
 
 

A LATENT-SEGMENTATION BASED APPROACH TO INVESTIGATING THE 
SPATIAL TRANSFERABILITY OF ACTIVITY-TRAVEL MODELS 

 
 
 
 
 
 
Zeina Wafa 
The University of Texas at Austin 
Department of Civil, Architectural and Environmental Engineering 
301 E. Dean Keeton St. Stop C1761, Austin TX 78712 
Phone: 512-471-4535, Fax: 512-475-8744 
Email: zww00@utexas.edu  
 
Chandra R. Bhat (corresponding author) 
The University of Texas at Austin 
Department of Civil, Architectural and Environmental Engineering 
301 E. Dean Keeton St. Stop C1761, Austin TX 78712 
Phone: 512-471-4535, Fax: 512-475-8744 
Email: bhat@mail.utexas.edu  
 
Ram M. Pendyala 
Georgia Institute of Technology 
School of Civil and Environmental Engineering 
Mason Building, 790 Atlantic Drive, Atlanta, GA 30332-0355  
Tel: 404-385-3754; Fax: 404-894-2278 
Email: ram.pendyala@ce.gatech.edu    
 
Venu M. Garikapati  
Arizona State University 
School of Sustainable Engineering and the Built Environment  
Tempe, AZ 85287-3005  
Tel: (480) 965-3589; Fax: (480) 965-0557  
Email: venu.garikapati@asu.edu  
 
 
 
 
 
Revised March 15, 2015 
 



Wafa, Bhat, Pendyala, Garikapati   

 

ABSTRACT 
Spatial transferability of travel demand models has been an issue of considerable interest, 
particularly for small and medium sized planning areas that often do not have the resources and 
staff time to collect large scale travel survey data and estimate model components native to the 
region. Traditional approaches to identifying geographical contexts that may borrow and transfer 
models between one another involve the exogenous a priori identification of a set of variables 
that are used to characterize the similarity between geographic regions.  However, this ad hoc 
procedure presents considerable challenges as it is difficult to identify the most appropriate 
criteria a priori. To address this issue, this paper proposes a latent segmentation approach 
whereby the most appropriate criteria for identifying areas with similar profiles are determined 
endogenously within the model estimation phase.  The end products are a set of optimal criteria 
for clustering regions as well as a fully transferred model, segmented to account for 
heterogeneity in the population. The methodology is demonstrated and its efficacy established 
through a case study in this paper that utilizes the National Household Travel Survey (NHTS) 
dataset for information on weekday activities of non-workers within nine regions in the states of 
California and Florida.  The estimated model is then applied to a context withheld from the 
original estimation to assess its performance. It is found that the methodology offers a robust 
mechanism for identifying latent segments and establishing criteria for transferring models 
between areas.  
 
Keywords: spatial transferability, activity-travel model, geographic contexts, MDCEV model, 
latent segmentation approach, regional similarity 
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INTRODUCTION 
There is considerable interest among the transportation planning and modeling community in the 
notion of spatial transferability of travel demand models. Spatial transferability of a model refers 
to the ability to use a model that was estimated in one context in a different application context, 
and obtain useful results that approximate locally observed behavior in the application context.  
While it is generally considered good practice to develop models based on locally collected data, 
some regions, particularly small and medium-sized planning organizations, may not have the 
resources and staff time necessary to undertake large scale survey data collection efforts and thus 
borrow models from other regions (1).  When such model transfer is considered, it is important 
to ensure that the transferred model offers useful and valid information in the application context 
(2).  

Traditionally, in the absence of any local data, the transfer method is based on identifying 
another metropolitan area that is similar to the local context (3-13).  The “similarity” between the 
local region and the donor region (from which the model is borrowed or transferred) is based on 
factors such as transit service quality (14-16), metropolitan area size (14), metropolitan region 
density and type (14, 15, 18, 19), whether the donor region is in the same state as the local region 
(10, 13), and demographic characteristics (16, 17).  The problem with this approach to model 
transfer is three-fold: (1) It specifies a priori the parameter(s) that define the similarity between 
the local region and the donor region; (2) It assumes that a single uniform set of parameters 
measuring similarity are at work regardless of the type of model component being transferred; 
and (3) The transfer is based on centralized measures of tendency (averages, medians) between 
the local region and the donor region.  

The first problem refers to the fact that the parameters of similarity are exogenously 
identified.  However, it is likely that similarity between regions is a multi-dimensional measure. 
One way to accommodate this multi-dimensional similarity within this exogenous approach is to 
partition regions along all potentially relevant dimensions.  However, a practical problem with 
this “full-dimensional” exogenous transfer scheme is that there may not be a unique region that 
lies at the intersection of all of the dimensions as the local region.  To overcome this limitation, it 
is typical to consider only one or two dimensions that are a priori designated as the most 
important measures of closeness (similarity).  The disadvantage is that closeness on a whole set 
of potentially important dimensions is discarded and lost.  In addition, an intrinsic problem with 
all exogenous transfer approaches is that the threshold values of the continuous variables (for 
example, residential or employment density) have to be established in a rather ad-hoc fashion.  

The second problem is that the exogenous approach uses the same set of similarity 
dimensions regardless of the type of model being transferred.  In reality, it is possible that 
residential density is a better measure of similarity when transferring a model associated with 
activity time use behavior, while the availability of specific forms of transit as in the local region 
may be the key similarity measure for transferring a mode choice model.  What is needed is a 
method to extract information regarding similarity in a way that is customized to the model 
component being transferred.   
 The third problem is that there are likely to be different spatial pockets within 
metropolitan areas that are quite different from one another on the similarity measures used in 
the exogenous schemes.  However, the exogenous schemes use a single central measure to 
characterize entire metropolitan regions (such as a mean residential density measure), and use 
that central tendency to determine the region that is most similar to the local region.  However, 
the local region may have pockets that are highly dense that reveal individual and household-
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level activity-travel behavior patterns similar to dense pockets in other regions, while also having 
pockets of low density in which the activity-travel behavior patterns are similar to low density 
pockets in other regions.  What is needed is a method of model transferability that accommodates 
the heterogeneity in locational characteristics and associated behaviors within the local region.   
 This paper presents a new latent-segmentation based endogenous approach to model 
transferability that overcomes the three key problems described above.  In this approach, data is 
utilized from all of the regions that have information on the activity-travel dimensions of interest 
(and appropriate exogenous variables), rather than utilizing data from a single region that is 
chosen a priori as the single most similar region to the local context in question.  In this latent 
segmentation based endogenous approach, there is no need to limit the dimensions of similarity 
to one or two, because the concept of similarity is simultaneously based on multiple dimensions.  
In particular, a limited number of latent segments is derived, specific to each kind of model 
component being transferred, by characterizing each latent segment by the entire set of 
potentially relevant similarity variables.  The number of latent segments that is appropriate for a 
specific activity-travel dimension of interest is determined statistically by successively adding an 
additional segment until a point is reached where an additional segment does not result in a 
significant improvement in fit.  Individuals, based on their location characteristics as captured in 
the potentially relevant similarity variable measures, are assigned to segments in a probabilistic 
fashion.  That is, each latent segment refers to an optimal combination of location characteristics 
that make individuals within that segment behave similarly on the activity-travel dimension of 
interest.  The endogenous approach jointly determines the number of segments, the assignment 
of individuals to segments, and segment-specific choice model parameters.  Since this approach 
identifies segments without requiring a multi-way partitioning based on all potentially relevant 
similarity variables as in the full-dimensional exogenous transfer method, it allows the use of all 
similarity variables in practice.  Because the similarity-based latent segmentation scheme is 
estimated jointly with the main activity-travel dimension model of interest, it is immediately 
customized to the local population context.  Finally, by using data from a host of different 
regions (for which data is available), it is possible to capture the heterogeneity in locational 
characteristics and the impact of such heterogeneity on activity-travel behavior dimensions of 
interest.  This allows the recognition of heterogeneity that exists in different spatial pockets in 
the local region.   

The activity-travel model considered in this paper is similar to the activity generation and 
time-use model discussed in Sikder and Pinjari (10). However, rather than assessing spatial 
transferability via naïve transfer or transfer with constants update – as was done in their paper – 
this study establishes spatial transferability in an estimation-based context such that latent 
classification of the dataset results in endogenously identifying appropriate segments that are 
homogeneous with respect to the activity-travel dimension of interest.  

The remainder of this paper is organized as follows.  The second section offers a 
description of the dataset used in this study.  The modeling methodology is presented in the third 
section.  Model estimation results are presented in the fourth section, while an assessment of the 
latent segments and spatial transferability is furnished in the fifth section.  The sixth and final 
section presents conclusions.  

DATA 
The data used in this paper is drawn from the 2009 NHTS.  The analysis considers weekday 
activity participation of unemployed adults (18 years or above).  In order to prepare the dataset 
for this study, extensive data filtering was performed.  Records with incomplete information, 
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missing information, weekend activity-travel records, and long distance travel (150 miles or 
longer) were removed from the dataset.  The out-of-home activities were classified into eight 
categories: shopping, maintenance, social/recreational, active recreation, medical, eat out, 
pickup/drop-off, and others. Similar activities were aggregated in terms of their dwell times. For 
example, if an individual performed a shopping activity for 30 minutes and another shopping 
activity for 50 minutes, the aggregation resulted in two shopping activities with 80 minutes of 
total shopping dwell time. The total in-home activities dwell time was inferred by subtracting the 
total out-of-home activities dwell time, the total travel time, and sleep time (taken to be 520 
minutes according to the 2009 American Time Use Survey) from 24 hours in a day. After 
filtering out inconsistent records (those with dwell times and travel times adding up to more than 
24 hours a day and those with combinations of dwell times and travel times that lead to negative 
in-home activities dwell time), and removing duplicate entries for the same individual, the final 
dataset included records for 28,264 individuals belonging to 39 different states. In the interest of 
computational time considerations, this paper focuses on weekday daily activity-travel 
information pertaining only to the states of California and Florida with a sample size of 10,649 
individuals. 
 Table 1 presents the socio-economic and activity engagement characteristics of the 
survey data sample.  The sample contains activity participation information from nine regions: 
Los Angeles – Riverside – Orange County, CA; Sacramento – Yolo, CA; San Diego, CA; San 
Francisco – Oakland – San Jose, CA; Jacksonville, FL; Miami – Fort Lauderdale, FL; Orlando, 
FL; Tampa – St Petersburg – Clearwater, FL; and West Palm Beach – Boca Raton, FL.  The 
respective state samples are significantly different from one another. For example, the age 
distribution shows a higher percentage of young and middle aged people (18 – 54 years) in 
California than in Florida, and a higher percentage of older individuals (55+ years) in Florida 
than in California.  This is consistent with the notion that Florida is a popular destination for 
retirees.  Individuals belonging to the California sample seem to be wealthier than those in the 
Florida sample, although this should be interpreted in the context of the cost of living differential 
between the two states. These differences in socio-demographic characteristics between the two 
states may contribute to individuals residing in different areas exhibiting varying intrinsic 
preferences for activity participation and time-use.  

The dependent variable in this study is individual-level activity generation and time-use. 
As mentioned previously, there are eight types of out-of-home activities. Moreover, an 
individual can choose the degree to which he/she participates in the chosen activity – represented 
by the activity dwell time (in minutes).  Table 1 shows the variability in the dependent variable 
characteristics across the states in the dataset. The information presented reflects the average 
number of activities an unemployed adult undertakes on a weekday, as well as the average 
duration an individual participates in a certain type of activity (by state and for the dataset as a 
whole). It is seen that individuals exhibit considerable similarity in their activity engagement and 
time use profiles, albeit with a few notable differences.  For example, individuals in Florida 
spend more time for medical related activities (consistent with the older age profile of the survey 
sample), while California residents spend more time for social and other activities.  Residents in 
California also show marginally higher levels of time use for active recreational pursuits. 
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MODELING METHODOLOGY 
This section presents an overview of the modeling methodology adopted in this paper.  The 
methodology includes segment-specific model formulation and assignment components that 
provide the ability to identify latent segments endogenously in the context of modeling an 
activity-travel dimension of interest.    
  
Multiple Discrete-Continuous Extreme Value Model 
Single discrete choice models, such as multinomial logit (MNL) and multinomial probit (MNP), 
are typically utilized to model a decision making process where decision makers choose one 
alternative from a set of feasible alternatives.  Some choice processes, however, involve the 
choice of multiple alternatives from the universal choice set of alternatives. An example of such 
a multiple-discrete choice process includes the choice of multiple vehicle types from an array of 
vehicle types available in the market. The multiple discrete-continuous extreme value (MDCEV) 
model, proposed by Bhat (20), accommodates multiple discreteness based on the generalized 
variant of the translated constant elasticity of substitution (CES) utility function with a 
multiplicative log-extreme value distribution for the error term.  

To account for heterogeneity in the population and to produce models that better fit the 
available data points, population segmentation is proposed in this study. There are two methods 
for segmentation: exogenous and endogenous. Exogenous segmentation assumes a finite number 
of mutually exclusive segments, the total number of which is a function of the number of 
segmentation variables. As mentioned earlier, the number of segments grows dramatically as the 
number of clustering variables increases. Endogenous segmentation, on the other hand, allows 
for a large number of segmentation variables to characterize each segment without having the 
number of segments explode. The parameters on these segmentation variables determine the 
propensity of belonging to each of the segments and individuals are assigned to segments in a 
probabilistic manner. Bhat (21) used the endogenous segmentation approach to segment a 
population into a finite number of homogenous segments where the utility function is expected to 
be identical for all individuals probabilistically assigned to a specific segment. However, the 
utility function is allowed to vary across segments. The number of segments, and the variables 
that define the segments, are determined as part of the model estimation process. It is found that 
endogenous segmentation better fits the data as compared to exogenous segmentation, allows for 
higher order interaction effects, keeps the number of segments under control, and provides more 
intuitive results with respect to the identification of homogenous clusters of units (21). 

In view of the above, the model used in this paper is the MDCEV model that 
accommodates the discrete nature of activity selection as well as the continuous nature of activity 
participation. The model jointly determines the mix of activities (multiple discrete choices) that 
an individual undertakes in a day together with the amount of time (continuous choice 
dimension) that is dedicated to each activity type.  To study spatial transferability, the dataset – 
comprising of states and regions of different socioeconomic composition – is segmented using a 
number of explanatory variables that facilitate latent classification.  
 
Segment-Specific Model Formulation 
Assume the dataset is segmented into S homogenous segments where individuals belonging to 
the same segment s exhibit similar choice behavior, different than those belonging to segment s’. 
The model considered in this paper studies activity participation and time-use at the individual-
level. All individuals participate in in-home activities and as such, in-home activities are 
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modeled as the outside good in the model structure below – based on a generalized variant of the 
translated CES utility (20, 22). 
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k is an index for alternatives,  

qks  terms are random error terms,  

ks  terms are satiation parameters (discussed further below),  

sβ  is a parameter vector specific to location segment s,  

qkz  is a set of exogenous covariates specific to individual q and alternative k, and 

qkx  is the consumption amount of good k.  

 
The first term in Equation 1 corresponds to the utility derived from the consumption of an 
outside good, i.e., an alternative that is consumed by all individuals in the sample (i.e., in-home 
activities, in the context of this paper). In its absence, the expression collapses to include just the 
second term of Equation 1 with k ranging from 1 to K (where k is an alternative). 

sqU q segment location  |)( x  is quasi-concave, increasing, and continuously differentiable with 

respect to the vector x of dimension (K × 1) (xk ≥ 0 for all k alternatives). ks  is a parameter 

associated with good k in segment s and plays a dual role. On the one hand, these parameters 
enable corner solutions (i.e., zero consumption of a good k). On the other hand, these parameters 
serve as satiation parameters (reflecting preference, analogous to slopes of indifference curves). 
There is no translation parameter s1  associated with the outside good as it is always consumed. 

The MDCEV model assumes an extreme value distribution for the error term ks  and that 

ks  is independent of ksz  for all goods k. The error terms are also assumed to be independently 

distributed across alternatives with a scale parameter σ. However, in the absence of information 
on price variation across the choice alternatives, or when the price is known to be invariant 
across alternatives, σ can be normalized to one for convenience. 

The expression for the probability of the consumption pattern for individual q conditional 
on belonging to segment s is as follows: 
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M refers to the total number of consumed goods (M ≥ 1), and 
*
qkx  refers to the observed consumption quantity of good k by individual q. 

 

The individual utility maximization is subject to the budget constraint 
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Segment Assignment Formulation 
The latent classification aspect of this model assigns individuals to segments. The utility of 
individual q belonging to segment s is given by the following expression (23): 
 

qsqsW  qs yδ* ,  (4) 

 
where, 
 

*
qsW  is the latent propensity of individual q to belong to location segment s, 

qy  is a vector of individual specific exogenous covariates (including characteristics of location 

of the individual), 

sδ  is a vector of coefficients, and 

qs  is a random error term (Type 1 extreme value). 

 
Accordingly, the probability that individual q belongs to segment s is given as follows: 
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Building on Equations 2 and 5, the unconditional probability of the multiple-discrete continuous 
choice pattern is as follows: 

  



S

s
qsMqq PsqxxxxPP

1

**
3

*
2

*
1 segment location  |)0,...,0,0,,...,,,( .  (6) 

Consequently, the likelihood function for the entire dataset (size Q) is as follows: 
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After determining segment membership, the characteristics of each segment can be derived by 
estimating the mean of the variables in each segment as follows (21): 
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Measures of Goodness-of-Fit 
In this paper, the model is first estimated assuming the population is comprised of two segments.  
The number of segments is increased in a stepwise manner until further segmentation of the 
population no longer improves goodness-of-fit. The log likelihood value improves as the number 
of segments increases, calling for the use of more effective goodness-of-fit measures for 
assessing the optimal number of segments in the dataset. Such measures include the Bayesian 
Information Criterion (BIC), Akaike Information Criterion (AIC), and Akaike Information 
Criterion corrected (AICc). The Bayesian Information Criterion (BIC) is given by the following 
expression (24). 
 

QKLL ln2BIC  ,  (9) 
 
where, LL is the log likelihood at convergence, K is the number of estimated parameters, and Q 
is the number of observations in the dataset. The Akaike Information Criterion (AIC) is given by 
the following expression (25). 
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The Akaike Information Criterion corrected (AICc) is given by the following expression (26, 27). 
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Several studies suggest that the BIC is superior to other assessment measures when it comes to 
determining the dimensionality of the segment-space (see 28, 29). For this reason, the BIC is 
used in this paper as the basis for establishing the number of segments S into which the dataset 
will be divided. 
 
LATENT SEGMENTATION RESULTS 
This section presents the latent segmentation results. A base MDCEV model was estimated on 
the entire dataset.  In addition, models were estimated assuming a latent segmentation with S=2, 
3, and 4 segments.  The specifications of each of these models include an array of socio-
economic variables (age, gender, household size, income levels, auto ownership) and a 
contextual variable reflecting area type (urban/rural). The starting values for the two segments 
model were based on the estimation results of the base MDCEV model (estimated on the entire 
dataset). The starting values for the three segments model were based on the results of the two 
segments model and the base MDCEV model. The starting values for the four segments model 
were based on the results of the three segments model and the base MDCEV model. The BIC 
was computed for each of the models representing different segmentation schemes as per 
Equation 9. For the two segments model, the BIC was 326426.7.  The value is found to decrease 
for the three segments model (326049.1), and then increase for the four segments model 
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(326053.7). Based on this finding, it may be concluded that three segments is the optimal 
dimension of the segment-space. 
 In the interest of brevity, the paper does not include all tabulations of the MDCEV model 
estimation results. In general, it was found that the model estimation results are intuitive and 
consistent with expectations. An examination of the signs and magnitudes of some of the 
variables (gender, area type, number of vehicles in the household) suggests that there is 
considerable heterogeneity in how individuals of different segments use their time.  The 
parameters in the first segment model suggest that the activity with the highest intensity of 
participation is the active recreation activity. This activity entails going to the gym, exercising, 
and playing sports. The parameters in the second segment model show that individuals belonging 
to this segment engage in personal and recreational activities, namely maintenance, social, 
medical, and other activities, more so than individuals in other segments. The other activity 
category includes school-related activities, religious activities, relaxation, vacation, family 
obligations, attending funerals/weddings, pet care, attending meetings, and others. However, 
overall participation in all of the out-of-home activities in this segment remains less than the 
participation in in-home activities, suggesting that individuals in this segment are less out-of-
home activity oriented when compared with individuals in the other two segments. The 
parameters in the third segment model indicate that the activity with the highest level of 
consumption for individuals in this segment is shopping. This includes shopping/running errands 
and buying goods. 

Table 2 furnishes estimation results for just the latent segmentation portion of the model, 
which determines the segment into which an individual falls.  Once an individual is assigned to a 
segment, then the MDCEV model corresponding to that segment can be used to forecast activity 
engagement and time use patterns for that individual.  Residential and employment densities 
were used as proxies for area type due to a high correlation between residential and employment 
densities on the one hand and the urban dummy variable on the other. In addition, a state-specific 
dummy variable was introduced to account for differences among individuals across states. 
Moreover, transit service quality is represented by the presence or absence of rail in the 
Metropolitan Statistical Area (MSA) corresponding to the regions in the dataset. Segment 1 is 
treated as the base in the results furnished in Table 2. A comparison of the parameter signs and 
magnitudes between the second and third segments provides important qualitative information 
pertaining to the spatial characteristics of these two segments relative to each other. The model 
results yield relatively large constants for segments two and three, suggesting that these segments 
account for a higher share of the sample.  Those residing in higher density areas are less likely to 
fall within segments two and three.  However, those residing in high employment density 
locations are likely to fall within segment two.  Individuals in the California dataset are less 
likely to fall in segments two and three, suggesting that there are significant differences between 
the California and Florida samples. 

The quantitative characterization of the three segments in Table 2 is performed by 
computing the mean values of the segmentation variables within each segment as per Equation 8. 
Overall, it is found that the first segment accounts for about 13.5 percent of the sample, the 
second segment accounts for 47.7 percent of the sample, and the third segment accounts for 38.8 
percent of the sample.  Within the context of the various characteristics, it is found that segment 
one is characterized by (individuals living in) areas with higher residential density, low- to 
medium employment density, and absence of rail service (in comparison to individuals that fall 
into segments two and three).  Consistent with this segmentation pattern, the MDCEV model 
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estimation results show that individuals in segment one, who reside in higher residential density 
neighborhoods as per the segmentation model, are more likely to engage in active recreational 
activities. Similarly, it is found that segment two is largely made up of individuals in high 
density residential and employment areas.  The fact that the MDCEV model shows that 
individuals in this segment engage in a variety of activities can be attributed to the likelihood that 
such areas offer diverse and plentiful opportunities for engaging in different kinds of activities. 
Also, it is found that individuals in segment three are likely to fall into lower density areas with 
presumably fewer opportunities for outdoor pursuits and recreational activities. Consistent with 
this finding, the MDCEV model shows that individuals in segment three are more prone to 
undertake shopping activities, presumably because the areas do not offer opportunities for 
pursuing a variety of different activities.   

COMPARISON OF ENDOGENOUS AND EXOGENOUS SEGMENTATION SCHEME 
This section offers a comparison of the performance of the endogenous segmentation scheme 
versus the traditional exogenous segmentation scheme in which segments are identified based on 
exogenously defined criteria.  It should be noted that the adjusted log likelihood ratio index for 
the joint three-segment latent class MDCEV model is 0.4136 and the number of estimated 
parameters in the model is 325. Table 3 presents results of the comparison showing that the 
endogenous segmentation scheme outperforms exogenous segmentation schemes for both one 
and two-way segmentations.   
 Traditionally, clusters have been defined by predetermined criteria in order to transfer 
models between areas. Twelve possible clusters emerge if segments are to be exogenously 
defined based on one clustering criterion. The expansion of the segmentation dimensionality to 
two explodes the number of possible clusters into 57, accounting for all feasible combinations of 
two-way segmentation. The preferred specification for each of these exogenously segmented 
models was derived iteratively until significant and behaviorally intuitive parameters remained. 
The adjusted likelihood ratio indexes for the one-way segmentation models were calculated, all 
of which were lower than that of the three-segment MDCEV model. Moreover, the adjusted 
likelihood ratio index for all one-way segmentation models was computed under the most 
favorable condition, where the index corresponds to the number of estimated parameters in the 
base MDCEV model (134 parameters). The resulting 2

favp  values are shown in Table 3 and 

indicate that, under the most favorable scenario (although unrealistic), the adjusted likelihood 
ratio index is still less than that of the endogenous segmentation model. 

Two-way segmentation allows for higher order interaction effects and is expected to 
better capture preference heterogeneity. In each row, the two-way segmentation corresponds to 
the pair of variables from the left-most column (one way segmentation variable) and a second 
variable identified in the middle column.  For example, the very first row of the two-way 
segmentation results corresponds to a segmentation based on state and residential density, the 
second row corresponds to a segmentation based on state and employment density, and so on. 
The adjusted likelihood ratio indexes for all two-way segmentation models were calculated using 
the number of parameters estimated in the corresponding models as well as using the number of 
parameters estimated in the endogenous segmentation model (most favorable condition). The 
resulting 2p  and 2

favp  are less than the adjusted likelihood ratio index of the endogenous 

segmentation model. In addition, the efficacy of the two-way exogenous segmentation may be 
suspect in view of the non-intuitive model parameter estimates obtained in that particular model 
estimation exercise. For example, some segments showed that people older than 75 years of age 
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engage in fewer medical activities than those belonging to the 65-74 year age group who, in turn, 
participate in less medical activities than those belonging to the 55-64 year age group, a result 
that violates a priori expectations. 
 It is unlikely that only one characteristic of a geographic region deems it similar to 
another and justifies model transferability between them. Resorting to a higher order 
segmentation scheme presents issues with the number of segments under consideration as well as 
the sample size within each segment. In fact, it was not possible to compare the endogenous 
segmentation model against all possible two-way exogenous segmentation models because of 
small sample sizes for certain two-way segmentation schemes. This further illustrates the merits 
of an endogenous segmentation scheme over an exogenous segmentation scheme, the latter being 
limited by the available sample. Also, the endogenous segmentation scheme offered more 
behaviorally intuitive model parameter estimates and superior goodness-of-fit, suggesting that it 
outperforms other exogenous segmentation schemes adopted in prior literature.  
 
SPATIAL TRANSFERABILITY BASED ON LATENT SEGMENTATION 
In practice, a model from a specific area is often transferred to the local context.  As mentioned 
earlier, the model tends to be transferred from a metropolitan area that has similar traits along 
one or two key dimensions (that are defined a priori exogenously).  In this section, the 
metropolitan area of Austin – that was not included in the model estimation phase – is considered 
as a local context.  National household travel survey data are available for Austin, making it 
possible to estimate a MDCEV model of activity engagement and time use native to Austin.  In 
addition, various models are “transferred” to Austin (under the hypothetical scenario that local 
data are not available for Austin).  Considering the spatial and transit characteristics of Austin, 
models were estimated and transferred from the metropolitan area samples of Orlando, West 
Palm Beach, and Sacramento.  In other words, the Orlando (or West Palm Beach or Sacramento) 
sample was treated as an exogenously defined segment, a MDCEV model was estimated on that 
segment (sample), and the parameters were transferred to the Austin sample (a constrained 
parameter estimation was performed on the Austin sample, where the values of all parameters 
are set to the Orlando/West Palm Beach/Sacramento parameter values).  The latent segmentation 
based MDCEV model was also transferred to Austin, where individuals in the Austin sample are 
assigned to a latent segment and a segment-specific MDCEV model is applied accordingly.   
 The results of the comparison are shown in Table 4. The goodness-of-fit for the native 
Austin estimation is 0.4133.  The latent segmentation model (which was estimated on California 
and Florida samples), when transferred to the Austin sample, offers a goodness of fit of 0.4125, 
which is very close to the goodness-of-fit of the native Austin model.  All other transferred 
models present goodness-of-fit statistics that are less in magnitude than that offered by the latent 
segmentation model.  In addition, it is striking to note that the log-likelihood at convergence for 
the transferred Orlando, West Palm Beach, and Sacramento models are all worse than the 
corresponding log-likelihood values with constants.  In other words, transferring a number of 
parameters (associated with exogenous variables that explain activity-travel engagement and 
time use) from the respective metro areas to Austin results in a degradation of the log-likelihood; 
however, this is not the case for the latent segmentation model where the log-likelihood at 
convergence is better than that corresponding to the model with only constants. It should be 
noted, however, that this comparison is qualitative in nature; as the number of parameters 
between the latent segmentation model and the other models is considerably different, more 
rigorous comparisons of goodness-of-fit measures (that adjust for number of parameters) need to 
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be undertaken.  Further validation of the efficacy of the latent segmentation approach would 
constitute fruitful directions for future research.   
 
SUMMARY AND CONCLUSIONS 
In an era of limited resources and ever-growing demands on disaggregate activity-travel behavior 
data, metropolitan planning authorities are invariably interested in exploring spatial 
transferability of models in order to achieve time and cost savings. The traditional approach to 
identifying an area with a similar profile has been to exogenously define a limited set of criteria 
and then borrow a model from an area that has similar characteristics with respect to the chosen 
criteria.  However, it is difficult to identify the most appropriate set of criteria a priori and the 
literature has utilized a variety of criteria for transferability, leaving considerable ambiguity for 
an agency that is seeking to transfer a model from an area with similar population activity-travel 
characteristics. Rather than approach the transferability paradigm through an exogenous 
segmentation approach, this paper proposes the utilization of an endogenous segmentation 
approach which provides the ability to classify individuals into relatively homogenous segments 
and then apply segment-specific activity-travel model components to simulate travel demand.  
 In this paper, a simultaneous equations model system approach is adopted to 
accommodate endogenous segmentation.  The model system includes a segmentation model 
coupled with a segment-specific econometric model of activity participation and time use.  The 
latent segmentation model uses a variety of explanatory factors such as area type, rail presence, 
residential density, and employment density to predict the segment to which an individual 
belongs, and then the econometric multiple discrete continuous extreme value (MDCEV) model 
can be used to predict the activity-travel pattern of an individual depending on the segment in 
which the individual has been placed.  

In this study, a National Household Travel Survey (NHTS) sample including individuals 
from California and Florida is utilized to estimate the latent segmentation MDCEV model 
system.  It is found that a three-segment model performs best in terms of goodness-of-fit and 
behavioral intuitiveness.  The performance of the endogenous segmentation scheme is found to 
be consistently better than alternative exogenous segmentation schemes. The efficacy of the 
approach is demonstrated through the transfer of the model onto a region that was not part of the 
estimation dataset, the Austin-San Marcos metropolitan area. The comparison of the predicted 
time allocations of a locally estimated MDCEV model with that of the transferred latent 
segmentation model reveals similar predictive powers in replicating observed activity 
consumptions in the Austin-San Marcos dataset, suggesting that the segmented model offers 
results comparable to those obtained from estimating models on local data. 

The paper demonstrates an approach for model transferability through an endogenous 
segmentation process wherein the criteria that define segments are established within the model 
estimation phase.  This provides a robust mechanism to identify criteria and establish segment-
specific model parameters with respect to the activity-travel characteristics of interest. Future 
research efforts should be aimed at considering alternative datasets (combining different 
geographical regions) and different activity-travel characteristics to further validate the approach.  
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TABLE 1  Descriptive Statistics of the Sample by State 
Characteristic California Florida Total 
Sample Size 7,048 3,601 10,649 
Gender: Male 40.7% 41.2% 40.9% 
Age: 18 – 29 years 8.0% 4.3% 6.6% 
Age: 30 – 54 years 22.7% 16.6% 20.6% 
Age: 55 – 64 years 18.6% 18.2% 18.5% 
Age: 65 – 74 years 25.5% 28.3% 26.5% 
Age: ≥75 years 25.2% 32.6% 27.8% 
Race: White 78.8% 87.9% 81.9% 
Race: Black 3.8% 6.7% 4.8% 
Race: Other 17.4% 5.4% 13.3% 
Driver Status 91.3% 90.9% 91.2% 
Education: High school level or lower 29.5% 37.5% 32.2% 
Education: Some college level 32.1% 28.5% 30.9% 
Education: Bachelor’s level or higher 38.4% 34.0% 36.9% 
Income: <25 K 18.5% 26.3% 21.1% 
Income: 25 K – 50 K  27.7% 31.5% 29.0% 
Income: 50 K – 75 K 17.9% 16.1% 17.3% 
Income: ≥75 K 35.9% 26.1% 32.6% 
Average Household Size 2.5 2.2 2.4 
Average Number of Drivers 1.9 1.8 1.9 
Average Number of Activities 3.0 3.0 3.0 
Average Activity Duration (min)a    

Home  702.5 705.8 703.6 
Shop 60.3 61.1 60.6 
Maintenance 31.3 31.8 31.5 
Social 161.9 156.7 160.1 
Active 83.7 79.8 82.4 
Medical 79.2 87.6 82.0 
Eat-out 63.4 65.2 64.0 
Pick-up 44.7 43.6 44.3 
Other 148.9 121.1 139.5 

a average durations are computed only on the portion of the sample that participated in each of the activities 
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TABLE 2  The Latent Segmentation Model and Characterization of Three Segments 

Segmentation Variable 
Segment 1 
(base) 

Segment 2 Segment 3 Dataset 

Constants - 
1.6016 
(14.56) 

1.4904 
(13.27) 

- 

Residential Density  
(Housing units per sq mi) 

< 500 (base) - - - - 

500 – 1,999 - 
-0.2127 
(-2.18) 

-0.2089 
(-2.12) 

- 

≥ 2,000 - 
-0.1324 
(-1.33) 

-0.1710 
(-1.72) 

- 

Employment Density  
(Workers per sq mi) 

< 500 (base) - - - - 

500 – 1,999 - - - - 

≥ 2,000 - 
0.1487 
(2.70) 

- - 

State 
California - 

-0.2391 
(-3.38) 

-0.2709 
(-3.74) 

- 

Florida (base) - - - - 

Transit Service Quality 
Rail (base) - - - - 

No Rail - 
-0.1450 
(-2.18) 

-0.1805 
(-2.66) 

- 

Quantitative Characterization of the Three Segments 

Residential Density  
(Housing units per sq mi) 

< 500 14.07% 15.53% 16.31% 15.64% 

500 – 1,999 42.14% 38.99% 40.27% 39.91% 

≥ 2,000 43.79% 45.48% 43.42% 44.45% 

Employment Density  
(Workers per sq mi) 

< 500 32.50% 31.84% 33.48% 32.57% 

500 – 1,999 40.89% 38.34% 39.88% 39.28% 

≥ 2,000 26.61% 29.82% 26.64% 28.15% 

State 
California 70.00% 65.94% 65.16% 66.18% 

Florida 30.00% 34.06% 34.84% 33.82% 

Transit Service Quality 
Rail 47.46% 50.47% 50.27% 50.00% 

No Rail 52.54% 49.53% 49.73% 50.00% 

Area Type 
Urban 93.10% 92.60% 92.26% 92.53% 

Rural 6.90% 7.40% 7.74% 7.47% 

Share 0.1351 0.4771 0.3878 1.0000 
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TABLE 3 Comparison of the Endogenous Segmentation Model with One-Way and Two-Way Exogenous Segmentation Models 
Segmentation 
Variable Segs Params LL at converg 2p

a 2
favp

b 
Two-way 
Segmentation with… Segs Params LL at converg 2p  2

favp
c 

State 2 237 -163160.4833 0.4079 0.4083 Residential Density 6 563 -162805.1273 0.4080 0.4089
      Employment Density 6 597 -147394.6772 0.4079 0.4090
      Transit Service 

Quality 
4 401 -162943.5897 0.4081 0.4084

      Area Type 4 372 -162993.2865 0.4080 0.4082

Residential 
Density 

3 338 -163044.4900 0.4080 0.4087 Employment 
Densityd 

9 705 -160191.1947 0.4081 0.4095

      Transit Service 
Quality 

6 580 -162790.0652 0.4080 0.4089

      Area Type 6 409 -160412.7488 0.4082 0.4085

Employment 
Density 

3 350 -163032.0739 0.4080 0.4088 Transit Service 
Quality 

6 601 -162768.6610 0.4080 0.4090

      Area Type 6 439 -161115.1576 0.4084 0.4088

Transit Service 
Quality 

2 238 -163159.836 0.4079 0.4083 Area Type 4 304 -159485.0556 0.4082 0.4081

Area Type 2 213 -163165.1216 0.4094 0.4096 - - - - - - 
 

Note: The adjusted log likelihood ratio index for the 3 segments model is 0.4136 and the number of estimated parameters in this model is 325.

                                                 
a The adjusted log likelihood ratio index is computed as 

zeroat  

 econvergencat  
12

LL

kLL
p


   where k is the number of estimated parameters. 

b The favorable adjusted log likelihood ratio index for the one-way segmentation models is computed by replacing k with the number of estimated parameters in 
the unsegmented model. 

c The favorable adjusted log likelihood ratio index for the two-way segmentation models is computed by replacing k with the number of estimated parameters in 
the three-segments model. 

d The two-way segmentation models between the lowest level of residential density (< 500 housing units per square mile) and the middle and highest level of 
employment density (500 – 1,999 and ≥ 2,000 workers per square mile respectively), the two-segmentation models between employment density and rural area 
type, and the two-way segmentation model between the rail transit service quality and the rural area type were not estimable due to small sample size. 
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TABLE 4  Comparison of Goodness-of-Fit for Different Model Transfer Schemes 

 
MDCEV 

estimated on 
Austin 

LC model 
transferred to 

Austin 

Orlando model 
transferred to 

Austin 

West Palm 
Beach model 
transferred to 

Austin 

Sacramento 
model 

transferred to 
Austin 

Number of 
Parameters 

80 325 82 75 76 

Log-likelihood at 
zero 

-14752.6 -14752.6 -14752.6 -14752.6 -14752.6 

Log-likelihood at 
constant 

-8818.4 -8736.8 -8842.1 -8847.1 -8831.5 

Log-likelihood at 
convergence 

-8655.1 -8666.8 -8878.5 -8995.6 -8846.8 

Rho-Squared w.r.t. 
Zero 

0.4133 0.4125 0.3982 0.3902 0.4003 

 


