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ABSTRACT 
This paper develops a conceptual and econometric framework of non-work activity location 
choice that is comprehensive in its incorporation of spatial cognition, heterogeneity in preference 
behavior, and spatial interaction. The proposed framework subsumes a variety of restricted 
models including the multinomial logit, first-order state dependence logit, spatially correlated 
logit and mixed spatially correlated logit models. The applicability of the framework is 
demonstrated through an empirical analysis using the German Mobidrive data. 
 
Keywords:  Location choice, variety-seeking, spatial cognition, state dependence, activity-based 
analysis
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1. INTRODUCTION 
1.1 Background 
The activity-based approach to travel analysis emphasizes the modeling of the activity-travel 
patterns of individuals, which may be characterized by six broad attributes: (a) Motivation or, 
equivalently, the purpose of each activity episode (such as work and shopping), (b) Location of 
participation of each activity episode (such as the work place or grocery store), (c) Sequencing of 
activity episodes and the time of day of each episode participation, (d) Mode used to travel to the 
episode location (for example, auto or transit), and (e) Solo or joint activity episode participation. 
Of these activity-travel attributes, the location of participation spatially pegs the daily activity-
travel patterns of individuals. Thus, it is important to accommodate behavioral realism in models 
of activity location choice to produce accurate predictions of travel demand under changing land-
use, demographic, and transportation system contexts. Moreover, an understanding of the factors 
that influence the choice of location can contribute to more effective land-use and zoning 
policies. For instance, a habit-persistent individual may be more likely to continue shopping at 
the same grocery store, rather than switching stores, in response to a new land-use policy that 
brings more shopping opportunities closer to home. 

The choice of location of episode participation, and the factors that influence this choice, 
vary with activity purpose. Generally, the work location for most people is fixed in the short-
term (except for teleworking individuals).  Non-work activity participation, on the other hand, is 
typically (though not always) characterized by a higher degree of spatial flexibility. In particular, 
the choice of location for non-work activities can vary not only across individuals but also across 
choice occasions of an individual. Thus, non-work location modeling is a challenging problem. 
At the same time, non-work location modeling is of interest not only from a transportation and 
urban planning perspective, but also from the perspective of service, retail and real estate 
businesses. For instance, predictions of where people shop, and spend their recreational and 
leisure time, plays an important role in the location and marketing decisions of businesses and 
firms [see, for example, (1), (2), (3), (4), and (5)]. 
 
1.2 The Current Study 
The development of behaviorally realistic models of non-work location choice requires a good 
understanding of the factors influencing the choice process. Accordingly, earlier research has 
emphasized the spatial cognitive processes/preference behavior, and spatial interaction 
considerations, underlying location choice decisions. In particular, there have been studies 
exploring the psychological aspects of spatial cognition/preference behavior issues at the 
decision-making agent level [see, for example, (6), (7), (8), (3), and (2)]. At the same time, there 
have been other studies directed toward understanding geographical interactions between spatial 
units, and their effects on choice behavior, but with limited to no consideration of spatial 
cognition/preference issues [see, for example, (9), (10), (11), (12), (13), provide a review of such 
studies]. Few earlier studies have comprehensively considered both cognitive/preference 
concepts at the decision maker level, as well as interactions between spatial choice units [but see 
(14) and (15); the reader is referred to Sivakumar (16) for a comprehensive survey of the 
literature on location choice modeling]. 
 The above context frames the motivation for this study, which is to develop a 
behaviorally realistic location choice model for non-work activity participation that 
comprehensively incorporates spatial cognition/preference behavior (habit persistence, variety-
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seeking, cognitive learning, and spatial-temporal constraints) and spatial interaction effects 
[spatial heterogeneity and spatial autocorrelation; see (13)]. 

The rest of this paper is organized as follows. Section 2 describes a comprehensive 
conceptual framework of location choice decisions for non-work activity participation. Section 3 
formulates a location choice model structure based on the conceptual framework presented in 
section 2, and discusses model estimation techniques. Section 4 presents an empirical analysis of 
location choice for non-work travel that demonstrates the applicability of the proposed location 
choice model structure. Section 5 concludes the paper with a brief discussion of policy 
implications and a summary of the findings. 

 
2. CONCEPTUAL FRAMEWORK 
The only observable characteristics of individual location choice behavior, as obtained from 
typical activity-travel surveys, are the actual (revealed) choice of location, the associated 
circumstances (such as mode used, time of day, and accompanying individuals), individual 
demographic characteristics, and the attributes of the alternative locations. In order to clearly 
understand the motivations behind the observed choice, however, it is important to recognize the 
underlying processes and factors manifesting themselves in the revealed choice behavior. 

Figure 1 provides a conceptualization of this link between the underlying process and 
factors, and the revealed location choice. There are three types of broad elements in the figure: 
(1) Time-invariant factors that are common to the mental locational mapping preferences of the 
individual on every choice occasion over a certain period of time, (2) Time-variant factors that 
potentially influence the mental location map/preferences differently across different choice 
occasions of the individual, and (3) The spatial information processing rule, which may also vary 
across choice occasions of the individual. The second and third elements will be jointly referred 
to as time variant elements in this paper. 

The time invariant factors (see box toward the bottom left corner of Figure 1) may be 
broadly categorized into time invariant individual preferences, time invariant attractiveness of 
alternatives, and time invariant spatial interactions. The time invariant individual preferences for 
locations can be attributed to observed factors such as race, age or income, and unobserved 
factors such as habit persistence or loyalty. The time invariant attractiveness of alternative 
locations may include attributes such as accessibility and parking availability, or the quality of 
goods available at a shopping location. The time-invariant effects of spatial interactions are 
associated with such characteristics as the proximity and spatial configuration of shopping 
locations. 

The time variant factors that form a part of the time variant elements box in Figure 1 may 
be broadly categorized into time variant attractiveness of alternatives, effects of time-varying 
constraints, time variant individual preferences, and the presence of other decision-makers on the 
choice occasion. Examples of time variant attractiveness of alternatives include special sales at 
shopping malls, advertising campaigns by retailers, land-use and other attribute changes within 
and around the spatial alternatives, and temporal variations in accessibility due to traffic 
conditions. Time variant constraints can be attributed to the availability of time or mode, or trip-
chaining decisions. The time variant individual preferences may be a result of variety-seeking, 
unfulfilled consumption desires, preference updating due to past experiences, or time-varying 
desires to travel. The degree of such time variant preferences can also vary, both across 
individuals and across choice occasions of an individual. Another time variant factor that could 



Sivakumar and Bhat  3 

potentially influence location choice decisions is the presence of one or more persons traveling 
with the decision-maker, since this significantly alters the dynamics of the choice process. 

All the above factors, representing the cognitive processes, and the effects of the social 
and spatial environments, are consolidated together in an information processing rule to generate 
the revealed choice of location [see (16) for a more detailed discussion]. The chosen alternative, 
in turn, influences future choices as individuals’ preferences adapt to past experiences (see arrow 
between choice alternative (t) and individual preferences (t+1) in Figure 1). The time-variant 
elements on choice occasion t also influence the time-variant elements on choice occasion t+1, 
since past preferences and constraints (whether satisfied or not) are a part of an individual’s 
memory and therefore cognition. 

 
3. MODEL STRUCTURE 
In this section, the conceptual framework of the previous section is translated into a random 
utility maximization-based model structure. Section 3.1 presents the model structure, while 
Section 3.2 discusses the estimation procedure. 
 
3.1 Location Choice Model Structure 
The location choice model expresses the utility that an individual i (i = 1, …, I) associates with 
an alternative j (j = 1, …, Ji) on choice occasion t (t = 1, …, Ti) as 
  

jtiiititiitiijiititiitijijt LXCCXDXCCXZU )()()( 321321 ξωωωγβδδδηα ++++++++++=  
)()( itijtitijt PRECHOPREATT ζχ ++                                (1) 
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where, Zj is a vector of observed time invariant attributes of zone j, 

Xi is a vector of observed demographic attributes of individual i, 

Cit is a vector of characteristics of choice occasion t for individual i (including constraints 
faced by the individual), 

Dij is a matrix of distance or time and cost measures associated with the 
home/school/work locations of individual i and zone j, 

Ljt is a vector of special attraction variables associated with alternative j on choice 
occasion t, 

PREATTijt is a function of the attributes of spatial alternative j on choice occasions t-1, t-
2, …, 1), and the similarities of these attributes with individual i’s previously chosen 
alternatives, 

PRECHOijt is a function of the number of times individual i has chosen alternative j on 
choice occasions t-1, t-2, …, 1, 



Sivakumar and Bhat  4 

Ũij(t-1), Ũij(t-2),… are the utilities that individual i associated with alternative j on choice 
occasions prior to occasion t, excluding the effects of constraints, and 

},,,,,,,,,,,,,,,,,,,{ 10
210210

321321 ρλλζζζχχχξωωωγβδδδηα itiitiiitiiti  are the parameters of 
the model that are explained in the following paragraphs. 

 The term ii X1δα +  represents the vector of time invariant preferences of individual i for 
the attributes Zj of the choice alternative. The vector of parameters 1δ  represents the extent of the 
preferences that can be captured by observed demographic characteristics of the individual, 
while iα  represents the unobserved preferences of the individual that makes her/his choice 
behavior different from that of an observationally identical individual. The vector of parameters 

iα , therefore, accounts for inter-personal response heterogeneity due to such unobserved factors 
as variety-seeking and the desire for travel. The term, ii X1ωβ + , similarly, represents the vector 
of time invariant preferences of individual i for the time and costs (Dij) associated with the 
choice alternative (the other parameters on Zj and Dij are discussed later). 
 The parameter iξ  represents the time invariant preferences of individual i for the special 
attractions associated with alternative j on choice occasion t. For instance, if a shopping mall has 
a big sale, the individual might want to visit that mall on that particular occasion. Constraints 
might, however, bring the utility of the mall down despite the ‘special attraction’. The vectors of 
parameters ( 3232 ,,, ωωδδ ) represent the effects of constraints on individual i. This could include 
time budget, trip chaining, and mode availability constraints. 

The terms itχ  and itζ , and the parameters ),( 10 λλ , represent the time variant preferences 
of individual i that are a result of learning, variety seeking and unfulfilled desires, respectively. 
The term itχ  represents the preference of individual i for an alternative at choice occasion t that 
is the result of ‘learning’. This ‘learning’ could be due to individuals updating their preferences 
for certain attributes based on experience from the past choice, so that alternatives that are 
perceived to have similar attributes to the attributes of the actually chosen alternative in the 
previous choice environment are assigned higher (or lower) utilities in the current choice (i.e., 
preference learning). The ‘learning’ can also be due to delayed effects of land-use changes on the 
transportation system, because new spatial attributes take time to enter into the spatial perception 
map of individuals (i.e., spatial learning). The term itζ  represents the preference of individual i 
for an alternative at choice occasion t due to effects of previous choice occasions when that 
alternative was chosen. This captures variety seeking in the choice of alternatives. An individual 
who exhibits habit persistence is likely to have a higher preference for locations she has visited 
in the past, while one who exhibits variety seeking is likely to have a lower preference for 
locations he has visited in the past. The term ]~...~~~[ 11)3(

2
1)2(1)1(0 ij

t
tijtijtij UUUU λλλλ +++ −−−  

represents the carryover effects and unfulfilled desires from past choice occasions on the utility 
individual i associates with alternative j. The terms 1)2()1(

~ ..., ,~ ,~
ijtijtij UUU −−  are the utilities that 

individual i associated with alternative j on choice occasions prior to occasion t, excluding the 
effects of constraints. 

The effects of any other factors (that have not already been accounted for) that cause 
intra-personal heterogeneity in observed choices are captured in the utility function by itη  (the 
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time variant preferences of the individual for the attributes of the alternative) and itγ  (the time 
variant preferences of the individual for the travel time and costs associated with the alternative). 

The term ijtε  is the random error component of the utility individual i attributes to 

alternative j on choice occasion t. The inclusion of the term ∑
∈ ''

'

Jj
tijερ  captures the spatial 

correlation of alternative j with other choice alternatives that are adjacent to j (represented by the 
set J’), with the parameter ρ  capturing the degree of spatial correlation. 

The proposed location choice model is a mixed logit (MxL) model that accommodates 
spatial interaction effects, and response heterogeneity due to various observed and unobserved 
factors (including state dependent effects such as variety seeking, habit persistence, carryover 
effects and spatial learning). Different assumptions imposed on this model will, therefore, result 
in simpler (restricted) models that represent specific behavioral circumstances. Some of the 
restricted models nested within the proposed model structure include the multinomial logit 
(MNL) model, the first order state dependence multinomial logit model, the spatially correlated 
logit model (SCL) of Bhat and Guo (15), the mixed spatially correlated logit model (MSCL), and 
a bi-level mixed logit model to introduce intra-individual heterogeneity [see (16)]. 

 
3.2 Model Estimation 
The vector of parameters to be estimated in the model structure is 

},,,,,,,,,,,,,,,{ 10321321 ρλλζχξωωωγβδδδηα ititiitiiti . Of these parameters, },,{ iii ξβα  vary 
across individuals and capture unobserved inter-individual response heterogeneity, while 

},,,{ itititit ζχγη  vary across choice occasions of an individual and capture unobserved intra-
individual response heterogeneity. For convenience, let },,,{ iii ξβα=Ψ , },,,{ itititit ζχγη=Ω  
and µ  represent the rest of the fixed response parameters },,,,,,,{ 10321321 λλωωωδδδ . ρ  is the 
dissimilarity parameter that captures the degree of spatial correlation (absorbed into µ  where 
appropriate, for ease of presentation). Let the distribution of unobserved inter- and intra-
individual heterogeneities be multivariate normal, so that the elements of Ψ  and Ω  are 
realizations of the random multivariate normally distributed variables that comprise Ψ~  and Ω~  
respectively. Let θ  be a vector of true parameters characterizing the mean and variance-
covariance matrix of Ψ~ , and let σ  be a vector of true parameters characterizing the mean and 
variance-covariance matrix of Ω~ . 

In its most general form, the utility associated by individual i with zone j on choice 
occasion t is given by ijtijtijt VU ε+= , where 

 
jtiiititiitiijiititiitijijt LXCCXDXCCXZV )()()( 321321 ξωωωγβδδδηα ++++++++++=  
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As per the notations, the parameters },,{ iii ξβα  and },,,{ itititit ζχγη  in the above expression are 

drawn from the random variables that comprise Ψ~  and Ω~ . ijtV  may therefore be represented as 

),~,~( µΩΨijtV . 
Under the assumption of no spatial correlation, the probability that individual i will 

choose alternative j at the tth choice occasion, conditional on Ψ~ , Ω~  and µ , is the usual 
multinomial logit form [see (17)]: 
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The assumption of spatial correlation, on the other hand, combined with a GEV-based 

structure to accommodate this correlation, leads to the following expression for the conditional 
probability [see (15)]: 
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where iji ,α  is an allocation parameter. 
The unconditional probability can be obtained thereafter as: 
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where F is the multivariate cumulative normal distribution. The dimensionality of the above 
integration is dependent on the number of elements in the Ψ  and Ω  vectors. 

The parameters to be estimated under the assumption of zero spatial correlation are the 
σ , θ  and µ  vectors corresponding to Equations (3) and (5). The parameter to be estimated 
under the assumption of spatial correlation include the scalar ρ , and the σ , θ  and µ  vectors, 
corresponding to Equations (4) and (5). To develop the likelihood function for parameter 
estimation, we need the probability of each sample individual i’s sequence of observed choices 
on choice occasions 1, …Ti. Conditional on Ψ~ , the likelihood function for individual i’s 
observed sequence of choices is: 

 

( ) ( )∏ ∫ ∏
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where, Yijt takes the value 1 if individual i chose alternative j on choice occasion t, and 0 
otherwise. 
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The unconditional likelihood function of the choice sequence is: 
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The log-likelihood function is ∑= i iLL ),,(ln),,( µσθµσθ . 

The likelihood function in Equation (7) is quite different from those in previous 
applications of the mixed logit model. In particular, there are two levels of integration rather than 
one. This arises because, from an estimation standpoint, the random coefficients formulation that 
accommodates taste variations within individuals across choice occasions operates at the choice 
level, while the random coefficients formulation that accommodates taste variation across 
individuals operates at the individual level. 

Quasi-Monte Carlo (QMC) simulation techniques are applied to approximate the 
integrals in the likelihood function and maximize the logarithm of the resulting simulated 
likelihood function across all individuals with respect to θ , σ  and µ . The procedure to 
simulate each individual’s likelihood function ),,( µσθiL , is as follows: (a) For a given value of 

the parameter vector θ , draw a particular realization of Ψ~  from its distribution, (b) For a given 
value of the σ  vector, draw several sets of realizations of Ω~  from its distribution, each set 
corresponding to a choice occasion of the individual, (c) compute the probability of the chosen 
alternative for each choice occasion (i.e., the likelihood function of that choice occasion) at that 
choice occasion’s set of Ω~  realizations, and for the current Ψ~  realization, (d) Average the 
likelihood functions across the various realizations of Ω~  for each choice occasion, (e) Compute 
the individual likelihood function as the product of the averaged likelihood functions across all 
choice occasions of the individual, (f) Repeat steps a through e several times with fresh 
realizations of Ψ~  and new sets of draws of Ω~ , and (g) Compute the average across all 
individual likelihood function evaluations. Mathematically, the individual likelihood function is 
approximated as: 
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where ),,( µσθiSL  is the simulated likelihood function for the ith individual’s sequence of 

choices given the parameter vectors θ , σ  and µ , θ|~ nΨ  is the nth draw (n = 1, 2, …, N) from 
σθ |~),|~( ng f ΩΨ  is the gn

th draw (gn = 1, 2, …, M) from )|~( σΩf  at the nth draw of Ψ~ , and 
other variables are as defined earlier. ),,( µσθiSL  is an unbiased estimator of the actual 
likelihood function ),,( µσθiL . Its variance decreases as N and M increase. It also has the 
appealing properties of being smooth (i.e., twice differentiable) and being strictly positive for 
any realization of the draws. 
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 The simulated log-likelihood function is constructed as: 
 

[ ]∑=
i

iSL SL ),,(ln),,( µσθµσθ                (9) 

 
The parameter vectors θ , σ  and µ  are estimated as the values that maximize the above 
simulated function. Under rather weak regularity conditions, the simulated maximum likelihood 
estimator is consistent, asymptotically efficient, and asymptotically normal [see (18), (19)]. 

Depending on the number of parameters in θ  and σ , and the number of draws N and M, 
however, the simulated maximum likelihood estimation of this bi-level model can be very time 
consuming. Most applications of mixed logit models in the literature use QMC sequences, such 
as the Halton sequence, to draw realizations for Ψ~  and Ω~  from their normal population 
distributions. Although Halton sequences are a vast improvement over pseudo-Monte Carlo 
(PMC) methods in the efficiency of the simulated estimation process, there are several other 
QMC sequences that are potentially superior to the Halton sequences. In the empirical analysis 
presented in the following section, we have used the random linear scrambled Faure sequence, 
which was identified in Sivakumar et al. (20) for its superior performance over the standard and 
scrambled Halton sequences in simulated maximum likelihood estimation. 
 
4. EMPIRICAL RESULTS 
This section presents an empirical analysis that applies the location choice model structure of the 
previous section. All model estimations were undertaken using the GAUSS matrix programming 
language.1 
 
4.1 Data Sources 
A multi-day data is needed to estimate a location choice model that captures the effects of past 
choices (state dependence), and accommodates inter- and intra-individual heterogeneity. The 
current study uses the Mobidrive data, which is a multi-day (6-week) travel survey conducted in 
the Fall of 1999 in the cities of Karlsruhe (West Germany) and Halle (East Germany). The 
survey collected information on 361 individuals from 162 households. 

In addition to the Mobidrive data, several secondary data sources were also used in the 
analysis. These included Geographic Information Systems (GIS) files of the transportation 
network and zonal land-use for the core-city of Karlsruhe.  

In our empirical analysis, we confined our attention to shopping for non-daily 
consumption goods (i.e., non-maintenance shopping). Further, due to data limitations, we 
restricted the analysis to the core city of Karlsruhe, which consists of 69 transportation analysis 
zones (TAZs). The final estimation sample comprises 903 non-maintenance shopping activity 
occasions undertaken by 158 individuals belonging to 81 households. The number of shopping 
occasions per individual varies from 2 to 29 during the survey period, and the number of unique 
zones (shopping locations) per individual varies from 1 to 10. 

 
4.2 Variable Specifications 
The variables considered in the analysis may be categorized into six groups, each of which is 
discussed in turn in the following sections. 

                                                 
1 The GAUSS code is available on request from the authors. 
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4.2.1 Zonal Size Attributes 
There are several zonal size attributes that capture the attractiveness of a zone, such as area, 
population, and number of shopping opportunities. In this study, a non-linear composite size 
measure is used, which is defined as follows: 
   

Composite Sizej = ln(x1j + δ1x2j + δ2x3j + δ3x4j +…),          (10) 
 

where (x1j, x2j, x3j, x4j, …) are zonal size attributes, and ...) ,,,( 321 δδδ  are parameters to be 
estimated. Based on specification trials, four variables representing zonal size were included: (1) 
zonal area (in square feet), (2) number of shopping opportunities, (3) number of recreational 
opportunities, and (4) zonal area (in square feet) covered by mixed development. The 
coefficients on the number of shopping opportunities, number of recreational opportunities, and 
mixed development area were estimated to be 0.638, 2.588, and 89.8, respectively, based on 
simple specifications with a distance impedance measure [the coefficient on the total zonal area 
variable is normalized to one for identification purposes; see (21)]. The estimates above were 
used to construct the composite size measure for each zone. The unit of the composite size 
measure is square feet. 
 
4.2.2 Zonal Non-Size Attributes 
The zonal non-size attributes available in the data include population density (in population per 
1000 square feet), central business district (CBD) (dummy variable) and presence of daycare 
(dummy variable that takes a value of 1 if there is a daycare facility available in the zone). These 
variables, along with the composite size variable, are introduced in the location choice model as 
measures of zonal attractiveness. 

 
4.2.3 Zonal Impedance Measures 
The distance of each candidate activity location zone from the home zone of an individual is 
treated as the impedance associated with that candidate zone, since zones which are farther away 
from an individual’s home zone will be less preferred. In addition, several studies have shown 
that people tend to visit locations that are around their school/work place [see (22)]. Thus, the 
distance of zones from the work/school zone of an individual is introduced as another impedance 
measure. The distances are measured in miles in the current study. 
 
4.2.4 Demographic Variables 
The zonal composite size and non-size attributes, and impedance measures, are interacted with 
individual demographic characteristics to capture observed sources of heterogeneity across 
individuals in their response to the zonal attributes and impedance. For instance, distance 
interacted with gender captures the difference in sensitivities to impedance between males and 
females. 

The Mobidrive data contains a number of individual and household level demographic 
attributes, such as gender, marital status, employment status, household income, household size, 
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and number of public transportation season tickets held.2 All the demographic variables were 
tested in the model estimations, and the statistically significant ones were retained. 

 
4.2.5 Attributes of Choice Occasion 
The zonal attributes and impedance measures (discussed in Sections 4.2.1, 4.2.2, and 4.2.3) were 
also interacted with attributes of the choice occasion to capture time-variant effects and 
constraints on the response to zonal attributes and impedances. For example, distance interacted 
with time of day captures the time-varying effects of time-budget constraints on the sensitivity to 
impedance. 

The attributes of the choice occasion available in the data include time-of-day, day of 
week, whether or not the shopping episode was chained with other episodes (dummy variable), 
number of accompanying household members, number of accompanying non-household 
members, and activity duration. 

 
4.2.6 Feedback Effects 
In this application, a simple form of the PRECHOijt function, SAMEijt (first-order Markov 
process, first order state dependence, or lagged choice indicator), is used, which is defined as 
follows [a similar approach is used by Miller and O’Kelly (23)]. 
 

⎩
⎨
⎧ −

=
otherwise

1occasion  choiceon   individualby chosen  was zone if 
,0
,1 tij 

SAMEijt  

 
The introduction of feedback in a model must be accompanied by a specification of the 

initial conditions. This study makes two assumptions regarding the initial conditions. First, it 
assumes that the survey respondents have reached a state of equilibrium in their activity-travel 
patterns, so that the survey period will be representative of their choice behavior. Second, the 
first non-maintenance shopping episode of each survey respondent is assumed to be exogenous 
to the estimation. This condition can be relaxed in several ways [for example, see Degeratu, 
(24)]. However, the consideration of endogenous initial conditions is beyond the scope of this 
paper. Also, due to the limited information on, and the lack of adequate temporal variation in, the 
spatial attributes of alternatives in the Mobidrive data, it was not possible to explore learning 
effects [captured by the PREATTijt term in Equation (1)] and carryover effects [captured by the 
sequence of previous utility values in Equation (1)]. 

 
4.3 Empirical Results 
A basic MNL model of location choice labeled (MNL-1), with the variable specifications 
described above, was estimated as the benchmark against which all other models were compared. 
An MNL model with state dependence (MNL-2) was also estimated to assess the impacts of 
introducing feedback. The MNL-1 model was then extended to incorporate unobserved inter-
individual response heterogeneity (mixed logit model, MxL-1). Finally, the MNL-2 was 
extended to accommodate state dependence in addition to unobserved inter-individual response 
heterogeneity (mixed logit model, MxL-2). 

                                                 
2 There are several different public transportation agencies serving the Karlsruhe area, such as the Karlsruhe/Halle 
public transit network and the Deutsche Bahn (German rail). Thus, an individual may hold more than one public 
transportation season ticket. 
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Several other models, including the spatially correlated logit (SCL), mixed spatially 
correlated logit (MSCL), and a bi-level mixed logit model to introduce intra-individual 
heterogeneity in addition to inter-individual heterogeneity, were also estimated as part of this 
study. However, the estimation results indicated the absence of spatial correlation effects and 
unobserved intra-individual heterogeneity in the current empirical context. The remaining part of 
this section discusses the model results in greater detail.  

 
4.3.1 Likelihood-Based Measures of Fit 
The log-likelihood value at convergence for the MNL-1 model with 26 parameters is -2862.4 
( 2ρ = 0.248), while the corresponding value for the MNL feedback model (MNL-2) with 27 
parameters is -2250.9 ( 2ρ = 0.282). Although the two models cannot be directly compared 
(MNL-2 is estimated on a smaller sample than MNL-1 in order to accommodate the initial 
conditions for feedback), their 2ρ  measures indicate that the model with state dependence is a 
substantially better fit for the data. Also, the MxL-1 model provides a better fit (log-likelihood at 
convergence = -2786.9, 2ρ = 0.267) for the data compared to the MNL-1 model, indicating that 
the incorporation of unobserved inter-individual heterogeneity captures choice behavior more 
accurately. The MxL-1 and MNL-1 models are directly comparable using a nested likelihood 
ratio test. This test value is 151, which is much larger than the chi-squared table value with 6 
degrees of freedom (corresponding to 6 unobserved heterogeneity terms) at any reasonable level 
of significance. The MxL-2 model that incorporates both unobserved heterogeneity as well as 
state dependence effects is the best fit for the data, with a convergent log-likelihood value of  
-2223.5 ( 2ρ of 0.290). A nested likelihood ratio test comparison with MNL-2 provides a test 
value of 54.8, which is again much larger than the chi-squared table value with 6 degrees of 
freedom at any reasonable level of significance. 

Table 1 presents the results of the MxL-2 model, which are discussed in detail in the 
following sections. We do not present the results for the other models because the substantive 
interpretations from these other models were similar to the MxL-2 model. 

 
4.3.2 Zonal Size and Interactions 
The composite zonal size measure has a positive mean coefficient, indicating that larger 
composite size zones, in general, are preferred more than zones of smaller composite size. This is 
to be expected, since larger composite size zones contain more elemental units of attraction. 

The interactions of composite size with demographic/other attributes suggest that 
individuals in low income households (less than an annual income of 3000 Deutsche Marks or 
DM) have a significantly higher preference for shopping at large size zones. Also, individuals 
who own several season tickets for public transport show a higher preference for large composite 
size zones, perhaps because large zones are typically better connected by public transport. 

The interaction of the composite size measure with choice occasion-specific constraints 
yielded only one significant term, corresponding to whether the shopping stop is chained with 
other shopping episodes. The parameter on this term in Table 1 indicates that large composite 
size zones are less preferred when a non-maintenance shopping activity is chained with other 
shopping activities. Finally, there is also significant unobserved heterogeneity in the sensitivity 
to zonal size. The mean effect and the standard deviation coefficient imply that, in the group of 
middle/high income individuals who do not own public transportation season tickets, a larger 
zone is preferred 94% of the time when the shopping episode is not chained with other episodes. 
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4.3.3 Zonal Non-Size Attributes and Interactions 
The results in Table 1 for the zonal non-size attributes suggest that a central business district 
(CBD) zone is, on average, preferred more for non-maintenance shopping activity participation 
than non-CBD zones. The observed sources of heterogeneity in this effect relate to individual 
gender and age. Specifically, women prefer CBD zones more than men, and older individuals 
prefer CBD zones less than younger individuals. In addition, there are several choice occasion-
specific constraints that also influence the utility of a CBD zone. For instance, a CBD zone is 
more attractive if the shopping stop is part of a chained tour, presumably because of the variety 
of activity opportunities in CBD areas. A CBD zone is also less preferred when an individual has 
company in participating in non-maintenance shopping episodes. This result is not immediately 
intuitive, but may be capturing a host of constraints and group dynamics. The remaining CBD 
interaction terms indicate the higher likelihood of choosing CBD zones for long shopping 
duration episodes, and the lower propensity to shop at CBD zones in the morning (7:00AM to 
9:00AM). There is also a very high level of unobserved sensitivity variation across individuals to 
the CBD variable. 

The coefficient on the “presence of daycare” dummy variable indicates, in general, a 
lower preference for zones with daycare. Although the reason for this is not readily apparent, it 
may be the result of high correlation between residential zones (with few shopping opportunities) 
and the presence of daycare. Married people with children less than 16 years of age prefer zones 
with daycare for non-maintenance shopping, presumably because of a conscious effort to seek 
shopping locations close to the children’s daycare to maximize the use of time without children. 
Again, the results also indicate substantial unobserved heterogeneity in the daycare presence 
effect. 

Finally, in the group of zonal non-size attributes, high population density zones are, in 
general, preferred less than other zones. This is reasonable, since high population density zones 
are primarily residential and may offer fewer, and lesser variety in, shopping opportunities. 
However, there is substantial unobserved heterogeneity, with about 12% of individuals 
preferring high population density zones. 

 
4.3.4 Impedance Measures and Interactions 
Two impedance measures, distance from home and distance from work/school, were introduced 
in the model specifications and both of these measures turned out to be significant determinants 
of shopping location choice. The estimated parameters indicate that almost all individuals have a 
strong preference to visit locations in the vicinity of their homes, schools, and work places.  

The ‘distance from home’ variable was interacted with several demographic variables 
that turned out to be statistically significant (however, no significant interaction effects were 
found for ‘distance from work place’). Specifically, women, retired individuals, German citizens, 
and individuals who own several public transportation season tickets are more sensitive to 
distance (i.e., are more inclined to shop close to home) than men, non-retired, non-German 
citizens, and individuals who own few public transportation season tickets, respectively. On the 
other hand, individuals in households that own several cars are less sensitive to distance, 
presumably due to less mobility constraints. 

 Choice occasion-specific constraints also significantly influence the disutility associated 
with distance. The results show that individuals are less inclined to shop at locations that are far 
away from home for non-maintenance shopping activities during the weekend relative to a 
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weekday. This is a little surprising, though the statistical significance of this effect is also rather 
marginal. The results of the other interaction terms are more intuitive. Individuals are more 
willing to participate at locations farther away from their home when (a) accompanied by other 
people, (b) chaining shopping activity with other activities, (c) planning shopping activities of 
longer durations, and (d) considering large-sized zones. The latter result reflects the trade-off 
between travel distance and availability of shopping opportunities. 

Finally, the results also reveal differences in distance sensitivity across individuals due to 
unobserved factors, though these unobserved heterogeneity effects are only marginally 
significant.  

 
4.3.5 Feedback Effects 
The model results in Table 1 (under “Feedback Effect”) indicate that the effect of past choices on 
the utility of a zone is highly significant and positive. Therefore, on a specific choice occasion, 
all else being equal, zones visited in the previous choice occasion are preferred over other zones. 
This implies habit persistence and/or loyalty behavior. There is variation in the feedback 
sensitivity across individuals, as indicated by the statistically significant standard deviation 
parameter on the feedback variable. 

Overall, it is important to include feedback effects in location choice models not only to 
capture habit persistence/loyalty behavior, but also to ensure that all the other parameters are 
correctly estimated (a comparison of the models with and without feedback indicated that several 
variable effects were over-estimated when feedback was ignored). 

 
4.3.6 Spatial Correlation 
The spatially correlated logit (SCL) and mixed spatially correlated logit (MSCL) models 
estimated as part of this analysis indicated that there are no significant spatial correlation effects 
in the study area (Karlsruhe core city). In other words, there is no correlation between the 
unobserved errors in the utilities associated by individual i with zones that are adjacent. While 
the absence of spatial correlation is rare for spatial data, it is possible under certain conditions, 
such as for Karlsruhe. In particular, the core city of Karlsruhe is a fairly small region 
approximately 15.6 sq.km with a mature transportation system and tight land-use control. It is 
therefore conceivable that the zonal configuration creates clear boundaries between different 
land-use parcels. Also, the goods on offer in the various zones in Karlsruhe are rather distinct. 
The non-maintenance shopping opportunities in Karlsruhe are focused in the CBD, which 
primarily sells fashion and expensive goods, and two minor centers in the east and the west 
(Durlach and Mühlburg, respectively), which sell goods in the middle price range. Under these 
conditions it is not unreasonable that the model estimations suggest the absence of spatial 
correlation in the study area. 
 
5.  POLICY APPLICATION AND CONCLUSIONS 
In this section, we demonstrate the use of the estimated model to assess the effect of the 
application of a land use policy that increases shopping/recreation opportunities in the non-CBD 
zones, so that the composite size of non-CBD zones increases by 25%. Each of the MNL-1 
model (no unobserved heterogeneity and no state dependence), MNL-2 model (no unobserved 
heterogeneity, but state dependence included), and MxL-2 model (both unobserved heterogeneity 
and state dependence included) was applied to predict the chosen location for each individual in 
the base case and the policy scenario. The predicted fraction of non-maintenance shopping travel 
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to the central districts (or CBD) forms the basis for the comparison of the models. The MNL-1 
model predicts an 11% drop in travel to the CBD zones. The MNL-2 model, however, takes 
loyalty and inertial behavior into account and predicts only a 3% drop in the travel to CBD 
zones. The MxL-2 model, not only accounts for loyalty and inertia but also for unobserved 
heterogeneity effects, and predicts a 7% drop in the travel to CBD zones. These results highlight 
the potentially inaccurate results from using models that do not adequately capture the behavioral 
considerations in location choice decisions.3 

In conclusion, the focus of this research was to develop a comprehensive, unified, 
framework for spatial location choice that is behaviorally realistic, and that can be practically 
applied by planners and policy makers in the estimation of travel demand. Toward this objective, 
a conceptual framework of location choice decision-making for non-work activity participation 
is developed that incorporates all the observed and unobserved factors that potentially influence 
the decision-maker. The proposed conceptual framework is then translated into a general 
econometric model of location choice for non-work activity participation. The model structure 
thus developed is comprehensive in its incorporation of the different sources of heterogeneity, 
such as spatial cognition, preference behavior and spatial interaction. Finally, the applicability of 
the proposed model structure is demonstrated through an empirical application using the German 
Mobidrive multi-day activity survey. The results of the empirical analysis indicate the important 
effects of spatial attributes and impedance measures, and emphasize the sensitivity variation 
across individuals to these spatial attributes and impedance measures.  
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FIGURE 1 Conceptual framework of the location choice for non-work activity participation. 
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TABLE 1 Best Specification Mixed Logit Model of Location Choice 
 

MxL-2 
Variables 

Param. t-stat. 

Zonal Size and Interactions 
Composite size of zone - Mean Effect 0.283 3.439 
Composite size of zone x Low income (dummy variable for annual income < 3000 DM) 0.212 1.604 
Composite size of zone x Number of public transport season tickets held 0.151 1.514 
Composite size of zone x Stop chained with other shopping episodes (dummy variable) -0.145 -1.744 
Composite size of zone - Standard Deviation 0.174 2.257 

Zonal Non-Size Attributes and Interactions 
CBD (dummy variable) - Mean Effect 0.820 1.395 
CBD x Female (dummy variable) 0.113 0.413 
CBD x Age -0.008 -1.028 
CBD x Stop chained with other episodes (dummy variable) 0.316 1.411 
CBD x Number of accompanying adults -0.403 -2.148 
CBD x Activity duration (7:00AM to 9:00AM) 0.006 3.786 
CBD x Morning hours -0.280 -0.969 
CBD - Standard Deviation 0.648 3.191 
Presence of daycare (dummy variable) - Mean Effect -0.332 -1.897 
Presence of daycare x Married (dummy variable) x Number of Children < 16 years 0.665 0.878 
Presence of daycare - Standard Deviation 0.647 2.452 
Population density of zone - Mean Effect -0.012 -6.532 
Population density of zone - Standard Deviation 0.010 3.112 

Impedance Measures and Interactions 
Distance of zone from home - Mean Effect -3.002 -2.797 
Distance of zone from work/school - Mean Effect -0.975 -4.628 
Distance of zone from home x Female (dummy variable) -0.021 -0.078 
Distance of zone from home x Retired (dummy variable) -0.815 -2.297 
Distance of zone from home x German citizen (dummy variable) -0.602 -0.800 
Distance of zone from home x Number of public transport season tickets held -0.160 -0.534 
Distance of zone from home x Number of cars owned  0.077 0.322 
Distance of zone from home x Weekend (dummy variable) -0.511 -1.710 
Distance of zone from home x Number of accompanying adults (dummy variable) 0.409 2.146 
Distance of zone from home x Stop chained with other shopping episodes (dummy variable) 0.398 1.595 
Distance of zone from home x Activity duration 0.003 1.171 
Composite size of zone x Distance of zone from home 0.195 2.484 
Distance of zone from home - Standard Deviation 0.506 1.846 
Distance of zone from work/school - Standard Deviation 0.377 1.040 

Feedback Effect 
First order feedback of chosen zone - Mean Effect 1.361 10.531 
First order feedback of chosen zone - Standard Deviation 0.549 3.335 

Number of observations 903 
Log-likelihood at convergence -2223.456 
Log-likelihood at equal shares -3154.409 

 


