries sustained in, crashes, so that appropriate improvements in 

vehicle and roadway design may be implemented to reduce the number of crashes as well as the 

injury severity of those involved in crashes. These efforts, supplemented by reinforcing safety 

policies and information campaigns, may have contributed (along with economic conditions) to 

the steady drop since 2005 in the number of roadway crashes and fatalities (see NHTSA, 2012). 

However, police-reported crashes in 2010 still numbered 5.4 million and resulted in 32,885 

fatalities (NHTSA, 2012), underscoring the continued need to better understand the determinants 

of crash frequency and injury severity. 

Transportation and safety researchers have adopted a wide variety of methodological 

approaches to model crash occurrence and injury severity. In this regard, crash frequency data 

are in the form of counts, while injury severity is typically reported and collected on an ordinal 

scale. Also, the factors associated with crash frequency and injury severity suffered in a crash 

can be quite different. As a result, different modeling mechanisms and different variable 

specifications are considered for crash frequency and injury severity conditional on crash 

characteristics. Lord and Mannering (2010) provide a review of methods for crash frequency 

analysis, while Savolainen et al. (2011) present a corresponding review of methods for injury 

severity analysis. In this paper, the objective is to contribute to the methods for injury severity 

analysis by proposing an approach to accommodate the dependence in injury severity levels 

sustained in proximally occurring crashes, and to apply our proposed method to the analysis of 

highway injury severity data obtained from the crash incident files maintained by the Texas 

Department of Transportation. 

 

1.2 Injury Severity Analysis: An Overview 

There are several methodological issues that need to be considered in injury severity analysis. 

For example, Ye and Lord (2011) examine the effects of different under-reporting rates of 

crashes by injury severity level, and Bhat and colleagues (see Eluru and Bhat, 2007 and Paleti et 
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al., 2010) develop methods to recognize the potential endogeneity of “explanatory” variables.1 In 

this paper, our emphasis will be on recognizing three other specific econometric issues in injury 

severity analysis: (1) The nature of the dependent variable (and model flexibility vis-à-vis the 

nature of the dependent variable), (2) unobserved heterogeneity in the effects of variables, and 

(3) spatial dependency effects (this last issue also leads to the recognition of heteroscedasticity in 

the error terms in the underlying latent variable determining injury severity levels).  

 

1.2.1 The nature of the dependent variable 

The injury severity level of a traffic crash is in the form of a series of ordinal levels such as no 

injury, possible injury, non-incapacitating injury, incapacitating injury, and fatal injury. Thus, 

many injury severity studies in the past have used a standard ordered-response (SOR) model 

structure (including the ordered logit or the ordered probit) (see, for example, Dissanayake and 

Ratnayake, 2006, Xie et al., 2009, Christoforou et al., 2010, Haleem and Abdel-Aty, 2010, 

Quddus et al., 2010, Jung et al., 2010, Paleti et al., 2010, Liu and Donmez, 2011, Zhu and 

Srinivasan, 2011). However, the SOR model structure is quite susceptible to parameter 

inconsistency problems caused by varying under-reporting rates (across injury severity levels) in 

the data (see Ye and Lord, 2011). It is also saddled with a restrictive monotonic form for the 

effect of variables on injury severity levels. Specifically, as discussed in Eluru et al. (2008), the 

SOR structure holds the threshold values to be fixed across crashes, which will, in general, lead 

to inconsistent injury risk propensity and threshold values, and inconsistent effects of variables 

on the probability of different categories of injury severity. Savolainen et al. (2011) also point 

out this limitation of the SOR structure, with the following example. Assume the presence of 

three ordinal injury severity levels: no injury, some injury, and fatality, and let the deployment 

(or not) of an airbag be a key attribute influencing the latent injury severity propensity variable in 

the SOR structure. Then, the SOR structure will require that crashes in which an airbag deployed 

will entail a higher probability of no injury and a lower probability of fatal injury relative to 

                                                 
1 Endogeneity refers to the situation where explanatory variables may be correlated with the unobserved error term 
in the dependent variable model. For instance, there is evidence that seat belt non-users tend to be intrinsically 
unsafe drivers (see Janssen, 1994 and Petridou and Moustaki, 2000). That is, there are personality characteristics of 
non-seat belt users (such as aggressive driving behavior and risk attitudes) that may not be available in the data 
being analyzed, and these unobserved factors that affect seat belt non-use also tend to increase injury severity 
propensity. If this sample selection is ignored, the result is, in general, an artificially inflated estimate of the 
effectiveness of seat belt use. This has been found by Eluru and Bhat (2007), while Winston et al. (2006) 
demonstrate similar results in the context of air bag effectiveness. 



3 

otherwise observationally identical crashes where an airbag did not deploy. On the other hand, it 

is quite possible that the deployment of an airbag will decrease both the probability of no injury 

(because airbag deployment by itself can cause minor injuries) as well as fatal injury. This kind 

of an influence pattern cannot be captured by the SOR structure. 

Another structure that has seen substantial use in injury severity analysis is the 

unordered-response (UR) model structure, including the multinomial logit model or the 

sequential binary choice model (see Shankar and Mannering, 1996, Ulfarsson and Mannering, 

2004, Khorashadi et al., 2005, Rifaat et al., 2011, and Yan et al., 2011), the Markov switching 

multinomial logit model (Malyshkina and Mannering, 2009), and the nested logit model 

(Savolainen and Mannering, 2007, Huang et al., 2008, Hu and Donnell, 2010, Patil et al., 2012). 

The UR model structure is more robust to varying under-reporting rates across injury severity 

levels, and is also flexible enough to accommodate unrestricted forms for the effects of variables 

(such as the airbag-related effects discussed earlier). However, it fundamentally does not 

recognize the ordinal nature of injury severity data, is somewhat more difficult to interpret than 

the SOR structure, and leads to a proliferation of parameters to be estimated.  

A third structure that has been used more recently for injury severity modeling, and the 

one used in the current paper, is the generalized ordered-response (GOR) structure that 

essentially combines the strengths of the SOR and the UR approaches (see Eluru et al., 2008). 

Specifically, it strictly recognizes the ordinal nature of injury severity, while also allowing more 

flexibility than the SOR structure with much fewer parameters than the UR structure. The 

flexibility is achieved by relaxing the constant threshold assumption (across crashes) of the SOR 

structure through the parameterization of the thresholds themselves as a function of explanatory 

variables. One interpretation of the GOR structure is that, given a set of variables that 

characterize a certain crash context, the underlying latent continuous variable in the ordered-

response structure represents the general injury risk propensity from the crash. However, there 

may be some specific driver and other contextual characteristics that dictate the translation of the 

general risk propensity into the manifested injury severity level. In the airbag example, the 

deployment of the airbag may reduce the risk propensity from the primary crash (which gets 

incorporated through the reduction of the general risk propensity), but there could also be a 

remnant effect not related to the primary crash that increases the probability of minor injury 
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relative to no injury (which gets incorporated in the thresholds that map the general risk 

propensity into the manifested injury levels).2  

 

1.2.2 Unobserved heterogeneity in the effects of variables 

A majority of injury severity studies to date have assumed that there are no variations in the 

effects of explanatory variables in the underlying structures for the SOR or UR models. 

However, it is very likely that there are unobserved crash-specific factors that may moderate the 

impact of explanatory variables. For example, some angle crashes may lead to injury severities 

of those involved that may be far more severe than head-on crashes, even if the majority of angle 

crashes lead to a lesser degree of injury severity. This may be because some angle crashes may 

lead to a spinning or even an overturning of one or more vehicles involved in the crash, leading 

to severe injuries. Such possibilities may be reflected by accommodating a random coefficient on 

the “angle crash” dummy variable (with “rear-end” crashes being the base category) in the 

underlying risk propensity specification in the SOR and GOR model structures, or multiple 

random coefficients on the “angle crash” dummy variable in the injury-specific propensity 

specifications of the UR model structure. While the presence of unobserved heterogeneity effects 

will be context-dependent, the analyst should consider these effects rather than dismissing them 

without testing for their presence. In particular, when present, these unobserved heterogeneity 

effects can have very real implications for the accurate assessment of the effects of variables and 

for the design of countermeasures to reduce injury severity. This realization has resulted in many 

more studies in the past five years or so that consider unobserved heterogeneity effects, including 

in SOR structures (see Srinivasan, 2002, Eluru and Bhat, 2007, Paleti et al., 2010, and 

Christoforou et al., 2010), in UR structures (see Milton et al., 2008, Anastasopoulos and 

Mannering, 2011, Chen and Chen, 2011, and Moore et al., 2011), and in GOR structures (see 

Eluru et al., 2008). 

                                                 
2 The GOR structure discussed here is quite different from other generalizations of the ordered structure used in 
Quddus et al. (2010) and Wang et al. (2011). Specifically, the generalization in these other papers, which is based 
on Fu (1998) and Williams (2006), cannot be cast in the form of a continuous underlying process (risk propensity) 
that gets mapped to the observed outcomes (injury levels) in the way the SOR model or our GOR structure can be. 
More generally, the connection between the underlying injury risk propensity scale and the observed injury 
outcomes becomes ambiguous and unclear in this alternative form of generalization (see Greene and Hensher, 2009; 
page 198). Further, this alternative generalization has the problem that the probabilities need not be positive for 
some combinations of explanatory variables, and it is impossible to resolve this problem unless one imposes 
restrictions on the generalization that brings it back to the simple SOR structure.  
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1.2.3 Spatial dependency effects 

Another methodological challenge in injury severity modeling, as highlighted by Savolainen et 

al. (2011), is the inclusion of spatial dependence. Recognizing spatial dependence is important 

because crash locations are mapped to a spatial unit of analysis, such as intersections or highway 

sections. Thus, to analyze injury severity of crashes occurring at urban intersections, the roadway 

geometrics and signal characteristics of the intersection constitute a part of the explanatory 

variable vector. Similarly, to analyze injury severity levels for crashes on highways, the 

explanatory variables will typically include the roadway characteristics of a specific section of 

the highway around the crash location. In addition to these observed characteristics of the spatial 

unit to which a crash is mapped, there are likely to be unobserved factors of the spatial unit that 

can impact injury risk propensity. Now consider two crashes at proximally located intersections 

or highway sections. It is certainly possible that a certain observed design element at one crash 

location (say, for example, narrow approach lanes at an intersection or a sharp horizontal curve 

on a highway section) not only influences injury risk propensity at that location, but also has a 

“spatial spillover” effect on the injury risk propensity at proximally located crash sites. In 

addition, there may be common unobserved (to the analyst) location factors (such as the absence 

of center dividers at adjacent intersection locations or a narrow shoulder on adjacent highway 

locations) that may lead to a “spatial correlation” effect in the error terms of the injury risk 

propensity at proximally located crash locations. Ignoring such spatial dependencies will, in 

general, result in inconsistent and inefficient parameter estimation in non-linear models (see 

Franzese and Hays, 2008 and LeSage and Pace, 2009 for exhaustive treatments of spatial models 

in discrete choice contexts). Despite this, there has been no study, to our knowledge, in the injury 

severity literature that has considered spatial dependency in injury severity modeling.  

 

1.3 The Current Paper 

The purpose of this paper is to contribute to the literature on risk factors associated with injury 

severity. In doing so, we use a GOR model structure that combines the strengths of the SOR and 

UR approaches, accommodates unobserved heterogeneity in the effect of determinant variables, 

and explicitly incorporates spatial dependency effects. To our knowledge, this is the first such 

formulation to be proposed and applied in the injury severity analysis literature. The complex 

spatial dependences in the resulting multivariate GOR framework lead to an analytically 
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intractable likelihood function. To overcome this problem, we use a composite marginal 

likelihood (CML) inference approach for choice models, which is easy to implement and is 

based on evaluating lower-dimensional marginal probability expressions that do not require 

simulation (see Bhat et al., 2010, Varin et al., 2011). 

The proposed framework and inference approach is applied to study injury severity levels 

associated with crashes on highways in Austin, Texas. The focus on highway crashes is because 

highways have high speed limits, which leads generally to more severe injury outcomes than on 

other roadways (Ma et al., 2009). To put this in perspective, nearly one-half of all fatal crashes in 

2009 occurred on roads with posted speed limits of 55 mph or more, which are usually highways 

(NHTSA, 2011). Further, underreporting is usually lower on highways than on other road classes 

(see Amoros et al., 2006). The crash data used in the analysis is drawn from the Texas 

Department of Transportation crash incident files for the year 2009, and includes detailed 

information on crash, driver, vehicle, roadway segment, and environmental factors. 

The rest of the paper is structured as follows. The next section presents the modeling 

framework. Section 3 describes the data source employed and the sample formation procedures. 

Section 4 presents the empirical estimation results and the implications of these results for 

designing countermeasures. The final section summarizes the findings and offers concluding 

thoughts.  

 

2. MODELING FRAMEWORK 

In this section, we first discuss the random coefficients generalized ordered response probit (RC-

GORP) model (Section 2.1), and then extend the RC-GORP model to introduce spatial 

dependence effects (Section 2.2). Finally, we discuss the model estimation approach (Section 

2.3). 

 

2.1 The Random Coefficients Generalized Ordered Response Probit (RC-GORP) Model 

Let q ( Qq ,...,2,1= ) be an index to represent crashes and let k ( Kk ,...,2,1= ) be an index to 

represent injury severity level (of the most severely injured person in the crash). For instance, in 

the empirical context of this paper, the index k takes the following values: no injury (k = 1), 

possible injury (k = 2), non-incapacitating injury (k = 3) and incapacitating or fatal injury (k = 4). 

The equation system for the RC-GORP model then takes the following form:  
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qqqqy ε+′= xβ* , kyq =  if kqqkq y ,
*

1, ψψ <<−  (1)

where *
qy  is the latent underlying injury risk propensity for crash q, qx  is an (L×1)-column 

vector of exogenous attributes (excluding a constant), and qβ  is a corresponding (L×1)-column 

vector of crash-specific variable effects. qε  is a standard normal random error term that impacts 

the latent propensity and that is assumed to be identically and independently distributed across 

crashes q. The latent propensity *
qy  is next mapped to the observed injury level qy  through the 

thresholds kqψ ,  ( −∞=0,qψ  and )...; 1,2,1,, qKqqqKq ∀∞<<<<<∞−∞= −ψψψψ  in the usual 

ordered response fashion. Unlike the SOR model, the GORP model allows these thresholds to 

vary across individuals, adding flexibility to the SOR model. Following Eluru et al. (2008), we 

parameterize the threshold associated with the kth injury severity level as a function of a relevant 

exogenous variable vector qkz  (excluding a constant): 

)exp(1,, qkkkkqkq α zγ++= −ψψ . (2)

In the above equation, kα  is a scalar, and kγ  is a vector of coefficients, associated with injury 

severity level 1 ,...,2 ,1 −= Kk . The above parameterization immediately guarantees the ordering 

condition on the thresholds for each and every crash, while also enabling the identification of 

parameters on variables that are common to the qx  and qkz  vectors. For identification reasons, 

we adopt the normalization that ,1qψ = 1exp( )α  for all q (equivalently; all elements of the vector 

1γ  are normalized to zero, which is innocuous as long as the vector qx  is included in the risk 

propensity equation). 

Finally, to allow for heterogeneity among observations, the parameter qβ  is defined as a 

realization from a multivariate normal distribution with mean vector b and covariance matrix Ω.3 

Then, we can write ,qq β~bβ +=  where ),0( ΩLq MVN~β~  ( LMVN  represents the multivariate 

normal distribution of dimension L). If this multivariate distribution become degenerate, then 

qq ∀= bβ , and the RC-GORP model collapses to the GORP model. Further, in the GORP 

                                                 
3 For ease of presentation, we will treat all elements of βq as random, but this is not necessary; the researcher can fix 
some elements of βq and let the remaining elements be random. 
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model, if all elements of kγ  are zero for all k, the result is the standard ordered-response probit 

(SORP) model. 

 

2.2 The Spatial RC-GORP (or SRC-GORP) Model Formulations  

In the current paper, we introduce spatial dependency through the latent risk injury propensity 

variable, using the RC-GORP framework presented in Section 2.1. The reasons for such spatial 

dependency effects through the latent risk propensity have already been discussed in Section 

1.2.3. However, we assume no spatial dependence caused through the thresholds that determine 

the translation of the latent risk propensity to the observed injury levels. Our expectation is that 

the variables embedded solely in the qkz  vectors (that is, those variables that only affect the 

thresholds and do not affect the latent risk propensity) are specific crash-related factors that 

should not have location dependency effects (for instance, if a particular crash results in the 

deployment of airbags, it is likely to impact the thresholds that translate the risk propensity to 

observed injury severity levels for that specific crash, but should not impact the risk propensity at 

another proximate crash location). 

In the spatial econometrics literature (see Anselin, 1988), it is common to consider two 

types of spatial dependency formulations. The first formulation, referred to as the spatial lag 

structure, assumes that the injury risk propensity at one crash location is influenced by the injury 

risk propensity at other proximal crash locations. Such a structure allows both observed variables 

as well as unobserved variables at proximal crash locations to impact injury severity at a specific 

crash location. As explained in Section 1.2.3, this can be the case for injury severity modeling. 

But if there is little variation in the observed explanatory variables through space (for example, 

roadway geometry may change little between proximally spaced crash roadway segments of a 

highway in the observed crash data), it can be difficult to estimate a spatial lag model. The 

second formulation commonly used in spatial econometrics is the spatial error formulation, in 

which the dependency in injury risk propensity across proximally located crash locations 

originates purely from unobserved (to the analyst) factors. However, this spatial error 

formulation assumes only generic unobserved correlation in injury risk propensity across 

proximally located crash sites, and does not consider that there could be correlation effects in the 

unobserved factors that moderate the effects of observed variables. That is, there may be space-

associated peculiarities that may exacerbate or temper the effects of roadway geometry and other 
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crash-specific characteristics on injury risk propensity across all proximally located crash sites. 

To allow for this possibility, we also propose, apparently for the first time in the spatial 

econometrics literature, a spatial intermediate model that expands the spatial error model to 

include spatial correlation in the effects of observed variables. 

In the following presentation, we first discuss the spatial lag formulation and then 

proceed to discuss the minor changes to obtain the spatial error and the spatial intermediate 

formulations. 

 

2.2.1 The spatial lag formulation 

The spatial lag formulation superimposes spatial dependency on the RC-GORP section of 

Section 2.1 as follows:  

qqq

Q

q
qqqq ywy εδ +′+= ∑

=

xβ
'

*
''

*

1
, kyq =  if kqqkq y ,1, ψψ <<−

* , (3)

where the 'qqw  terms are the elements of an exogenously defined distance-based space weight 

matrix W  corresponding to the locations of crashes q and q ′  (with 0=qqw  and 1=∑
′

′
q

qqw ), 

and δ  )10( << δ  is the spatial autoregressive parameter. The latent injury risk propensity 

representation of Equation (3) can be written equivalently in vector notation as:  

εβ~~byy ** +++= xxWδ , (4)

where ) ..., , ,( 21 ′= ****y Qyyy  and ) ,..., ,( 21 ′= Qεεεε  are (Q×1) vectors, ) ..., , ,( 21 ′= Qxxxx  is a 

(Q×L) matrix of exogenous variables for all Q units, x~  is a (Q×QL) block-diagonal matrix with 

each block-diagonal of size (1×L) being occupied by the vector qx′  ( Qq ,...,2,1= ), and 

) ..., , ,( 21 ′′′′= Qβ
~β~β~β~  is a (QL×1) vector. Through simple matrix algebra manipulation, Equation 

(4) may be re-written as: 

( )εβ~~by* ++= xxS , (5)

where [ ] 1-
Q WIS δ−=  is a (Q×Q) matrix and QI  is an identity matrix of size Q. The vector *y  

is multivariate normally distributed as ),( LAGLAGQMVN ΣB~y* , where 
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bBLAG Sx=  and ( )[ ] .SxΩxSΣ ′+′⊗= QQ I~I~
LAG  (6)

 

2.2.2 The spatial error formulation 

The spatial error formulation considers spatial dependency only in the qε  terms: 

qqq

Q

q
qqqq wy εεδ +′+= ∑

=
′ xβ

'
'

*

1
, kyq =  if kqqkq y ,1, ψψ <<−

* , (7)

which can be written more compactly in vector notation as: 

εβ~~by* Sxx ++= .  (8)

Then, the latent variable is multivariate normally distributed as ),( ERRORERRORQMVN ΣB~y* , 

where 

bB x=ERROR  and ( ) .SSxΩxΣ ′+′⊗= ~I~
QERROR  (9)

 

2.2.3 The spatial intermediate formulation 

The spatial intermediate formulation considers spatial dependency not only through the qε  

terms, but also in the unobserved factors moderating the effects of variables: 

qqq

Q

q
qqqqqq wy εεδ +′++′= ∑

=
′′′ xβ)xβ~(

'
'

*

1

, kyq =  if kqqkq y ,1, ψψ <<−
* , (10)

which can be written more compactly in vector notation as: 

[ ]εβ~~by* ++= xSx . (11)

Then, the latent variable is multivariate normally distributed as ),~*
INTINTQMVN Σ(By , with 

bB x=INT  and ( )[ ]SxΩxSΣ ′+′⊗=  QQINT I~I~ .  (12)
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2.3 Model Estimation 

The parameter vector to be estimated in the model is denoted , ),,,,( ′′′′′= αγΩbθ δ  where Ω  is 

a column vector obtained by vertically stacking the upper triangle elements of the matrix Ω , 

),...,,( 132 ′′′′= −Kγγγγ , and ),...,,( 121 ′= −Kαααα . Several restrictive models are obtained from the 

spatial model formulations developed here. If ,0=δ  all the three spatial formulations in Section 

2.2 collapse to the RC-GORP model of Section 2.1. If, in addition, the elements of Ω  

corresponding to the non-diagonal elements of Ω  are zero, but not the diagonal elements, it 

represents the RC-GORP without correlation across the unobserved heterogeneity effects of 

variables. Further, if all elements of Ω  are zero, the result is the GORP model. Finally, if all 

elements of γ  are also zero, the result is the SORP model. 

The likelihood function )(θL  for the SRC-GORP model takes the following form: 

,),()()( ∫===
*

** yB|ymyθ
y

D
Q dPL Σφ

 

(13)

where ),...,,( 21 ′= Qyyyy , ),...,,( 21 ′= Qmmmm  is the corresponding (Q×1) vector of the actual 

observed injury severity levels, *yD  is the integration domain defined as 

} ... 2 1 ,:{ ,1, Q,,,qyD
qq mqqmq =∀<<= − ψψ **

y y*  , (.)Qφ  is the multivariate normal density 

function of dimension Q, and B  and Σ  refer to ],[ LAGLAG ΣB  for the spatial lag formulation, 

],[ ERRORERROR ΣB  for the spatial error formulation, and ],[ INTINT ΣB  for the spatial intermediate 

formulation. 

The rectangular integral in the likelihood function is of dimension Q, which can become 

problematic from a computational standpoint. Further, the use of traditional numerical simulation 

techniques can lead to convergence problems during estimation even for moderately sized Q 

(Müller and Czado, 2005, Bhat et al., 2010). The alternative is to use the composite marginal 

likelihood (CML) approach (see Bhat et al., 2010 and Varin et al., 2011). The CML is a simple 

estimation approach that can be used when the full likelihood function is near impossible or plain 

infeasible to evaluate due to underlying complex dependencies, as is the case of Equation (13). 

The CML approach, which belongs to the more general class of composite likelihood function 

approaches (see Lindsay, 1988), is based on maximizing a surrogate likelihood function that 
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compounds much easier-to-compute, lower-dimensional, marginal likelihoods. In the current 

study we use the pairwise CML method based on the product of the injury severity likelihood 

contributions from pairs of crashes: 

( )

[ ],),,(),,(),,(),,(

][][,][][)(

1

1 1
2222

1

1 1

∏ ∏

∏ ∏
−

= +=

−

= +=

Φ+Φ−Φ−Φ=

===

Q

q

Q

qq
qqqqqqqqqqqqqqqq

Q

q

Q

qq
qqqqCML

νμμνμνμν

PL

'
''''''''

'
'' mymyθ

ϕϕϕϕ
 (14)

where 
''

'
'

BB

qqqq

qq
qq

qq

qmq
q

qq

qmq
q νμ qq

][][

][
 ,

][

][
 ,

][

][ 1,,

ΣΣ

Σ

ΣΣ
=

−
=

−
=

−ψψ
ϕ . 

In the above expression, q][B  represents the thq  element of the column vector B , while 'qq][Σ  

represents the thqq ′  element of the matrix Σ . The pairwise marginal likelihood function of 

Equation (14) comprises 21 /)( −QQ  pairs of bivariate probability computations, which can 

itself become quite time consuming. However, previous studies (Varin and Vidoni, 2009, Bhat et 

al., 2010, Varin and Czado, 2010) have shown that spatial dependency drops quickly with inter-

observation distance. Therefore, there is no need to retain all observation pairs because the pairs 

formed from the closest crashes provide much more information than pairs from crashes that 

occur far from one another. We examine this issue by creating different distance bands and, for 

each specific distance band, considering only those pairings in the CML function that are within 

the distance band. To do so, construct the matrix R  of dimension Q×Q with its thq  column 

filled with a Q×1 vector of zeros and ones as follows: if the observational unit q′  is not within 

the specified threshold distance of unit q, the thq ′  row has a value of zero; otherwise, the thq ′  

row has a value of one. Then, the CML function gets modified as follows: 

( )[ ] [ ]

[ ] [ ] .),,(),,(),,(),,(

][][,][][)(

1

1 1
2222

1

1 1

∏ ∏

∏ ∏
−

= +=

−

= +=

Φ+Φ−Φ−Φ=

===

Q

q

Q

qq
qqqqqqqqqqqqqqqq

Q

q

Q

qq
qqqqCML

qq

qq

νμμνμνμν

PL

'
''''''''

'
''

'

'mymyθ

R

R

ϕϕϕϕ
 (15)

Under usual regularity assumptions (Molenberghs and Verbeke, 2005, Xu and Reid, 

2011), the CML estimator of θ  is consistent and asymptotically normal distributed with 
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asymptotic mean θ  and covariance matrix given by the inverse of Godambe’s (1960) sandwich 

information matrix )(θG  (see Zhao and Joe, 2005): 

111 )]([()]([)]([)( −−− == θ)θθθθ̂ HJHGVCML , (16)
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matrix )(θ̂VCML  is computed for each distance band.  

The matrix )(θH  can be estimated in a straightforward manner using the Hessian of the 

negative of )(log θCMLL , evaluated at the CML estimate θ̂ . This is because the information 

identity remains valid for each pairwise term forming the composite marginal likelihood. Thus, 

)(θH  can be estimated as: 
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The estimation of the matrix )(θJ  is, however, not straightforward because of the underlying 

spatial dependence among counts. We use the method proposed by Bhat (2011), which entails 

the construction of suitable overlapping subgroups of the count data that may be viewed as 

independent replicated observations.4  

One final important issue that we have not discussed thus far is the positive definiteness 

of the matrix Ω . Once this is ensured, the positive definiteness of Σ  is ensured as long as 

.10 << δ  In our estimation, the positive definiteness of Ω  is guaranteed by writing the 

logarithm of the pairwise-likelihood in terms of the Cholesky-decomposed elements of Ω  and 

maximizing with respect to these elements of the Cholesky factor. Essentially, this procedure 

entails passing the Cholesky elements as parameters to the optimization routine, constructing the 

Ω  matrix internal to the optimization routine, then computing Σ , and finally selecting the 

appropriate elements of the matrix for the pairwise likelihood components. To ensure the 

                                                 
4 An additional piece of information that readers may find useful. The maximum likelihood (ML) function for the 
GORP model is the same as the CML function in Equation (15) after imposing the constraint δ = 0 and raising the 
CML function to the power of 1/(Q – 1). Thus, for the GORP model, the CML and the ML estimates are identical. 
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constraints on the autoregressive term δ , we parameterize it as )e1/(e δδδ
~~

+= . Once estimated, 

the δ~ estimate can be translated back to estimate δ . 

 

3. DATA 

3.1 Sample Formation 

The crash data used in the analysis is drawn from the Texas Department of Transportation 

(TxDOT) Crash Records Information System (CRIS) for the year 2009, which was the latest year 

of CRIS crash data available at the time of this study. The Department of Public Safety in Texas 

officially maintains the records of the crashes reported by police and drivers that involve 

property damage of more than $1,000 and/or the injury (including fatal injury) of one or more 

individuals.5 The CRIS compiles police and driver reports into multiple text files, including 

complete crash, person (drivers, passengers and non-occupants), vehicle, and weather-related 

details. The injury level sustained by each injured individual in each crash is also recorded. 

TxDOT overlays the crash locations from the crash files to a Geographic Information System 

(GIS)-based street network, identifies crash locations on the street network, and subsequently 

extracts information on road design, road geometry, and traffic conditions for each crash. The 

CRIS contains the characteristics of crashes occurring all over Texas (that is, more than 520,000 

crashes in 2009), along with supplementary information as just identified. 

For the current study, crashes occurring in Austin, Texas were extracted from the CRIS 

data base with a focus on non-bridge related and non-intersection related crashes (TxDOT 

defines a crash as being intersection-related if it occurs within the curbline limits of intersections 

or on one of the approaches/exits to the intersection within 200 feet from the intersection center 

point). Also, crash records involving pedestrians, bicyclists, motorcyclists and trains were 

removed because the nature and characteristics of the injury severity sustained by road-users in 

such crashes are likely to be quite different from the injury severity sustained by motor vehicle 

occupants in crashes involving only motor vehicles (Bagdadi, 2012). Finally, records with 

                                                 
5 Clearly, by construction, there is an under-reporting of the “no injury” category in the CRIS database. A study of 
the effect of such under-reporting in the generalized ordered-response framework of this paper has not been 
undertaken in the literature, and would be a good avenue for future research. But, given the flexibility of the 
generalized ordered-response framework, it should be more robust to under-reporting than the standard ordered-
response framework. Also, from a policy standpoint, there is more incentive to focus on countermeasures to reduce 
severe injuries in crashes, and so our injury severity analysis could be viewed as focused on the population of 
crashes that are biased toward higher injury severity. 
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incomplete or inconsistent information on crash, highway design, driver and vehicle, and 

environmental factors (weather/lightning conditions and traffic volume) were removed from the 

sample. After the data cleaning process, the final sample for analysis included 2,087 crashes. As 

just discussed, the unit of analysis used in our empirical analysis corresponds to a traffic crash. 

Specifically, following previous studies (Lee and Mannering, 2002, Dissanayake and Ratnayake, 

2006, Milton et al., 2008, Mujalli and de Oña, 2011, Anastasopoulos and Mannering, 2011), the 

dependent variable is the injury severity level of the most severely injured individual (could be a 

driver or a passenger) in each crash.6 Injury severity is recorded in five ordinal categories: (1) no 

injury (52.7% of the sample), (2) possible injury (27.7%), (3) non-incapacitating injury (17.2%), 

(4) incapacitating injury (1.7%), and (5) fatal injury (0.7%). In the current analysis, we converted 

this five-level ordinal categorization into a four-level scheme by combining the incapacitating 

and fatal categories into a single level (because of the very low share of crashes with a fatal 

injury).7 Figure 1 shows the study area, which corresponds to the city limits of Austin (the 

shaded portion in the figure). The highways in the study area have also been identified. To avoid 

clutter and keep the presentation simple, we are showing only the incapacitating and fatal crashes 

in the figure. One can notice that there is a clustering of the crashes of high injury severity, 

which may be in part due to similar observed characteristics of highway segments in close 

proximity and/or similar unobserved characteristics of the highway segments in close proximity 

(leading to spatial dependency effects).8 

The next section discusses additional sample details on relevant exogenous variables in 

our analysis. 

 

                                                 
6 Admittedly, the use of such a dependent variable leads to a loss in information on the distribution of injury 
severities across individuals involved in a crash, and does not explicitly recognize that multiple occupants may 
suffer the same level of injury severity. It also precludes the use of each occupant’s characteristics as determinants 
of that occupant’s injury severity level. Extension of the proposed approach to include the injury severity of each 
occupant of each vehicle involved in a crash is left for future work. While there has been some recent research 
focusing on all drivers involved in a crash (for example, Helai et al., 2008), or all occupants of all vehicles involved 
in a crash (for example, Eluru et al., 2010), these efforts have ignored spatial dependency effects. 
7 A similar approach has been adopted in many earlier studies to circumvent the statistical issues that arise from 
having a very low number of crashes in one or more categories; see, for example, Savolainen and Mannering (2007), 
Eluru et al. (2008), Milton et al. (2008) and Chen and Chen (2011). 
8 Technically speaking, one needs to see crashes of all injury severities to make the determination that there is spatial 
clustering by injury severity level. But showing crashes of all injury severity levels makes things cluttered. Suffice it 
to say that we observed the same kind of clustering for crashes of all injury severity levels, which translates to 
potential spatial dependence effects for the underlying injury severity propensity. 
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3.2 Sample Characteristics 

Several types of exogenous variables were considered in the empirical analysis, including crash 

characteristics, highway design attributes, characteristics of drivers involved in the crash, 

characteristics of vehicles involved in the crash, and environmental factors. Table 1 presents the 

sample characteristics of selected exogenous variables within each of these categories of 

variables.9 

Crash characteristics include (a) the crash location (where crash occurred in relation to 

the roadway), (b) the first point of impact in the crash, (c) the collision type, (d) the number of 

vehicles involved in the crash, and (e) the following variables related to counts across all 

vehicles involved in the crash: the number of passengers, the number of unrestrained occupants, 

and the number of occupants ejected. Among these, the first variable, crash location, is 

represented in one of three discrete states as on-roadway (first point of impact happened on the 

portion of the highway normally used for vehicular travel), off-roadway (first point of impact 

happened off the portion of the highway normally used for vehicular travel), or on the shoulder 

or median. The first point of impact in the crash is characterized in one of four discrete states – 

(with) moving vehicles, (with) fixed objects (such as protection barriers, signal posts, and trees), 

vehicle overturning with no specific point of impact, and other points of impact (such as with 

animals and parked vehicles). Collision type is identified in one of six possible states: rear-end 

(the front of one moving vehicle crashes into the back of another moving vehicle travelling in the 

same direction), one stopped-vehicle (the moving vehicle collides with a stopped vehicle), single 

vehicle (only one moving vehicle is involved in the crash), sideswipe (the sides of two vehicles 

travelling in the same direction collide, one vehicle impacting the side of the other vehicle), 

head-on (the front of two vehicles travelling in opposite directions collide), and others (such as 

turn crashes – at least one vehicle attempts to make a turn in front of an opposing vehicle – and 

angle crashes – two vehicles approach from non-opposing angular directions).10 Table 1 shows 

                                                 
9 Many explanatory variables were not statistically significant in the final model specification; the sample 
characteristics of these variables are not presented in Table 1 to conserve on space. Among these variables were: 
number of occupants who experienced an airbag deployment, age of vehicles involved in the crash,  roadway surface 
type (flex base, concrete and roadbed soil, or asphalt base), horizontal curvature length, horizontal curvature degree, 
horizontal curvature type (right curve, left curve and no curve), and road surface conditions (dry, wet, icy and 
others). 
10 To some extent, the categories defined for collision type overlap with the categories defined for the first point of 
impact in the crash. For example, the collision types ‘rear-end’, ‘sideswipe’ and ‘head-on’ fall within the ‘moving 
vehicle’ designation as the first point of impact. Similarly, the collision type ‘single vehicle’ overlaps with the 
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that more than 81% of the crashes occurred on the roadway, while the remaining crashes 

occurred off the roadway (about 16%) and on medians or shoulders (about 3%). The first point 

of impact for the vast majority of crashes was a moving vehicle, with a sizeable share of crashes 

with a fixed object. With respect to collision type, one third of crashes were rear-end crashes, 

and about a fifth each were “one stopped-vehicle”, “single vehicle”, and sideswipe crashes. The 

descriptive statistics of other count variables related to crash characteristics are provided in the 

bottom sub-table of Table 1, and indicate a preponderance of two-vehicle crashes in the sample 

and a mean of 2.85 individuals (an average of two drivers and 0.85 passengers) involved in a 

crash. The statistics also show, as expected, a very low proportion of crashes in which occupants 

were either unrestrained or ejected. 

Highway design attributes include indicator variables for specific highways in Austin to 

account for possible design and operational factors unique to the highways not captured in the 

CRIS database, median type (in the two states of barrier and no barrier), inside and outside 

shoulder widths (the inside shoulder is to the left of the direction of movement, while the outside 

shoulder is to the right of the direction of movement), roadway width (for both travel directions, 

not including shoulders or median width), median width, and number of lanes (total number of 

lanes in both travel directions). Table 1 shows that a large proportion of the crashes occurred on 

Interstate 35 (42.8%), and more than 15% of crashes occurred on two other major highways (US 

Highway 183 and Texas State Highway Loop 1). Interestingly, about 60% of crashes occurred at 

locations with a median barrier. The descriptive statistics in the bottom sub-table show that 

outside shoulders are, on average, wider than inside shoulders. The average roadway width is 

78.67 feet, with a minimum of 20 feet and a maximum width of 156 feet. The average median 

width is 35.39 feet, with a large variation from 0 feet (no median) to 378 feet. The number of 

lanes varies from 2 to 11, with a mean value of 5.73 lanes. 

The characteristics of all drivers involved in the crash are considered in the model 

specification. When a crash involves only one vehicle, the characteristics of the vehicle’s driver 

are used to develop the demographic (age and gender) and alcohol usage variables defined in 

Table 1. When crashes involve two or more vehicles, several combination variables 

characterizing the attributes of the drivers were originally created (this step is needed to reconcile 

                                                                                                                                                             
designations of ‘fixed object’ and ‘vehicle overturning’. During the estimation process, we were careful to avoid the 
simultaneous use of variables with substantial collinearity. 
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the multiple driver presence with the single injury outcome that constitutes the dependent 

variable in our analysis). The combination variables were tested for statistical significance and 

then appropriately simplified based on the test results to generate the final driver-related 

variables presented in Table 1. The age-related variables associated with drivers in the final 

specification are the dummy variables “teenage driver” (at least one driver involved in the crash 

is aged 19 years or less) and “driver aged more than 55 years” (at least one driver involved in the 

crash is aged more than 55 years). The gender of drivers involved in the crash is classified in 

three categories: only male drivers, both female and male drivers, and only female drivers. 

Driving under the influence (DUI) of alcohol is in the two states of “at least one driver DUI of 

alcohol” and “no driver DUI of alcohol.”11 Table 1 shows that about 15% of the crashes involved 

at least one teenage driver, while almost 20% of crashes involved at least one driver aged more 

than 55 years. In terms of the gender of drivers, about 39% of crashes involved only male 

drivers, about 38% involved both male and female drivers, and only about 23% of the crashes 

involved only female drivers. Crashes in which one or more drivers were DUI of alcohol were 

uncommon, accounting for 6.6% of the sample.12 

The characteristics of the vehicles involved in the crash include vehicle body type 

(sedans, pickups, sport utility vehicles, station wagons, and commercial trucks) and vehicle age 

(in 5-year intervals). As with the characteristics of drivers, we developed many combination 

variables to characterize the attributes of the vehicles involved in the crash and tested these for 

statistical significance. However, the only vehicle body type in the final specification is a dummy 

variable for “commercial truck”, which takes the value of one when at least one vehicle involved 

in the crash is a commercial truck, and zero otherwise.13 According to Table 1, truck-involved 

                                                 
11 Texas law defines DUI of alcohol based on the following blood alcohol contents (BAC): for drivers aged under 21 
year, BAC ≥ 0.02; for drivers aged 21 years or more, BAC ≥ 0.08; for commercial drivers of any age, BAC ≥ 0.04. 
12 An important point to note here is that we use driver characteristics as determinants of the injury level of the most 
severely injured person in the crash. We do so for two reasons. First, the driver is the one in control of the vehicle, 
and so her or his driving habits/reflexes are likely to impact the injury severity level of all occupants (and that of the 
most severely injured occupant). Second, in 94% of all crashes involving at least one non-driver vehicle occupant, it 
was a driver who incurred the most severe injury. But, of course, one still has to be somewhat circumspect in 
interpreting the effects of the driver demographic variables because it is possible that the one suffering the most 
severe injury is not a driver. The results discussed in Section 4.2.3 regarding driver effects should be viewed in this 
cautionary light.  
13 A commercial truck, as used in this study, refers to trucks used to transport cargo and excludes pickup trucks, fire 
trucks and police trucks. 
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crashes comprised about 4% of all crashes. Vehicle age attributes do not appear in Table 1, 

because these were not statistically significant in the final model specification. 

Environmental factors at the time of the crash include weather, lighting and traffic 

conditions. Weather conditions are categorized into normal conditions or rainy/foggy conditions. 

Lighting conditions (type and level of light that existed at the time of the crash) are classified 

into daylight, night–lighted, night–not lighted, and other lighting conditions, such as dawn, dusk 

and dark with unknown lighting. The traffic conditions on the highway on which the crash 

occurred is proxied by the average daily traffic volume on the highway. Table 1 reveals, not 

surprisingly, that a vast majority of crashes occurred under normal weather conditions and in 

daylight times. The descriptive statistics for average daily traffic volume in Table 1 show an 

average of 109,576 vehicles, with a variation of almost 50% of the mean. The daily average 

percentage of trucks, single-unit or combo-unit, is relatively low, not surpassing 10% of the total 

traffic volume. 

Finally, given that the unit of analysis used in this study is a crash, the distance between 

crash locations needed to construct the spatial weight matrix was obtained from the latitude and 

longitude coordinates (in degrees) of the crash location provided by TxDOT in the CRIS 

database. These coordinates were first translated into x-y coordinates and then the Euclidean 

distance was computed for each pair of crash locations. The average distance between crash 

locations is 5.0 miles with a minimum distance of 0.1 miles (that is, some crashes occurred at 

about the same location) and a maximum distance of 20.7 miles. The distance between crash 

locations was used as a measure of spatial proximity, and formed the basis to develop the spatial 

weight matrix. 

 

4. ESTIMATION RESULTS 

4.1 Variable Specification 

The selection of variables included in the final specification was based on previous research, 

intuitiveness, and parsimony considerations. For categorical exogenous variables, if a certain 

level of the variable did not have sufficient observations, it was combined with another 

appropriate level; and if two levels had similar effects, they were combined into one level. For 

continuous variables, we tested alternative linear and non-linear functional forms, including 

dummy variables for different ranges. To obtain the final variable specification, the exogenous 
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variables were considered both in the latent variable (with random coefficients) and in the 

threshold specification. In total, we considered about 130 different variables for inclusion in each 

threshold function and in the latent propensity function. The final specification was obtained 

after extensive specification testing and functional form testing, and after ensuring that variables 

were not substantially correlated with each other (for example, as noted in footnote 8). The final 

specification for the SRC-GORP model has 44 highly significant variables (including three 

constants). Interestingly, even though we tested extensively for unobserved heterogeneity effects 

in the latent injury risk propensity, no statistically significant random coefficients turned up.14 

Thus the SRC-GORP model collapses to the S-GORP model. However, this result is specific to 

the current empirical context. In general, it is important to consider unobserved heterogeneity 

effects in variable impacts, as undertaken here, and then drop these effects if not significant in a 

specific context rather than a priori ruling out such effects. Indeed, some recent injury severity 

studies in other empirical contexts (see, for example, Anastasopoulos and Mannering, 2011) 

have identified substantial unobserved heterogeneity in variable effects.  

A number of functional forms were considered in the construction of the spatial weight 

matrix based on a continuous (and decaying) representation of distance, including inverse 

distance (and its higher orders) and inverse of exponential distance. Among these different 

weight matrix specifications, the inverse distance cubed-based specification gave the best fit, 

suggesting a rather rapid fading of spatial dependence. We also explored alternative distance 

bands to select the pairs of observations (i.e., crash locations) for inclusion in the composite 

marginal likelihood (CML) estimation (see Bhat, 2011 for details). The optimal distance band 

was selected by minimizing the trace of the variance-covariance matrix. In the current effort, we 

explored four distance bands (2, 5, 10, 20.7 miles), the last of which corresponded to considering 

all pairs of highway crash locations. Among the many distance bands, the best estimator 

efficiency was obtained with a distance band of 5 miles. Finally, we compared the three non-

nested spatial formulations (spatial lag, spatial error, and spatial intermediate formulations) using 

the composite likelihood information criterion (CLIC). The spatial error structure turned out to 

be the best formulation to represent spatial effects in the current empirical context, indicating 

that only unobserved factors are responsible for generating spatial dependency in crash injury 

                                                 
14 We also tested for unobserved heterogeneity without accommodating for spatial effects. Even in this case, we did 
not find statistically significant unobserved heterogeneity on any exogenous variable.  
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severity levels at proximally located crash locations. This is not entirely surprising given that 

there is little variation in the observed explanatory variables between proximally spaced crash 

roadway segments of a highway.  

 

4.2 Estimation Results Analysis 

The final estimation results correspond to the S-GORP model specification, and are presented in 

Table 2. The table is organized in three major numeric columns. The first major column provides 

the parameter estimates characterizing the latent injury risk propensity. The second major 

column provides the kα  scalar and the kγ  parameters in the second threshold ( 2,qψ ) demarcating 

the possible injury and non-incapacitating injury levels. The final major column presents the 

corresponding estimates for the third threshold ( 3,qψ ) demarcating the non-incapacitating and 

incapacitating/fatal injury levels (for ease in presentation, we will refer to the non-incapacitating 

level as the NI level and the incapacitating/fatal level as the IF level in the rest of this paper). The 

first row of the table reports the constant for the first threshold ( 1,qψ ) between no injury and 

possible injury levels (this threshold does not include a kγ  ( 1=k ) vector because they are fixed 

to zero for reasons of identification). In the table, for categorical variables, the base category is 

presented in parenthesis. For example, for crash location, the base category is “on-roadway”. The 

effects of variables from each variable category are discussed in turn in the next few sections. 

 

4.2.1 Crash characteristics 

In the category of crash location, the results indicate that off-roadway crashes lead to higher 

injury risk propensity than on-roadway crashes (a similar result was found by Dissanayake and 

Ratnayake, 2006 and Yamamoto et al., 2008). In addition, this variable also appears in the 

threshold between the possible and NI injury levels (see the second major column). The negative 

sign of the coefficient on this threshold has the effect of moving this threshold to the left. 

Further, given the way the thresholds are parameterized in Equation (2), the negative parameter 

on off-roadway crashes also moves the threshold demarcating the NI and IF levels to the left by 

the same amount as the second threshold. The net result of all these effects is that off-roadway 

crashes reduce the probability of the no injury level and increase the probability of the IF injury 

level, relative to on-roadway crashes. The higher probability of serious injury for crashes off-
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roadway may be attributable to the rough pavement off-roadway and/or vehicles losing control 

and running off-the-road at high speeds. There is no effect of “shoulder or median” crashes on 

the long term risk propensity, but there is a negative effect on the threshold between the possible 

and NI injury levels. Following the same logic as earlier, this implies that crashes occurring on 

the shoulder or median of highways have a lower probability (relative to those on-roadway) of 

leading to possible injury and a higher probability of resulting in IF injuries (with no change in 

the probability of the “no injury” level). The differential effects of the crash location variable on 

the probability of sustaining injury of different severity levels highlights the GORP model 

flexibility (relative to the case of fixed thresholds).  

The results related to the first point of impact in the crash reflect a lower probability of no 

injury and a higher probability of the IF injury level if the crash involves the overturning of one 

or more vehicles. This is not surprising, since overturning increases the chances that the 

occupants - drivers and passengers -  have contact with the roof of the vehicle (Hu et al., 2005), 

which can result in traumatic head, spine, and brain injuries injury. Collision type also affects the 

injury severity of traffic accidents. In particular, (a) a collision of a moving vehicle with a 

stopped vehicle (i.e., one stopped-vehicle) is less likely (relative to a rear-end collision) to result 

in IF injuries, and more likely to result in NI injuries, with no impact on the probability of the 

two lower injury levels, (b) a sideswipe crash results, in general, in a lower probability of 

possible injury and a higher probability of the IF injury level relative to rear-end collision, 

possibly because of vehicle spinning and getting out of control in sideswipe crashes, and (c) a 

head-on crash, as expected, results in a high injury risk propensity, with a substantially higher 

probability of IF crashes relative to a rear-end collision (see also Dissanayake and Ratnayake, 

2006, Wang and Abdel-Aty, 2008, Rana et al., 2010, Mujalli and de Oña, 2011, and Zhu and 

Srinivasan, 2011 for a similar result).  

A crash involving multiple vehicles increases the probability of the most severe IF injury 

category, presumably because of multiple injury exposure instances (see Hu and Donnell, 2010 

and Chen and Chen, 2011). The effect of the number of passengers is best captured using both 

continuous and dummy variable representations. The results show that the injury risk propensity 

is lowest when there are no passengers or one passenger (across all vehicles involved in the 

crash), and highest when there are two passengers (assuming that a vehicle cannot carry more 

than five passengers). To be specific, the overall effect of the number of passengers on the latent 
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risk propensity is -0.6397 for crashes with zero passengers, -0.3786 for crashes with one 

passenger, -0.4184 for crashes with two passengers, -0.2226 for crashes with three passengers,    

-0.2968 for crashes with four passengers, and -0.3710 for crashes with five passengers.  This 

non-linear effect of the number of passengers has not been considered in earlier studies, and is 

perhaps the reason for the seeming inconsistency in the direction of effect of this variable on 

injury risk propensity (Schneider IV et al., 2009 and Dupont et al., 2010 suggest that number of 

passengers increases injury risk, while Yamamoto et al., 2008 and Malyshkina and Mannering, 

2009 find an opposite effect). Finally, in the category of crash characteristics, a crash involving 

at least one (seat-belt) unrestrained occupant and/or ejected occupant results in an increase in 

severe injury, as also observed in earlier studies (Wang and Abdel-Aty, 2008 and 

Anastasopoulos and Mannering, 2011). This result emphasizes the importance of seat-belt usage 

to reduce injury severity levels. 

 

4.2.2 Highway design attributes 

A number of highway design attributes were significant in the final model specification. 

Highway-specific indicator variables show a higher injury severity propensity for crashes 

occurring on Interstate 35, U.S. Highway 183, U.S. Highway 290 and Texas State Highway 

Loop 1 compared to other highways in Austin. Additionally, the highway-specific indicator 

variables affect the threshold parameterization. These indicator variables are capturing the mean 

effect of all unobserved factors not considered in our analysis (such as traffic congestion effects) 

and do not have substantive interpretations. Inside and outside shoulder width have opposite 

effects on the latent injury risk propensity: crashes on highways with wide inside shoulders have 

a reduced injury risk propensity (relative to crashes on highways with relatively narrow inside 

shoulders), while crashes on highways with wide outside shoulders have a higher injury risk 

propensity (relative to crashes on highways with a relatively narrow outside shoulder). Broad 

inside shoulders perhaps serve as safety cushions not only for providing separation between the 

two directions of travel, but also additional room for drivers to take injury-minimizing evasive 

actions to lessen the impact of a crash as it starts to happen. Broad outside shoulders can also 

provide the option to lessen the impact of a crash, but may also encourage non-emergency 

stopping that when combined with exit/entrance ramp traffic traveling at relatively high speeds 

lead to higher injury risk propensity. Future research should study the effects of inside and 
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outside shoulder widths in greater detail, and understand the underlying causes for these effects, 

especially because there has been little systematic investigation into the effect of the inside 

shoulder width and inconsistent conclusions regarding the effect of outside shoulder width 

(ranging from no effect in Milton et al., 2008 and Mujalli and de Oña, 2011 to high severity risk 

in Wang et al., 2009 and Zhang et al., 2011 to low severity risk in Lee and Mannering, 2002). 

Wider roadways and medians at the crash location result in a lower injury risk propensity, 

possibly because they provide drivers more physical safety margins (see also Anastopoulos and 

Mannering, 2011 for a similar result). Finally, crashes on highways with more lanes, in general, 

result in a reduced probability of NI injuries, and a higher probability of IF injuries, suggesting 

that roads with more lanes may lead to high-speed, high injury severity crashes due to conflict 

points arising when lane-changing or maneuvering to exit/enter a highway (Kermanshah et al., 

2011). 

 

4.2.3 Characteristics of drivers involved in the crash 

The age of drivers involved in the crash has a statistically significant effect on crash injury 

severity levels. The involvement of one or more teenager drivers in a crash increases the 

probability of the “no injury” level, and reduces the probability of the “possible” injury level 

substantially (owing to the negative effect on the threshold between the possible and NI injury 

categories). It also has a general tendency to reduce the probability of the IF injury category (due 

to the higher negative magnitude on the risk propensity than on the threshold between the 

possible and NI injury categories), but less so for this IF category than for the “possible” injury 

level. In effect, these results are suggesting that teenage drivers and vehicle occupants, perhaps 

because of their physical flexibility, come out of crashes less severely injured than other vehicle 

occupants, but also that the benefits of their physical flexibility may be tempered by the severity 

of the crash impact (because teenage drivers, in general, drive more aggressively than other 

drivers; see Paleti et al., 2010).15 Interestingly, the results also indicate that crashes involving 

                                                 
15 Many previous studies have also observed injury severity risk differences (for the most severely injured person) 
between crashes involving teenagers and crashes that do not involve teenagers. Some of these studies suggest a 
higher injury severity in crashes involving teenage drivers (Chen and Chen, 2011, Mujalli and de Oña, 2011), while 
other studies have found the opposite effect (Yamamoto et al., 2008, Schneider IV et al., 2009) or no effect at all 
(Dissanayake and Ratnayake, 2006, Christoforou et al., 2010). Our study suggests a non-monotonic effect of the 
involvement of teenage drivers on injury severity levels, underscoring the need to use modeling structures more 
flexible than the SOR structure. Indeed, the inconsistent results in the effects of the teenage driver variable in earlier 
studies may be partially attributable to the use of the restrictive SOR structure.  
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drivers aged 55 years or older are less likely to result in IF injuries, perhaps because of the 

driving experience of these individuals that helps them (and their vehicle occupants) avoid 

severe injuries as a crash starts to develop. 

Compared to crashes that involve only male drivers, crashes with both a male and a 

female driver lead to a reduced probability of no injury as well as, in general, a reduced 

probability of IF injury (with a corresponding increase in the combined probability of the 

intermediate injury severity levels). The flexibility of our GORP framework allows such double-

edged reductions at the extremes to be captured. However, if a crash involves only women 

drivers, there is a reduced probability of no injuries and a higher probability of IF injuries (see 

Yamamoto et al., 2008, Xie et al., 2009, Chen and Chen, 2011, and Liu and Donmez, 2011 for a 

similar result). Given that the drivers of vehicles are the ones who typically sustain the most 

severe injury, a plausible reason for this effect is that women are more vulnerable to injuries due 

to their generally smaller physical frames. Alternatively, the result may be reflecting differences 

in driving styles and behaviors between men and women. As expected, crashes involving one or 

more drivers DUI of alcohol have an increased probability of IF injuries, possibly due to 

generally reckless driving behavior and inability to take quick evasive actions. This last result 

highlights the importance of continued investment in awareness campaigns and public policies to 

reduce alcohol consumption while driving. 

 

4.2.4 Characteristics of vehicles involved in the crash 

As mentioned earlier, among all the characteristics of vehicles involved in the crash explored in 

this study, only vehicle type had a statistically significant effect on injury severity. Specifically, a 

crash involving a commercial truck has a high and statistically significant positive impact on the 

probability of the IF injury level. This is a clear consequence of the huge mass of a commercial 

truck relative to typical motorized passenger vehicles.  

 

4.2.5 Environmental factors 

Rainy or foggy weather conditions increase the probability of the “no injury” level as well as 

substantially reduce the probability of the IF injury level (relative to normal conditions). This 

weather-related finding may be a reflection of more cautious driving in adverse weather 

conditions (see also Eluru et al., 2008, Malyshkina and Mannering, 2009, and Quddus et al., 
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2010 for a similar result). The results related to lighting conditions are rather complex, because 

these lighting-related variables appear in the latent risk propensity as well one or both thresholds. 

Crashes that occur at nighttime (under lighted or unlighted conditions) clearly increase the 

probability of the “no injury” level. Beyond that, the specific effects on the other categories are 

context-dependent, though, in general, the results also suggest an increase in the probability of 

the IF severity level. This bipolar effect is perhaps a reflection of more careful driving during 

night times, but also the inability to react in dark conditions in ways that can reduce the 

consequences of a crash as it starts to develop.  

The effect of the average daily traffic volume variable was tested using several different 

functional forms. But, the best data fit was obtained using a squared transformation. Lower daily 

average traffic volume leads, in general, to higher severity injuries. This finding is consistent 

with a number of previous studies that have shown that crash severity is higher on low-traffic 

volume roads, and significantly decreases with increasing volumes, presumably due to better 

safety design on highways with high traffic volumes (see Das et al., 2009, Christoforou et al., 

2010, and Chen and Chen, 2011). Lower traffic volume could be related with higher speeds that 

more often lead to severe crashes.16  

 

4.2.6 Spatial dependence 

A unique feature of our formulation is that it enables the accommodation of spatial effects 

through the long-term propensity variable in the GORP model. The spatial dependency 

parameter δ in the final S-GORP model is moderate in magnitude (about 0.22) but highly 

statistically significant, supporting the hypothesis that unobserved factors at each highway 

location have spatial effects at other highway locations. However, the spatial dependency effect 

fades relatively rapidly with distance as indicated by the inverse distance cubed-based weight 

matrix specification. Ignoring the spatial parameter is tantamount to ignoring heteroscedasticity 

in the error term (since the spatial error specification also leads to error heteroscedasticity in 

addition to spatial autocorrelation), rendering parameter estimation in an aspatial model both 

inconsistent and inefficient. The extent of the inconsistency and inefficiency will vary depending 

                                                 
16 We also tested the variable “daily average percentage of trucks”, but did not find any statistically significant effect 
of this variable on crash severity, after controlling for whether a commercial truck was involved in the crash or not. 
This is not surprising, since the percentage of truck traffic should impact crash occurrence more so than injury 
severity given a crash.  
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on the empirical context; however, testing and accommodating for any spatial effects is an 

important consideration that has not been addressed in the injury severity literature. 

 

4.3 Measures of Fit 

The performance of the S-GORP model structure proposed here may be compared to that of the 

standard ordered response probit (SORP) model using statistical and other measures of fit.17  

The composite log-likelihood value for the S-GORP model (with 44 parameters) is 

2,381,395- , while the corresponding value for the SORP model (with 24 parameters) is 

2,437,428- . The two models (note that the S-GORP model nests the SORP model; see Section 

2.1) may then be compared using the adjusted composite likelihood ratio test (ADCLRT) statistic 

that is approximately chi-squared distributed (the ADCLRT statistic is similar to the likelihood 

ratio test statistic used in ordinary maximum likelihood estimation, though its construction is not 

as simple as the likelihood ratio statistic; see Bhat (2011) for a detailed discussion). The 

ADCLRT statistic value is 349.5, which is larger than the chi-squared table value with 20 degrees 

of freedom at any reasonable level of significance. This result clearly illustrates the superior data 

fit offered by the S-GORP model. 

To ensure that the superior data fit of the S-GORP model is not simply an artifact of 

overfitting on the overall estimation sample, we also evaluated the performance of the S-GORP 

model and SORP model on various market segments of the estimation sample. At an aggregate 

level we compared the predicted and actual (observed) shares for each injury severity level for 

each market segment, using the root mean squared error (RMSE) and the absolute percentage 

error measures. The predicted shares for the SORP model were obtained in the usual way, while 

the procedure for the S-GORP model is discussed in Appendix A. At a disaggregate level, we 

computed the implied predictive log-likelihood (after estimating the predicted probability of the 

observed injury severity level for each crash) and compared the two models using a chi-squared 

predictive log-likelihood ratio test with 20 degrees of freedom. In all the market segments we 

tested, the S-GORP model provided a better data fit at both the aggregate and disaggregate 

levels. To focus the discussion and conserve on space, Table 3 presents these data fit statistics for 

the full sample and for five market segments based on selected variables. For each selected 

variable, the data fit for the market segment with the most number of observations is provided 
                                                 
17 The SORP model estimation results are suppressed here to conserve on space, but are available from the authors.  
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(thus, for example, for the dummy variable that indicates whether or not a teenage driver was 

involved in the crash, Table 3 presents the data fit for the market segment of crashes in which no 

teenage driver was involved, because this segment represents 85% of the total sample of 

crashes). The results clearly show that the predicted shares from the S-GORP model are closer to 

the true shares than the predicted shares from the SORP model for the full sample and each 

market segment. The results of the predictive log-likelihood ratio test also reject the SORP 

model in preference for the S-GORP model, again for the full sample as well as each market 

segment. In summary, all the aggregate and disaggregate measures of fit point to the superior 

performance of the S-GORP model over the SORP model.  

In the next section, we focus on the elasticity effects as implied by the S-GORP model 

structure obtained in our paper. 

 

4.4 Elasticity Effects and Implications 

Section 4.2 discussed the effects of variables on crash injury severity. However, the coefficients 

do not directly provide a sense of the magnitude and direction of effects of each variable on each 

injury severity level (this is not specific to the S-GORP structure adopted here, but is also an 

issue in the SOR and UR model structures). Of course, the magnitude and direction of effects 

vary across crashes based on crash context, but one can compute aggregate-level effects to 

characterize the overall impacts of each variable. To do so, we compute the aggregate-level 

“pseudo-elasticity effects” of variables, as discussed in the subsequent paragraphs.  

For dummy variables, we first predict the probabilities of each injury severity level for 

each crash, assigning the base value of “0” for all dummy variables characterizing each single 

exogenous discrete variable. For ease, we will focus here on the precise procedure for one of the 

discrete variables in the model, with the same procedure being adopted for other discrete 

variables. Thus, consider the crash location variables. We first compute the crash-level 

probability of each injury severity level after assigning zero values for both the “off-roadway” 

and “shoulder or median” variables for each crash, with the “on-roadway” variable already 

assigned a value of zero because it is the base category; all other variables are at their values in 

the original data. The detailed procedure to compute the crash-level probabilities in our spatial 

model (for one realization of the estimated parameters from their sampling distributions) is 

discussed in Appendix A. Then, the crash-level probabilities are added to obtain the expected 
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value of the number of crashes at each injury severity level in the base case (label the resulting 

vector of four values in this base case as BASE). Subsequently, the same procedure as above is 

undertaken but after changing the value of the “off-roadway” dummy variable for each crash 

from the value of zero to the value of one, and obtaining the expected value of the number of 

crashes at each injury severity level in this new case (label the resulting vector of four values as 

OFF). Next, the same procedure as above is implemented, but now starting with the base data 

and changing the value of the “shoulder or median” dummy variable for each crash from the 

value of zero to the value of one (label the resulting vector of four expected values as 

SHOULDER). Subsequently, to obtain an aggregate-level elasticity of the “off-roadway” dummy 

variable, we compute the change between the OFF and BASE vectors as a percentage of the 

BASE vector, yielding four elasticity values (one for each injury severity level). Similarly, to 

obtain an aggregate-level elasticity of the SHOULDER dummy variable, we compute the change 

between the SHOULDER and BASE vectors as a percentage of the BASE vector, once again 

yielding four elasticity values. Finally, we compute the mean and standard errors of the 

aggregate-level elasticity effects as computed above across 200 bootstrap draws taken from the 

sampling distributions of the estimated parameters. 

For count variables, the procedure is simpler. We simply change the count variable 

(number of vehicles, number of passengers and number of lanes in our empirical analysis) for 

each crash by the value of one, and compute the percentage change in the expected number of 

crashes at each injury severity level. For continuous variables (average daily traffic volume, 

shoulder width, roadway width and median width), we increase the value of the variable by 10% 

for each observation.  

Table 4 presents the aggregate-level elasticity values. To keep the discussion focused and 

the presentation uncluttered, only the elasticity effects of the IF injury level for the S-GORP 

model are presented. The numbers in the table may be interpreted as the percentage change in the 

probability of the IF injury level due to a change in the exogenous variable. For example, the 

first entry in the table indicates that the probability of an IF injury is 174.38% (with a standard 

deviation of 38.13%) higher for off-roadway crashes compared to on-roadway crashes, other 

characteristics being equal (alternatively, another way to interpret this result is that off-roadway 

crashes are 2.274 times more likely to result in IF injury than on-roadway crashes). Other entries 

may be similarly interpreted. The directions of the elasticity effects of the model are consistent 
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with the discussions in the previous section. The table suggests that the most important variables 

affecting IF injuries are (1) at least one occupant is ejected, (2) collision type is head-on, (3) at 

least one vehicle in the crash overturned, (4) at least one occupant unrestrained, and (5) at least 

one vehicle involved in the crash is a commercial truck. Crash location (crash occurs off-

roadway or on shoulder/median) and DUI of alcohol also have significant impacts, but not as 

much as the factors identified above. 

Overall, the results suggest that continued information campaigns regarding the 

importance of seat-belt usage and driving sober, as well as stricter enforcement of seat-belt and 

DUI laws, are important countermeasures to reduce injury severity in crashes. Further, informing 

motorists that shoulders are meant only for emergency stopping, and not for casual stopping, 

would be helpful as a countermeasure. The results also point to the dangerous implications of a 

crash involving commercial trucks, suggesting strict enforcement of “rest and sleep laws” for 

commercial drivers as well as instruction to non-commercial drivers on safe driving procedures 

around trucks (such as keeping away from the blind spot of trucks, and assessing truck passing 

opportunities carefully before following through) to avoid collisions with trucks in the first place. 

On roadways with a substantial percentage of commercial truck vehicles, posting appropriate 

safety advisory/warning signs may make motorists more alert. The results also point to the need 

for continued investment in vehicle design (to reduce the occurrence of overturning in crashes) 

and in vehicle safety and protective technology (to decrease injuries sustained in overturning and 

head-on crashes). Finally, the cumulative effects of the “shoulder or median” and “outside 

shoulder width” variables suggest a careful investigation into the advantages and problems of 

reducing outer shoulder widths, especially near exit and entrance ramps, as a means to 

discourage stopping in these areas. 

 

5. CONCLUSIONS 

This paper has proposed an econometric structure for injury severity analysis that simultaneously 

(a) recognizes the ordinal nature of the categories in which injury severity are recorded, but also 

allows flexibility in an efficient manner in capturing the effects of explanatory variables on each 

injury severity category, (b) accommodates unobserved heterogeneity in the effects of 

contributing factors, and (c) explicitly recognizes spatial dependencies in the injury severity 

levels experienced in crashes that occur close to one another in space. The resulting spatial 
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random coefficients generalized ordered response probit (SRC-GORP) model is estimated using 

a relatively straightforward-to-implement composite marginal likelihood (CML) inference 

approach. To our knowledge, the SRC-GORP model is the first formulation of its kind to be 

proposed and applied in the econometric literature in general, and in the safety analysis literature 

in particular. 

The proposed SRC-GORP model is applied to model injury severity levels on highway 

segments in Austin, Texas, using the crash incident files maintained by the Texas Department of 

Transportation. The empirical results clearly reveal the benefits, both in terms of capturing 

flexibility in variable effects and data fit, to adopting a generalized ordered-response structure 

rather than the traditional standard ordered-response structure. However, in the current empirical 

context, we did not find statistically significant unobserved heterogeneity effects in the impact of 

factors influencing injury severity. But such a determination itself requires first accommodating 

and testing for such potential heterogeneity, as we have done here, rather than summarily 

dismissing its presence a priori. The results reveal the presence of spatial effects arising from 

common unobserved factors that affect the latent injury propensity at spatially proximal crash 

locations. From a substantive standpoint, the results underscore the important effects of crash 

characteristics, highway design attributes, and driver, vehicle, and environmental factors in 

determining injury severity levels in crashes on highways. 

In summary, it is our hope that the method developed and applied in this paper will serve 

as a catalyst for the more extensive use of spatial models and flexible structure models for 

various crash contexts in the injury severity literature. 
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Appendix A:  
Computation of crash-level shares and probabilities for each injury severity level 

 

Let ),,,,( ′′′′′= α̂γ̂ˆΩ̂b̂θ̂ δ  be the estimated counterpart of the parameter vector 

),,,,( ′′′′′= αγΩbθ δ . The procedure to compute the probabilities of the different injury severity 

levels for each crash is then as follows: 

(1) Random coefficients are drawn from a multivariate normal distribution 

),( Ω̂b̂~β̂ Lq MVN , where Ω̂  is the covariance matrix formed from the elements of Ω̂  (if 

there are no statistically significant unobserved heterogeneity effects, b̂β̂ =q  for all q). 

(2) Using the estimated γ̂  and  α̂  parameters, the thresholds kqψ ,  are computed for each 

injury severity level k ( 1,...,2,1 −= Kk ) and for each crash q using Equation (2). 

(3) The values qβ̂  and the spatial parameter δ̂  are used to obtain an estimate of the mean 

vector (say ERRORB̂ ) and the covariance matrix (say ERRORΣ̂ ) based on Equation (9) in the 

main text.   

(4) A (Q×1)-vector realization of the latent variable *ŷ  is drawn from a multivariate normal 

distribution with mean ERRORB̂  and covariance matrix ERRORΣ̂ .  

(5) The generated latent variables are translated to “observed” severity injury levels ŷ  using 

the estimated threshold values. This “observed” vector is converted into a set of dummy 

variables representing whether or not the crash is observed in each of the K injury severity 

levels (using the threshold estimated in step (2)). 

 

The above procedure is repeated N times. Finally, the probability of a crash resulting in injury 

severity level k for each crash q is computed as the average across the N dummy variable value 

realizations for injury severity level k for crash q. The elasticity effects presented in Section 4.4 

were obtained with N = 200 repetitions.  
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Figure 1: Crash locations for incapacitating/fatal injuries in Austin, Texas 
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Table 1: Sample characteristics 
Variable Share [%] Variable Share [%]

Crash Characteristics  Characteristics of Drivers Involved in the Crash  
     Crash location       Teenage driver  
       On-roadway 81.26        At least one teenage driver 15.14 
   Off-roadway 16.10    No teenage driver 84.86 
   Shoulder or median   2.64   Driver aged  more than 55 years  
 First point of impact in the crash    At least one driver aged  more than 55 years 19.98 
       Moving vehicle 78.49       No driver aged more than 55 years 80.02 
   Fixed object 16.91     Gender of drivers  
   Vehicle overturned   1.82    Only male drivers 38.76 
       Other point of impact   2.78          Both female and male drivers 37.76 
 Collision type        Only female drivers 23.48 
       Rear-end 33.40    Driving under the influence(DUI) of alcohol      
      One stopped-vehicle 23.77            At least one driver DUI of alcohol   6.60 
  Single vehicle 21.37            No drivers DUI of alcohol 93.40 
   Sideswipe 17.78    Characteristics of Vehicles Involved in the Crash  
   Head-on   1.33     Commercial truck  
   Other collision types   2.35    At least one vehicle is a commercial truck   3.98 
Highway Design Attributes    No commercial trucks 96.02 
  Highway-specific indicator variables  Environmental Factors  
   Interstate 35 42.79   Weather conditions  
   U.S Highway 183 16.72    Normal  87.21 
   Texas State Highway Loop 1 15.05   Rain or fog 12.79 
   U.S Highway 290   7.38      Lighting conditions  
           Other highways 18.06         Daylight 69.67 
  Median type     Night–lighted 21.66 
   Barrier 59.66    Night–not lighted   6.32 
    No barrier 40.34     Other lighting conditions   2.35 

Descriptive Statistics 
Variable Mean Std. Dev. Minimum Maximum 
Crash Characteristics         
  Number of vehicles   2.13   0.86   1.00  10.00 
  Number of passengers   0.85   1.38   0.00  10.00 
  Number of unrestrained occupants   0.04   0.23   0.00    3.00 
  Number of occupants ejected   0.02   0.14   0.00    2.00 
Highway Design Attributes         
  Shoulders width (feet)     
     Inside shoulder 12.45   7.02   0.00   30.00 
     Outside shoulder 15.30   8.32   0.00   40.00 
 Roadway width (feet) 78.67 23.71 20.00 156.00 
 Median width (feet) 35.39 53.55   0.00 378.00 
  Number of lanes   5.73   1.23   2.00   11.00 
Environmental Factors         
 Traffic conditions     
       Average daily traffic volume (vehicles/day) 109,576 50,803 4,400 207,040 
       Daily average percent of single-unit trucks (%/day)    2.53    0.82   1.30      6.20 
       Daily average percent of combo-unit trucks (%/day)    3.97    3.82   0.20    10.00 
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Table 2: Estimation results S-GORP model 

Variables 
Latent injury risk 

propensity 

Threshold between 
possible and non-

incapacitating injury 

Threshold between 
non-incapacitating 

and incapacitating or 
fatal injury 

Estimate t-stat Estimate t-stat Estimate t-stat 
Threshold constant between no injury and possible injury α1 -12.9575  (t-stat: -9.877) 
Threshold constants αk      0.0642  1.551 1.0038 4.71 
Crash Characteristics             
  Crash location (on-roadway)             
  Off-roadway  0.2729    5.021 -0.4239 -5.849     
  Shoulder or median     -0.7537 -4.201     
  First point of impact in the crash (moving vehicle)             
  Vehicle overturned  0.5918    5.353 -0.3048 -1.814     
  Collision type (rear end)             
  One stopped-vehicle         0.2292 2.226 
  Sideswipe     -0.1293 -2.389     
  Head-on  0.8212    3.944         
  Number of vehicles  0.2110    9.854         
  Multiple vehicles (one vehicle)         0.3133 1.905 
  Number of passengers -0.0742   -4.089         
  0 passengers (more than one passenger) -0.6397 -10.860         
  1 passenger (more than one passenger) -0.3044   -6.026         
  1 or more unrestrained occupants (no unrestrained occupants)  0.7687    9.156         
  1 or more occupants ejected (no occupants ejected)  1.2507    8.751         
Highway Design Attributes             
  Highway-specific indicator variables (other highways)             
  Interstate 35  0.2497*     4.085*     0.5425 6.650 
  U.S Highway 183  0.2497*     4.085*         
  Texas State Highway Loop 1  0.2497*     4.085*  0.1779  3.501     
  U.S Highway 290  0.2497*     4.085*     0.3133 1.905 
  Shoulders width (feet/10)             
      Inside shoulder -0.1005   -2.838         
      Outside shoulder  0.0786    2.532         

*: Same parameter for all highway categories  
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Table 2: Estimation results S-GORP model (cont.) 

Variables 
Latent injury risk 

propensity 

Threshold between 
possible and non-

incapacitating injury 

Threshold between 
non-incapacitating 

and incapacitating or 
fatal injury 

Estimate t-stat Estimate t-stat Estimate t-stat 
Highway Design Attributes             
  Roadway width (feet/10) -0.0199 -2.577         
  Median width (feet/10) -0.0095 -2.577         
  Number of lanes         -0.1523 -4.588 
Characteristics of Drivers Involved in the Crash             
  Teenage drivers (no teenage driver)             
  One or more teenager driver -0.1892 -3.825 -0.1335 -2.269     
  Drivers aged  more than 55 (no driver aged more than 55 years)             
  One or more driver aged  more than 55 years          0.2030  2.806 
  Gender of drivers (only male drivers)             
  Both female and male drivers  0.1484  3.813      0.1895  2.385 
  Only female drivers  0.2293  5.713         
  Driving under the influence(DUI) of alcohol  (no driver DUI)             
    One or more drivers DUI of alcohol         -0.4504 -3.738 
Characteristics of Vehicles Involved in the Crash             
  Trucks (no trucks)             
    One or more vehicles were trucks         -0.7888 -3.960 
Environmental Factors             
  Weather conditions (clear or cloudy)             
  Rain or fog -0.1607 -3.305      0.2890  3.082 
  Lighting conditions (daylight)             
  Dark – lighted -0.4112 -4.857 -0.1983 -1.493 -0.3727 -2.161 
  Dark – not lighted -0.2260 -5.505 -0.4242 -7.294     
  Traffic conditions             
    Average daily traffic volume squared (vehicles/day/100,000)2 -0.0715 -4.003         
Spatial parameter δ 0.2199 (t-stat: 3.078) 
Log-composite likelihood at convergence -2,381,934.8 
Number of parameters estimated 44 
Number of observations 2087 
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Table 3: Aggregate and disaggregate measures of fit in the estimation sample 

Injury categories /  
Measures of fit 

Entire sample Teenage driver involved in the crash: 
No teenage driver 

Gender of drivers involved in the 
crash: Only male drivers 

Actual 
share 

SORP 
predictions 

S-GORP 
predictions

Actual 
share 

SORP 
predictions 

S-GORP 
predictions 

Actual 
share 

SORP 
predictions 

S-GORP 
predictions

No Injury 52.70 52.93 52.28 52.23 52.78 51.75 57.97 56.00 57.33 
Possible injury 27.70 26.86 27.63 28.29 26.95 28.22 22.62 25.61 24.05 
Non-incapacitating injury 17.20 17.48 17.10 17.17 17.53 17.06 15.70 15.82 15.10 
Incapacitating or fatal injury   2.40   2.73   2.99   2.32   2.74   2.97   3.71   2.57   3.52 
Number of observations 2087 2087 2087 1771 1771 1771 809 809 809 
Root mean square error (RMSE) - 0.10 0.07 - 1.56 0.82 - 3.76 1.69 
Mean absolute percentage error - 1.68 1.18 - 2.69 1.31 - 6.22 2.86 
Predictive likelihood ratio test 41.3131.72 2

05.0,20 => χ 41.3182.54 2
05.0,20 => χ 41.311937 2

05.0,20 => χ.

Injury categories / 
Measures of fit 

Weather conditions: 
Clear or cloudy 

Crash location: 
On-roadway 

Lighting conditions: 
Daylight 

Actual 
share 

SORP 
predictions 

S-GORP 
predictions

Actual 
share 

SORP 
predictions 

S-GORP 
predictions

Actual 
share 

SORP 
predictions 

S-GORP 
predictions

No Injury 51.70 51.90 51.17 51.65 52.43 51.22 50.07 51.70 49.51 
Possible injury 28.08 27.16 28.19 29.54 27.03 29.73 30.95 27.45 31.10 
Non-incapacitating injury 17.58 18.04 17.38 16.69 17.75 16.34 17.26 18.13 16.96 
Incapacitating or fatal injury   2.64   2.90   3.26   2.12   2.79   2.71   1.72   2.72   2.43 
Number of observations 1820 1820 1820 1696 1696 1696 1454 1454 1454 
Root mean square error (RMSE) - 1.08 0.86 - 2.91 0.83 - 4.08 0.96 
Mean absolute percentage error - 1.83 1.48 - 5.01 1.56 - 7.00 1.71 
Predictive likelihood ratio test 41.3127.62 2

05.0,20 => χ 41.3114.55 2
05.0,20 => χ 41.3195.48 2

05.0,20 => χ
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Table 4: Elasticity effects of variables on incapacitating or fatal injuries 

Variable Estimate Standard 
error 

Crash Characteristics     
  Crash location (on-roadway)     
  Off-roadway 174.38   38.13 
  Shoulder or median 128.88   33.77 
  First point of impact in the crash (moving vehicle)     
  Vehicle overturned 283.72   97.83 
  Collision type (rear-end)     
  One stopped-vehicle  -39.15   16.37 
  Sideswipe   21.41     8.86 
  Head-on 303.52 155.47 
  Number of vehicles   57.44   10.06 
  Number of passengers   34.91     7.33 
  At least one unrestrained occupant (no unrestrained occupants) 283.46   60.90 
  At least one occupant ejected (no occupants ejected) 654.37 182.67 
Highway Design Attributes     
  Highway-specific indicator variables (other highways)     
  Interstate 35  -47.94   16.37 
  U.S Highway 183   51.37   17.03 
  Texas State Highway Loop 1   17.27   14.29 
  U.S Highway 290  -11.62   29.37 
  Shoulders width (feet/10)     
      Inside shoulder    -2.16     0.69 
      Outside shoulder     2.17     0.92 
  Roadway width (feet/10)    -2.83     1.17 
  Median width (feet/10)    -0.57     0.22 
  Number of lanes   32.21     7.45 
Characteristics of Drivers Involved in the Crash     
  Teenage driver (no teenage driver)     
  At least one teenage driver  -14.45     9.63 
  Driver aged  more than 55 (no driver aged more than 55 years)     
  At least one driver aged  more than 55 years  -35.53   11.49 
  Gender of drivers (only male drivers)     
  Both female and male drivers   -9.32   20.67 
  Only female drivers   50.25   11.04 
  Driving under the influence(DUI) of alcohol  (no driver DUI)     
    At least one driver DUI of alcohol 132.37   68.97 
Characteristics of Vehicles Involved in the Crash     
  Commercial truck (no commercial truck)     
    At least one vehicle is a commercial truck 280.27 183.89 
Environmental Factors     
  Weather conditions (normal)     
  Rain or fog  -58.77   11.34 
  Lighting conditions (daylight)     
  Night – lighted   16.77   11.71 
  Night – not lighted   29.79   49.23 
  Traffic conditions     
    Average daily traffic volume squared (vehicles/day/100,000)2    -3.37     0.91 

 


