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ABSTRACT 

The current paper proposes the use of the multivariate skew-normal distribution function to 

accommodate non-normal mixing in cross-sectional and panel multinomial probit (MNP) 

models. The combination of skew-normal mixing and the MNP kernel lends itself nicely to 

estimation using Bhat’s (2011) maximum approximate composite marginal likelihood 

(MACML) approach. Simulation results for the cross-sectional case show that our proposed 

approach does well in recovering the underlying parameters, and also highlights the pitfalls of 

ignoring non-normality of the continuous mixing distribution when such non-normality is 

present. At the same time, the proposed model obviates the need to assume a pre-specified 

parametric distribution for the mixing, and allows the estimation of a very flexible, but still 

parsimonious, mixing distribution form. 

 

Keywords: multinomial probit, mixed models, maximum approximate composite marginal 

likelihood, maximum simulated likelihood, multivariate skew-normal distribution 
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1. INTRODUCTION 

Econometric discrete choice analysis is an essential component of studying individual choice 

behavior and is used in many diverse fields to model consumer demand for commodities and 

services. The decision principle used in almost all discrete choice models corresponds to utility 

maximization, which is based on the Lancastrian (1971) notion of the assignment of a composite 

utility to each alternative in the choice set (based on alternative and individual attributes) 

followed by the choice of the alternative with the highest utility. Further, since the analyst does 

not observe all individual and context-related factors that contribute to choice decisions, one or 

more stochastic elements (or random error terms) are introduced in the utility of alternatives. 

Different ways of introducing the stochastic elements lead to different discrete choice model 

structures. Thus, consider a cross-sectional choice situation with a single choice occasion per 

individual, and assume independence among the choice behaviors of individuals.1 Then, the 

simplest model form, corresponding to the multinomial logit (MNL) model introduced by Luce 

and Suppes (1965) and McFadden (1974), assumes a single composite independently and 

identically distributed or IID (across alternatives) random utility error term with a Gumbel (or 

Type I extreme-value) distribution. This leads to the simple and elegant MNL model form, but 

also leaves the model form saddled with the familiar independence from irrelevant alternatives 

(IIA) property. Maintaining a single composite Gumbel error term in utilities, while relaxing the 

independence assumption (across alternatives), moves the model form from the multinomial logit 

to the generalized extreme-value (GEV) class of models proposed by McFadden (1978). On the 

other hand, relaxing the identically distributed assumption (across alternatives) with the Gumbel 

distribution assumption leads to the Heteroscedastic Extreme Value (HEV) model form proposed 

by Bhat (1995). Finally, still maintaining a single composite error term but now with a normal 

distribution, when combined with relaxation of the independence and/or identical distribution 

assumptions, generates the multinomial probit (MNP) model form originally proposed by 

Hausman and Wise (1978) and Daganzo (1979). Of these model forms, the MNP form allows the 

most flexible error covariance structures (up to certain limits of identifiability; see Train, 2009, 

Chapter 5), though it also entails more estimation effort since it requires the evaluation of a 

                                                 
1 The use of a cross-sectional choice situation with independence across individual decision-maker choices is simply 
for exposition convenience in this introduction section.  
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multidimensional normal orthant probability function with an ( 1−I ) dimensional integral in the 

general case (where I is the number of alternatives).   

A substantial amount of the early theoretical developments in discrete choice modeling 

was focused on a single composite error term. Over the past decade and a half, attention has 

shifted more toward the use of multiple error terms through the introduction of a mixing random 

distribution structure in the utility function of alternatives that is independent of the kernel error 

term. Essentially, the mixing structure superimposes additional stochastic terms over the 

“kernel” error term discussed in the previous paragraph. There are several reasons for this shift 

toward mixing structures. First, in a cross-sectional context, it is very plausible that there are 

unobserved variations across individuals in the sensitivity to relevant exogenous attributes (such 

as differential sensitivity due to unobserved factors to travel time and travel cost in a travel mode 

choice model). Ignoring these variable-specific stochasticity effects and instead using a single 

composite error term in the utility function will, in general, lead to inconsistent coefficient 

estimates and trade-off estimates, as well as incorrect substitution patterns across alternatives 

(see Bhat, 1997a).2 A second reason for the increasing use of mixing structures is that they 

provide the ability to introduce heteroscedasticity across utilities in the closed-form GEV models 

through an error-components specification, as discussed in Train (2009). It also provides the 

ability to generate correlation across alternatives through an error-components specification. The 

use of a mixing structure over the closed-form GEV kernel-based model can then essentially 

achieve any desired covariance pattern. At the same time, and especially when the number of 

alternatives far exceeds the number of mixing random terms needed to capture the “true” 

covariance pattern, the maximum simulated likelihood (MSL) estimation of the mixed GEV 

model is generally much easier and faster than a non-mixed MNP model (see Bhat et al., 2008 

and Train, 2009 for detailed discussions). A third reason for using mixing structures is that, when 

using GEV-based kernels, mixing structures enable the introduction of error dependencies across 

                                                 
2 There are a few exceptions to this rule, one of which is when an MNP kernel error term is mixed with normally 
distributed random coefficients. Assuming the usual linear-in-parameters utility functional form, the net effect is that 
the combination of variable-specific random terms and the kernel error term can be recast back into an MNP utility 
form with a single composite error term (due to the closure property of the normal distribution under affine 
transformations -- a linear transformation followed by a translation). That is, the marginal distribution of utility 
obtained by integrating out the normal mixing distribution puts the utility back into a normal distribution form. In 
fact, this was the genesis of Hausman and Wise’s MNP model formulation, in which the “composite” error terms of 
the alternatives have a covariance matrix that is parameterized based on the mixing structure. However, this kind of 
affine closure is not achieved with GEV or HEV kernel models. Further, closure is also not generally achieved with 
a non-normal mixing distribution with the MNP “kernel”, except in a special case which is exploited in this paper. 
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the choice occasions of the same decision-maker in panel or repeated choice contexts (see Li et 

al., 2010). Even when using an MNP kernel, the mixing structure can provide substantial 

econometric and computational efficiency to capture panel effects. Further, the mixing approach 

is almost identical when dealing with cross-sectional choice data or panel data, and poses no 

conceptual and likelihood estimation coding differences.  

There is yet another reason to consider a mixing approach in discrete choice modeling. 

This has to do with explicitly specifying the random mixing distribution on variables in a way 

that is consistent with theoretical notions. In fact, the ability to do so is critical to the observation 

made by McFadden and Train (2000) that the mixed multinomial logit model is capable of 

approximating any random utility maximization model. Thus, for example, one may want to 

consider bounded distributions (such as a log-normal distribution or a Rayleigh distribution) for 

cost and time coefficients in a travel mode choice model, so that the coefficients on these 

variables are bounded at the upper end. On the other hand, the coefficients on some other 

variables may be appropriately considered as being unbounded. Further, there are several types 

of continuous distributions that may be used to capture the profile of population sensitivity to 

variables.3 In the context of continuous mixing distributions, the normal distribution has been 

used quite extensively in the past. However, several studies (see, for example, Amador et al., 

2005, Train and Sonnier, 2005, Hensher et al., 2005, Fosgerau, 2005, Greene et al., 2006, 

Balcombe et al., 2009, and Torres et al., 2011) have underscored the potentially serious mis-

specification consequences (in terms of theoretical considerations, data fit, as well as trade-off 

evaluations) of using the normal distribution. In particular, the symmetric nature of the normal 

distribution, when combined with mean values that may not be too far away from zero, implies 

that a significant fraction of individuals may have an unexpected sign on variables (such as a 

                                                 
3 Note here that discrete distributions may also be used for the mixing. If the mixing vector is assumed to take M 
possible value states with state-specific probabilities, this leads to the familiar latent class model used in marketing 
(see Kamakura and Russell, 1989, Chintagunta et al., 1991) and transportation (see Bhat, 1997b, Greene and 
Hensher, 2003, Hess et al., 2007, and Train, 2008). On the other hand, if a discrete distribution is considered 
separately for each individual random coefficient, this is essentially a non-parametric distribution (see Bastin et al., 
2010, Cherchi et al., 2009, Fosgerau, 2006). However, the use of a continuous distribution dominates the literature, 
at least in part because it offers efficiency in the number of mixing distribution parameters to be estimated. Further 
several studies that have compared discrete distribution methods with continuous distributions have not found a 
clear pattern of which of the two approaches is superior (see, for instance, Greene and Hensher, 2003, Birol et al., 
2006, and Hynes et al., 2008). Some recent studies have also considered a combination of discrete and continuous 
distributions for the mixture in the form of a mixture of normal distributions (see Campbell et al., 2010), though 
such mixtures of normal distributions have some of the same problems as the simple normal distribution (as 
discussed subsequently).  
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positive coefficient on cost or time). For instance, Train and Sonnier (2005), in their analysis of 

vehicle choice, found that 22% of the population preferred vehicles with a higher purchase price, 

and 37% of the population preferred vehicles with a higher operating cost, when they used a 

normal distribution for the cost coefficients. On the other hand, when Train and Sonnier used a 

log-normal distribution and a bounded Johnson’s SB distribution for the cost coefficients, such 

results were avoided and they also obtained better data fits. Finally, another issue with using 

normally distributed cost and other coefficients is that this leads to a breakdown of the WTP 

calculation because the moments of the ratio of two normally distributed random terms do not 

exist (see Cedilnik et al., 2006, Daly et al., 2011).   

As indicated already, there have been several earlier studies that have successfully 

estimated non-normal distributions for the mixing distribution. All of these studies use a 

multinomial logit model kernel over which mixing is specified. However, the general experience 

has been that, even when successful, such estimations take a longer time for convergence 

(relative to normal distributions). This is particularly so for asymmetric distributions with long 

tails, such as the log-normal distribution. Further, in some cases, the maximum simulated 

likelihood (MSL) of models with non-normal mixing fails due to numeric/computational 

problems. It is not uncommon to see researchers consider non-normal distributions only to 

eventually revert to the use of a normal distribution (see, for example, Bartels et al., 2006 and 

Small et al., 2005). In addition to these problems specific to the use of non-normal distributions, 

MSL inference techniques can have other limitations, including a rapid degradation in accuracy 

as the number of dimensions of mixing increases, and problems with the accuracy (or lack 

thereof) of the covariance matrix of the estimator. These issues may be traced back to the use of 

a simulation approach to evaluate the log-likelihood function, which leads to a highly nonlinear 

and non-smooth second derivatives surface of the log-simulated likelihood function.  

 Recently, Bhat (2011) proposed an alternative maximum approximate composite 

marginal likelihood (MACML) inference approach to estimate the multinomial probit (MNP) 

model. His basis for preferring an MNP kernel rather than a multinomial logit or GEV kernel 

originates from several considerations. First, in cases such as a spatial analysis where the utility 

of spatial alternatives are correlated based on proximity, or in situations where the utility of 

individuals for alternatives have a spatial dependency component based on the usual spatial 

error/lag formulations used in spatial econometrics (see Anselin, 1988), the resulting parametric 
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covariance structure across alternatives or across decision-makers is simply infeasible or 

extremely inefficient to incorporate with a mixing approach over a restrictive Gumbel kernel 

covariance surface. Second, when a normal mixing distribution is used, the resulting “mixed 

MNP” model collapses back to an MNP model due to the closure property of the normal 

distribution under affine transformations. This, along with the MACML inference procedure, 

implies the need only to evaluate univariate and bivariate cumulative normal distribution 

function evaluations, regardless of the number of alternatives or the number of choice occasions 

per individual or the nature of social/spatial dependence structures. Further, the MACML 

procedure uses an analytic approximation method rather than a simulation evaluation method to 

evaluate the multivariate normal cumulative distribution function, which improves the ability to 

accurately and precisely recover the parameters and their covariance matrix estimates (because 

of the smooth nature of the first and second derivatives of the approximated analytic log-

likelihood function). The net result is that the MNP kernel with the MACML inference approach 

leads to substantial computational gains compared to the MSL estimation of normally-mixed 

MNL and GEV models, as well as enables estimation in cases where the MSL estimation of 

mixed MNL and GEV approaches are simply infeasible.  

One problem, however, with Bhat’s MACML approach as it stands is that it is only 

applicable to the normally-mixed case. However, as discussed earlier, a normal mixing 

distribution may not be appropriate in several cases. What is needed then is a model that is able 

to include both a general covariance kernel structure as well as non-normal mixing, while also 

still being able to be estimated using the MACML approach. This is the objective of the current 

paper. Specifically, we introduce the use of a multivariate skew-normal distribution function for 

mixing with an MNP kernel model. The skew-normal distribution, considered by O’Hagan and 

Leonard (1976) and formalized by Azzalini (1985) for the univariate case, has been extended to 

the multivariate case by Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999). 

Since these initial contributions, more research on different types of multivariate generations of 

the skew-normal distribution and their properties have been undertaken (see Gonzalez-Farias et 

al., 2004, Arellano-Valle and Genton, 2005, Gupta et al., 2004, Arellano-Valle and Azzalini 

2006, 2008, Azzalini, 2011). As discussed later, the multivariate skew normal (MSN) 

distribution retains several attractive properties of the multivariate normal distribution, and an 

MNP kernel model mixed with this distribution also lends itself nicely to estimation using the 
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MACML approach. At the same time, the MSN distribution is tractable, parsimonious in 

parameters that regulate the distribution and its skewness, and includes the normal distribution as 

a special interior point case. It also is a very flexible unimodal density structure that allows a 

“seamless” and “continuous” variation from normality to non-normality, and can replicate a 

variety of smooth unimodal density shapes with tails to the left or right as well as with a high 

modal value (sharp peaking) or low modal value (flat plateau). The asymmetry accruing from the 

skewness of the distribution also can allow the density to be pretty much confined to the positive 

(or negative) half-line. In this sense, it includes a likeness of the log-normal density function as a 

special case, but with tails that are thin as in the normal density function (which makes 

estimation easier than in the log-normal case). Despite these desirable properties, there has been 

little explicit consideration of the skew normal distribution for random terms even in the linear 

regression field with continuous observations (but see Jara et al., 2008, Meintanis and Hlavka, 

2010, and Molenaar et al., 2010), and there has been no consideration whatsoever of this 

distribution in the discrete choice field.4  

The rest of this paper is structured as follows. The next section discusses the fundamental 

structure and properties of the univariate and multivariate skew normal distributions. The third 

section presents the model framework and estimation procedure for the proposed skew-normally 

mixed MNL model. Section 4 undertakes a simulation exercise to assess the ability of the 

proposed model to recover underlying parameters. Finally, Section 5 summarizes the key 

findings of the paper. 

 

2. THE SKEW-NORMAL DISTRIBUTION 

The literature on the skew-normal distribution is quite vast, but also scattered. In this section, we 

compile and present all the most relevant properties of the distribution in the context of 

application for mixed MNP models. The section begins with a characterization of the univariate 

skew-normal distribution and then proceeds to the more relevant case of the multivariate skew-

normal distribution.  

                                                 
4 However, it should be noted that the skew normal distribution has appeared implicitly in the context of such 
models as the stochastic frontier model (see Aigner et al., 1977) and in other studies involving the study of truncated 
normal variables (for example, Birnbaum, 1950 and Weinstein, 1964). This is because one of the stochastic 
representations of a skew-normally distributed variable happens to be as the convolution of a normal variable and a 
half-normal variable. However, the explicit use of the skew-normal as a distributional assumption for one or more 
random terms, as in the current paper, has seen little consideration in the econometric field.  
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2.1. The Univariate Skew-Normal Distribution 

A random variable Y is labeled as being skew-normally distributed with a location parameter ξ  

),( ℜ∈ξ  a scale parameter ω  ),0( >ω  and a shape parameter α )( ℜ∈α  if its probability 

density function is as follows: 
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where (.)φ  and (.)Φ  represent the standard normal density and cumulative distribution function, 

respectively. When ,0=α the density collapses to that of a normal distribution with mean and 

variance parameters of ξ  and 2ω , respectively. Setting Y = ,Zωξ + we obtain a standardized 

version of the probability density function of the skew-normal distribution (corresponding to the 

density function of Z that has a location parameter of 0 and scale parameter of 1) given by 

)()(2);(~ zzz αφαφ Φ= . The density function for Y in Equation (1) may be written in terms of the 

standard density function as ),;(~1 αφω z−  where ).(1 ξω −= − yz  Appendix A.1 presents the 

moment generating function and the moments of the standardized skew-normal distribution 

(SSN).  

 An important stochastic representation for Z that is useful for random generation from the 

SSN distribution is obtained using a conditioning mechanism. Specifically, consider two 
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Then, )0(| 12 >= MMZ  has the SSN density function );(~ αφ z , where the relationship between 

ρ  and α  is as follows: 
21
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=  (see Appendix A.2 for a derivation). Using this 
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Thus, the cumulative SSN distribution function may be written in terms of a bivariate cumulative 

standard normal distribution function, and the cumulative distribution function for the non-

standardized skew-normally distributed variable Y may be obtained as: 
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For the extension to the multivariate skew-distribution, and especially for use with the 

multinomial probit model, an alternate parameterization of Z (referred to by Arellano-Valle and 

Azzalini, 2006 as the unified skew-normal variable) will be helpful. This is based on the 

conditioning mechanism discussed above. In this alternate parameterization, the univariate SSN 

density function is written as );(~ ρφ z  and the univariate cumulative distribution function is 

written as );(~ ρzΦ , with ρ  replacing α .  

Figure 1 shows the shapes of the normal density function (solid line) and the SSN density 

functions for three positive values of ρ  (the plots are mirrored across the y-axis for negative 

values of ρ ). As the value of the shape parameter ρ increases, the skewness of the distribution 

increases and the density shows sharper peaking. As ,1→ρ  the SSN density tends toward a 

half-normal density function. Note also that, as the shape parameter increases, the right skewness 

increases not because the extreme right tail gets longer but because the left tail becomes shorter 

and shorter (relative to the normal distribution). This is a desirable property in the likelihood 

convergence of mixed models, and is unlike the log-normal distribution whose right tail gets 

very long rapidly as the variance of the distribution increases.  

 

2.2. The Multivariate Skew-Normal Distribution Function  

There are several multivariate versions of the skew-normal distribution in the literature (see 

Arellano-Valle and Azzalini, 2006 for a discussion of these many variants, and a unified 

treatment of these). All of these share several properties similar to the multivariate normal 

distribution. In this paper, we select the multivariate skew distribution version originally 

proposed by Azzalini and Dalla Valle (1996) for a number of reasons. This version is efficient in 

the number of additional parameters to be estimated, allows independence between skew-

normally distributed and normally-distributed elements in a multivariate vector (useful in 

selectively imposing skew-normality only on certain coefficients), is closed under any affine 
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transformation of the skew-normally distributed vector (is the key to the MACML estimation of 

the MNP model), and is closed under the sum of independent skew-normally distributed and 

normally distributed vectors of the same dimensions (is the key to non-normally mixing 

distributions superimposed on an MNP kernel). As importantly, the cumulative distribution 

function of a D-variate skew normally distributed variable of the Azzalini and Dalla Valle type 

requires only the evaluation of a )1( +D -dimensional multivariate cumulative normal 

distribution function. 

 Consider a multivariate skew-normally (MVSN) distributed random variable vector 

),,,,( 321 ′= DYYYY …Y  with a )1( ×D -location parameter vector ξ ( ),Dℜ∈ξ  and a )( DD× -

symmetric positive-definite covariance matrix Ω . Let the correlation matrix corresponding to Ω  

be *Ω , and let ω  be a )( DD× -diagonal matrix formed by the standard deviations of Ω  ( jω  is 

the jth diagonal element of the matrix ω ). Then, we may write: .11* ΩωωΩ −−=  Setting Y = 

,ωZξ +  we obtain a standardized version of the multivariate probability density function of the 

skew-normal distribution (corresponding to the density function of Z that has a location 

parameter of 0 and a correlation matrix *Ω ). As in the univariate case, it can be shown that the 

random variable Z is obtained through a latent conditioning mechanism on a )1( +D -variate 

normally distributed vector ,)~,~(~
21 ′′= MM M  where 1

~M  is a latent )11( × -vector and 2
~M  is a 

)1( ×D -vector: 
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ρ is a )1( ×D -vector, each of whose elements must lie between –1 and +1. The matrix *
+Ω is also 

a positive-definite correlation matrix. Then, )0~(|~
1 >= M2MZ  has the standard multivariate 

skew-normal (SMVSN) density function shown below: 

( ) 2/11*
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where (.)Dφ  and (.)Φ  represent the standard multivariate normal density function of D 

dimensions and the standard univariate cumulative distribution function, respectively. We write 
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).(SMVSN~ *
+ΩZ  The probability density function of the random variable Y  

)](MVSN~[ *Ωω,ξ,Y +  may be written in terms of the SMVSN density function above as: 
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The moment generating function of Z and its first three moments are presented in Appendix A.3. 

The cumulative distribution function for Z may be obtained as: 
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The corresponding cumulative distribution function for Y is: 
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− −Φ=−Φ=< DDP             (9) 

The close correspondence with the normal distribution leads to several desirable properties of the 

multivariate skew-normal (MVSN) distribution. The ones that are key to the proposal in this 

paper to use the MSN distribution for mixing in MNP models are listed and discussed below. 

 

Property 1:  

The sum of a MVSN distributed vector Y (of dimension 1×D ) )](MVSN~[ *Ωω,ξ,Y +  and an 

independently distributed multivariate normally (MVN) distributed vector W  (also of dimension 

1×D ) )] ,[ ΣMVN(μ~W  is still MVSN distributed: 

),~~(MVSN~ *Ω,ωμ,ξWY +++  where ,~~~~~,~~

~1~ ΣΩΩ,)ω(Ω)ω(Ω
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Ω 11*
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* +==⎟⎟
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ωρ)ω(ρ 1−= ~~ , and ω~  is the diagonal matrix of standard deviations of Ω~ . 

 

Proof: There are several ways to prove this property, but perhaps the easiest is to use the moment 

generating functions of Y and W . Specifically, we have (from Appendix A.3): 
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The above expression is once again in the MVSN moment generating form in Appendix (A.3), 

from which the property is proved.  

 

Property 2:   

The affine transformation of the MVSN distributed vector Y (of dimension 1×d ) 

)](MVSN~[ *Ωω,ξ,Y +  as BYa + , where B  is a )( dh×  matrix is also a MVSN distributed 

vector of dimension 1×h : 
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tBωρ)tB(BΩttBξatBat

1

YBYa
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⎞
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⎥
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⎤
⎢
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⎡ ′′Φ⎟
⎠
⎞

⎜
⎝
⎛ ′′+′+=′+= MM

     (11) 

This proves the result. The two properties above provide the marginal distribution of the utilities 

under a MNP kernel mixed with skew normally distributed and normally distributed random 

coefficients, which is critical to the MACML estimation of the resulting model, as discussed 

next.  

 

3. THE MODEL FRAMEWORK 

We develop the model framework first in the context of a cross-sectional MNP model and then 

discuss the panel formulation. However, the skew-normal mixing can also be imposed on any 

other form of the MNP model, including settings with spatial dependencies and social 
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dependencies across decision units, and combinations of temporal, spatial, and social 

dependencies.  

 

3.1. Cross-Sectional MNP Formulation and Estimation 

Consider a random-coefficients formulation in which the utility that an individual q 

) ..., ,2 ,1( Qq = associates with alternative i ) ..., ,2 ,1( Ii =  is written as: 

), MVN(~~, ), MVN(~,)( )(,                                

 ,),,(MVSN~  ,~

1 Ψ0ΣcγωΩωΩ
Ωρ
ρ1

Ω

Ωωbβsγxβ

1*
*

*

*

qiq

qqiqiqqiqqi

ε

εU

−−
+

+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
=

+′+′=

        (12) 

where qix  is a )1( ×D -column vector of exogenous attributes, qis  is another )1( ×K -column 

vector of exogenous attributes (including dummy variables for constants, except in one of the I 

alternative utilities), qβ  is an individual-specific )1( ×D -column vector of MVSN-distributed 

coefficients that varies across individuals based on unobserved individual attributes, qγ  is 

another individual-specific )1( ×D -column vector of MVN-distributed coefficients that varies 

across individuals based on unobserved individual attributes (but with the coefficients on the 

dummy variables for the constants maintained as fixed coefficients in the vector qγ ), and 

)~,,~,~,~(~ ′= qIq3q2q1q εεεε …ε  is assumed to have a general covariance structure subject to 

identifiability considerations (let )).~,(MVN~~ Ψ0εq I  In many situations, such as in a path choice 

model (see Yai et al., 1997) or a model with spatial location alternatives (see Bhat and Guo, 

2007), a specific parametric structure, based on theoretical considerations appropriate to the 

context, can be placed on .Ψ  Similarly, in a pure random coefficients specification (as in 

Hausman and Wise, 1978), one may consider Ψ  to be an identity matrix (or an identity matrix 

scaled by 0.5 or any other constant). Such specifications help in econometric identification as 

well as econometric efficiency. If a general covariance structure is adopted, there are many ways 

to ensure identification. An appealing approach is to take the differences of the error terms with 

respect to the first error term. Let ),~~( q1qiqi1 εεε −=  and let ),,,( qI1q31q21 ε...εε=q1ε . Then, up to a 

scaling factor, the covariance matrix of 1qε  )say( 1Ψ  is identifiable. Next, scale the top left 

diagonal element of this error-differenced covariance matrix to 1. Thus, there are 
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1)]2/()1[( −×− II  free covariance terms in the )1()1( −×− II  matrix 1Ψ . Finally, to ensure 

that whenever differences are taken with respect to the chosen alternative during the maximum 

approximate composite marginal likelihood (MACML) estimation, these differences are 

consistent with the same error covariance matrix Ψ~  for the undifferenced error term vector qε~ , 

Ψ~  is constructed from 1Ψ  by adding a top row of zeros and a first column of zeros (see Train, 

2003; page 134). During the MACML estimation, then, we can obtain the 

)1()1( −×− II covariance matrix of the error differences taken with respect to the mth 

alternative as ,ΓΨΓΨ mmm ′=
~  where mΓ  is a II ×− )1(  matrix which corresponds to the 

identity matrix of size )1( −I  with an extra column of –1’s added as the mth column.  

In Equation (12), we will assume that the random vectors qβ , qγ , and qε~ are independent 

of each other for each individual, as well as that these vectors are independent of the 

corresponding coefficients of other individuals (this latter assumption can be relaxed within our 

modeling framework, as will be needed for accommodating spatial or social dependency effects). 

From the earlier definitions, we can write qβbβ
�

+=q  with ),,(MVSN~ *Ωω0β +q

�
, and 

qγcγ �+=q  with ),(MVN~ Σ0γq
� . Also let ),...,,( 21 ′= qIqqq UUUU  ( 1×I  vector), 

),...,,( 21 ′= qIqqq xxxx  ( DI × matrix), and ),...,,( 21 ′= qIqqq ssss  ( KI × matrix). Then, we can 

write: 

[ ] [ ], ~
qqqqqqqq εγsβxcsbxU ++++= ��

            (13) 

Let e[.]  indicate the eth element of the column vector [.]. Equation (12) can equivalently be 

written using Equation (13) as: 

[ ] [ ] , ~
iqqqqqiqqqiU εγsβxcsbx ++++= ��

            (14) 

Define iqqqiV ][ csbx +=  and .]~[ iqqqqqqi εγsβxε ++= ��

 
Also, assume that individual q 

chooses alternative mq.  In the utility differential form, we may write Equation (14) as: 

qqmqiqimqmqiqimqimqimqmqiqim miVVHHUUu
qqqqqqqq

≠−=−=+=−= ;and;* εεξξ                     (15) 
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Then stack the utility differentials *
qqimu ) ,( qqmqi miUU

q
≠−= in the following order: 

,) ..., , ,( **
2

*
1 ′=

qqq Imqmqmqq uuu*u  an 1)1( ×−I  vector. Correspondingly, let  

,) ..., , ,( 21 ′=
qqq Imqmqmq HHHqH  an 1)1( ×−I  vector, and define IIqqq ×′= (xΩxΩ matrix), 

IIqqq ×′= (sΣsΣ matrix) and [ ] .~ΨΣΩF ++= qqq Based on properties 1 and 2 earlier in the 

paper, we can derive the location and other parameters of the vector *
qu , which is also skew-

normally distributed. Specifically, by successive applications of property 2 and then property 1, 

we obtain the following important result:  

 )],,,(MVSN~ **
+qqqq ΩωHu

��               (16) 

. )()(,',)()(,
1

111*
*

* ωρxΓωρΓFΓΩωΩωΩ
Ωρ

ρ
Ω qmqqmqmqqqqq

qq

q

q qqq

−−−
+

===⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′
= �������

��

�
�

      (17) 

qω�  is the diagonal matrix of standard deviations of qΩ
�

. The parameters to be estimated include 

the b and c vectors, the elements of the covariance matrices ΨΣΩ ~and , , , and the ρ  parameter 

vector. Collect all these elements into a single vector θ . Then, one can use the result above to 

obtain the likelihood contribution of individual q choosing alternative m, which takes the I-

dimensional integral form below: 

( ) ( ). ),()(,02);()(~)0()( *1*1
1

*
−

−
+

−
− −Φ=−Φ=<= qqqIqqqIqq PL ΩHωΩHωuθ ���           (18) 

It is straightforward to see that if all the elements of ρ  are zero, then the likelihood function 

above collapses to that of an MNP model. If not, the likelihood corresponds to a skew-normally 

mixed MNP model.  

The I-dimensional integral in the likelihood contribution of each individual corresponds 

to the multivariate normal cumulative distribution function. The evaluation of such a function 

cannot be pursued using quadrature techniques due to the curse of dimensionality when the 

dimension of integration exceeds two (see Bhat, 2003). Consequently, the probability expression 

is typically approximated using Geweke-Hajivassiliou-Keane (GHK) simulator-based or the 

Genz-Bretz (GB) simulator-based techniques in the classical maximum simulated likelihood 

(MSL) inference approach (see Bhat et al., 2010 for a detailed description of these simulators) or 
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using Markov Chain Monte Carlo (MCMC) techniques in the Bayesian inference approach (see 

Albert and Chib, 1993, McCulloch and Rossi, 2000, and Train, 2009). However, these MSL and 

Bayesian techniques can require extensive simulation, can be time-consuming, are not always 

very straightforward to implement, and can create convergence assessment problems as the 

number of dimensions of integration increases. On the other hand, the maximum approximate 

composite marginal likelihood (MACML) approach for estimation of MNP models, in which the 

MVNCD function is evaluated using an analytic approximation method, is quite accurate and 

very fast.  

There is, however, one very important issue that still needs to be dealt with. This 

concerns the positive definiteness of several matrices in Equation (12). Specifically, for the 

estimation to work, we need to ensure the positive definiteness of the following matrices: 

ΨΣΩ* ~and , ,+ (note that the positive definiteness of *Ω+  ensures the positive definiteness of *Ω  

and therefore Ω ; this holds because of the property that any principal square sub-matrix of a 

positive definite matrix is also positive definite). Of these, one can guarantee the positive-

definiteness of ΨΣ ~and  in a straightforward fashion using a Cholesky decomposition approach 

(by parameterizing the likelihood function in terms of the Cholesky-decomposed parameters). To 

guarantee the positive definiteness of the correlation matrix ,*Ω+ we use the approach of Bhat 

and Srinivasan (2005). Specifically, let L be the Cholesky decomposition matrix for .*Ω+  We 

need to guarantee that the parameters embedded within L are such that *Ω+  is a correlation 

matrix. This is done by parameterizing the diagonal terms of L as follows: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−
=

++++++
2

,1
2

2,1
2

1,13,12,11,1

2
2121

1

001
0001

DDDDDDD llllll

ll

""
#%###

"
"

L          (19) 

In the estimation, the Cholesky elements in the matrix L are estimated, guaranteeing that *Ω+ is 

indeed a correlation matrix. 
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3.2. Panel (or Repeated-Choice) MNP Formulation and Estimation 

For the panel formulation, we introduce the index ‘t’ for choice occasion. For ease in 

presentation, we will use the same number of choice occasions for each individual. Extension to 

the case of varying number of choice occasions per individual is straightforward.  

Consider the random-coefficients formulation in which the utility that an individual q 

) ..., ,2 ,1( Qq = associates at time period t ) ..., ,2 ,1( Tt =  with alternative i ) ..., ,2 ,1( Ii =  is 

written as: 

. ),MVN(~,(,
1

 ,) , ,(MVSN~

,~~

q
*

*
ΣcγΩ(ω)ω)Ω

Ωρ
ρ

ΩΩωbβ

εαsγxβ

11** −−
++ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′
=

++′+′=

q

qtiq qtiqiqtiqqtiU

         (20) 

where all notations are as earlier except for the introduction of the index ‘t’. However, note that 

the vector qtis  is now a )1( ×K -column vector of exogenous attributes without including a 

constant. qiα~  is a normal random-effect term capturing time-stationary preference effects of 

individual q for alternative i. Also, as earlier,  consider the (I×1)-vector 

)~,,~,~,~(~ ′= qtIqt3qt2qt1qt εεεε …ε , and assume that  ),~,0(MVN~~ Ψεqt  with the same normalizations on 

Ψ~  as in the cross-sectional case (note that the qtε~  error terms are considered independent across 

individuals and choice occasions, and qtε~ , qβ , and qγ  are also assumed independent for each 

individual q; qβ  and qγ  are also independent across individuals). Next, stack the error terms qiα~  

into an (I×1)-vector )~,~~~(~ ′=
Iq3qq2q1q α,α,α,α …α  and let ).~,~(MVN~~ Λaα Iq  However, since only 

utility differentials matter, take the differentials of these random effects with respect to the first 

alternative q1qiqi ααα ~~
1 −= . Then, only the mean vector )]~~(,...,~~(),~~[( 1I1312 aaaaaa −−−=a  and 

covariance matrix 1
~Λ  of ),...,,( 131211 qIqqq ααα=α are identified. At the same time, whenever 

utility differences are taken with respect to the chosen alternative during the MACML 

estimation, these utility differences should be consistent with the same mean vector a~  and error 

covariance matrix Λ~ for the undifferenced error term vector qα~ . To achieve this, we set 0~
1 =a  

(that is, the first element of the vector a~  is set to zero), and construct Λ~  from 1Λ~  by adding a 

first row of zeros and a first column of zeros.   
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We now set out some additional notation. Write  qiia αα �+= ~~
qi , )~,...,~,~( 21 ′= IaaaA   

( 1×I  vector), ),...,,( 21 ′= qIqqq ααα ����α  ( 1×I vector) so that ).~,0(~ Λα Iq MVN�  Define 

),...,,( 21 ′= qtIqtqtqt UUUU  ( 1×I vector), ),...,,( 21 ′′′′= qTqqq UUUU  ( 1×TI vector), 

)~,...,~,~(~
211 ′= qtIqttqt εεεε  ( 1×I vector), )~,...,~,~(~

21 ′′′′= qTqqq εεεε  ( 1×TI vector), qTq α1A ��
⊗=  

( 1×TI vector), ),...,,( 21 ′= qtIqtqtqt xxxx  ( DI × matrix), ),...,,( 21 ′′′′= qTqqq xxxx  ( DTI × matrix), 

),...,,( 21 ′= qtIqtqtqt ssss  ( KI × matrix), ),...,,( 21 ′′′′= qTqqq ssss  ( KTI × matrix). Let T1 be a column 

vector of ones of dimension T, and let TT1  be a matrix of ones of dimension T×T.  Then, we can 

write: 

[ ] [ ]. ~)( qqqqqqTqqq εAγsβxA1csbxU ++++⊗++=
���

          (21) 

Let e[.]  indicate the eth element of the column vector [.], and let .)1( iItdti +−=  Equation (20) 

can be equivalently written using Equation (21) as: 

[ ] [ ] .~)(
titi dqqqqqqdTqqqtiU εAγsβxA1csbx ++++⊗++=

���
                     (22)  

Define [ ]
tidTqqqtiV )( A1csbx ⊗++=  and [ ] .~

tidqqqqqqqti εAγsβxε +++=
���

 
Also, assume that 

individual q chooses alternative mqt at the tth choice instance.  In the utility differential form, we 

may write Equation (22) as: 

qtqtmqtiqtimqtmqtiqtimqtimqtimqtmqtiqtim miVVHHUUu
qtqtqtqtqtqtqtqt

≠−=−=+=−= ;and;* εεξξ         (23) 
 

Then stack the utility differentials *
qtqtimu ) ,( qtqtmqti miUU

qt
≠−= in the following order: 

,) ..., , ,( **
2

*
1 ′=

qtqtqt Imqtmqtmqtqt uuu*u an 1)1( ×−I  vector, and  ( ) ( ) ( ) , ,....,, ′⎥⎦
⎤

⎢⎣
⎡ ′′′

= *
qT

*
q2

*
q1

*
q uuuu  an 

[ ] 1)1( ××− TI  vector. Correspondingly, let ,) ..., , ,( 21 ′=
qtqtqt Imqtmqtmqt HHHqtH an 1)1( ×−I  

vector; ,) ..., , ,( ′′′′= qTq2q1q HHHH  an [ ] 1)1( ××− TI  vector. It is easy to see that *
qu  has a mean 

vector Hq. To determine the covariance matrix of *
qu , a few additional matrix definitions are 

needed. Define TITIqqq ×′= (xΩxΩ matrix), TITIqqq ×′= (sΣsΣ matrix), 

( ) TITITT ×⊗= (~Λ1Λ matrix), and TITIT ×⊗= (~ΨIDENΨ matrix). Let 
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[ ],ΨΛΣΩF +++= qqq  and define Mq as an ][])1[( TITI ××−  block diagonal matrix, with 

each block diagonal having )1( −I  rows and I columns corresponding to the qth individual’s tth 

choice instance. This II ×− )1(  matrix for individual q and observation time period t 

corresponds to an )1( −I  identity matrix with an extra column of 1− ’s added as the qtm th 

column. For instance, consider the case of  T = 2, and I = 4. Let the qth individual be observed to 

choose alternative 2 in time period 1 and alternative 1 in time period 2. Then Mq takes the form 

below. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎡

−
−
−

−
−
−

=

10010000
01010000
00110000
00001010
00000110
00000011

qM .           (24) 

Finally, we obtain the results below: 

)],,,(MVSN~ **
+qqqq ΩωHu

��               (25) 
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      (26) 

qω�  is the diagonal matrix of standard deviations of .qΩ
�

 The parameters to be estimated include 

the A, b, and c vectors, the elements of the covariance matrices ΨΛΣΩ ~and,~ , , , and the ρ  

parameter vector. Collect all these elements into a single vector .θ  Then, one can use the result 

above to obtain the likelihood contribution of individual q choosing alternative m, which takes 

the ]1)1([ +−IT -dimensional integral form below: 

( ) ( ). ),()(,2);()(~)0()( *1
1)1(

*1
)1(

*
−

−
+−+

−
− −Φ=−Φ=<= qqqITqqqITqq PL ΩHω0ΩHωuθ

����        (27) 

In this panel setting, the parameter vector θ  is estimated by defining “events” in the MACML 

procedure as the pairs of choice observations across the choice occasions of the individual. 

Letting the individual’s choice at time t be denoted by the index qtC , the CML function for 

individual q is: 
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                (28)  

where ( ) ( ) ., **
′

⎥⎦
⎤

⎢⎣
⎡ ′′

= qwqt uuu*
qtw
I  The computational effort is reduced in the CML above because only 

pairwise marginal multivariate probabilities are being considered across choice occasions. 

However, each multivariate orthant probability above still has a dimension equal to 

1]2)1[( +×−I : 

( ) ( ), ),()(,02);()(~)0( *1
1)1(2

*1
)1(2

*
−

−
+−×+

−
−× −Φ=−Φ=< qtwqtwqtwIqtwqtwqtwIqtwP ΩHωΩHωu

IIIIIII       (29) 

where ),( qwqt ′′′= HHHqtw

I
, *

+qtwΩ
I

 and *
−qtwΩ

I
 are appropriate sub-matrices of *

+qΩ
�

 and *
−qΩ

�
, 

respectively (that is, they include elements corresponding to the tth and wth choice occasions of 

the individual). But such an orthant probability is conveniently computed using the 

approximation part of the MACML, leading to solely bivariate and univariate cumulative 

normals.   

 

4. SIMULATION ANALYSIS 

In this section, we undertake a simulation experiment with two objectives in mind. The first 

objective is to examine the ability of the MACML estimation method to recover parameters in 

the MNP model with skew-normally distributed coefficients. The second objective is to illustrate 

the problems that may arise from ignoring the skewness in the random coefficient distribution, 

which is equivalent to assuming that the distribution is normally distributed when it actually is 

not.  

 

4.1. Experimental Set-Up 

A cross-sectional formulation is used for the simulation experiments. Two cases are considered: 

(1) a three alternative case with three exogenous variables and (2) a five alternative case with 

five exogenous variables. In both the cases, the values of each of the exogenous variables for the 
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alternatives are drawn from a standard univariate normal distribution. In particular, a sample of 

5000 realizations of the exogenous variables is generated corresponding to 5000 individuals. The 

first case specifies a skew-normally distributed random coefficient vector qβ  on all the three 

exogenous variables, and the second case specifies a skew-normally distributed random 

coefficient vector qβ on the first three exogenous variables and a normally distributed random 

coefficient vector qγ on the remaining two exogenous variables. For the five-dimensional 

simulation case, the coefficient vector qγ is assumed to be a realization from ),, MVN(~q Σcγ  

with: 

,
1
1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=c   and .

15.0
5.01
⎟⎟
⎠

⎞
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⎝

⎛
=Σ              (30) 

In the simulation experiments, the coefficient vector qβ  is assumed to be a realization 

from 11*
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The correlation matrix *
+Ω  above is constructed in a specific manner so that the off-diagonal 

elements of the corresponding Cholesky matrix are all zero, except for the first column which 

now contains the skew parameters (= –0.7) as its elements.5 Essentially, this way of constructing 

the correlation matrix assumes that all the correlations in the augmented four-dimensional 

correlation matrix (corresponding to the three-dimensional skew-normally distributed random 

coefficient vector) originates in the skew distribution of the coefficients, with no residual 

correlation beyond that generated by the skew. Such a specification is parsimonious, and can be 

                                                 

5 The Cholesky matrix of *
+Ω  is 
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used to reduce the number of parameters to be estimated in the skew-normal MNP model. For 

instance, in the MNP with three skew-normal coefficients, there is a reduction from nine 

correlation parameters to just three. More generally, in a model with D skew-normal coefficients, 

there is a reduction from DDD
+

+
2

)1(  to D parameters in the augmented correlation matrix. 

Clearly, this can be an effective way to allow a large number of skew-normally distributed 

coefficients without an explosion in the number of model parameters to be estimated. The other 

benefit of such a specification is that the skew parameter vector ρ  is directly estimated because 

it “sits” as the first column of the Cholesky matrix (minus the first row element).  

Another point to note about our skew specification for the qβ  vector is that the negative 

values for b and ρ  provide a negative location parameter and leftward skew for the marginal 

distributions of each of the qβ  coefficients that is similar to a (negative) log-normal distribution. 

Such a specification may be considered for cost and other coefficients. Of course, in reality, the 

skew-normal distribution can be used for all parameters to allow a range of “seamless” and 

“continuous” marginal distribution possibilities that ranges from normality to non-normality.  

 The method to generate realizations from the MVSN distribution for qβ  is based on first 

drawing a multivariate standard normal vector with correlation matrix *
+Ω  in the usual way. This 

constitutes a draw for the latent underlying )1( +D -variate normally distributed vector 

,)~,~(~
21 ′′= MM M  where 1

~M  is a latent )11( × -vector and 2
~M  is a )1( ×D -vector (see Equation 

(5); D = 3 in the current case). From this multivariate standard normal draw, a D-variate vector 

from the multivariate standard skew normal distribution is generated as follows: 

⎪⎩

⎪
⎨
⎧

≤−

>
=

.0~if~
0~if~

12

12

M

M

M

M
Z               (32) 

 Finally, the error term vector ),,,,( 321 ′= qIqqqq εεεε …ε  is drawn from 

),0.5 , MVN(~q IIDEN0ε ×  where IIDEN  is the identity matrix of dimension I (in the notation of 

Equation (19), ).IDEN5.0 I×=Ψ  Thus, we assume and maintain the IID normal assumption for 

qε  in the current simulation experiment. The alternative with the highest utility for each 

individual q is then identified as the chosen alternative.  
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The above data generation process is undertaken 40 times with different realizations of 

the qβ , qγ , and qε  vectors ) ..., ,2 ,1( Qq =  to generate 40 different data sets. The MACML 

estimator is applied ten times to each dataset, with different sets of permutations (across the ten 

runs on the same dataset) to decompose the multivariate normal cumulative distribution or 

MVNCD function into a product of marginal and conditional probabilities (see Bhat, 2011). In 

each of the ten runs on the same dataset, ten different random permutations are generated and 

used for each individual (the random permutation varies across individuals) to approximate the 

MVNCD function for that individual. The approximation error for each parameter (due to using 

the analytic approximation to the MVNCD function) is obtained by computing the standard 

deviation of estimated parameters among the 10 different parameter estimates on the same data 

set.  

 A number of performance measures are identified to assess the performance of the 

MACML approach in being able to recover the underlying “true” parameters (which is the first 

objective of our simulation exercise). The performance measures, and the various steps to 

compute these measures, are described below: 

(1) Estimate the MACML parameters for each data set s and for each of 10 independent sets of 

permutations for computing the MVNCD function.  

(2) For each data set s, estimate the standard errors (s.e.) (using the sandwich covariance 

matrix estimator; see McFadden and Train, 2000).  

(3) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED values 

across the data sets to obtain a mean estimate. Compute the absolute percentage bias 

(APB) as: 

100
 valuetrue

 valuetrue-estimatemean 
×=APB .  

(4) For each data set s, compute the median s.e. for each model parameter across the 10 draws. 

Call this MSED, and then take the mean of the MSED values across the 40 data sets and 

label this as the asymptotic standard error. 

(5) Next, compute the standard deviation of the MED values across the 40 data sets to obtain 

the finite sample standard error for each parameter, and label this as the empirical 

standard error. Note that the asymptotic standard error is essentially an approximation to 
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this empirical standard error, and the consistency of the estimator for the asymptotic 

standard error implies that the asymptotic and empirical standard error estimates should be 

close to one another.  

(6) Next, for each data set s, compute the approximation standard deviation for each parameter 

as the standard deviation in the estimated parameter values across the 10 independent 

permutations (about the MED value). Call this standard deviation as APPMED. For each 

parameter, take the mean of APPMED across the different data sets. Label this as the 

approximation standard error for each parameter.  

(7) For each parameter, compute an approximation adjusted asymptotic standard error as 

follows: 22 )error standard ionapproximat()error standard c(asymptoti + . Similarly, 

compute an approximation adjusted empirical standard error as follows: 

22 )error standard ionapproximat()error standard (empirical + . 

The second objective of examining the implications of ignoring skewness when actually 

present is achieved by generating data exactly as discussed above. Once generated, we estimate a 

simple normally-mixed MNP model on the data, assuming (incorrectly) that ρ = 0 (using ten 

random permutation per individual in the computation of the MVNCD function, exactly as 

earlier). We will refer to this model as the MNP-normal (or MNP-N) model. We compare this 

MNP-N model with the skew normally-mixed (or MNP-SN) model. For this comparison, we 

ignore approximation error issues and undertake a single MNP-N estimation on each of the 40 

datasets generated.  We then randomly pick one of the MNP-SN model estimates for each of the 

40 datasets (as already estimated earlier), and use that to compare with the MNP-N model. The 

performances of the two models are evaluated by (1) comparing the mean APB values across 

parameters and (2) undertaking a likelihood ratio test (LRT) for each of the 40 datasets. For the 

mean APB computation, the APB in the skewness parameters is not included in the MNP-SN 

model because the MNP-N implicitly assumes that ρ = 0 (this allows an “apples to apples” 

comparison between the MNP-N and MNP-SN models). For the likelihood ratio test, we 

compare the test statistic for each data set with the table chi-squared distribution value with three 

degrees of freedom (corresponding to each of the three skew parameters in the ρ  vector being 

zero). The number of times out of the 40 data sets that the MNP-SN model rejects the MNP-N 

model is then obtained, along with the mean value of the LRT statistic across the 40 data sets.  
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4.2. Simulation Results 

4.2.1 Ability of MACML to Recover Model Parameters 

The results for the first objective of evaluating the ability to recover model parameters are 

summarized in the Table 1 for the three alternative case with three exogenous variables, and in 

Table 2 for the five alternative case with five exogenous variables. 

 

4.2.1.1 The Three Alternative Case with Three Exogenous Variables 

The results in Table 1 for the three alternative case indicate that the MACML method does 

reasonably well in recovering the true parameters. The absolute percentage bias (APB) ranges 

from 7.1% to 11.2% across the parameters, with a mean value of 9.2% (see the last row of the 

table under the “absolute percentage bias” column). The APB values are generally somewhat 

smaller and more stable (across parameters) for the location parameters of the distributions of the 

qβ  parameter vector (i.e., the b parameter estimates in the table) than for the skew parameter 

estimates (i.e., the ρ  values) or the scale parameter estimates of the distribution of the qβ  

parameter vector (i.e., the ω  parameters in the table). This is not surprising, because the b 

parameters enter more linearly in the likelihood function of Equation (18) (through the mean of 

the MVNCD function) than do the skew and scale parameters (that enter more non-linearly and 

in a complex manner through the covariance matrix of the MVNCD function). One can also 

observe that all the parameters associated with the third variable are recovered better than the 

first two variables, perhaps because of the higher standard deviation of this coefficient (=1.25) 

relative to the other two coefficients. When there is higher variation in a coefficient, it provides 

more information in the data to pin down the moments of its distribution.  

The asymptotic and empirical standard error values (reflecting sampling standard error) 

are quite close to one another, reflecting the consistency of the MACML estimator of the 

asymptotic covariance matrix. These sampling standard error estimates of the parameters 

indicate good efficiency of the MACML estimator, with the standard errors being between 8%-

15% of the mean values of the estimator. Also, the approximation standard error estimates are 

smaller than the sampling standard errors. On average, the approximation standard error is about 

60% of the corresponding asymptotic and empirical standard error values. On the other hand, in 

a similar simulation setting, the approximation standard error of the MACML estimator with just 

one permutation per individual (as opposed to ten used here) was found to be only of the order of 
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13% of the sampling standard errors when the MACML approach was applied to a strictly 

normally-distributed coefficients model (see Bhat and Sidharthan, 2011). Clearly, even though 

the skew-normally distributed coefficients can be viewed as originating from an augmented and 

truncated multivariate normal distribution, and the cumulative distribution function of the skew-

normal distribution may be written as that of a normal distribution function with an added 

dimension, the introduction of asymmetry does appear to introduce more approximation error in 

the MACML approach. This is an issue that needs further examination in the future. 

Nonetheless, this should not detract from the fact that the MACML estimator still does very well. 

In fact, the final column provides the approximation-adjusted asymptotic and empirical standard 

errors for the MACML estimator, which are only 13-25% higher than the corresponding 

unadjusted standard errors. Also, the approximation-adjusted standard errors are still only 10-

17% of the corresponding mean values of the estimators, indicating that the approximation 

standard errors introduced by the MACML approach are small in the larger inference context.  

 

4.2.1.2. Five Alternative Case with Five Variables 

The results for the five alternative case with five variables are summarized in Table 2. The APB 

is of the same order as that in the case with three skew-normal coefficients, and ranges from 3% 

to 18.5% with a mean of 9.4%. As in the previous section, the APB values are smaller and more 

stable for the b parameter estimates than for the ρ  and ω  parameter estimates. Further, there is 

a clear increase in the APB values for the ρ  and ω  parameter estimates compared to the case 

with three coefficients. However, the APB for the parameters characterizing the normally 

distributed coefficients (see the c and the σ  parameters in the fourth and fifth row panels of 

Table 2, respectively) are estimated very well, with the APBs ranging from 3-6.5% (mean of the 

APBs for these parameters is 4.5%, which is less than half of the overall mean APB of 9.4%).  

The sampling (asymptotic and empirical) standard error values of the parameters 

continue to indicate good efficiency of the MACML estimator, with the sampling standard errors 

ranging between 5%-14% of the mean values of the estimator. Also, the approximation standard 

error estimates continue to be smaller than the sampling standard error estimates. On average, the 

approximation standard errors are about 45% of the corresponding asymptotic standard error 

estimates and 40% of the corresponding empirical standard error values, which is even better 

than the three-dimensional case. While the approximation errors are close to the sampling 
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standard errors for the skewness elements ρ , this is because the standard errors are extremely 

small for these elements in the first place. At the end, the approximation-adjusted asymptotic and 

empirical standard errors are only 5-16% of the mean values of the estimator, which is about the 

same range as the unadjusted standard errors as a percentage of the mean values.  

 To summarize, the MACML inference approach does very well in recovering the 

parameters in a skew-normally mixed MNP model (with or without normally mixed 

coefficients). However, there is also evidence that there is some kind of a relative degradation of 

performance when skew-normally distributed coefficients are introduced (relative to the case 

when there are only normally-distributed coefficients, in which case the MACML approach does 

extremely well). Some of this degradation is surely attributable to the more difficult asymmetric 

shapes that need to be characterized with skew-normal distributions. More explorations are 

needed to examine such behavior. However, despite the relative degradation, the MACML 

model is able to recover all parameters well, with the approximation errors being quite 

inconsequential in the larger sampling inference context. 

 

4.2.2 Effects of Ignoring Skewness in the Coefficient Distribution 

This section focuses on the implications of ignoring skewness when actually present. The results 

are presented in Table 3 for both the three dimensional case (three alternatives-three variable 

case) and the five dimensional case (five alternatives-five variable case). The results clearly 

show the poor performance of the MNP-N model (which assumes away any skewness) relative 

to the MNP-SN model (which explicitly accommodates skewness). The mean APB value across 

the location parameters is of the order of 60% in the MNP-N model compared to the 

corresponding mean APB value of 6-8% from the MNP-SN model. The scale parameters also 

have a larger mean APB in the MNP-N model compared to the MNP-SN model. Overall, the use 

of a normal distribution when there is skew in the random parameters can lead to seriously mis-

estimated distributions for the random parameters. This, in turn, will then lead to mis-estimated 

willingness to pay and welfare measures. An interesting observation from the five-dimensional 

analysis, though, is that if there are truly normally distributed coefficients in the model, these do 

not appear to be substantially affected by mis-specifications on the other coefficients (as can be 

noticed from the similar mean APB values for the mean elements of the qγ  vector and the 

covariance elements of the qγ  vector).   
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The log-likelihood values at convergence from the MNP-SN model is always better than 

from the MNP-N model in all the 40 generated data sets. The mean value of the log-likelihood 

ratio statistic across all the 40 data sets for each of the three-dimensional and five-dimensional 

cases is provided in Table 3. Also, for each and every data set, the log-likelihood ratio statistic is 

higher than the corresponding chi-squared table value (see the last row of Table 3).  

Overall, the results clearly highlight the bias in characterizing the distribution of random 

coefficients if skewness effects in the coefficients are ignored when actually present.   

  

5. CONCLUSION 

In the current paper, we propose the use of the multivariate skew-normal distribution function to 

accommodate non-normal mixing in MNP models. The multivariate skew normal (MSN) 

distribution retains several attractive properties of the multivariate normal distribution. It is 

tractable, parsimonious in parameters that regulate the distribution and its skewness, and includes 

the normal distribution as a special interior point case. It also is a very flexible unimodal density 

structure that allows a “seamless” and “continuous” variation from normality to non-normality, 

and can replicate a variety of smooth unimodal density shapes. At the same time, we propose the 

use of an MNP kernel because the combination of skew-normal mixing over the MNP kernel 

lends itself perfectly to estimation using the maximum approximate composite marginal 

likelihood (MACML) approach. This is because of two properties of the skew distribution. The 

first is that it is closed under any affine transformation of the skew-normally distributed vector, 

and the second is that it is closed under the sum of a skew-normally distributed vector and a 

normally distributed vector of the same dimensions. As importantly, the cumulative distribution 

function of the D-variate skew normally distributed variable requires only the evaluation of a 

)1( +D -dimensional multivariate cumulative normal distribution function. All of these 

properties are gainfully exploited in the paper to formulate an MNP model with non-normal 

mixing, while also being able to estimate the model in a simple and computationally efficient 

MACML approach. To our knowledge, this is the first paper to propose and formulate a skew-

normally mixed MNP model.   

A simulation exercise is undertaken to evaluate the ability of the proposed approach to 

recover parameters in the skew-normally mixed MNP model. Two cases are considered: (1) a 

three alternative case with three exogenous variables and (2) a five alternative case with five 
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exogenous variables. The first case considers a three-variate skew normal distribution for the 

coefficients on the three exogenous variables, while the second case considers a three-variate 

skew normal distribution for three variables and a bivariate normal for two variables. The results 

show that our proposed approach does very well in recovering the parameters in a skew-normally 

mixed MNP model. In addition, the simulation results clearly highlight the bias in characterizing 

the distribution of random coefficients as well as the poor data fit if skewness, when actually 

present, is ignored away. Ongoing efforts are focused on additional simulation experiments to 

examine the effectiveness of the approach in settings with spatial dependencies and social 

dependencies across decision units, and combinations of temporal, spatial, and social 

dependencies. 
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Appendix A.1 

The moments of the SSN distribution are most easily obtained from the moment 
generating function of Z, which is given by: 
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where Zγ  is the Pearson index of skewness that is a measure of asymmetry. When ,0=α Zγ =0 
as should be the case for the normal distribution. The moments for the variable ZY ωξ += , 
which is non-standard skew-normally distributed, may be obtained as ZY ωμξμ += , 

),1( 222
ZY σωσ −=  and .ZY γγ =  
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Appendix A.2 

From Equation (5), 
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Appendix A.3 
The moment generating function of Z is: 
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The first three moments of the distribution may subsequently be obtained from the function 
above in a straightforward fashion with π/2=b : 

  and  ,)(Var   ;)( *
ZZμμΩZρμZ ′−=== bE Z             

3
2

 
2

4)(Skew
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′−

′
⎟
⎠
⎞

⎜
⎝
⎛ −

==
−

−

Z
1*

Z

Z
1*

Z

μ)(Ωμ1

μ)(ΩμγZ π
Z ,            

The moments for the variable ωZξY += , which is non-standard skew-normally distributed, 
may be obtained as ZY ωμξμ += , ωVar(Z)ωY =)(Var , and .ZY γγ = For future reference, we 
will also write the moment generating function of Y (obtained from Equation (11)) as follows: 

.)(exp2)()exp()])((exp[)][exp()( t ωρΩtt 
2
1tξωZtξtωZξtYtt ′Φ⎟

⎠
⎞

⎜
⎝
⎛ ′+′=′′=+′=′= EEEM Y    

 
 



35 

LIST OF FIGURES 

Figure 1. Shape of the SSN density function for a number of positive values of ρ 

 

 

LIST OF TABLES 

Table 1. Simulation Results for the Three Alternative-Three Variable Case 
 
Table 2. Simulation Results for the Five Alternative-Five Variable Case 
 
Table 3. Effects of Ignoring Skewness in the Mixing Distribution (when present) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

 
 

Figure 1. Shape of the SSN density function for a number of positive values of ρ 
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Table 1. Simulation Results for the Three Alternative-Three Variable Case 

Parameter True Value 

Parameter Estimates Standard Error (SE) Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 
Asymptotic SE Empirical SE Approximation 

SE 

Approximation 
Adjusted 

Asymptotic SE 

Approximation 
Adjusted 

Empirical SE 

Location parameters of the βq vector 

b1 -1.000 -0.906 9.4% 0.116 0.134 0.073 0.137 0.153 

b2 -1.000 -0.917 8.3% 0.114 0.125 0.072 0.135 0.144 

b3 -1.000 -0.932 6.8% 0.122 0.127 0.076 0.144 0.149 

Skewness parameters of the βq vector 

ρ1 -0.700 -0.770 10.1% 0.065 0.081 0.048 0.081 0.094 

ρ2 -0.700 -0.778 11.2% 0.062 0.064 0.047 0.078 0.079 

ρ3 -0.700 -0.750 7.1% 0.061 0.070 0.044 0.076 0.083 

Scale parameters of the βq vector 

ω1 1.000 1.112 11.2% 0.135 0.144 0.073 0.154 0.162 

ω2 1.000 1.111 11.1% 0.134 0.122 0.068 0.150 0.140 

ω3 1.250 1.344 7.5% 0.150 0.135 0.080 0.170 0.157 

Overall Mean Value Across 
Parameters   9.2% 0.107 0.111 0.065 0.125 0.129 
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Table 2. Simulation Results for the Five Alternative-Five Variable Case 

Parameter True Value 

Parameter Estimates Standard Error (SE) Estimates 

Mean 
Estimate 

Absolute 
Percentage 

Bias 

Asymptotic 
SE Empirical SE Approximation 

SE 

Approximation 
Adjusted 

Asymptotic SE 

Approximation 
Adjusted 

Empirical SE 

Location parameters of the βq vector 

b1 -1.000 -0.914 8.6% 0.107 0.120 0.053 0.119 0.132 

b2 -1.000 -0.917 8.3% 0.106 0.137 0.053 0.119 0.147 

b3 -1.000 -0.990 1.0% 0.116 0.135 0.058 0.130 0.147 

Skewness parameters of the βq vector 

ρ1  -0.700 -0.825 17.9% 0.036 0.042 0.030 0.047 0.051 

ρ2  -0.700 -0.824 17.7% 0.036 0.044 0.028 0.046 0.052 

ρ3  -0.700 -0.769 9.9% 0.034 0.036 0.030 0.046 0.046 

Scale parameters of the βq vector 

ω1  1.000 1.184 18.4% 0.144 0.167 0.067 0.159 0.180 

ω2  1.000 1.168 16.8% 0.143 0.152 0.066 0.157 0.166 

ω3  1.250 1.381 10.5% 0.158 0.162 0.067 0.172 0.175 

Mean values of the γq vector 

c1 1.000 1.041 4.1% 0.107 0.107 0.038 0.114 0.114 

c2 1.000 1.039 3.9% 0.107 0.112 0.038 0.113 0.118 

Covariance elements of the γq vector 

σ1  1.000 1.065 6.5% 0.126 0.144 0.044 0.134 0.151 

Σ12 0.500 0.516 3.2% 0.067 0.059 0.022 0.071 0.063 

σ2  1.000 1.051 5.1% 0.124 0.142 0.045 0.132 0.149 

Overall Mean Value Across 
Parameters   9.4% 0.101 0.111 0.046 0.111 0.121 
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Table 3. Effects of Ignoring Skewness in the Mixing Distribution (when present) 

 

Evaluation Metric 

Three Dimensional Case Five Dimensional Case 

Skew Normal Normal Skew Normal Normal 

Mean APB         

Location parameters of the βq vector 7.7% 58.8% 5.8% 60.4% 

Scale parameters of  the βq vector 8.8% 18.3% 15.4% 18.3% 

Mean values of the γq vector - - 4.1% 3.4% 

Covariance elements of the γq vector - - 5.1% 4.3% 

Across all parameters βq  and  γq vector 8.3% 38.6% 7.9% 23.3% 

Mean log- likelihood value at convergence -2056.6 -2095.0 -4132.3 -4219.7 

Mean value of the log-likelihood ratio statistic across 
datasets 76.9 174.8 

Number of times the likelihood ratio test (LRT) favors 
the skew normal  model 

Every Time when compared to 
34.112

3 =χ  
Every Time when compared to 

34.112
3 =χ  

 

 


