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ABSTRACT 
We develop an econometric framework for incorporating spatial dependence in integrated model 
systems of latent variables and multidimensional mixed data outcomes. The framework combines 
Bhat’s Generalized Heterogeneous Data Model (GHDM) with a spatial (social) formulation to 
parsimoniously introduce spatial (social) dependencies through latent constructs. The applicability 
of the spatial GHDM framework is demonstrated through an empirical analysis of spatial 
dependencies in a multidimensional mixed data bundle comprising a variety of household choices 
– household commute distance, residential location (density) choice, vehicle ownership, parents’ 
commute mode choice, and children’s school mode choice – along with other measurement 
variables for two latent constructs – parent’s safety concerns about children walking/biking to 
school and active lifestyle propensity. The GHDM framework identifies an intricate web of causal 
relationships and endogeneity among the endogenous variables. Furthermore, the spatial (social) 
version of the GHDM model reveals a high level of spatial (social) dependency in the latent active 
lifestyle propensity of different households and moderate level of spatial dependency in parents’ 
safety concerns. Ignoring spatial (social) dependencies in the empirical model results in inferior 
data fit, potential bias and statistical insignificance of the parameters corresponding to nominal 
variables, and underestimation of policy impacts. 
 
Keywords: Spatial econometrics; Multidimensional mixed data models; Latent variables; 
Maximum approximate composite marginal likelihood (MACML) estimation.  
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1. INTRODUCTION 
Multi-dimensional dependent outcome models are of interest in several fields, including land-use 
and transportation, biology, finance, and econometrics, just to name a few. The primary motivation 
for modeling dependent outcomes jointly is that there may be common underlying unobserved 
factors (attitudes, values, and lifestyle factors) of decision-makers that impact multiple dependent 
outcomes simultaneously. Ignoring the jointness and considering each dimension separately 
invites the pitfalls of (1) inefficient estimation of covariate effects for each outcome because such 
an approach fails to borrow information on other outcomes (Teixeira-Pinto and Harezlak, 2013), 
(2) multiple statistical testing requirements for specification analysis, which even then offer 
relatively poor statistical power in testing and poor control of type I error rates (De Leon and Zhu, 
2008), and (3) inconsistent estimates of the structural effect of one endogenous variable on another 
(see Bhat and Guo, 2007). The last of these problems is particularly troubling, since it leads to 
what is typically referred to in the econometric literature as the “sample selection” or the 
“endogeneity in variables” problem. That is, modeling each outcome independently with a 
recursive pattern of influence among the outcomes is tantamount to a strictly sequential decision-
making process, which is not consistent with the bundled (or package) nature of multiple 
outcomes. For example, in a land-use and transportation context, households that are 
environmentally conscious (and/or auto-averse in their lifestyle) may choose to locate in transit 
and pedestrian friendly neighborhoods that are characterized by high land use density (the word 
“auto” in this paper will be used to refer to motorized vehicles in the household). Then, a cross-
sectional data set may indicate low auto ownership levels in high land use density areas, but at 
least part of this effect can be attributed to the purely associative effect of auto-averse households 
choosing to own fewer autos and residing in high density areas (rather than the low auto ownership 
being a sole causal result of living in a high density neighborhood). Ignoring this issue will, in 
general, lead to a misleading conclusion about the causal effect of land-use on auto ownership, 
which can, in turn, lead to misinformed land-use policies. A way out to more accurately capture 
causal effects is to model the choice dimensions together in a joint equations modeling framework 
that accounts for correlated unobserved effects as well as possible causal inter-relationships 
between endogenous outcomes.  

To be sure, there has been a substantial amount of work in the econometric literature on 
the simultaneous modeling of multiple continuous variables. However, there has been relatively 
little emphasis on multiple non-continuous variables (see De Leon and Chough, 2013). Bhat 
(2015a) provides a review of the many different approaches for modeling multiple and mixed data 
outcomes, and proposes a relatively general modeling framework, which he refers to as the General 
Heterogeneous Data Model (GHDM) system.  

Even as there has been increasing emphasis on mixed data outcome modeling, there also 
has been a growing interest in accommodating spatial (and social) dependency effects among 
decision-makers. This is because spatial/social interactions can be exploited by decision-makers 
to achieve desired system end-states.1 As a simple illustration of this point, consider household 
auto ownership, and assume that the number of autos owned by a household influences that of the 
                                                 
1 In the current paper, we will refer to social/spatial interactions in the strict context of some form of dyadic interaction 
between individuals located in close social or spatial proximity. Also, our model can be used to capture interactions 
among decision makers due to proximity in space, or due to any other proximity measure based on social dimensions 
(such as income earnings, presence of children, virtual social networks of friends/family, or other measures). But for 
labeling conciseness, we will adopt the terminology of “spatial dependence” (rather than “spatial/social dependence), 
with the understanding that the proposed model is applicable to any form of proximity-based dyadic interaction 
processes (and not simply spatial proximity).  
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household’s residential neighbors.  Then, a limited-funding information campaign to reduce auto 
dependency (and promote the use of non-motorized modes of transportation) would do well to 
target individuals from different neighborhoods, rather than targeting individuals from the same 
neighborhood. Doing so will benefit from the “ripple wave” (or spatial multiplier) effect caused 
by intra-neighborhood social exchanges, so that the aggregate-level effect of the information 
campaign on auto ownership can be substantial. Within the context of accommodating spatial 
dependencies, spatial lag and spatial error-type autoregressive structures developed for continuous 
dependent variables are being considered for non-continuous dependent outcomes (see reviews of 
this literature in Elhorst, 2010, Anselin, 2010, Franzese et al., 2010, Ferdous and Bhat, 2013, Bhat 
et al., 2014a, Bhat, 2014, and Bhat, 2015b).2 Unfortunately, in the case of non-continuous 
outcomes, accommodating spatial dependence, in general, leads to multidimensional integration 
of the order of the number of decision-makers for count and ordered-response outcomes, and of 
the order of the number of decision-makers times the number of alternatives minus one for nominal 
(unordered-response) outcomes. Typical simulation-based methods, including the frequentist 
recursive importance sampling (RIS) estimator (which is a generalization of the more familiar 
Geweke-Hajivassiliou-Keane or GHK simulator; see Beron and Vijverberg, 2004) and the 
Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see LeSage and Pace, 2009), 
become impractical if not infeasible with moderate to large estimation sample sizes (see Bhat, 
2011 and Smirnov, 2010). But, recently, Bhat and colleagues have suggested a composite marginal 
likelihood (CML) inference approach for estimating spatial binary/ordered-response probit/count 
models, and the maximum approximate composite marginal likelihood (MACML) inference 
approach for estimating spatial unordered-response multinomial probit (MNP) models (see Bhat, 
2014 for a review). These methods are easy to implement, require no simulation, and involve only 
univariate and bivariate cumulative normal distribution function evaluations. However, all earlier 
spatial model studies, regardless of the estimation technique used, have focused on a single 
dependent outcome for each decision maker, rather than multiple and mixed dependent outcomes 
for each decision maker. On the other hand, when a host of dependent outcomes are co-determined 
because of common underlying unobserved factors or psychological constructs (attitudes, values, 
lifestyles, etc.), it is very likely that spatial dependence will exist not across just one of those 
outcomes but across all the outcomes.  
 In the current paper, we use the important insight that the analyst can generate spatial 
dependence across multiple and mixed outcomes by specifying spatial dependence in the “soft” 
psychological construct (latent) variables. In doing so, we combine the GHDM formulation with 
a spatial formulation. Then, since the mixed outcomes are specified to be a function of a much 
smaller set of the unobserved psychological constructs in measurement equations, it immediately 
generates spatial dependence across all outcomes. This is a powerful concept that we have not seen 
invoked in the literature. While a tantalizingly simple concept, we believe that this has the potential 
to transform the landscape of spatial econometrics in mixed data modeling. As evidence, we would 
like to point out that no earlier study in the econometric literature that we are aware of has 
undertaken a spatial dependence analysis in the context of a relatively large mixed 
multidimensional model system, as we undertake in this paper. Also, to our knowledge, this is the 
first study to propose such a methodological structure for introducing spatial dependence in 

                                                 
2 Of course, the spatial lag and spatial error specifications can be combined together in a Kelejian-Prucha specification 
(see Elhorst, 2010), or the spatial lag could be combined with spatially lagged exogenous variable effects in a Spatial 
Durbin specification (see Bhat et al., 2014a). In all of these cases, the spatial dependence leads also to spatial 
heteroscedasticity in the random error terms. 
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multiple mixed outcomes. At the same time, from a conceptual standpoint, we are able to better 
disentangle true causal effects from spurious self-selection effects (because the same unobserved 
factors impact multiple endogenous variables) and spatial dependence effects (because of diffusion 
of unobserved attitudes and lifestyles based on spatial proximity). Therefore, one can use the 
model to more accurately examine policy impacts that involve a combination of direct causal 
effects, self-selection effects, and spatial/social diffusion effects.  
 Section 2 presents the formulation of the spatial GHDM model along with the MACML 
estimation approach. Section 3 presents an application of the model to a multidimensional choice 
bundle consisting of residential location (nominal variable), commute distance (continuous 
variable), vehicle ownership (count variable), parents’ commute mode choice (binary variable), 
and children’s school mode choice (nominal variable). Section 4 concludes the paper. 
  
2. THE SPATIAL GHDM MODEL FORMULATION 
There are two components to the GHDM model: (1) the latent variable structural equation model 
(SEM) system, and (2) the latent variable measurement equation model (MEM) system. In the 
former system, latent psychological constructs (or latent variables) relevant to the endogenous 
outcomes of interest in the latter system are posited, based on theoretical psychological 
considerations, earlier qualitative/quantitative studies, and intuition. These latent variables are 
expressed as linear functions of exogenous observed variables and stochastic error terms. In the 
latter measurement system, the mixed outcomes of interest (“endogenous” variables), as well as 
any subjective indicators of the latent variable vector *z , are written as functions of *z , exogenous 
covariates, and each other. The structural and measurement equation systems are then estimated 
jointly based on statistical testing using nested predictive likelihood ratio tests and non-nested 
adjusted predictive likelihood ratio tests.3 
  
2.1 Latent Variable SEM System 
Let l be the index for latent psychological constructs ),...,2,1( Ll   and q be the index for 

individuals . ),...,2,1( Qq   Then the latent construct *
qlz  may be written as a linear function of 

covariates using a spatial auto-correlation or spatial lag structure as follows:  





Q

q
lqqqlqlqlql zwδηz

1

** sα       (1)  

where qs  is an (F×1) vector of observed covariates (excluding a constant), lα  is the corresponding 

(F×1) vector of coefficients, qlη  is a random error term assumed to be distributed standard normal,  

)11(  ll δδ  is the spatial autoregressive parameter (this parameter needs to be bounded in 

magnitude by the value of one, but can take both positive or negative values; however, we expect 
the parameter to be positive because attitudes/preferences are likely to be reinforcing through 
social interactions), and qqw   is an element of a (Q×Q) row normalized spatial weight matrix W 

                                                 
3 There is some level of subjectivity in the number and “labels” of the latent variables posited in the structural equation 
system. An alternative is to use exploratory factor analysis to identify the latent factors (or latent constructs) through 
analytic variance minimization, as done in psychology. However, unlike studies in the psychological field that 
typically collect a battery of items (and sometimes hundreds) of indicators, most economic and transportation studies 
collect few indicators of the latent factors. So, it is the norm in these fields to posit latent constructs based on a 
combination of intuitiveness, judgment, and earlier studies (see Bhat, 2015a for a detailed discussion).  
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with qww
Q

qq
qqqq  


   1 and 0 .4 This spatial weight matrix is the one that engenders 

dependencies, with the elements typically parametrized as a decreasing function of geographic or 
social distance. 5  Next, define the following notations to write Equation (1) in matrix form for all 
Q individuals. 

  vector1)(  ),...,,( **
2

*
1  Lzzz qLqqq

*z ,     vector1)(  )(,...,)(,)( **
2

*
1

* 
 QLQzzzz , 

 matrix )(    ~ LFLqLq  ss IDEN ,  matrix )(    )~,...,~,~(~
21 LFQLQ  ssss ,  

  vector)1(  ),...,,( 21  LFLαααα ,   vector1)(  ),...,,( 21  Lηηη qLqqqη ,  

  vector1)(  ),...,,( 21  QLQηηηη ,   vector1)(  ),...,,( 21  Lδδδ Lδ ,  

  vector1)(   
~

 QLQ δδ 1 , with “ " representing the Kronecker product. 

1Q in the notation above is a vector of size Q with all its elements equal to 1. To allow correlation 
among the latent variables of an individual, we assume a standard multivariate normal (MVN) 
distribution for  Γ0 ,MVN~: LLqq ηη , where 0L is an (L×1) column vector of zeros, and Γ is the 

correlation matrix of size (L×L). We also assume qη  to be independent across individuals (i.e., 

qqqq  ,0),Cov( ηη ). With this, Equation (1) may be written in matrix form for all Q 

individuals as follows: 

ηαsz SS  ~*                                                                                                                              (2) 

where    matrix )(  )(*.
~ 1

QLQLLQL 


IDENWIDENS δ , “ *. ” represents the element by 

element product, QLIDEN  is an identity matrix of size QL, and W is a (Q×Q) row normalized 

                                                 
4 For notation ease, we use the same vector sq in the equations for all latent variables l. However, this in no way 
constrains the same exogenous variables to appear in all latent variables because the coefficient on this vector is latent 
construct-specific (note the subscript on αl). Thus, if a specific variable in sq does not appear as a determinant of a 

latent construct *
qlz , this is accommodated by having the corresponding element of the αl vector set to zero.  

5 Note that the framework is extendable to include general forms of spatial and social dependence. This is because the 
weight matrix W can accommodate general forms of dependence. For example, W itself can be parameterized as a 
finite mixture of several weight matrices, each weight matrix being related to a specific proximity measure k: 

,
1

kWW k

K

k




 where k  is the weight on the kth proximity variable in determining dependency between individuals 

( 



K

k
k

1

1 ), and Wk is a matrix with its elements representing a measure of distance between individuals on the kth 

covariate (for example, see Yang and Allenby, 2003). The important issue though is that the weight matrix should be 
such that the dyadic interactions between decision-makers fades with spatial or social distance. In the empirical 
analysis of this paper, we prespecify the elements of W to be a fixed decreasing function of a single exogenous variable 
(distance between residences of households). This is standard in much of the transportation literature to acknowledge 
that the home-end generally tends to be the hub of socialization and interaction. Future studies, however, can use more 
enhanced (and multi-dimensional) definitions for W, including multiple distance-based separations, using information 
from social-networking data.  
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weight matrix. It is now easy to see that *z  is distributed MVN with mean B and correlation matrix 
Ξ. That is, ),(MVN~* ΞBz QL , where   SΓIDENSΞαsSB  Q  and  ~ .6 

 The reader will note that Equation (2) is not simply a linear regression equation system 
with spatial dependence. This is because the left side *z  is unobserved. But when *z gets included 
as a determinant of the measurement equation outcomes (see next section), it provides a vehicle to 
estimate the parameters embedded in Equation (2) through the observations on the MEM 
outcomes.  
  
2.2 Latent Variable MEM System 
We consider a multidimensional mixed outcome system comprising H continuous outcomes, N 
ordinal outcomes, C count outcomes, and G nominal outcomes, all indicators of the underlying 
latent consruct vector *z . Let E = (H + N + C). Also, let Ig be the number of alternatives 

corresponding to the gth (g=1,2,…,G) nominal variable (Ig 3), and 



G

g
gIG

1


, 




G

g
gIG

1

)1(
~

. 

All the E+G outcomes are a function of an (A×1) vector qx  of exogenous variables, which includes 

a constant, independent variables, as well as possibly the observed values of other endogenous 
outcomes (introduced as the observed continuous value for continuous endogenous variables, or 
as observed dummy variables representing each category for nominal variables, or as the observed 
count value or as corresponding observed dummy variables for each count value). The effects of 
the endogenous outcomes are “uncorrupted causal” influences after controlling for error 
correlations across the many dimensions as well as spatial dependencies (engendered by the latent 
stochastic construct vector *z ). These endogenous effects correspond to recursive influences 
among the dependent variable outcomes.7  

The observation mechanisms for all the non-continuous outcomes are assumed to be based 
on underlying latent continuous variables. For each of the ordinal and count outcomes, there is a 
corresponding underlying latent continuous variable (this is not the same as the latent construct 
variables in the SEM, but represent underlying variables that are mapped into the actual observed 
limited-dependent (or non-continous) MEM outcomes (i.e., the observed ordinal. Count, and 

                                                 
6 It is also possible to include the unobserved continuous constructs *

1qz   on the right side of each *
qlz  in Equation (1), 

for ll  . However, it may not be easy to justify a priori inter-relationships between unobserved variables, and so we 
prefer a “reduced form” structure as in Equation (1) with a general covariance structure for the latent variables with 

 Γ0 ,MVN~ LLqη . In cases where it may indeed be appropriate to allow inter-relationships between the latent 

variables, the econometric identification of the system is possible if a recursive relationship is used so that some latent 
variables appear as right side variables in the equations for other latent variables in a recursive fashion. Bhat (2015a) 
presents a detailed discussion of identification conditions for this situation. Let ll   be the effect of the latent variable 

*
1qz   on *

qlz . Collect these ll   terms (many of which will have to be constrained to zero for recursivity purposes, and 

ll  =0 for l=lʹ) into an L×L matrix Π. Then, the only change to our spatial econometric system would be that the 

matrix S needs to be re-defined as follows, and the non-zero (and identifiable) elements of Π added as parameters to 

be estimated:    matrix )(  )(*.
~ 1

QLQLQLQL 


ΠIDENIDENWIDENS δ . 

7 In joint limited-dependent variables systems in which one or more dependent variables are not observed on a 
continuous scale, such as the joint system considered in this paper that has discrete dependent, count, and ordinal 
variables, the structural effects of one limited-dependent variable on another can only be in a single direction. See 
Maddala (1983) and Bhat (2015a) for a more detailed explanation.  
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nominal outcomes). For each of the nominal outcomes, there are Ig underlying latent continuous 
variables. The translation from the underlying latent continuous variables to the actual observed 
outcome for these non-continous outcomes depend on the outcome type, and is discussed in more 
detail in Appendix A. Based on the many notations introduced there, and collecting the continuous 
outcomes along with the underlying latent continuous variables across all the non-continuous 

outcomes into a )( GE


 -dimensional vector q)( yU , one can write the following matrix equation 

for each individual: 

qqqq ξzcxbyU * 


)( , ]matrix)()[()(Var with GEGEq


 Σξ           (3) 

where   b


is a matrix]  )G[( AE 


 of the effects of the vector qx  on the underlying latent 

continuous variables, and c


 is a matrix] )G[( LE 


 of the loadings of the latent constructs on the 
underlying latent continuous variables.8 Now, the above Equation (3) for an individual q may be 
used to write a compact expression of endogenous variable equations for all Q individuals as: 

ξzcxbyU * 


,                                                                                                                     (4)  

where ])(,...,)(,)[( 21  QyUyUyUyU  vector]1)G([ 


EQ ,  ),...,,( 21  Qξξξξ

] vector1)G([ 


EQ , ),...,,( 21  Qxxxx   vector1QA ,   bb


 QIDEN

]matrix )G([ QAEQ 


, and matrix] )G([  )( QLEQQ 


cIDENc .  

To develop the reduced form model system, substitute the right side of structural Equation (2) in 
the above equation, as below:  

 

 
 

)((       

       

~ 

ξηcBcxb

ξηBcxb

ξηαscxbyU







S )

S

SS







               (5)  

Then,  )(,(MVN
)(

ΣIDENΞ )


 
 QGEQ

ccBcxb~yU . 

                                                 
8 Note that even if all the outcomes in the vector yUq are continuous, estimating each outcome independently would 
lead to inconsistent estimates (because of endogeneity bias) if there is at least one other endogenous continuous 
outcome impacting each outcome. To see this, consider the very simple case of two continuous outcomes, a single 
latent construct, and the first continuous variable also appearing on the right side of the second continuous variable’s 
regression as an element of the vector ),( 1  qqq ytx . Then, at the individual level, the vector Equation system (4) 

comprises the following two equations: 

)()()(

))()(

22212221222122

11111111111

qqlqlqqqqlqlqqq
*
q1qqq

qqlqlqqqlqlqq
*
q1qq

εηddyεηdyεzdyy

εηddεηdεzdy





sαtγsαtγtγ

(sαtγsαtγtγ


  

From the expressions above, it is clear that estimating the second equation individually will provide inconsistent 
estimates because the variable yq1 is correlated with the error term (d2ηql + εq2) in that equation (because of the common 

error term ηql originating from the latent construct *
qlz . Of course, the situation becomes even more serious (in terms 

of inconsistency) because not all the (yU)q  elements are observed continuous outcomes, but represent latent underlying 
variables of observed non-continuous outcomes.  
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Two important points to be noted here. First is that the spatial dependence in the latent construct 
vector *z permeates into spatial dependence among individuals for each outcome through the S 

matrix in the first line of Equation (5). For example, in the empirical context of the current paper, 
a latent construct labeled as “active lifestyle propensity” (ALP) positively impacts the likelihood 
of a child in the household walking or bicycling to school. By allowing spatial dependence in the 
ALP across households (based on proximity of household residences), we immediately allow 
proximate spatial dependence in the walking/bicycling propensity of children to school (that is, 
households in close residential proximity are likely to interact socially, leading to a diffusion of 
attitudes regarding active lifestyles and therefore a jointly higher (or lower) likelihood of children 
of households living close by walking/bicycling to school).  Second, given that the number of 
latent constructs are much fewer than the number of outcomes, spatial dependence is engendered 
in a very parsimonious fashion within each outcome. In the empirical analysis in this paper, ALP, 
in addition to influencing children’s school mode choice, also positively impacts five other 
outcomes. Rather than allow spatial dependencies separately within each of the five other 
outcomes (which would lead to a model that would be proliferate in parameters), our model 
generates spatial dependency within each of the outcomes based on the spatial dependency in the 
ALP construct. This is also reasonable from a conceptual standpoint, in that the underlying 
attitudes are the ones likely to “diffuse” through interactions and then these attitudes impact the 
outcomes. Thus, just as in the case of children’s school mode choice, the implication is that, for 
example, there is spatial dependence in parents’ use of walk/bicycle/public transportation for the 
commute because of social interactions through which the ALP attitude permeates among 
individuals living close to one another.  

Of course, as should be clear from the last line of Equation (5), jointness is engendered in 
the outcomes for each individual because of the stochastic nature of the latent constructs (as 
manifested in the correlation matrix Γ characterizing the ηq vector that enters into the Ξ matrix). 
Furthermore, because of the spatial dependence in the latent constructs, the net implication is that 
there is jointness created across all outcomes and across all individuals (note the S matrix that also 
enters into the Ξ covariance matrix). In summary, our proposed method is a simple, yet powerful 
and parsimonious way, to incorporate both jointness in outcomes as well as spatial dependencies 
in outcomes in mixed data modeling. 
 
2.3 Model Estimation 
The model in this paper combines a joint mixed outcome system with spatial dependence. In 
contrast, the previous econometric literature has focused on aspatial joint outcome model systems 
or on spatial single outcome models.9 We begin this section by providing an overview of estimators 
that focus on joint model outcome systems without spatial dependence and single outcome models 
with spatial dependence.  

There have been several estimatiom methods proposed for situations when there are 
aspatial joint model systems with a few mixed outcome variables (the reader is referred to De Leon 
and Chough, 2013 for a good review of these methods for mixed outcome systems). The methods 
include two-stage methods, such as the control function approach or the two stage residual 
                                                 
9 The reader is referred to Yang and Lee (2015) for estimation methods in the context of spatial dependence in 
multivariate continuous outcomes. Their approach does not engender spatial dependence through a lower-dimensional 
latent construct system as we do here, nor does it consider a mix of continuous and non-continuous outcomes as in the 
current paper.  
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correction (2SRI) approach (see Terza et al., 2008 and Petrin and Train, 2010). But it can be a 
challenge in two-stage approaches to find good instruments (in fact, we believe the assumptions 
made in identifying instruments are rather heroic, with all kinds of conceptual justifications 
provided in the past for instrument selection that we personally find, at best, amusing). The 
approach also constitutes a limited information approach that can be fraught with econometric 
efficiency and collinearity problems (Puhani, 2000). Further, even in systems with but two or three 
mixed outcome variables, the analytic correction or a bootstrapping empirical estimator for 
obtaining the correct standard errors can be cumbersome (Bhat, 2015a). Further, these two-stage 
methods do not fare well when there are many mixed outcome variables of interest, where GHDM-
type models become appealing because jointness is engendered through a much smaller set of 
latent constructs. In these models, there are too many constraints that need to be preserved in the 
measurement equation system, which render control function methods rather ineffective. 
Additionally, there are also sequential likelihood estimation methods that have been considered in 
aspatial GHDM-type models. These generally require indicators separate from the outcome 
variables of interest that provide information on the latent constructs. The methods estimate the 
structural equation system first using the indicators, and then use the predicted latent constructs as 
exogenous error-free variables in the measurement equation system. But this approach is deficient 
because it will, in general, lead to inconsistent and biased estimates (see Hoshino and Bentler, 
2013 for a detailed discussion of this issue). Besides, these sequential methods are generally not 
applicable when there are no indicators separate from the outcomes of interest themselves. On the 
other hand, the full-information maximum likelihood (FIML) estimator of GHDM-type models is 
consistent, asymptotically normal, and efficient, subject to the correct parametric assumptions on 
the stochastic terms and the usual other regularity conditions. But the FIML estimator can be 
computationally difficult because of multi-dimensional integrals in the optimization function. 
Typically, a simulated FIML estimator (labeled as the maximum simulated likelihood or MSL 
estimator) is needed because of the analytic intractability of the integration in the FIML estimator. 
In such an MSL inference approach, consistency, efficiency, and asymptotic normality of the 
estimator is critically predicated on the condition that the number of simulation draws rises faster 
than the square root of the number of individuals in the estimation sample. Unfortunately, for many 
practical situations, the computational cost associated with the number of simulation draws to 
ensure good asymptotic estimator properties can be prohibitive and literally infeasible (in the 
context of the computation resources available and the time available for estimation) as the number 
of dimensions of integration increases. This is particularly so because the accuracy of simulation 
techniques is known to degrade rapidly at medium-to-high dimensions, and the simulation noise 
increases substantially. Increasingly, therefore, a composite marginal likelihood (CML) estimator 
is used in aspatial mixed model systems where the likelihood function is replaced with a surrogate 
likelihood function of substantially lower dimensionality. In these CML-based approaches (see 
Bhat, 2014 for a comprehensive review), the “trick” is to develop a function that is the product of 
the probability of easily computed marginal events. Bhat and colleagues (see, for example, 
LaMondia and Bhat, 2011, Sidharthan and Bhat, 2012, and Bhat, 2014, 2015b,c) use a pairwise 
marginal likelihood in which the probability of pairs of outcomes are first developed, and then 
these are compounded across all outcomes to develop the CML. For mixed outcome systems with 
only continuous, binary, ordered, and count outcomes, the CML function contains only bivariate 
normal cumulative distribution function evaluations. But when nominal outcomes are included, 
the CML involves a multivariate normal cumulative distribution (MVNCD) function. However, in 
Bhat’s maximum approximate CML (or MACML) procedure, this MVNCD evaluation is 
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analytically approximated so that, once again, only univariate and bivariate normal cumulative 
distribution functions need be evaluated. The properties of the CML estimator may be derived 
using the theory of estimating equations (see Bhat, 2014 for full details). Specifically, under usual 
regularity assumptions, combined with the normality assumptions on the error terms, the CML 
estimator is consistent and asymptotically normal distributed (this is because of the unbiasedness 
of the CML score function, which is a linear combination of proper score functions associated with 
the marginal event probabilities forming the composite likelihood). A substantial advantage of the 
CML (or its cousin, the MACML) is that it is very computationally efficient because of its 
simulation-free nature. Further, while the CML estimator loses some asymptotic efficiency from 
a theoretical perspective relative to a full likelihood estimator (because information embedded in 
the higher dimension components of the full information estimator are ignored by the CML 
estimator), many studies have found that the efficiency loss of the CML estimator (relative to the 
maximum likelihood (ML) estimator) is negligible to small in applications. Also, CML procedures 
are typically more robust to mis-specification in the higher dimensions characterizing the overall 
joint distribution space of all the outcomes, because it relies only on the distribution characterizing 
the underlying lower dimensional process of pairs of outcomes. That is, the consistency of the 
CML approach is predicated only on the correctness of the assumed lower dimensional 
distribution, and not on the correctness of the entire multivariate distribution of all outcomes as in 
the ML. Additionally, when MSL has to be used, as is the case in most mixed systems because of 
the intractability of the integrals in the likelihood function, there is once again an efficiency loss 
in the MSL relative to the ML. Overall, between the CML and the MSL, multiple studies (see 
Bhat, 2014 for an exhaustive review) have shown that little to no finite sample efficiency loss (and 
sometimes even efficiency gains) with the CML estimator relative to the MSL estimator.  

Of course, when spatial dependencies are considered even in models with a single non-
continuous outcome, all the two-stage and limited information approaches have further problems 
(see Sidharthan and Bhat, 2012 and Arbia, 2014 for reviews of estimation methods for spatial 
econometric models for univariate non-continuous outcomes; readers may also want to refer to a 
special issue of Spatial Economic Analysis edited by Elhorst et al. (2016) for a collection of recent 
papers on spatial dependence). For example, Klier and McMillen’s (2008) linearized version of 
Pinkse and Slade’s (1998) Generalized Method of Moments (GMM) approach is based on a two-
step instrumental variable estimation technique after linearizing around zero interdependence, and 
so tends to work well only for the case of large estimation sample sizes and weak spatial 
dependence. Also, while it may be more robust relative to full information maximum likelihood 
to stochastic term functional forms, it loses substantial efficiency because of ignoring 
dependencies across observations (and identifying spatial parameters using only error term 
heteroscedasticity). As a result of such limitations of limited-information approaches, it is typical 
to assume normal distribution errors in the models and use the simulation-based full-information 
maximum likelihood (FIML) recursive importance sampling (RIS) estimator in the frequentist 
estimation of spatial models with a non-continuous outcome. Unfortunately, this FIML RIS 
estimator gets very cumbersome even for moderate to large sample sizes, because the 
dimensionality of the integrals in the likelihood function to be simulated is of the order of the 
number of observations in binary/ordered-response outcome models, and of the order of the 
number of observations times the number of alternative minus one in nominal outcome models. 
To address this issue, Bhat et al. (2010) introduced the composite marginal likelihood (CML) 
inference approach for the estimation of a spatially dependent binary/ordered-response outcome. 
Bhat (2011) later proposed the MACML approach for accommodating spatial dependence patterns 
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in more general outcomes (including nominal outcomes), The CML inference approach, also later 
used for spatial dependence modeling for a binary outcome under the label of partial maximum 
likelihood estimation (PMLE) by Wang et al. (2013) (that is, Wang et al.’s PMLE is exactly the 
same as Bhat et al.’s (2010) CML), replaces the likelihood function with a surrogate likelihood 
function of substantially lower dimensionality. Example applications of the CML for spatial 
dependence modeling for a single binary, ordered response, or count outcome include Bhat et al. 
(2010), Castro et al., 2012, Ferdous and Bhat (2013), Castro et al., 2013, Narayanamoorthy et al., 
(2013), and Bhat et al. (2014a), while example applications of the CML for spatial dependence 
modeling for a nominal outcome include Sener and Bhat (2012), Sidharthan and Bhat (2012), and 
Paleti et al. (2013a).  

As indicated earlier, in this paper, for the first time, we combine the modeling of multiple 
and mixed dependent outcomes with spatial dependence across all outcomes. In such a situation, 
the problems mentioned above of two-stage methods as well as full-information techniques for the 
case of mixed outcomes without spatial dependence and single outcomes with spatial dependence 
compound in terms of limitations and problems. However, the CML approach (and the MACML 
approach if there are nominal outcomes) still retains its appeal because a pairwise approach across 
outcomes as well as across observations can still can be relatively easily implemented. In 
combination with the insight that jointness and spatial dependence can be parsimoniously 
introduced through the stochastic latent constructs, our approach offers a new methodology for the 
estimation of spatially dependent mixed outcome model systems. Because the details of this 
methodology require the notations in Appendix A, as well as because the methodology is very 
notationally intensive in terms of its overall blueprint, we relegate it to Appendix B.  
 
3.  AN EMPIRICAL APPLICATION 
In this section, we demonstrate an empirical application of the proposed spatial GHDM by 
analyzing a multidimensional mixed data bundle of households’ long-term and short-term travel-
related chocies. Figure 1 depicts the conceptualization of the mixed data bundle. The latent 
variables (constructs) are represented by the ovals, while the endogenous outcomes (i.e., household 
choice variables) considered are identified in the rectangular boxes. The two latent variables are 
parents’ safety concern regarding children walking/bicycling to school (SCWBS) and household-
level active lifestyle propensity (ALP). The endogenous outcomes include indicators of the two 
latent variables. These indicators are identified toward the top of Figure 1, and include three likert 
scale based ordinal variables to measure SCWBS (see top left corner) – parental concern about 
violence/crime along the route to school, traffic speed along route, and the amount of traffic along 
route. The indicators for ALP include three count variables (see top right corner) measuring 
household-level weekly usage of physically active travel modes – number of episodes in the past 
week of each of walking, biking, and public transit modes.  

The remaining variables in Figure 1 represent endogenous outcomes of actual interest in 
this study (though they also serve as indicators of the two latent variables, and are conceptually no 
different from the ordinal/count indicator variables toward the top of the figure). At the bottom of 
the figure are a continuous variable (household’s commute distance) and a count variable 
(household auto ownership), while the binary and multinomial variables appear just below the 
latent variables. The binary variable corresponds to an aggregate representation of parents’ 
commute mode choice (=1 if at least one parent in the household uses public transit, walk, or 
bicycle for commuting, 0 otherwise). The nominal variables are the children’s school travel mode 
(as we will note later, the school mode choice of only one randomly picked child in the household 
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was recorded in the survey data used in our empirical analysis; however, the method we propose 
can easily be extended to include the school mode choice of each child if such data were available), 
and another nominal variable for residential location choice based on neighborhood density of 
households (households per square mile in the Census block group of the househod’s residence, 
as obtained from the 2010 decennial Census data). This last nominal variable and commute 
distance (the continuous variable), taken together characterize household residential location in 
the current empirical analysis. Further details on the construction and descriptive statistics of each 
of the outcome variables are provided later.  

As noted earlier, in addition to the indicator variables toward the top of Figure 1, the actual 
endogenous outcomes of interest (below the latent variable ovals) also represent manifestations of 
the latent variables. In the figure, alternative effects of the latent constructs on the actual 
endogenous outcomes of interest were considered, and the final specification for the effects of the 
latent construct effects was based on statistical testing (see Bhat, 2015a for a discussion). While 
we discuss the specification results later in Section 3.2.3, our a priori hypothesis (consistent with 
Figure 1) is that households with a higher SCWBS (relative to other households) will be less likely 
to let their children walk/bicycle to school. Also, households with a higher ALP are more likely to 
have their children walk/bicycle to school (due to the potential physical activity benefits of doing 
so), commute to work by non-auto modes, and reside in dense neighborhoods (see Walker and Li, 
2007, Bhat, 2015a, and Bhat, 2015c). All these influences of latent variables on endogenous 
variables are depicted by dotted lines/arrows in Figure 1. 

Finally, in Figure 1, solid arrows from one endogenous outcome to the other endogenous 
outcome represent causal (recursive) relationships, after accounting for associations among the 
endogenous outcomes caused by the stochastic latent variables. Note that the figure represents one 
set of relationships among the endogenous outcomes based on testing a variety of different 
relationships identifiable in the GHDM framework (see Bhat, 2015a for detailed discussed on 
identification issues in the GHDM framework). We discuss these endogenous inter-relationships 
later in Section 3.2.4. 

The selection of the choice bundle in Figure 1 is motivated from a couple of reasons. First, 
most multidimensional choice studies in the literature have focused on modeling only two or three 
of the dimensions of residential location, auto ownership, commute distance, and parents’ (or 
adults’) commute mode choice (Abraham and Hunt, 1997, Bhat and Guo, 2007, Pinjari et al., 2011, 
Paleti et al., 2013b, and Bhat et al., 2014b). Here we model all of these, as well as children’s school 
travel mode choice as part of a bundle of travel behavior and residential location choice decisions. 
While numerous studies exist in the literature on modeling children’s school mode choice as a 
function of sociodemographic characteristics, residential location, vehicle ownership and other 
attruibutes (see, for example, Yarlagadda and Srinivasan, 2008, Sidharthan et al., 2011, and 
McDonald, 2008), none of these earlier studies consider children’s school mode choice as part of 
a bundle of travel behavior and location choice decisions. Therefore, these studies ignore potential 
endogeneity between children’s school mode choice and other choices such as residential location 
attributes (density) and auto ownership. Ignoring such endogeneity might result in biased 
estimation of the influence of residential location attributes and potentially distorted policy 
implications of, for example, neo-urbanist initiatives to densify neighborhoods (see Section 3.3 
later). A second reason for the choice bundle used here is that a number of studies have 
incorporated spatial dependency when analyzing the above identified choice dimensions 
individually (see for example, Sidharthan et al., 2011 in the context of children’s school mode 
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choice), but no earlier study, to our knowledge, has considered spatial dependence in multiple and 
mixed outcomes simultaneously. 
 
3.1 Empirical Data  
The primary data source used for this study is the California add-on sample of the 2009 National 
Household Travel Survey (NHTS) conducted by the US Department of Transportation. The add-
on survey sample includes detailed information about socio-demographic, residence, vehicle, and 
activity-travel characteristics for a 24-hour survey period from 21,225 households in the state. Of 
these, only about 13.5% of households (a) had children and (b) were targeted for collection of 
parents’ concern on safety issues related to their children’s travel and the actual school mode 
choice of a single randomly picked school-going child.  In our analysis, we focused only on such 
households with at least one worker. Further, recognizing potential differences between different 
regions of the state, we narrowed down our analysis to households from the following contiguous 
(based on shared boundaries) ten counties in southern California: San Luis Obispo, Kern, Santa 
Barbara, Ventura, Los-Angeles, Orange, San Bernardino, Riverside, San Diego, and Imperial. 
After some additional minor cleaning, the resulting final estimation sample comprised 1538 
households.  

To conserve on space, we relegate details of the exogenous variable characteristics of the 
sample to Section 3 of the online supplement.  
 
3.1.1 Dependent (Endogenous) Outcome (Variable) Characteristics in the Sample 
Table 1 provides the descriptive statistics of the endogenous outcomes in the sample, which are 
briefly described here. 
 
Continuous Outcome 
The household-level average commute distance (or, household commute distance), measured as 
the average of one-way commute distance reported across all commuters in the household, is the 
only continuous dependent variable in our empirical analysis. The sample average of household 
commute distance is 15.15 miles. The average reported commute time in southern California is 
about 26.9 minutes (Lin, 2012) which, given the average commute distance of 15.15 miles, 
translates to an average speed of 33.7 miles/hour, a reasonable commute travel speed for an urban 
scenario. For model estimation purposes, we used the natural logarithm of the household commute 
distance variable. 
 
Ordinal Outcomes 
The three ordinal variables considered in this analysis correspond to parents’ concerns about crime 
and traffic along their children’s route to school (see second column panel in the top portion of 
Table 1). All of these ordinal variables, measured on a 5-point Likert scale, are used in the 
measurement equations to identify the latent construct SCWBS of the household. The descriptive 
statistics of these variables in the sample suggests that speed and amount of traffic along the 
children’s school travel route are matters of greater concern than violence/crime along the route.  
 
Count Outcomes 
There are four count variables: number of bicycling episodes in the past week, number of walking 
episodes in the past week, number of times public transit used in past week, and auto ownership. 
The first three count variables were recorded for every individual in the household. We aggregated 
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the individual-level variables to the household level for use in the measurement equations. The 
descriptive statistics of these variables suggest a greater amount of walking than bicycling, in terms 
of the number of trips per week. Further, only 33% of the households in the sample used public 
transportation at least once in the past week. Finally, in the context of household auto ownership, 
a vast majority of households in the sample own at least one vehicle, with one half of the 
households owning two vehicles and about 40% of the households owning 3 or more vehicles.  
 
Binary Outcome 
The only binary outcome in the current study is an indicator for the use of public transportation, 
walk, or bike as the commute mode by at least one commuter in the household on the survey day. 
This variable is labeled as “parents’ commute mode choice”. For ease of presentation, we will refer 
to the walk, bicycle, and public transportation modes collectively as non-auto modes. The 
descriptive statistics in Table 1 show that only about 8% of the households in the sample used non-
auto modes for commuting.     
 
Multinomial Outcomes 
The two multinomial outcomes are residential location choice and children’s school mode choice. 
The following four categories were considered for residential housing density variable: (1) less 
than 1000 hh./sq. mile, (2) 1000-1999 hh./sq. mile, (3) 2000-3999 hh./sq. mile, and (4) 4000 or 
more hh./sq. mile. As may be observed from the descriptive statistics of this variable, 60% of the 
households live in very low (less than 1000 hh./sq. mile) to low (1000-1999 hh./sq. mile) density 
locations. Also, only about 11% of the households live in high (4000 or more hh./sq. mile) density 
locations. For estimating the parameters of this variable, we consider the residential housing 
density category of “less than 1000 hh./sq. mile” as the base category. 

For the children’s school mode choice, the following four categories are considered: (1) 
car (either driven by parents or others), (2) bus (school bus or public transportation), (3) 
walk/bicycle and (4) other modes (taxicab, street car or others). The car mode is the predominant 
(about 70%) mode of children’s school travel. But a non-significant proportion of children use the 
bus (about 10%) and walk/bicycle (18.5%) modes. The car mode is the base category. 
 
3.2 Model Estimation Results 
A variety of different empirical model specifications were estimated in this study, including 
alternative weight matrices for spatial dependency, the influences of exogenous variables on the 
latent constructs, the impacts of exogenous variables and latent constructs on the endogenous 
outcomes, and alternative recursive inter-relationships among the endogenous outcomes. The final 
empirical model specification was determined based on a combination of statistical data fit, 
parsimony in specification, and ease in interpretation.  
 
3.2.1 Selection of the Weight Matrix 
The spatial weight matrix contains information on the nature and decay of spatial dependencies 
with spatial separation. To construct this matrix, we first developed a matrix of distances between 
each (and every) pair of households. The distances were measured between the centroids of the 
census tracts of the household locations. Next, the following six different weight configurations 
were considered: (1) a same/contiguity tract indicator (i.e., 1qqw  if households q and qʹ are in 

the same tract or in continguous tracts, and 0 otherwise), (2) a shared boundary length measure 
(computed as the perimeter of the census tract for two households q and qʹ in the same tract, and 
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as the shred boundary length if the two households are in continguus tracts), (3) inverse of 
continuous distance, (4) inverse of the exponential of continuous distance, (5) inverse of the square 
root of continuous distance, and (6) inverse of the square of continuous distance. The best weight 
configuration is chosen based on a composite likelihood information criterion (CLIC) statistic. The 
weight configuration that provides the highest value of the CLIC statistic is the preferred one (see 
Bhat, 2011; Sidharthan and Bhat, 2012). In our analysis, this came out to be the inverse of the 
square root of distance, with the best specification resulting when the spatial dependence reduces 
to zero beyond a threshold distance of one mile. Details of the CLIC statistics for the alternative 
weight configurations are available from the authors on request.  
 
3.2.2 Parameter Estimates of the Structural Equations for Latent Variables 
The parameter estimates of the structural equations for the two latent variables, SCWBS and ALP, 
are presented in Table 2 and discussed below.  
 
Safety concerns about children walking/biking to school (SCWBS) 
The parameter estimates suggest that parents of younger children exhibit a higher SCWBS than 
parents of older children. This is intuitive as parents are likely to feel more confident in their older 
children’s ability to navigate around motorized traffic on their path to school, and also be less 
vulnerable to violence/crime on streets. The finding is also consistent with that reported earlier by 
Alton et al. (2007) and Seraj et al. (2012). Parents also exhibit a higher level of safety concern for 
girls than boys. This may be because girls are more likely to be victims of sexual offenses, and 
also perhaps due to lingering cultural biases that provide boys more independence than girls (see 
McLean and Anderson, 2009 and Seraj et al., 2012).  

Table 2 further indicates that households with lower education levels and households with 
lower income levels exhibit a lower level of safety concern, perhaps because such households may 
be concerned about basic needs such as food and shelter that precede safety concerns in Maslow’s 
hierarchy of needs (Huitt, 2007). Besides, it has been documented in the literature (Seccombe, 
2002) that lower income families tend to have a greater tendency of resiliency, particularly in the 
context of “adapting to risk in order to maintain competence in adverse conditions” (Orthner et al., 
2004).    
 
Active lifestyle propensity (ALP) 
The parameter estimates suggest that Asians and Hispanics tend to exhibit a lower level of ALP 
than Caucasians and African-Americans. Other studies in the literature (see, for example, Saffer 
et al., 2011 and Sener and Bhat, 2007) have also found such racial differences in physical activity 
participation and attribute them to cultural differences. The higher levels of ALP among 
Caucasians may also be attributed to a higher priority placed on physical appearance, perhaps as a 
facet of identity, for Caucasians in contemporary Western societies (see, for example, Dworkin 
and Wachs, 2009 and Engelsrud, 2009). Interestingly, income was not found to be a significant 
correlate of ALP.       

Households with a higher fraction of young adults (19-30 years) and a higher fraction of 
well-educated adults (bachelor’s degree or beyond) exhibit a higher level of ALP than households 
with a lower fraction of young adults and a lower fraction of well-educated adults, respectively. 
(see also Bauman et al., 2012). While the former may simply be an indication of the physiological 
health status of younger adults relative to their older peers, the latter is presumably a reflection of 
higher educated individuals being better aware of the health benefits of an active lifestyle (Cutler 
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and Lleras-Muney, 2006). Finally, consistent with previous findings (Belcher et al., 2010), 
households with young children (less than 16 years of age) have a higher ALP than households 
with older children (16-18 years). This result may be a consequence of older children being more 
involved (alone or with their peers) in sedentary activities such as television watching, internet 
surfing, videogame play, and talking/texting on the phone. Studies by Copperman and Bhat (2007), 
Sener et al. (2008), and Heitzler et al. (2011) provide support for this interpretation.  
 
Correlation between the latent constructs 
The correlation between the SCWBS and ALP constructs is very small and positive.  

 
Spatial autoregressive parameters 
The spatial autoregressive parameter estimates for SCWBS and ALP are 0.447 and 0.846, 
respectively, and highly statistically significant, confirming our hypothesis that the two latent 
variables are spatially dependent. As indicated in  Section 2.2, the spatial dependency in these 
latent variables permeates as spatial dependency in all the endogenous variables influenced by 
these variables. The spatial dependency coefficient for ALP is particularly large, suggesting 
substantial spillover effects in active lifestyle propensity among those living in close geographic 
proximity.  
 
3.2.3 Latent Construct Loadings on Endogenous Variables 
Table 3 presents the parameter estimates of the loadings of latent constructs on the various 
endogenous variables. As expected, the loadings of the latent construct SCWBS on all three Likert 
scale variables measuring parents’ SCWBS are positive and highly statistically significant. 
Consistent with the descriptive statistics, the loading of SCWBS on the “violence/crime” variable 
is of the smallest magnitude.  The SCWBC latent variable also influences the school mode choice 
of children, with a high SCWBS leading to a higher reluctance among parents to let their child 
walk, bicycle, or go by bus to school. The intensity of this reluctance is a function of distance, as 
we discuss further in Section 3.2.5 (in Table 3, we only provide the loading of SCWBS on school 
mode choice corresponding to a distance of over two miles).  

The loadings of the latent construct ALP on all the three count variables measuring the 
weekly usage of walking, bicycling, and public transit modes are positive, as expected. In addition, 
households with greater levels of ALP shy away from living in very low density (< 1000 hh./sq. 
mile) neighborhoods and exhibit a preference for denser neighborhoods (presumably because 
denser neighborhoods tend to have better walking and biking facilities, and greater proximity to 
different recreational activity locations; see, for example, Bhat et al., 2016). In addition, 
households with high ALP are more likely to commute by active (that is, non-auto) travel modes 
as well as encourage children to travel by the non-auto modes. In this sense, the latent construct 
ALP contributes to residential self-selection, where households that prefer to travel by active travel 
modes (both for adults’ commuting and children’s school travel) reside in higher density 
neighborhoods that allow them to do so. If such self-selection effects are not accounted for, there 
is a risk of overestimating the influence of residential density on the choice of active travel modes 
for both commuting and school travel. While a number of studies in the literature discuss 
residential self-selection effects in the context of commute mode choice (see, for example, Pinjari 
et al., 2008), not many studies highlight such self-selection effects in the context of children’s 
school mode choice. 
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Interestingly, we did not find any direct statistically significant effects of the ALP latent 
construct on both auto ownership and household commute distance (however, note that ALP 
impacts residential density of location, which, in turn, influences auto ownership, as discussed in 
the next section). 
 
3.2.4 Relationships Among Endogenous Variables 
The parameter estimates of the causal and recursive relationships among the endogenous variables 
are presented in Table 4. The reader will note, however, that regardless of the presence or absence 
of recursive effects, the model is a joint model because of the presence of stochastic latent variables 
that impact the many dependent outcomes. For this reason, we also characterize the Table 4 results 
as “true” causal effects after associations due to common underlying unobserved effects are 
accommodated. Figure 1 shows a path diagram of these causal relationships, in the form of solid 
arrows from one endogenous variable to the other. The recursive structure of relationships has 
been determined after an extensive testing of alternative recursive structures based on overall 
model fit. 

The chain of causal relationships starts at household commute distance, which influences 
residential location. This is interesting because most other studies use residential location density 
(the built environment) as an exogenous variable in commute distance modeling (see, for example, 
Sultana and Weber, 2014). The implication in these earlier studies is that dense neighborhoods 
engender shorter commutes, ostensibly because there are more employment opportunities in dense 
areas (the implicit assumption then is that individuals choose work locations after choosing their 
residential location). Our study, though different from most earlier studies in that it considers 
commute distance at a household level (as opposed to the individual level of earlier studies), 
suggests the reverse – that households deliberately choose to live in dense locations to minimize 
average household commute distance (note also that, in our analysis, we did not find any effects 
of the latent constructs on household commute distance, suggesting that household commute 
distance is truly a decision made before all the other decisions modeled). There is also the 
suggestion in our result that work locations (and work choices in general) are typically determined 
prior to household location decisions, as also observed by Rashidi et al. (2012). Overall, our results 
do bring to question the notion that densification of neighborhoods by itself will result in shorter 
commutes, or that urban sprawl will necessarily lead to longer commutes. Next, both household 
commute distance and residential location influence households’ auto ownership; households with 
a longer commute distance and those living in low density neighborhoods are likely to own more 
vehicles. These results are consistent with much of the earlier literature (see, for example, Bhat 
and Guo, 2007; Bhat et al., 2009; Aditjandra et al., 2012, Bhat et al., 2014b, and Brownstone and 
Fang, 2014). Household auto ownership, in turn, is used in the form of an auto availability variable 
to explain other endogenous outcomes.10 In particular, household auto availability, commute 
distance, and residential location influence adults’ commute mode choice, as one would expect 
(see, for example, Bhat and Sardesai, 2006 and Pinjari et al., 2011). And all these four endogenous 
variables influence children’s school mode choice, as discussed in the next section. Finally, 
residential location and auto availability variables influence the weekly usage of public transit.   
 

                                                 
10 As may be observed from the last but one column of Table 4, the auto availability variable is defined on the basis of 
whether each adult with a driver’s license has access to at least one auto in the household. 
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3.2.5 Children’s School Mode Choice Model Component 
To conserve on space, we do not provide the full estimation results for each of the endogenous 
variables in terms of exogenous variable effects. These are available in Section 4 of the online 
supplement. Here we focus on children’s school mode choice, especially because there has been 
relatively less work on this endogenous variable compared to other endogenous variables, as well 
as because this is, to our knowledge, the first paper that jointly considers both residential selection 
effects as well as social interaction effects on children’s school mode choice. Table 5 presents the 
parameter estimates, including those of exogenous variable effects, loadings of the latent 
constructs, and the effects of endogenous variables (while the last two sets of effects have been 
touched upon in earlier sections, we discuss these in more detail here).  
 
Exogenous variable effects 
The results suggest that the likelihood of using non-auto (bus or walk/bicycle) modes decreases 
with the increase in the number of workers with the option to work from home or who have a 
flexible work schedule. Spatial and temporal flexibility in work activity provides flexibility for 
working parents to adjust their work timings and chauffer children to school (Yarlagadda and 
Srinivasan, 2008). In addition to these two exogenous variables, we explored the role of other 
demographics such as age and gender, but did not find a statistically significant influence on school 
mode choice after controlling for the indirect effects of these variables on children’s school mode 
choice through the latent construct SCWBS.        

Moving on to the home-to-school distance variable, children are increasingly likely to 
walk/bicycle to school as the distance from home to school decreases. Several other studies have 
also highlighted the influential role distance has on children’s school mode choice (Ewing et al., 
2004, McDonald, 2008, and Kelly and Fu, 2014). In this context, Broberg and Sarjala (2015) 
suggest that denser school networks with more neighborhood schools located in close proximity 
to a high proportion of households with school-going children can help increase the share of 
walking/bicycling to school. Interestingly, children whose residences are farther than 2 miles away 
from school are more likely to take the bus mode than other children. This could be due to a 
combination of the distance effect (that is, the walk/bicycle mode become less feasible for 
distances longer than 2 miles) as well as the potential unavailability of the school bus option for 
households within a two-mile distance from school. Many school districts provide school buses 
only for households that live beyond a 2-mile radius. Thus, the school bus may not be an option 
for children living within a two-mile radius of their school.11 Besides, specialized schools such as 
magnet schools and choice schools that draw children from wider geographic regions (that are far 
beyond 2 miles from the school) have been shown in the literature to have a greater proportion of 
children traveling by school bus than those in other schools (see Wilson et al., 2010). 
 
Latent construct effects 
The effects of latent constructs are intuitive and expected, as discussed in Section 3.2.3. We also 
interacted the SCWBS latent construct with different ranges of home-to-school distance variable. 
The results suggest, consistent with the findings of Seraj et al. (2012), that the influence of SCWBS 
is moderated (reduced) as the distance decreases, perhaps because of lower exposure to risks and 
a greater familiarity (hence greater level of comfort) with the travel route for shorter distances. 

                                                 
11 The survey did not seek information on the availability of the school bus mode. Further, the “bus” alternative in our 
model includes not only the school bus, but also public transit buses. Future studies of children’s school travel mode 
need to pay more attention to construction of the availability of the bus mode to school.  
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Endogenous variable effects 
As discussed in Section 3.2.4, a variety of different endogenous variables influence children’s 
school mode choice. Note again that these effects are “true” causal effects after accommodating 
associations engendered among children’s school mode choice, parents’ commute mode choice, 
and residential location by the underlying ALP latent construct. The results indicate that adults’ 
use of non-auto modes for commuting tends to increase children’s use of non-auto modes for 
school travel. This may well be because parental non-use of an auto mode for the commute implies 
less possibility of a child being dropped by the auto mode. Further, children from households with 
a longer average commute distance or households with higher vehicle availability are less likely 
to travel to school by non-auto modes, as also observed by Seraj et al. (2012).  
 In terms of residential location density effects, as expected, children from households 
living in denser neighborhoods (>2000 households per square mile) are more likely to walk or 
bicycle to school than those in households residing in other neighborhoods. This is presumably 
because dense neighborhoods tend to have better pedestrian and bicycling facilities. Further, 
children from households in very high density (greater than 4000 hh./sq. mile) and very low density 
(less than 1000 hh./sq. mile) areas show a greater propensity to take the school bus than those in 
households residing in the mid-range residential density (1000-3000 hh./sq. mile). What is more, 
the propensity to take the bus is highest among those residing in the lowest density neighborhoods, 
which is rather surprising. This is likely related to the issue discussed earlier of the school bus 
perhaps being more available when the distance to school is longer, and reinforces the need to pay 
more attention in future studies on the construction of the availability of the school bus mode. Of 
course, this result could also be a result of special schools (that tend to offer specialized bus 
services) being more prevalent in less dense neighborhoods. In any case, the relationship between 
the availability/use of the bus mode to travel to school and residential density certainly deserves 
more careful attention in future studies.  
 
Error covariance and spatial dependence 
We allowed a non-IID covariance matrix for the error vector among the random utility components 
of the children’s school mode choice alternatives, but an IID error structure sufficed for the current 
empirical model. However, this does not imply an IID utility structure, because of the presence of 
the SCSWB and ALP stochastic latent constructs, which engender higher sensitivities among the 
non-auto (walk, bicycle, and bus) modes than between these modes and the car mode.  

The spatial dependence in both the SCWSB and ALP latent constructs permeate into the 
school bus mode choice decision. That is, children/adults in households in close proximity are 
more likely to uniformly attribute a higher (or lower) utility for each of the bus and walk/bicycle 
modes, a very clear sign of social interaction effects and/or unobserved neighborhood location 
effects that affect modal valuations. It is possible that parents of households living in close 
proximity interact with one another and share experiences about school travel of their children, or 
households may band together to facilitate walking and bicycling in a safe and secure way.  The 
net result is a spatial “spillover” effect, leading to a multiplier effect in terms of the effectiveness 
of programs to promote the use of non-auto modes for school travel. When the SCWSB and ALP 
of even just a few parents/households are impacted through targeted campaigns, it has a “spillover” 
impact on other parents/households in close proximity, leading to a “snowballing” effect on the 
use of non-auto modes of travel to school for children in all households in the neighborhood.  
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3.2.6 Comparison of the Empirical GHDM Models With and Without Spatial Dependency 

Data fit 
The log-CML value of the spatial GHDM model is -2580211.30. For the same empirical 
specification, the log-CML value for the aspatial GHDM model is -2590836.37. The difference in 
data fit between the spatial model and the aspatial model may be computed using the ADCLRT 
statistic. The calculated ADCLRT statistic value is 157.59, which is higher than the critical chi-
square value with two degrees of freedom at any reasonable level of significance. This clearly 
underscores the importance of considering spatial dependency. Further, to assess the importance 
of considering jointness across the endogenous outcomes, we also estimated an Independent 
Heterogeneous Data Model (IHDM) that ignores the jointness among the endogenous outcomes 
engendered by the stochastic latent constructs. In this IHDM model, we introduce the exogenous 
variables (sociodemographic variables) used to explain the latent constructs directly as exogenous 
variables. The resulting IHDM may be compared to the GHDM using the composite likelihood 
information criterion (CLIC) introduced by Varin and Vidoni (2005). The model that provides a 
higher value of CLIC is preferred. The CLIC statistic values for the aspatial GHDM and IHDM 
models were estimated to be -2595906.78 and -2619331.83, respectively. These CLIC statistics 
clearly favor the GHDM over the IHDM. 
 
Differences in variable effects 
In addition to the differences in data fit, we observed several differences in the estimates of 
different exogenous and endogenous variable effects. To focus the discussion, we only 
qualitatively discuss the differences between the spatial and aspatial GHDM models. First, in the 
context of the structural equations, the spatial model suggested significant differences between 
Hispanic and Caucasian races in the latent construct active lifestyle propensity (ALP). On the other 
hand, the aspatial model did not reveal statistically significant differences between Hispanics and 
Caucasians in ALP.  

In the measurement equations for non-nominal variables, we did not notice striking 
differences between the parameter estimates (and corresponding interpretations) of the spatial and 
aspatial models. For the measurement equations of the nominal variables, however, we noticed 
some notable differences, as discussed below. In the residential location (density) choice 
component of the model, the influence of ALP in the aspatial model was not as pronounced as in 
the spatial model. In children’s school mode choice, the spatial model suggested that flexibility in 
adults’ work timings reduces the likelihood of children walking/biking or taking a bus to school. 
On the other hand, the aspatial model did not reveal any such effect. Moving on to the inter-
relationships among endogenous variables, the aspatial model suggested a weak influence (with a 
small t-statistic value) of household-level commute distance on auto ownership. The spatial model, 
on the other hand, revealed a stronger influence of household-level commute distance on vehicle 
ownership. Overall, all these differences between the two models indicate that ignoring spatial 
dependency may not only lead to deterioration in overall data fit but may also lead to either a bias 
or statistical insignificance (or a combination of both) of important exogenous and endogenous 
variable effects.  
  
3.3 Disentangling Different Effects 
We indicated in the introductory section that our model is able to disentangle three distinct effects 
associated with variable impacts. Here, we consider the effects of a neo-urbanist policy aimed at 
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densification of neighborhoods. To keep the discussion focused, we again examine these effects 
only in the context of children’s travel mode to school.  

As identified in Section 3.2.3, households who are inclined to use non-auto modes self-
select to live in dense neighborhoods. If this residential self-selection effect is ignored (as is done 
by the IHDM model), the effect of moving a random household from a low density neighborhood 
to a high density neighborhood (or, equivalently, densifying an existing low density neighborhood) 
would be magnified in terms of the increase in non-auto mode use to travel to school. Thus, the 
difference between the aspatial GHDM and the IHDM in the effect of residential density provides 
the “spurious” residential self-selection (RSS) effect. Next, consider the aspatial and spatial 
GHDMs. The latter accommodates spatial/social dependence, while the former does not. That is, 
the spatial GHDM recognizes the social interactions among households in close proximity, as 
discussed in the previous section.  That is, a random household moved from a low density 
neighborhood to a high density neighborhood is likely to be influenced by the higher ALP of other 
households already residing in the high density neighborhood, resulting in a higher ALP of the 
household and a higher propensity of children in the household to use non-auto modes to school. 
This, unlike the residential self-selection effect, is a post location spatial interaction effect. The 
difference between the aspatial GHDM and spatial GHDM provides the social/spatial dependence 
(SSD) effect.  
 To quantify (and disentangle) the magnitude of the RSS, the “true” causal effect of 
densification, and the SSD effect, we compute average treatment effects (ATEs) from the IHDM, 
the aspatial GHDM, and the spatial GHDM models. The ATE measure for a variable provides the 
expected difference in that variable for a random household if it were located in a specific density 
configuration i as opposed to another density configuration ii  . Here we compute the ATE 
corresponding to a hypothetical scenario when a household is transplanted from the lowest density 
(less than 1000 hh./sq. mile) location to the highest density (greater than 4000 hh./sq. mile) 
location. To calculate the ATE, for each of the models, a realization of the vector yU is constructed 
(see Equation 5) by appropriately drawing from the distribution of all the relevant parameters 

)and, , , ,( Σ  Ξ


Bcb . Then the value of different dependent variables is calculated appropriately by 
following the chain of causal effects among the endogenous variables. Since residential location 
density is a nominal variable, the procedure to calculate the ATE is as follows: First, set the value 
of the residential density variables to zero for all the density categories for all households in the 
sample and, using the procedure just described above, compute the expected share of each mode 
for the children’s school choice. In doing so, the expected share is computed assuming that all 
households in the sample live in the lowest density location. Second, set the value of the residential 
density variables to zero for all the categories except for the highest density category variable (for 
which a value of one is applied for all the households in the sample), and compute the expected 
school mode share for each alternative. Finally, compute the ATE for each alternative as the 
difference between the expected shares obtained between the second and first steps. The above 
described procedure is repeated 500 times. The mean across the 500 runs was computed as the 
final ATE effect and the standard deviation across the 500 sets was computed as the standard error 
estimate.  

Table 6 presents the estimated ATE values (and standard errors) for children’s school mode 
choice for the IHDM, the aspatial GHDM, and the spatial GHDM models. The first row under the 
“IHDM model” heading indicates that a random household that is shifted from a low density 
location to a high density location is, on an average, likely to reduce auto use probability for 
children’s school travel by 0.082 (standard error of 0.026). Equivalently, if 100 random households 
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are moved from a low density to a high density location, the auto use mode share among these 100 
households will reduce by 8.2%. On the other hand, the aspatial GHDM model estimate predicts 
a probability reduction of only 0.029 (standard error of 0.015). That is, according to the aspatial 
GHDM, if 100 random households are moved from a low density to a high density location, the 
auto use mode share among these 100 households will reduce by only 2.9%. The exaggeration in 
the reduction in auto use based on the IHDM model is because unobserved residential self-
selection effects are not being controlled for. The p-value value for the hypothesis of equality in 
the ATE estimates is 0.039, clearly rejecting the equality hypothesis even at the 96% level of 
confidence. Other values in the IHDM and aspatial GHDM columns in the table can be similarly 
interpreted. The difference in the ATE estimates are statistically significant at the 92% level of 
confidence for the bus mode and the 99% level of confidence for the walk/bicycle mode. We do 
not pay much attention to the “other modes” alternative because of the very low percentage of this 
alternative in the estimation sample. The ATE estimates are also different between the aspatial and 
spatial GHDM models, even if not that statistically significantly different as between the IHDM 
and aspatial models, with the spatial model indicating a higher ATE for all modes. This is expected, 
because the aspatial model ignores the multiplier effect.  

The magnitude of the RSS, the true “causal” effect of densification, and the SSD effect are 
computed as follows. First, the “true causal” effect contribution is considered to be represented by 
the ATE of the aspatial model. The SSD effect contribution is computed as the difference between 
the ATE effects from the spatial and aspatial GHDM. Finally, the IHDM ATE that combines (and 
convolutes) all of the effects is used to subtract the “true” and RSS effects from to obtain the RSS 
effect. For instance, for the car mode, the “true causal” effect contribution is -0.029, the SSD effect 
is -0.015 (-0.044-(-0.029)) and the RSS effect is -0.038 (= -0.082-(0.029+0.015)). The percentage 
contributions of the three effects are then computed and shown in the last column panel of Table 
6. As can be observed, for all the three modes with a tangible proportion of users, the RSS effect 
is of the order of 43-47%, while the “true causal” effect is about 35-41% and the SSD effect is of 
the order of 16-18%. These results show a substantial residential self-selection effect as well as 
the presence of SSD effects. The latter result confirms the results in Section 3.2.5 that targeted 
campaigns where the mode choices of children in just a few parents/households in a neighborhood 
are impacted can have a “spillover” impact on other parents/households in close proximity. The 
results also show that tangible “true causal” travel effects of the built environment do exist in the 
land use-travel behavior association, even after accommodating for the RSS effect.  
                   
4. SUMMARY AND CONCLUSIONS 
This paper develops a framework for incorporating spatial dependencies in integrated model 
systems of latent variables and multidimensional mixed data outcomes. The framework combines 
Bhat’s Generalized Heterogeneous Data Model (GHDM) with a spatial formulation and introduces 
spatial dependencies through latent constructs. The resulting spatial GHDM is flexible yet very 
parsimonious due to the use of latent constructs (of attitudes and lifestyle preferences) as a vehicle 
for introducing spatial dependencies among the multitude of endogenous variables in 
multidimensional mixed data model systems. Since the spatial dependencies introduced in latent 
constructs permeate into all the endogenous outcomes influenced by the latent constructs, the 
approach obviates the need for incorporating spatial dependencies separately for each and every 
endogenous variable.  

For estimating the parameters of the proposed spatial GHDM framework, the paper 
employs the maximum approximate composite marginal likelihood (MACML) approach which 
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reduces the dimensionality of integration required for estimation into a series of univariate and 
bivariate normal integrals, regardless of the number of latent constructs and the number of 
dependent variables in the multidimensional mixed data bundle.  

The paper presents an empirical application of the proposed spatial GHDM framework by 
analyzing a multidimensional mixed data bundle of households’ long-term and short-term travel-
related chocies in a household travel survey sample from the South California region. The 
endogenous variables (i.e., household choice variables) considered in the mixed data bundle are: 
(1) a nominal variable for residential location choice, (2) a count variable for vehicle ownership, 
(3) a continuous variable for household-level average commute distance, (4) a binary variable for 
parent’s commute mode choice, and (5) a nominal variable for children’s school travel mode. 
Along with these variables, three count variables and three ordinal variables were used to identify 
two latent constructs – parents’ safety concerns for chidlren walking/biking to school (SCWBS) 
and active lifestyle propensity (ALP) –  to build the GHDM moel. The empirical model reveals 
interesting insights on the influence of different exogenous variales and the two latent variables on 
the above-mentioned household choice variables. As importatnly, the GHDM framework helped 
in identifying an intricate web of causal relationships among the multitude of endogenous 
variables, as well as disentangling three different effects of variables: the residential self-selection 
(RSS) effect, the social/spatial dependency (SSD) effect, and the “true” causal effect. In an 
examination of the effect of neighborhood densification (as part of a neo-urbanist policy) on 
children’s school mode choice, our results showed that the residential self-selection and true causal 
effects of a densification-based neo-urbanist policy on school mode choice of children are about 
45% and 38%, respectively, and also that there is a tangible spatial/social interaction effect at about 
17%. Ignoring the residential self-selection effect would substantially overestimate densification 
effects on school mode choice and other travel choices, while ignoring the spatial/social interaction 
effects would underestimate densification effects.  
 In summary, methodologically speaking, the proposed spatial GHDM framework can be a 
valuable tool for modeling spatial dependencies in multidimensional mixed data outcomes that are 
becoming of increasing interest in several fields. Empirically speaking, the proposed framework 
allows for the better disentangling of true causal land use effects from spurious self-selection 
effects and spatial dependence effects, enabling more accurate policy impact assessment of land 
use-based policy instruments. We hope that the simple, parsimonious, and elegant way of 
introducing social/spatial dependence in multi-dimensional mixed models will contribute to 
empirical research in a variety of disciplines.  
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* Safety concern regarding children walking/bicycling to school 

 
Figure 1: Conceptual diagram of structural relationships in the empirical model 
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Table 1: Descriptive statistics of dependent variables 

Continuous 
Outcome 

Ordinal Outcomes (Likert scale variables of parents’ concern for 
children walking/bicycling to school or SCWBS)  

Count Outcomes 

Average 
commute 

distance (miles) 
 

Violence/ 
crime along 
the route to 

school 

Speed of 
traffic along 
the route to 

school 

Amount of 
traffic along 
the route to 

school 

 
# of bicycling 

episodes in 
past week 

# of walking 
episodes in 
past week 

# of times 
public 

transit used 
in past week 

Auto 
ownership 

Statistics Value Category Proportion Proportion Proportion Value Proportion Proportion Proportion Proportion 

Avg. 15.15 Not an issue 47.10% 16.82% 14.24% 0 50.88% 6.50% 66.73% 0.74% 

Min. 0.11 A little bit of an issue 16.36% 11.15% 12.95% 1 8.71% 2.35% 6.87% 10.37% 

Max. 65.00 Somewhat of an issue 13.46% 20.32% 19.36% 2 8.43% 3.18% 6.27% 49.45% 

Std. 11.45 Very much an issue 7.83% 17.83% 18.94% 3 7.01% 3.05% 2.35% 24.89% 

  A serious issue 15.25% 33.88% 34.51% 4 4.20% 3.96% 1.94% 9.49% 

      >=5 20.77% 80.96% 15.84% 5.06% 

      Max. 68.00 165.00 60.00 10.00 

Unordered Outcomes 

Parent’s 
commute mode 

Non-auto mode used Auto mode used 

7.88% 92.12% 

Residential 
location (housing 
units / sq. mile) 

Less than 1000 hhs/sq. mile 1000-1999 hhs/sq. mile 2000-3999 hhs/sq. mile 4000 or more hhs/sq. mile 

32.58% 27.23% 29.54% 10.65% 

Children school 
mode 

Car Bus Walk/bike Other modes 

70.37% 9.73% 18.43% 1.47% 
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Table 2: Parameter estimates of structural equations for the latent constructs 

Latent Constructs Coefficient T-stat 

Safety consciousness with respect to children walking/bicycling to school (SCWBS) 

Age of the school going children (base: 5-10 years old)   

   11-15 years old -0.125 -2.27 

   16-18 years old -0.110 -1.90 

Gender of the school going children (base: boy)   

   Girl 0.077 2.20 

Education Status (base: fraction of adults (25 years or more) with some 
college degree or bachelor’s degree in the household) 

  

   Fraction of adults with high school degree or less in the household -0.218 -2.10 

   Fraction of adults with graduate degree in the household 0.142 2.11 

Household monthly income (base: 75K or more)   

   Less than 25K -0.369 -2.46 

   25K to 74,999 -0.192 -2.63 

Active lifestyle propensity (ALP) 

Race (base: Caucasian or African-American or others)    

   Asian -0.393 -3.93 

   Hispanic -0.201 -2.01 

Age (base: fraction of adults in the age group 31 or above in the household)   

   Fraction of adults in the age group 19-30 years in the household 0.107 2.89 

Education Status (base: fraction of adults (25 years or more) with some 
college degree or less in the household) 

  

   Fraction of adults with high bachelor’s degree or less in the household 0.132 3.21 

   Fraction of adults with graduate degree in the household 0.184 2.14 

Number of children in different age groups in the household   

   Less than 10 years old 0.143 4.67 

   11-15 years old 0.154 2.54 

   16-18 years old -0.063 -1.63 

Correlation between the two latent constructs 0.078 1.67 

Spatial autoregressive parameter for the latent construct SCWBS 0.447 2.98 

Spatial autoregressive parameter for the latent construct ALP 0.846 5.60 
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Table 3: Parameter estimates of latent construct loadings on endogenous variables 

Dependent variables 
Latent Constructs 

SCWBS ALP 
Coeff T-stat Coeff T-stat 

Walk/bike issue     

     Violence/crime along the route 0.131 15.10 ---- ---- 

     Speed of traffic along the route 2.772 15.57 ---- ---- 

     Amount of traffic along the route 2.646 16.54 ---- ---- 

# bicycling episodes in past week ---- ---- 0.857 11.74 

# walking episodes in past week ---- ---- 2.065 17.21 

# of times public transit used in past week ---- ---- 0.181 5.86 

Residential location (base: less than 1000 hh./sq. mile)     

     1000-1999 hh./sq. mile ---- ---- 0.103 2.34 

     2000-3999 hh./sq. mile ---- ---- 0.060 1.90 

     4000 or more hh./sq. mile ---- ---- 0.066 2.00 

At least one commuter uses public transit/walk/bicycle for commuting ---- ---- 0.102 4.64 

Children’s school mode choice (base: Car)     

     Bus -0.308* -2.26 0.207 3.23 

     Walk/bicycle -0.195* -2.57 0.122 2.07 

     Other ---- ---- ---- ---- 

Household average commute distance (miles) ---- ---- ---- ---- 

Auto ownership ---- ---- ---- ---- 

* These coefficients are only for households with distance to school greater than 2 miles. See Table 5 for the loadings of the latent 
construct SCWBS for different bands of home-to-school distance. All these loadings are negative in sign.
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Table 4: Parameters estimates of inter-relationships among endogenous variables 

Dependent variables 

Natural logarithm 
of household 

average commute 
distance (miles) 

Residential location Each adult with 
driver license has 
access to at least 

one auto* 

At least one 
commuter uses 
non-auto modes 
for commuting 

Less than 1000 
hh./sq. mile 

1000-1999 
hh./sq. mile 

2000-3999 
hh./sq. mile 

4000 or more 
hh./sq. mile 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Residential location (base: 
less than 1000 hh./ sq. mile)  

              

   1000-1999 hh./sq. mile -0.065 -3.25 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

   2000-3999 hh./sq. mile -0.065 -3.25 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

   4000 or more hh./sq. mile -0.065 -3.25 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Auto ownership 0.045 1.92 ---- ---- -0.066 -2.10 -0.066 -2.10 -0.166 -2.32 ---- ---- ---- ---- 

At least one commuter uses 
non-auto modes for 
commuting 

-0.214 -2.10 ---- ---- ---- ---- 0.131 8.73 0.574 8.85 -1.013 -3.58 ---- ---- 

Children school mode 
(base: car) 

    
        

  

   Bus -0.080 -4.38 0.164 6.07 ---- ---- ---- ---- 0.098 2.44 -0.319 -2.53 0.291 4.48 

   Walk/bike -0.080 -4.38 ---- ---- ---- ---- 0.176 7.04 0.176 7.04 -0.134 -2.31 0.224 2.73 

   Others ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Number of times public 
transit used in past week 

---- ---- ---- ---- 0.135 2.49 0.135 2.49 1.348 2.83 -1.718 -5.88 ---- ---- 

* The auto ownership variable was translated to auto availability per licensed driver in the household. 
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Table 5: Parameter estimates of the school mode choice component 

Explanatory Variables 
Children’s school mode (base: Car) 

Bus Walk/bicycle Other modes 
Coeff T-stat Coeff T-stat Coeff T-stat 

Exogenous variables       

  Constants -1.456 -9.22 -1.167 -3.64 -1.965 -4.94 

  # workers with work from home option -0.091 -4.33 ---- ---- ---- ---- 

  # workers with flexible work timings -0.022 -1.57 -0.052 -5.78 ---- ---- 

  Distance to school        

    Less than ¼ mile ---- ---- 0.498 9.40 ---- ---- 

    ¼ mile to ½ mile ---- ---- 0.403 7.90 ---- ---- 

 ½ mile to 1 mile ---- ---- 0.403 7.90 ---- ---- 

    1 mile to 2 miles ---- ---- 0.185 4.40 ---- ---- 

    More than 2 miles 0.286 5.20 ---- ---- ---- ---- 

Latent constructs       

  SCWBS (base distance = greater than 2 miles) -0.308 -2.26 -0.195 -2.57 ---- ---- 

  SCWBS * Distance to school    
   less than ¼ mile 

---- ---- 0.075 5.37 ---- ---- 

  SCWBS * Distance to school           
   between ¼ mile and 1 mile 

---- ---- 0.037 2.84 ---- ---- 

  SCWBS * Distance to school between 1 mile 
and 2 miles  

---- ---- 0.029 1.93 ---- ---- 

  Active lifestyle propensity (ALP) 0.207 3.23 0.122 2.07 ---- ---- 

Endogenous variables       

  At least one commuter uses public 
transit/walk/bicycle for commuting 

0.291 4.48 0.224 2.73 ---- ---- 

  Natural logarithm of household average 
commute distance 

-0.080 -4.38 -0.080 -4.38 ---- ---- 

  Each adult with driver license has access to at 
least one vehicle 

-0.319 -2.53 -0.134 -2.31 ---- ---- 

  Residential location       

    Density less than 1000 hh./sq. mile  0.164 6.07 ---- ---- ---- ---- 

    1000-1999 hh./sq. mile ---- ---- ---- ---- ---- ---- 

    2000-3999 hh./sq. mile ---- ---- 0.176 7.04 ---- ---- 

    4000 or more hh./sq. mile 0.098 2.44 0.176 7.04 ---- ---- 
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Table 6: Average treatment effect (ATE) on children’s school mode choice of transplanting a random household from the 
lowest density (less than 1000 hh./sq. mile) residential location to the highest density (4000 or more hh./sq. mile) location 

Variable IHDM model 
Aspatial-

GHDM model 
Spatial-GHDM 

model 
RSS 

True causal 
effect 

SSD 

Car -0.082 (0.026) -0.029 (0.015) -0.044 (0.014) 46 35 18 

Bus -0.051 (0.018) -0.021 (0.011) -0.029 (0.016) 43 41 16 

Walk/bike 0.142 (0.036) 0.053 (0.012)  0.076 (0.019) 47 37 16 

Other modes -0.009 (0.008) -0.003 (0.002) -0.003 (0.001) 67 33 0 

Note: Standard errors are reported in parentheses. 
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Appendix A: Model Formulation 
 
Let h be the index for continuous outcomes ) ..., ,2 ,1( Hh  .  Then the continuous variable qhy  can 

be written in the usual linear regression fashion as follows: 

qhqhqhqh εy  *zdxγ                                                                                                                 (A.1) 

where qx  is an (A×1) vector of exogenous variables (including a constant) as well as possibly the 

observed values of other endogenous variables (continuous, ordinal, count variable, and nominal 
variables (introduced as dummy variables)), hγ  is the corresponding vector of coefficients, hd  is 

an (L×1) vector of latent variable loadings on the hth continuous outcome, and qhε  is a normally 

distributed random error term. Next, define the following notations to write Equation (A.1) in a 
compact, matrix form for individual q. 

 vector]1)[(  ),...,,( 21  Hyyy qHqqqy , matrix] )[(  ),...,,( 21 AHH  γγγγ ,

matrix] )[(  ),...,,( 21 LHH  dddd , and  vector]1)[( ),...,,( 21  Hεεε qHqqqε . 

Now, Equation (A.1) may be written in matrix form for individual q as follows: 

qqqq εdzγxy *  .                                                                                                                     (A.2) 

We assume a diagonal MVN distribution for qε : ),(MVN~ Σ0HHqε . The non-diagonal elements 

of qε  are assumed to be zero for identification purposes. Also, the qε  terms across different 

individuals are assumed independent of each other. 
Next, consider N ordinal outcomes (indicators) and let n be an index for ordinal outcomes 

) ..., ,2 ,1( Nn  . Also, let Jn be the number of categories for the nth ordinal outcome (Jn ≥ 2) and let 

the corresponding index be nj ) ..., ,2 ,1( nn Jj  . Let *~
qny  be the latent underlying variable whose 

horizontal partitioning leads to the observed outcome aqn for the qth individual’s nth ordinal 
variable. Then, in the usual ordered response formulation, for the individual q, we may write: 

qnqn anqqnanqqnqnqnqn ψyψεy ,,
*

1,,
* ~~~,~~~~  

*zdxγ                                                                           (A.3) 

where qx  is as defined earlier, qny~  is the ordinal variable outcome category, nγ
~  is the 

corresponding vector of coefficients, nd
~

 is an (L×1) vector of latent variable loadings on the nth 

ordinal outcome, and qnε
~  is a normally distributed random error term. For each ordinal outcome, 

nn n,Jq1n,Jqn,qn,qn,0q ψψ...ψψψ ,,2,1,,
~~~~~   ; 0,,

~
nqψ , 0~

1,, nqψ , and 
nn,Jqψ ,

~ . Next, define 

the following notation to write Equation (A.3) in a compact matrix form for individual q. 

  vector1)(   )~,...,~,~(~ **
2

*
1

*  Nyyy qNqqqy ,  matrix )(   )~,...,~,~(~
21 AN  Nγγγγ ,

 matrix )(   )
~

,...,
~

,
~

(
~

21 LN  Ndddd ,   vector1)(  )~,...,~,~(~
21  Nεεε qNqqqε .  

Also, stack the lower thresholds for the observed outcomes aqn of individual q 
) ..., ,2 ,1(~

1,, Nnψ
qnanq   

into an (N×1) vector q,lowψ~  and the corresponding upper thresholds 

) ..., ,2 ,1(~
,, Nnψ

qnanq   into another vector q,upψ~ .  
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Now, Equation (A.3) may be written in matrix form for individual q as follows: 

q,upqq,lowqqqq ψyψεzdxγy *** ~~~   ,~~~~  .                                                                               (A.4) 

For identification, we assume a diagonal multivariate normal distribution for qε
~  with all the 

diagonal elements equal to unity: ),(MVN~~
NNNq IDEN0ε . In addition, the qε

~  terms are 

assumed to be independent across individuals.  
Let there be C count variables and let c be an index for count outcomes ) ..., ,2 ,1( Cc  . Let 

ck  be the index for count value )..., ,2 ,1 ,0( ck  and let qcr be the actual observed count value. 

Then, following the recasting of a count model in a generalized ordered-response probit 
formulation (see Bhat, 2015a), a generalized version of the negative binomial count model may be 
written as:  

qcqc rcqqcrcqqcqcqc ψyψεy ,,
*

1,,
*  ,

  
*zd ,                                                                                     (A.5) 

 
c

cc

c rc

r

t

t
qc

c

c

θ
qc

rcq υ
t

tθ

θ

υ
ψ ,

0

1
,, )(

!

)(Γ

)(Γ

1
Φ 



















 
 




, 

qcqc

qc
qc θλ

λ
υ


 , and qeλqc

xγc


.                (A.6) 

In the above equation, *
qcy


 is a latent continuous stochastic propensity variable associated with the 

count variable c that maps into the observed count qcr through the q,cψ


vector (which is a 

vertically stacked column vector of thresholds ),...,,,( 2101  q,c,q,c,q,c,q,c, ψ ψψψ
 ). cd


 is a (L×1) vector 

of latent variable loadings on the cth count outcome, and qc  is a standard normal random error 

term. cγ


 is a column vector of coefficients corresponding to the vector qx . c  is a parameter that 

provides flexibility to the count formulation, and is related to the dispersion parameter in a 
traditional negative binomial model )0( cc  . )( c  is the traditional gamma function; 







0~

~1 ~~)(
t

t
c tdet c . The threshold terms in the q,cψ


 vector satisfy the ordering condition (i.e., 

)....2,,,,, cψψψψ cqc,1qc,0q1c,q 
  as long as  .....2,1,0,1,  cccc   The c  

terms 

in the thresholds provide flexibility to accommodate high or low probability masses for specific 
count outcomes. For identification, we set 1,c  and 00, c for all count variables c. In 

addition, based on empirical testing, we identify a count value *
ce  ......}),2 ,1,0{( * ce  above which 

......}),2 ,1{(, ckc k
c

  is held fixed at *, cec
 .  Doing so allows the count model to predict beyond the 

range available in the estimation sample. For later use, let ),,( *,2,1, 
cecccc     vector)1( *

ce  

(assuming , )0* ce  














  vector1  ),,( *
21

c
cC e  , and 

]vector1 C[),,,( 21  C θ . Next define the following notation: 

 vector]1)[(  ),...,,( *
21

*  Cyyy qC
*
q

*
qq


y , matrix] )[(   ),...,,( 21 LCC  dddd


,

matrix] )[(  ),...,,( 21 ACC  γγγγ


,  vector]1)[(  ),...,,( 21  Cεεε qCqqq


ε . Also, stack the lower 
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thresholds of observed counts for the indiviudal q ) ..., ,2 ,1(1,, Ccψ
qcrcq 


 
into a (C×1) vector q,lowψ


 

and the upper thresholds ) ,...,2 ,1(,, Ccψ
qcrcq 

 into another vector .q,upψ


 Now, the latent propensity 

underlying the count outcomes in Equation (A.5) may be written in matrix form as:  

q,upqq,lowqqq ψyψ εzdy ***   ,                                                                          (A.7) 

Similar to ordinal variables we assume that the qε


 terms are distributed as follows: 

),(MVN~ CCCq IDEN0ε


, with independency across individuals. 

Finally, let there be G nominal (unordered-response) variables, and let g be the index for 
the nominal variables (g = 1, 2, 3,…, G). Also, let Ig be the number of alternatives corresponding 
to the gth nominal variable (Ig 3) and let ig be the corresponding index (ig = 1, 2, 3,…, Ig). Consider 
the gth nominal variable and assume that the individual q chooses the alternative mq,g. Also, assume 
the usual random utility structure for each alternative ig.  

,)(
ggggg qgiqgigiqgiqgi ςU  *zβxb                                                                            (A.8) 

where qx  is as defined earlier, 
ggib  is a (A×1) column vector of corresponding coefficients, and 

gqgi is a normal error term. 
ggiβ  is a )( LN

ggi  -matrix of variables interacting with latent variables 

to influence the utility of alternative ig, and 
ggi  is a )1( 

ggiN -column vector of coefficients 

capturing the effects of latent variables and its interaction effects with other exogenous variables.  
Let ),...,( 21 

gqgIqgqg qg  (Ig×1 vector), with ),(~ gΛ0
gIMVNqg  and independent across 

individuals. Taking the difference with respect to the first alternative, the only estimable elements 
correspond to the covariance matrix gΛ


 of these error differences, ),...,,( 32 gqgIqgqg   qg  

(where )1,1  iςςς qgqgiqgi

 . Further, the variance term at the top left diagonal of gΛ


 

(g=1,2,…,G) is set to 1 to account for scale invariance. gΛ  is constructed from gΛ


 by adding a 

row of  zeros on top and a column of zeros to the left.  To proceed, define 
),...,,( 21 

gqgIqgqgqg UUUU  (Ig×1 vector), ),...,,,( 32 
ggIggg1g bbbbb  (Ig×A matrix), and 

),...,,( 21 
ggIggg ββββ  














LN
g

g

g

I

i
gi

1

 matrix. Also, define the 













g

g

g

I

i
gig NI

1

 matrix g , which 

is initially filled with all zero values. Then, position the )1( 1gN  row vector 1g  in the first row 

to occupy columns 1 to 1gN  , position the )1( 2gN  row vector 2g  in the second row to occupy 

columns 1gN +1 to ,21 gg NN   and so on until the )1(
ggIN  row vector 

ggI  is appropriately 

positioned. Further, define )( ggg β   (Ig×L matrix), 



G

g
gIG

1


, 




G

g
gIG

1

),1(
~

 

  qGqq UUUUq , ... ,, 21  1( G


 vector), ),...,,(  qGq2q1q ςςςς  ( 1G


 vector), ),...,,( G21  bbbb

AG 


(  matrix), LGG 


(),...,,( 21  matrix), and  ),...,,(Vech 21 G   (that is,   is a 

column vector that includes all elements of the matrices G ,...,, 21 ). Then, in matrix form, we 

may write Equation (A.8) for individual q as: 
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,qqqq ςzbxU *                                                                              (A.9) 

where ),(MVN~ Λ0
GGq
ς .  As earlier, to ensure identification, we specify Λ as follows: 

)matrix(3

2

1

GG

G







































Λ0000

00Λ00

000Λ0

0000Λ

Λ                                                          (A.10) 

 
 
Reduced Form Model System  

Let E = (H + N + C) and )
~

(
~

GCNE  . Define     ],vector1[,~, ** 







 
 Eqqqq yyyy



matrix], [ ) ,~,( AE  ACγγγ 0


matrix],[),
~

,( LE  dddd


and  vector],1[ ),~,(  Eqqqq εεεε


 

where 0AC is a matrix of zeros of dimension A×C. Then, the equations for continuous, ordinal, and 
count endogenous variables (i.e., Equations A.2, A.4, and A.7) of individual q may be brought 
together  as follows:  

qqqq εzdxγy * 
 , )matrix()(Var with EE

C

Nq 

















IDEN00

0IDEN0

00Σ

Σ


ε            (A.11)   

To combine the above equation with Equation (A.9) for nominal endogenous variables (Uq), define

1vector])G[(   ,)( 






 


Eqqq UyyU , matrix] )G[(  ),( AE 


bγb , 

matrix] )G[( ),( LE 


dc , and    vector]1)G[( ),( 


Eqqq ςεξ . Then, the equations for 

all endogenous variables in the overall model system for individual q may be written compactly 
as:  

qqqq ξzcxbyU * 


)( , ]matrix)()[()(Var with GEGEq
















Λ0

0Σ
Σξ             (A.12) 

This appears as Equation (3) in the main body of the paper.  
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Appendix B: Estimation Methodology 
 
Let λ be the collection of parameters to be estimated:

, ]  ,  ,  ),Vech(),Vech(),Vech(),Vech([ δΣ θφcbαλ


 where the operator "Vech(.)" vectorizes all 
the elements of the matrix/vector on which it operates. The identification issues pertaining to the 
estimability of these parameters in the current spatial-GHDM are the same as those discussed in 
Bhat (2015a) for the aspatial-GHDM, with the addition of the requirement that all elements of the 
vector δ should be bounded in magnitude by the value of 1 (see Sidharthan and Bhat, 2012).   

To estimate the model, we work with the latent utility differentials  
qggqgg qgmqgimqgi UUu   

of all non-chosen alternatives ( qgg mi  ) with respect to the chosen alternative (mqg) for each 

nominal variable g and each individual q. Stack the utility differentials into a vector 

  



 


 ggmqgImqgmqgqg miuuu

qggqgqg
;,...,, 21u  and then into      








 

 qGqqq uuuu ,...,, 21 . Also, 

define  1vector])G
~

[(  ,)( 






  Eqqq uyyu


 and     )(,...,)(,)( 21
 Qyuyuyuyu

1vector])
~

([  GEQ . The distribution of the vector yu may be developed from that of yU using a 

matrix M of size )]()
~

([ GEQGEQ


 , constructed as discussed in Section 1 of the online 
supplement to this paper (see the online supplement at: 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Spatial_GHDM/online_supplement.pdf). 

Then the resulting distribution is  Ω~,
~

MVN
)

~
(

Β~yu
GEQ  , where )M BcxbB


 (

~
 and 

MΣIDENΞM Ω  )(
~ 

Qcc .  

Next, partition yu into two components – one that corresponds to all the continuous 
variables (y) and the other that corresponds to all the ordinal, count, and nominal variables 

 uyy ** ,,~(


(utility differences)). That is, )~,(  uyyu , where 







 

 u,,~~ ** yyu


. Accordingly, the 

mean vector B
~

 and the variance matrix Ω
~

 of yu can also be appropriately partitioned as:  

 
  
 





y

u

B
B

B
 and 
















uuy

uyy

~~

~

~~

~~
~

ΩΩ

ΩΩ
Ω   (see Section 1.2 of the online supplement). 

One may develop the likelihood function by decomposing the joint distribution of  
)~,(  uyyu  into a product of marginal and conditional distributions. Specifically, the conditional 

distribution of u~ , given y, is MVN with mean )
~

(
~~~ 1

~~~ yyuyuu BΩΩ   yBB


 and variance  

uyyuyuu ~
1

~~~
~~~~
ΩΩΩ-ΩΩ 


. Furthermore, define the threshold vectors as:  

   vector)1
~

( ,,~
~ 







  EQ

GQlowlowlow ψψψ


 and    vector)1
~

(  ,,~
~ 







  EQ

GQupupup 0ψψψ


, where 

GQ
~  is a 1

~
GQ -column vector of negative infinities, 

GQ
~0  is another 1

~
GQ -column vector of 

zeros, and  vector)1(  )~,...,~,~(~  QNlowQlow2low1low ,,, ψψψψ ,  
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 vector)1(  )~,...,~,~(~
,,,  QNupQupupup ψψψψ 21 ,   vector)1(  ),...,,(  QClowQlow2low1low ,,, ψψψψ


, and 

 vector)1(  ),...,,( ,,,  QCupQup2up1up ψψψψ


. Then the likelihood function may be written as: 

  ,~ Pr)
~

,
~

()( uplowQHfL ψuψB|y yy


 Ωλ                                                                         (B.1)     

.),|()
~

,
~

(  ~~~ drff uuEQ
D

yyQH

r

ΩΩ


BrB|y    

In the above expression, )
~

,
~

( yyQHf ΩB|y is a multivariate density function of dimension QH with 

mean yB
~

 and covariance yΩ
~

, evaluated at y (this is the marginal likelihood of the H continuous 

variable outcomes for all Q individuals).  uplow ψuψ


 ~ Pr is a EQ
~

-dimensional rectangular 

integral to evaluate the conditional (on y) likelihood of all ordinal, count, and nominal variable 
outcomes for all Q individuals. }:{ uplowrD ψrψr


  is the integration domain spanning the 

multivariate region of the u~ vector (conditional on y), with conditional mean u~B


 and conditional 

variance  ~uΩ


determined by the observed ordinal and count outcomes, and the range  ,
QG

 0 QG
  

for the utility differences (taken with respect to the observed choice alternative) for the nominal 
outcomes. Evaluation of such high dimensional integrals is infeasible with techniques currently 
available in the literature, as discussed earlier in Section 1 of the main paper. A possible solution 
to this problem is to use the composite marginal likelihood (CML) approach. In the CML approach, 
the maximizing function is developed as the product of low dimensional marginal densities (see 
Bhat, 2014 for a detailed description of the CML approach). For the spatial-GHDM model, the 
CML function may be written as a product of pairwise marginal densities, across all pairs of 
individuals, as follows: 

 up,qqqqlowqqqqqqqqH

Q

q

Q

qq
CML fL 



 

  ψuψB|y ,y,y,

 ~ Pr)
~

,
~

()(   *2

1

1 1

Ωλ                                 (B.2) 

In the above expression, )
~

,
~

(*2 y,qqy,qqqqHf  ΩB|y  is an MVN density function of dimension 2H  and 

 up,qqqqlow,qq   ψuψ
 ~ Pr is a E

~
2 -dimensional MVN integral. The latter expression can further be 

simplified into a (pairwise) CML function by taking the product of all pairwise joint probabilities 
of observed outcomes of both the individuals. Such pairings are enumerated across all pairs of 
observed outcomes within each individual as well as across the two individuals (please see Section 
2 of the online supplement for the notationally intensive details: 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Spatial_GHDM/online_supplement.pdf).  

 


