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ABSTRACT 

This paper proposes a new spatial multivariate count model to jointly analyze the traffic crash-

related counts of pedestrians and bicyclists by injury severity. The modeling framework is 

applied to predict injury counts at a Census tract level, based on crash data from Manhattan, New 

York. The results highlight the need to use a multivariate modeling system for the analysis of 

injury counts by road-user type and injury severity level, while also accommodating spatial 

dependence effects in injury counts.  

 

Keywords: Multivariate count data, spatial econometrics, crash analysis, composite marginal 

likelihood. 
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1. INTRODUCTION 

The continued dependence of individuals on motorized automobiles for transportation, along 

with rapid population growth, has led to increasing traffic congestion in most urban areas in the 

U.S. (see Schrank et al., 2011). While several strategies are being considered to alleviate the 

increasing urban traffic congestion, many metropolitan planning organizations (MPOs) have 

started to invest in non-motorized mode infrastructure to promote the use of walking and 

bicycling modes (Pucher et al., 1999, Metropolitan Transportation Commission, 2009, Southern 

California Association of Governments, 2012). In addition to reducing traffic congestion, the 

promotion of these transportation modes can also offer ancillary benefits to society in terms of 

improved health, better air quality, energy independence, and enhanced quality of life (see 

Pucher et al., 2010 and Gotschi and Mills, 2008). However, even as MPOs look to the promotion 

of non-motorized modes of travel, it is illustrative to note that, according to the 2009 National 

Household Travel Survey (NHTS), non-motorized modes accounted for only 11.9% of all 

weekday trips, and 0.9% of total weekday person travel mileage. On the other hand, many cities 

in Europe and other nations boast substantially higher non-motorized shares in terms of trips and 

mileage (Bassett et al., 2008).  

The higher non-motorized mode shares in Europe and other nations may be attributable 

to many factors, including higher built environment density, expensive gas and auto ownership 

costs, and better land-use mix. But another important factor in travel mode choice decisions is 

safety from traffic crashes. In fact, studies have now established that safety from traffic crashes 

is a key determinant of a person’s mode choice decision (see Winters et al., 2010 and Sener et 

al., 2009). In this context, Beck et al. (2007) have found that, relative to passenger vehicle 

occupants, bicyclists and pedestrians in the U.S. are 2.3 and 1.5 times, respectively, more likely 

to be fatally injured on a given trip. In cross-country comparisons, Pucher and Dijkstra (2003) 

found that, after controlling for travel exposure in terms of mileage, U.S. pedestrians (bicyclists) 

are about 3 times (2 times) as likely to get killed in traffic accidents as German pedestrians 

(bicyclists) and over 6 times (3 times) as likely to be killed as Dutch pedestrians (bicyclists). In 

another more recent study at a metropolitan area level (rather than a national level that can mask 

risk variation within countries), McAndrews (2011) observed that the risk of a fatal traffic crash 

injury for pedestrians in San Francisco is 4.1 times higher than for pedestrians in Stockholm, 

while the corresponding figure is 1.7 for bicyclists. Overall, these studies clearly reveal the 
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underperformance of the U.S. in terms of pedestrian and bicyclist safety relative to other 

advanced economies. At an absolute level, about 4280 pedestrians and 618 bicyclists were killed 

in traffic accidents in the year 2010 in the U.S., constituting 15% of all fatalities that year 

(National Highway Traffic Safety Administration or NHTSA, 2012) while non-motorized mode 

mileage comprises only 0.9% of total travel mileage.  

To summarize, the promotion of non-motorized modes of transportation should involve, 

as one essential element, an understanding of the risk factors associated with pedestrians and 

bicyclist-related injuries. This can allow the identification of high risk crash environmental 

settings and inform the design of appropriate transportation policy countermeasures. 

Accordingly, there have been several efforts in the past that focus on modeling the frequency of 

non-motorized crashes as a function of relevant built environment and socio-economic 

indicators. In this paper, we contribute to this literature by formulating a multivariate model to 

jointly analyze, at a “neighborhood” level, the count of pedestrians and bicyclists involved in 

traffic crashes by injury severity sustained. The spatial unit we use to characterize a 

“neighborhood” is the Census tract. We do so because the more disaggregate spatial units 

(roadway street segment, intersection, Census block, and Census block group) can routinely 

experience zero pedestrian and bicyclist-related crashes for multiple years at a stretch, which 

reduces the variability of the count variables across such disaggregate spatial units and decreases 

our ability to tease out the risk factors associated with pedestrian and bicyclist crash 

involvement. The use of the more aggregate Census tract level avoids these problems, while also 

representing a reasonably homogenous spatial unit of an urban area (see Delmelle et al., 2011). 

Besides, the Census directly provides socio-economic data at the level of the Census tract, 

facilitating analysis at this spatial scale.1  

Two important issues are of significance in the current research. First, the reason for our 

emphasis on the count of pedestrians and bicyclists injured by severity level is to acknowledge 

that accident costs vary substantially by severity level (see Wang et al., 2011). Second, the 

multivariate model proposed in this paper recognizes many econometric issues at once: (a) It 

acknowledges the count nature of the number of injuries, (b) it conveniently addresses excess 

                                                            
1 Note also that the count variable used in our model corresponds to the number of pedestrian and bicyclist injuries 
by injury severity level within a Census tract, not the number of crashes within a Census tract by the most severe 
level of injury incurred by a pedestrian or bicyclist in the crash. The latter approach would not appropriately 
consider situations where multiple non-motorized individuals are injured (and to different levels) in a single crash. 
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zeros (or any other excess count value for that matter) within a multivariate count setting, (c) it 

accommodates the potential presence of unobserved Census tract factors that can lead to 

dependence, within the  Census tract, in the risk propensities for the different road-user type-

injury severity combinations (road-user, in our analysis, may be pedestrians or bicyclists), and 

(d) it considers spatial dependence effects across Census tracts that are likely to be present 

because of the spatial nature of the analysis.  

The rest of this paper is structured as follows. Section 2 presents an overview of the 

relevant earlier literature and positions the current study. Section 3 presents the model structure 

and estimation procedure. Section 4 describes the study area, data source and important sample 

characteristics. Section 5 presents the empirical estimation results and their implications for 

reducing non-motorized user injury severity in crashes. Finally, Section 6 concludes the paper.  

 

2. EARLIER STUDIES AND THE CURRENT PAPER 

Several methodological challenges arise when modeling crash frequency-related data (see Lord 

and Mannering, 2010 for a good review). The focus of the current paper is on addressing two 

specific methodological challenges that lead to the proposed spatial multivariate count model. 

 

2.1 Modeling Count Data by Type 

Crash data include information on the individuals who are hurt and the level of injury sustained 

by each individual (typically in such categories as no injury, possible injury, non-incapacitating 

injury, incapacitating injury, and fatal injury). At an aggregate level of a Census tract, one can 

then obtain, over a specific time period, the number of pedestrians and bicyclists involved in 

traffic crashes by injury severity level.  This leads to a multivariate count system within each 

Census tract because of the presence of unobserved Census tract factors that (1) influence the 

risk propensity for a specific injury severity level across both pedestrian and bicyclist injuries 

(for instance, motorists within a certain Census tract may have an unaccommodating attitude 

toward sharing the road with non-motorists, which may increase the risk of fatal injuries for both 

pedestrians and bicyclists - for future reference, we will label such unobserved factors as type a 

unobserved factors), (2) intrinsically increase or decrease the propensity for pedestrian injuries 

across all injury levels (for example, the absence of sidewalks in a Census tract may lead to a 

general increase in risk propensity for pedestrians across all injury levels), (3) intrinsically 
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increase or decrease the propensity for bicyclist injuries across all injury levels (for example, 

discontinuous bicycle paths in a Census tract may lead to a generic increase in risk propensity for 

bicyclists that permeates across all injury levels (we will label the unobserved factors 

corresponding to (2) and (3) as type b unobserved factors), and (4) impact the overall propensity 

of non-motorized injuries (for instance, because of a generally high propensity to use non-

motorized modes in a Census tract; we will label the unobserved factors corresponding to (4) as 

type c unobserved factors).  

There have been two commonly used approaches in the literature to formulate and 

estimate multivariate count data models. One common approach has been to use multivariate 

versions of the Poisson or negative binomial discrete distributions (see, for example, Ladrón de 

Guevara et al., 2004, Buck et al., 2009, and Bermúdez and Karlis, 2011 for applications of these 

methods). Such multivariate count models have the advantage of a closed form, but they become 

cumbersome as the number of correlated counts increases (see Herriges et al., 2008 for a 

discussion). A second common approach is to use a mixing structure, in which one or more 

(typically) normally distributed random terms are introduced in the parameterization of the 

expected value of the discrete distribution (so that the expected value is not only a function of 

exogenous variables, but also includes one or more additive random terms within the 

exponentiation). If the same error term enters in the means of multiple count variables, this 

generates correlation (see Chib and Winkelmann, 2001, Lee et al., 2006, Park and Lord, 2007, 

Aguero-Valverde and Jovanis, 2009, El-Basyouny and Sayed, 2009 and Chiou and Fu 2012 for 

examples of such an approach). However, it is difficult in these mixing approaches to account for 

excess zeros (Lee et al. 2006, Alfò and Maruotti, 2010, Herriges et al., 2008). Furthermore, these 

mixing approaches require rather cumbersome and time consuming simulation estimation 

approaches (Müller and Czado, 2005, Aguero-Valverde and Jovanis, 2006, and Ver Hoef and 

Jansen, 2007 for discussions).  

Another important point is that extending the multivariate approaches just discussed to 

accommodate spatial dependency becomes impractical, if not literally infeasible.  

 

2.2 Spatial Dependency Effects 

Spatial dependency is important to recognize because of the mapping of crash locations to spatial 

units of analysis, such as Census tracts in the current paper. In the spatial analysis literature, the 
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two workhorse specifications to capture spatial dependencies are the spatial lag and the spatial 

error specifications (Anselin, 1988). The spatial lag specification, in reduced form, allows spatial 

dependence through both spatial spillover effects (observed exogenous variables at one location 

having an influence on the dependent variable at that location and neighboring locations) as well 

as spatial error correlation effects (unobserved exogenous variables at one location having an 

influence on the dependent variable at that location and neighboring locations). The spatial error 

specification, on the other hand, assumes that spatial dependence is only due to spatial error 

correlation effects and not due to spatial spillover effects. The spatial error specification is 

somewhat simpler in formulation and estimation than the spatial lag model. While these spatial 

specifications have been used primarily in the case of a continuous dependent variable, the past 

decade has seen increasing use of these spatial specifications for non-linear discrete choice 

models. The specifications are similar to the linear models, except that they are now applied to 

the latent continuous propensity variables underlying the observed discrete variable. However, 

the spatial lag and spatial error specifications saw little use in the context of count models until 

Castro, Paleti, and Bhat (2012) (CPB for short in the rest of this paper), who showed that even 

count models can be recast in the form of an underlying latent continuous variable framework 

(so that the spatial specifications can again be applied to the latent continuous propensity 

variables). Before CPB, a common approach was to map the count variable into an approximate 

continuous variable (typically also applying a log-transformation to ensure positive predictions, 

and sometimes also normalizing by an exposure measure to obtain crash rates or taking ratios of 

different types of crashes), and then apply well-established estimation methods developed for 

continuous models. Examples of such efforts in the safety literature include LaScala et al. 

(2000), Quddus (2008), Ha and Thill (2011), and Delmelle et al. (2011). While useful, these 

efforts may be viewed as approximations, since they generate “continuous” variables from 

underlying count data. Especially as the focus shifts from modeling total crashes to total crashes 

by injury severity type and/or road-user type, the count data will show less variation (and a 

preponderance of zero counts), rendering the approximation in the translation to a continuous 

variable more inappropriate. It is, therefore, no surprise that none of the studies listed above that 

use this “continuous” transformation method consider crashes by type, instead focusing on total 

crashes.  
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Another alternative approach to incorporate spatial dependency in count models in the 

past has been to use a conditional autoregressive (CAR) or a joint prior on a spatial random 

effect term that is introduced multiplicatively in exponential form in the parameterization of the 

expected value of the discrete distribution for the count variable. The resulting model is 

estimated using Bayesian hierarchical methods. Examples of such efforts include Miaou and 

Song, 2005, Aguero-Valverde and Jovanis, 2006, 2010, Mitra, 2009, Wang et al., 2011, Siddiqui 

et al., 2012). Unfortunately, this approach (which is essentially a mixing approach of the type 

discussed in the previous section, except with the mixing undertaken over space) can be difficult 

as the number of spatial units increases, and extending the approach to modeling crashes by type 

is extremely challenging (if not impractical). Besides, this approach considers spatial error 

correlation effects, but not a spatial spillover effects. 

 

2.3 The Current Paper 

In the current paper, we recognize and retain the count nature of the number of pedestrian and 

bicyclist injuries by injury severity level. In doing so, we address the multivariate nature of the 

counts within a Census tract. In addition, we also simultaneously recognize spatial lag 

dependency effects across Census tracts. To our knowledge, this is the first paper to develop 

such a spatial multivariate count model in the literature. The approach we use is based on 

recasting the basic count model as a special case of a generalized ordered-response (GOR) 

model, as proposed by CPB. The likelihood function for the resulting model is analytically 

intractable, and simulation approaches are of little use. To overcome this issue, we use a 

composite marginal likelihood (CML) inference approach that is simple to implement and is 

based on evaluating lower-dimensional marginal probability expressions. 

The proposed model is applied to examine, at the spatial level of a Census tract, the 

number of pedestrian and bicyclist injuries by injury severity level. An important aspect of 

modeling crash frequency is to identify a measure to quantify the exposure to crash risk. In the 

current context, an appropriate exposure measure of crash risk within a Census tract is the 

number of pedestrian/bicyclist miles of travel and motorized vehicle miles of travel. More often 

than not, however, these exposure measures are difficult to obtain or construct accurately. So, it 

is common in the literature to use surrogate exposure measures such as population density 

(LaScala et al., 2000), income (Loukaitou-Sideris et al. 2007), land-use (Loukaitou-Sideris et al., 
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2007, Ha and Thill, 2011), road-network characteristics (Ha and Thill, 2011), and activity 

intensity characteristics (Mitra and Washington, 2012). This approach, which is akin to a 

reduced-form approach, has the advantage that exposure is internalized in the system, and so it is 

possible to identify Census tracts that are likely to have a high number of crashes based purely 

on the readily available Census tract demographic factors and built environment characteristics. 

We use this approach in the current study to accommodate exposure effects.  

The data for our analysis is drawn from a bicyclist and pedestrian crash database maintained 

by New York City (see Section 4 for details on how the data was assembled). Several groups of 

Census tract-based risk factors are considered in our analysis based on earlier research, including 

(1) socio-demographic characteristics (such as population density, proportions of the population 

by age, income, and race/ethnicity), (2) land-use and road network characteristics, (3) activity 

intensity characteristics, and (4) commute mode shares and transit supply characteristics.  

 

3. METHODOLOGY 

3.1 Model Formulation 

Let q (q = 1, 2,…, Q), j (j = 1, 2,…J), and s (s = 1, 2,…., S) be indices for observation units 

(Census tracts in our analysis), type of non-motorized user injured (pedestrian or bicyclist), and 

injury severity level sustained by the non-motorized road-user, respectively, where Q is the total 

number of observation units in the sample, J is the total number of types of non-motorist road-

users (J=2 in our empirical analysis, with j=1 representing pedestrians and j=2 representing 

bicyclists), and S is the number of injury severity levels.2 Let qjsm  be the observed count of road-

users of type j injured at severity level s within the qth observational unit over a predefined time 

period (we considered a time period of one year for the empirical analysis in this paper; note also 

that qjsm  may take a value in the range from 0 to )∞ . Next define a latent risk propensity for 

injury at severity level s for road-user type j in observation unit q as *
qjsy . Then, consider the 

following structure for *
qjsy  in the GOR representation for count models (see CPB):  

* *

1

Q

qjs qq q js q qs qj q qjs
q

y w y u vδ ω ε′ ′
′=

′= + + + + +∑ jsb x

 

 qjsqjs my =  if ,,
*

1, qjsqjs mqjsqjsmqjs y ψψ <<−  (1) 

                                                            
2 The number of severity levels may vary across different non-motorized road-user types. However, for notation 
simplicity, we assume the same number of severity levels across both pedestrian and bicyclists. 
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where 'qqw  is the usual distance-based spatial weight corresponding to spatial units q  and 'q  

(with '
'

0 and 1qq qq
q

w w= =∑ ) for each (and all) ,   (0 1)q δ δ< <  is the spatial autoregressive 

parameter, qx  is a )1( ×K  column vector of exogenous variables (excluding a constant), and 

jsb is a corresponding )1( ×K  column vector capturing the effects of the exogenous vector qx  on 

the latent risk propensity *
qjsy .3 The error terms in Equation (1) are as follows: (1) the qsω  term 

captures unobserved spatial unit-specific factors that affect the propensity of injury of severity 

level s for all road-users (bicyclists and pedestrians; these are the type a factors discussed in 

Section 2.1); qsω  is assumed to be a realization from a univariate normal distribution with 

variance 2
sπ , (2) the qju  term captures unobserved spatial unit-specific factors that impact the 

propensity of injury for road-user type j (corresponding to the type b factors in Section 2.1); qju  

is assumed to be a realization from a univariate normal distribution with variance 2
jτ , (3) the qν  

error term captures unobserved factors specific to spatial unit q that impact the overall propensity 

of non-motorized injuries (corresponding to the type c factors in Section 2.1); qν  is assumed to 

be a realization from a univariate normal distribution with variance 2σ , and (4) the qjsε  term 

captures unobserved spatial unit-specific factors that influence the propensity of injuries of type s 

for road-user type j; this term is assumed to be independent and identically standard normal 

distributed across road-user types, severity levels, and spatial units.4  

The thresholds in Equation (1) take the following form: 

,if,0, ,
! ,,0,

0

1
, jsqjsLjsmjsqjsmjs

m

l

l
qjs

mqjs Lme
l

e
jsqjsqjs

qjs
qjs

qjs
>===+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ= ′

=

−− ∑ αααλα
λ

ψ λ qjszγ   (2) 

where 1−Φ  is the inverse function of the univariate cumulative standard normal, 

, 1  =   andqjs q, j  s.ψ − − ∞ ∀ (this restriction is needed for identification, given the parameterization 

of the thresholds; see CPB), qz  is a vector of exogenous variables (including a constant) 

associated with observation unit q (there can be common variables in qz  and qx ), jsγ  is a 

                                                            
3 Some explanatory variables may not be important for specific road-user and/or severity levels. This situation is 
accommodated within our notation system by letting the corresponding elements in the vector jsb be equal to zero.  
4 The scale of the qjsε  term is normalized to one for identification.  
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corresponding coefficient vector to be estimated for road-user type j and severity level s, and 

jsL is an appropriate count level that may be determined based on the empirical context under 

consideration and empirical testing. Of course, as in the typical ordered-response framework, the 

values of , qjsjs mα should be such that the ordering condition on the thresholds 

....)( 2,1,0, <<<<−∞ qjsqjsqjs ψψψ  is satisfied. While this can be guaranteed using a 

reparameterization (of the type suggested in Greene and Hensher, 2010, page 109 and Eluru et 

al., 2008), the ascending nature of the first component of the threshold and its size relative to the 

qjsmjs,α values guaranteed the ordering conditions on the overall threshold values. This is a result 

we have also observed in several other applications of our recasting of the count model (similar 

to the lack of a need to explicitly constrain the thresholds in a simple ordered-response model). 

At the same time, the presence of the , qjsjs mα term provides flexibility to accommodate high or 

low probability masses for specific count outcomes without the need for using hurdle or zero-

inflated mechanisms that can become cumbersome when dealing with multivariate counts.  

The GOR framework for count models, as just discussed, not only provides useful 

computational benefits to accommodate statistical, econometric, and spatial considerations, but 

may also be motivated from an intuitive standpoint for count data in a manner similar to that for 

ordinal data. For example, in our empirical context, consider the count of pedestrian fatalities 

(the following discussion is applicable to all road-user type-injury severity level combinations, 

but we focus on pedestrian fatalities simply for illustration). The interpretation of the GOR 

framework is that there is a latent “long-term” (and constant over a certain time period) risk 

propensity *
14qy  of a pedestrian (j=1) in Census tract q being involved in a crash leading to death 

(s=4, since the pedestrian injury severity categories in our empirical analysis are “possible” 

injury, “non-incapacitating injury”, “incapacitating injury”, and “fatal” injury). This “long-term” 

propensity may be impacted by such Census tract-specific variables as population density (a 

higher population density can be viewed as a surrogate measure of pedestrian street exposure, as 

well as high traffic levels, leading to higher pedestrian fatalities) and commute mode share of 

pedestrians (for similar reasons as the effects of population density). These variables would then 

get manifested in the qx  vector. On the other hand, there may be some specific Census tract 

characteristics (embedded in qz ) that may dictate the likelihood of a pedestrian being fatally 
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injured in a crash at any given instant of time for a given long-term crash propensity *
14qy . For 

instance, a high proportion of commercial or residential land-use in a tract may lead to higher 

levels of distraction and/or pre-occupation among drivers around these land-uses (relative to 

around open and recreational land-uses). In this situation, the effect of the high proportion of 

commercial or residential land-use is to increase the “instantaneous” likelihood of a crash 

resulting in a pedestrian being fatally injured. This risk-to-outcome translation effect (which we 

will also refer to as the “threshold” effect) is relatively localized, and separate and different from 

the effects that these same variables may have to increase the long-term risk propensity of 

pedestrian injuries (due to higher pedestrian activity and exposure in and around areas with high 

levels of commercial or residential development). Further, the GOR framework in Equation (1) 

accommodates spatial dependency in counts through spatial lag (“spillover”) effects and spatial 

correlation effects in the “long-term” latent crash propensity, not through the elements that affect 

the localized and “instantaneous” translation of the propensity to whether or not a pedestrian 

injury occurs at any given time (and, therefore, not the threshold elements that affect the 

mapping of the latent propensity to the observed count outcome).  

 

3.2 Model Estimation 

To proceed forward, we first write the equation system in (1) compactly. To do so, define the 

following (S×1) vectors of vertically stacked propensities, count outcome indices, observed 

count outcomes, and combined error terms * ( )qj q qj qs qjsv uη ω ε⎡ ⎤= + + +⎣ ⎦ ; )...,,,( **
2

*
1

* ′= qjSqjqjqj y  . y yy , 

) ..., . , ,( 21 ′= qjSqjqjqj yyyy , ) ..., . , ,( 21 ′= qjSqjqjqj mmmm , and ) ..., . , ,( **
2

*
1

* ′= qjSqjqjqj ηηηη .  Also, define 

additional vectors and matrices: ])(,...,)(,)(,)[( **
3

*
2

*
1

* ′′′′′= qJqqq yyyyyq  (JS×1 vector), 

])(,...,)(,)(,)[( 321 ′′′′′= qJqqq yyyyyq  (JS×1 vector), ) ..., , , ,( 321 ′′′′′= qJqqqq mmmmm  (JS×1 vector), 

) ..., , , ,( 321 ′′′′′= qJqqqq ηηηηη  (JS×1 vector), ])(,...,)(,)(,)[( **
3

*
2

*
1

* ′′′′′= Qyyyyy  (QJS×1 vector), 

])(,...,)(,)(,)[( 321 ′′′′′= Qyyyyy  (QJS×1 vector), ) ..., , , ,( 321 ′′′′′= Qmmmmm  (QJS×1 vector), 

), ..., , , ,( 321 ′′′′′= Qηηηηη  (QJS×1 vector), )...,,,,( 321 ′′′′′= jSjjjj     bbbbb  (SK×1 vector),  

)...,,,,( 321 ′′′′′= J    bbbbb  (JSK×1 vector), qq xIx ′⊗= JS
~

  (JS×JSK matrix; JSI  is an identity matrix 
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of size JS), and )~,...~,~,~(~ ′′′′′= Q321 xxxxx  (QJS×JSK matrix). Collect all the weights 'qqw  into a row-

normalized spatial weight matrix .W  With these definitions, Equation (1) may be re-written as: 

  ηbxyIWy ** ,  ~ )(  ++⊗= JSδ  (3) 

After further matrix manipulation to write *y in reduced form, we obtain: 

( )[ ] .    where,~  1−⊗−=+= JSQJS δ IWICCη  bxCy*  (4) 

The reduced form above should make it clear that the spatial lag specification implies both a 

spillover effect (because the C  matrix applies to the matrix x~  of observed exogenous variables) 

as well as a pure error correlation effect (as captured by the C  matrix operating on the η  

vector). The spatial error specification, on the other hand, captures only the latter effect. The 

expected value and variance of *y  may be obtained from the above equation after developing the 

covariance matrix for the error vector η. To do so, note that the error vector η  is distributed 

multivariate normal with a mean vector of zero and covariance matrix ⊗QI Λ  (of size 

QSJ×QSJ), where Λ  is the covariance matrix implied by the common error components in the 

elements of the error vector  η. Finally, we obtain ),(~ ΣΒy*
QTMVN , where 

 and .Q⎡ ⎤= = ⊗⎣ ⎦B Cxb Σ C I Λ C'  (5) 

The parameter vector to be estimated in the model is ( , , , , )δ=θ b' γ' α' μ' '  where α  is a column 

vector obtained by the vertical stacking of the , ( 0,  1,  2,  ... )js r qsr Lα =  parameters across 

severity levels and road-user types, and μ  is a column vector obtained by vertically stacking the 

elements SJ πππτττσ and,...,,,,..,, 2121 . The likelihood function for the model is: 

( )
*

* *( ) ( | , ) ,
y

QJS
D

L P dφ= = = ∫θ y m y B Σ y   (6) 

where  

} ..., ,2 ,1 , ..., ,2 ,1 , ..., ,2 ,1  ,:{  ,
*

)1 ,(
*

* SsJjQqyD
qjsqjs mqjsqjsmqjsy

===∀<<= − ψψy  and 

),|(. ΣΒQJSφ  is the multivariate normal density function of dimension QJS (with mean B  and 

covariance matrix Σ), m is a QJS×1 - vector of observed count outcomes. The integration 

domain *yD  is simply the multivariate region of the elements of the *y  vector determined by the 

observed vector of count outcomes. The dimensionality of the rectangular integral in the 
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likelihood function is QSJ.  Existing estimation methods including the Maximum Simulated 

Likelihood (MSL) method and the Bayesian Inference method become cumbersome and 

encounter convergence problems even for moderately sized Q, J, and S (Bhat et al., 2010). The 

alternative is to use the composite marginal likelihood (CML) approach. In the current study, we 

use the pairwise composite marginal likelihood method based on the product of the likelihood 

contributions from pairs of count observations across all combinations of spatial units, road-user 

types, and severity levels. To write this function, define the following vectors: 
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In the above expression, [ ]g
ϑ  represents the thg  element of the column vector ,ϑ  and similarly 

for other vectors. [ ]gg′
Σ  represents the thgg  element of the matrix Σ . The CML estimator is 

obtained by maximizing the logarithm of the function in Equation (7).  

Under usual regularity assumptions, the CML estimator of θ is consistent and 

asymptotically normally distributed with asymptotic mean θ  and covariance matrix given by the 

inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005, and Bhat, 

2011). To ensure the constraints on the autoregressive term δ , we parameterize it as 

( )1/ 1 expδ δ⎡ ⎤= +⎣ ⎦ . Once estimated, the δ  estimate can be translated back to an estimate of δ . 

 

3.3 Model Selection 

For the purpose of comparing two nested models estimated using the CML approach, one can 

use the adjusted composite likelihood ratio test (ADCLRT) statistic, which is asymptotically 
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chi-squared distributed similar to the likelihood ratio test statistic for the maximum likelihood 

approach. The reader is referred to Pace et al. (2011) and Bhat (2011) for details regarding the 

computation of the ADCLRT test statistic. 

 

4. STUDY AREA DESCRIPTION AND DATA 

The crash data used in this paper has been obtained from the CrashStat website, which is the 

result of a project undertaken by the New York City’s (NYC) Transportation Alternatives 

organization The CrashStat website maintains geo-coded data for crashes involving bicyclists 

and pedestrians over several years, with the latest year being 2009. The data was compiled using 

crash reports from local reporting agencies, including the New York Police Department and the 

New York State Department of Motor Vehicles (for details on how the data was compiled and 

processed, please refer to http://crashstat.org/sites/default/files/about/CrashStat3 GIS 

Documentation.pdf). 

In addition to the CrashStat data, we used other data sources to obtain the land-use, 

demographic, and network information of the Census tracts (which is the spatial unit of analysis 

used in this study). Specifically, we obtained (a) the socio-demographic information from the 

2010 Census data and the American Community Survey five-year estimates, (b) the land-use and 

road network variables from the 2009 zoning district maps and the street network map of the 

NYC Department of City Planning (NYC-DCP) for the Manhattan region, (c) the activity 

intensity variables from the tax lot details and the selected facilities and program sites data of 

NYC-DCP and (d) the commute mode shares and transit supply variables from the American 

Community Survey five-year estimates and the New York Metropolitan Transportation Council 

(NYMTC) data. The 2010 TigerLine shape files were used to aggregate the data from these data 

sources to the Census tract level. All the geographic data processing was accomplished using 

ArcGIS 10.0 and the open source Geospatial Modeling Environment (see: 

http://www.spatialecology.com/gme/). 

 

4.1 Sample Formation and Description 

Bicycle and pedestrian crashes that occurred in the year 2009 in Manhattan constitute the sample 

used for the analysis in this study. The injury severity of each non-motorized road-user in a crash 

was recorded on a four point ordinal scale: (C) possible injury, (B) non-incapacitating injury, (A) 
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incapacitating injury and (K) fatal injury. For our analysis, all crashes in 2009 involving non-

motorized road-users within the limits of Manhattan were extracted from the CrashStat database, 

and were mapped to one of 285 Census tracts.5 The counts of pedestrians and bicyclists injured 

per crash by severity level were next aggregated up to the Census tract level, to obtain the count 

of bicyclists and pedestrians injured by severity level in each of the 285 Census tracts. Across all 

Census tracts, the sample included a total of 2512 injured pedestrians and 845 injured bicyclists 

(the term “injured” as used here includes fatally injured individuals). 

The distribution of the number of injured non-motorists by injury severity level (across 

all Census tracts in Manhattan) is presented in Table 1. For both pedestrians and bicyclists, the 

dominant injury types are “possible” and “non-incapacitating” injuries, with a lower share of 

“possible” injuries and higher share of “non-incapacitating” injuries for bicyclists relative to 

pedestrians. This is to be expected because of the speed of travel of bicyclists. In the category of 

“fatal” injuries, Table 1 reveals that there were no fatal injuries recorded amongst crash-involved 

bicyclists in Manhattan in 2009. However, there were 39 pedestrians killed in roadway crashes 

during the same period, reinforcing the higher density of pedestrian movement in Manhattan (in 

the nation as a whole, the number of bicyclist fatalities in roadway crashes was 15% of the 

number of pedestrian fatalities; see NHTSA, 2012). Overall, 1.2% of non-motorized users 

involved in a roadway crash were fatally injured in Manhattan, according to the CrashStat 

database (see Table 1, last column and penultimate row). In comparison, 4% of non-motorized 

users involved in a roadway crash were fatally injured in the nation as a whole, according to the 

NHTSA. The general skew toward less serious injury severity levels for both bicyclists and 

pedestrians in Manhattan may be attributed to high traffic congestion levels and consequent low 

motorized vehicle speeds. For example, according to the New York City (NYC) Department of 

Transportation, the speed of an average taxicab is 7.7 mph for the Midtown area of Manhattan 

(NYCDOT, 2010). Also, Manhattan has a high number of pedestrians and bicyclists due to its 

dense development. So, it is possible that a “safety in numbers” situation is at play, wherein the 

                                                            
5 Manhattan is divided into 288 Census tracts. However, we excluded three Census tracts from the analysis, 
corresponding to Liberty Island, Governor’s Island, and Randall’s and Ward’s Islands. Of these, the first two tracts 
are primarily tourist attractions and recorded zero residential populations. Randall’s and Ward’s Islands, which 
together constitute one Census tract, predominantly consist of parks and public facilities (such as the Manhattan 
Psychiatric Center and the Kirby Forensic Psychiatric Center), with limited public access and residential 
populations. Also, all these three Census tracts recorded zero bicycle and pedestrian crashes in 2009. 
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injury severity risk faced by pedestrians or bicyclists decreases as the number of pedestrians or 

cyclists increases (see Bhatia and Wier, 2011).  

We next examine the sample distributions of non-motorized injuries by Census tract. The 

total number of non-motorized individuals injured during the year in traffic crashes per Census 

tract in Manhattan varied between 0 and 48, with an average of about 12 injuries per Census 

tract. Figures 1a-1d present the distribution (across Census tracts) of the count of pedestrian 

injuries alongside that of bicyclist injuries for different injury severity levels in the study area for 

the year 2009. Several observations may be made from the figures. First, and as expected, there 

is a preponderance of Census tracts with zero count values for each road-user type-injury 

severity level. Further, for the possible injury severity level in particular, we also observe local 

spikes at non-zero count values. Such count accumulations (or inflations) in discrete probability 

mass are easily accommodated in our proposed model using the threshold parameters α . Second, 

it is clear from the figures that the count range and the distribution pattern of injuries across 

Census tracts varies substantially by road-user type as well as severity level, confirming the need 

to study injury counts by road-user type and severity level rather than pooling all injuries 

together.  

Figure 2 is a thematic map displaying the total number of non-motorized injuries in each 

Census tract. The obvious spatial clustering in Figure 2 in the number of non-motorized injuries 

reinforces the notion that spatial dependency effects are likely to be at play when modeling 

injury counts at the Census tract level (or at any other unit of space). 

Table 2 presents the sample characteristics of the 285 Census tracts.6 The average area of 

a Census tract is 19.7 x 104 sq. meters, though Table 2 indicates a wide variation, which also 

manifests itself in the population density variable. Further, an extensive analysis of the 

descriptive statistics for the socio-demographic variables in the study area with the 

corresponding national statistics indicates a more racially diverse, relatively affluent and highly 

educated population in Manhattan relative to the country as a whole, though there is a huge 

variation in the population characteristics across tracts within Manhattan.  

Among the land-use and road network variables, the proportion of land-use in a specific 

type of development is computed as the ratio of the tract land area in that specific type to the 
                                                            
6 Many variables in Table 2 did not turn out to be statistically significant in our final empirical model; however, 
these variables are included in Table 2 to provide a sense of the variables considered in our analysis as well as for 
completeness in characterizing the study area.  
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total tract land area. The New York City zoning regulations govern these designations of 

permitted land-use. The statistics for the land-use variables in Table 2 show that the land-use in 

the Census tracts of Manhattan is predominantly residential (an average proportion of 0.57) and 

commercial (an average proportion of 0.30), with some tracts being completely invested in 

residential or commercial land-uses. The road network variables are constructed as the ratio of 

the total length of a specific road type in the Census tract to the total length of the road 

carriageway (including bicycle lanes and trails) in that Census tract.  As can be observed from 

Table 2, the Manhattan Census tracts have a very high proportion of local neighborhood roads 

and city streets.  

The activity intensity variables are included to proxy the intensity of non-motorized 

travel in the Census tracts. The number of schools in the Census tract refers to the total number 

of elementary, middle and high schools (both public and private) present in the tract. The number 

of Universities is the number of post-secondary degree granting institutions in the Census tract. 

The park area shows substantial variation across counties. The last two variables in this category 

of variables, the intensity of office activity and the intensity of retail activity, are computed as the 

ratio of total floor space allocated for office use and retail use, respectively, to the total land area 

of the Census tract. This serves as a measure of the extent to which office and retail activities are 

concentrated in a Census tract.7 There is clear evidence of high office activity in the Manhattan 

Census tracts, which is to be expected as Manhattan is the nerve center for many financial 

institutions. The intensity of retail activity is modest in comparison.  

The commute mode share and transit supply variables toward the end of Table 2 reveal 

the high transit and walk mode shares in the region. The final statistic in Table 2 provides 

information on the Euclidean distance between centroids of Census tracts, which is used as the 

metric to characterize spatial proximity when constructing spatial weight matrices. The average 

inter-Census tract distance is 3.78 miles, with a minimum of 0.09 miles and a maximum of 13.15 

miles (the maximum distance corresponds roughly to the length of the line from Battery Park at 

the southern tip of Manhattan to the Marble Hill neighborhood at the northernmost end of 

Manhattan; see Figure 2). 

 

                                                            
7 In cities such as Manhattan, the net floor area in, for example, office activity in a Census tract can be more than the 
land area of the Census tract (because of the vertical build-up). Thus, the intensity measures can be higher than 1 
(the land-use measures previously discussed, however, are confined to the 0-1 range). 
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5. EMPIRICAL ANALYSIS 

5.1 Variables Considered 

We considered all the variables listed in Table 2 for the analysis, and several variable 

specifications and functional forms for the variables, in the process of arriving at the final model 

specification. Many of the Census tract variables (such as age and race/ethnicity distribution, 

educational attainment, land-use type distribution, roadway type distribution, and commute mode 

share) were introduced as categorical variables. Several other Census tract variables (total area, 

median household income, population density, area of parks, and intensity of office and retail 

activity) were introduced in a continuous form (for the total area, population density and median 

household income, we also considered a logarithmic transformation; such a transformation could 

not be considered for the other continuous variables because these other variables did take the 

value of zero for some Census tracts. In addition, spline effects of the continuous variables as 

well as dummy variables created from the continuous variables were considered to introduce 

non-linearities. Other variables (number of schools and universities, number of bus stops, and 

number of subway stops) were introduced as is, in the form of exogenous count variables. All the 

above variables were introduced in both the latent variable and threshold specifications.  

The variables retained in the final model specification are based on their statistical 

significance and intuitive explanatory power. Overall, the results suggest that there are 

substantial differences in the factors that impact the number of injured non-motorists across 

road-users as well as across injury severity levels. 

We also examined several alternative specifications for the construction of the spatial 

weights. These included inverse of distance, inverse square of distance, inverse of exponential 

distance, contiguity based weight matrices, and weights based on k-nearest neighbors. At the 

end, the inverse of distance specification offered the best fit, and is the one retained in all results 

presented in the next section. 

 

5.2 Estimation Results 

We estimated three different model formulations –  

(1) Independent flexible count (FC) model - A set of seven independent models – one for 

each combination of non-motorized road-user type and injury severity 
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(2) Joint flexible count (JFC) model - A joint model allowing for cross-correlation effects 

among the count variables based on the error components in Equation (1), but no spatial 

correlation 

(3) Spatial joint flexible count (SJFC) model - A spatial joint model allowing auto-regressive 

spatial dependency as well as cross- correlation effects 

Table 3 presents the estimation results. Estimation results for the SJFC Model alone is presented 

here due to space constraint. 8   

 

5.2.1 Pedestrian Injury Model Component 

5.2.1.1 Long Term Injury Risk Propensity 

The variable effects in Table 3a suggest that Census tracts with a high population density have a 

high risk propensity for fatal pedestrian injuries. This is a manifestation of a pedestrian exposure 

effect on the street network. In particular, regions with high residential population density are 

known to be, in general, areas of low income and relatively good transit service, leading to a 

substantial fraction of walk trips. In addition to an exposure effect, this result could also be a 

result of a social deprivation effect due to relatively poor cross-walk and pedestrian facilities. 

Several earlier studies have found a similar effect of population density on total pedestrian 

crashes (see, for example, Ha and Thill, 2011). However, our study, which partitions injuries by 

severity level, indicates that this effect of population density is particularly disturbing, because of 

the loading on fatal pedestrian injuries (with no impact on the number of pedestrian injuries at 

lower severity levels). There is a suggestion that the quality and availability of pedestrian 

facilities, and more generally, access facilities, in dense urban areas have to be reviewed and 

evaluated carefully, both from a traffic safety standpoint and from an environmental justice 

standpoint (see Lyons et al., 2008). The result above is reinforced by the next finding that tracts 

with a large proportion of Hispanic population appear to be particularly at risk for pedestrian 

injuries at all severity levels except for fatal injuries (where it has no effect) (see also Loukaitou-

Sideris et al., 2007).9 The socio-demographic variable effects in Table 3a also indicate that tracts 

                                                            
8 In these sections, the base categories for the categorical explanatory variables correspond to those not listed in the 
tables.  
9 There was multicollineraity among the Census tract-level socio-demographic variables of population density, 
proportion of minority populations, median household income, and percent below poverty level. At the end, the best 
specification was achieved with the first two variables in the long term risk propensity, and the median household 
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with a high proportion of the population 14 years of age or below have a lower long term risk 

propensity of experiencing pedestrian injuries at the non-incapacitating and fatal injury severity 

levels (as also observed by LaScala et al., 2000). Further, a high proportion of teenagers in the 

age group of 15-19 years decreases the long term risk propensity of pedestrian injuries at all 

severity levels except the incapacitating injury level. These effects may be related to an exposure 

effect, where tracts with a high share of children and teenagers generate fewer walking trips and 

walking mileage (presumably related to the general reluctance of parents to allow children to 

walk due to safety and security concerns; see Sidharthan et al., 2011). Finally, within the set of 

socio-demographic variables, Table 3a reveals the strong impacts of education level on 

pedestrian risk propensity. While education levels have seldom been included in earlier studies 

(but see LaScala et al., 2000), our results indicate a lower risk propensity of fatal pedestrian 

injuries, and “possible” pedestrian injuries in tracts with a high proportion of adults (age 18 years 

and above) with a bachelor’s degree or higher. These education-related effects may be capturing 

another dimension of exposure (for instance, individuals with low education are more likely to 

be blue collared field workers, who are then exposed more to roadway hazards), or may be a 

reflection of higher safety awareness and consciousness levels among highly educated 

individuals. While the reasons for the influence of education, as provided above, are admittedly 

speculative, they do suggest the importance of the education dimension in the 4Es of safety - 

engineering, enforcement, education and emergency medical services - as identified by the 

Federal Highway Administration (FHWA, 2006) and highlight the need for conducting 

educational campaigns to promote safe pedestrian and roadway practices across the region and 

particularly in areas with low education levels.  

Among the land-use and road network variables, four variables turned out to be 

statistically significant (at the 0.1 level or lower). Interestingly, each of these variables had an 

impact on injury risk propensity for only one of the four possible injury severity levels, strongly 

supporting the count analysis of pedestrian injuries by injury severity level (as opposed to 

modeling the count of total pedestrian injuries regardless of severity level). Table 3a shows a 

high risk propensity of non-incapacitating pedestrian injuries in tracts with a high proportion of 

commercial land-use, presumably a reflection of higher levels of walking in and around 

                                                                                                                                                                                                
income in the threshold effects discussed in the next section. The “percent below poverty level” variable turned out 
to be statistically insignificant after accommodating the other three variables.  
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commercial land-uses (this is also consistent with the results of Loukaitou-Sideris et al., 2007). 

The road network variable effects indicate the lower risk propensity for non-incapacitating 

pedestrian injuries in tracts with a high proportion of highways and local neighborhood 

roads/city streets, relative to tracts with a high proportion of other road-way types (driveways, 

alleys, etc.) (perhaps capturing the heightened pedestrian alertness levels on roadways with high 

automobile volumes), though there are no effects of these network variables on pedestrian 

injuries for other severity levels. The effect of the final network variable, “proportion of bicycle 

lanes and trails”, indicates the benefits of providing exclusive non-motorized mode use facilities 

to reduce pedestrian injuries.  

The influence of the activity intensity and the “walk commute mode share” variables are 

all as expected, and indicate the heightened long term risk propensity for injuries of various 

severity levels caused by increased pedestrian activity.  

 

5.2.1.2 Threshold Parameters 

The threshold parameters include the threshold specific constants (
jsLjsjsjsjs ,2,2,1, ,...,, αααα  

values), as well as the parameters associated with the γ  vector (see Equation 2). The threshold 

specific constants do not have any substantive interpretations. However, their presence provides 

flexibility in the count model to accommodate high or low probability masses for specific 

outcomes (after controlling for the effect of other exogenous variables). In the pedestrian models, 

our analysis indicated no need for these flexibility terms for all injury severity categories except 

for the possible injury category (consistent with the initial observations from Figure 1a). The 

elements in the γ  vector are presented next in Table 3a. The constants within the γ  vector for 

the four injury severity levels do not have any particular interpretation. For the other variables, a 

positive coefficient shifts all the thresholds toward the left of the injury propensity scale, which 

has the effect of reducing the probability of the zero injury outcome (increasing the overall 

probability of the non-zero outcome). A negative coefficient, on the other hand, shifts all 

thresholds toward the right of the injury propensity scale, which has the effect of increasing the 

probability of the zero injury outcome (decreasing the overall probability of the non-zero 

outcome; see CPB). The results in Table 3a indicate that high median household income Census 

tracts tend to have a higher observed level of non-zero pedestrian non-incapacitating injuries 

than other Census tracts, for the same level of long-term risk propensity of such injuries, an 
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observation that needs more research to tease out the precise relationship between income levels 

and pedestrian injuries by severity level. High proportions of commercial, industrial, and 

residential land-uses (relative to open and recreational land-uses) in a tract also lead to an 

increase in non-zero count values for incapacitating pedestrian injuries, perhaps for the reasons 

identified in Section 3.1. Finally, the effects of the remaining variables reflect the higher 

likelihood of non-zero “non-incapacitating” injuries in tracts with many schools, a reduction in 

incapacitating injuries in tracts with a high transit commute mode share (perhaps due to the 

consequent reduction of motorized vehicle trips), and an increase in the count of non-zero 

“possible” injuries in tracts with a high walk commute mode share.  

 

5.2.2 Bicyclist Injury Model Component 

For the bicyclist injury component of the model system, only three severity levels are 

considered: possible injury, non-incapacitating injury, and incapacitating injury. This is because, 

as discussed in Section 4.1, there were no bicyclist fatalities in any of the Census tracts in 

Manhattan in the year 2009.  

 

5.2.2.1 Long Term Injury Risk Propensity 

Among the socio-demographic variables, Census tracts with a high proportion of teenage 

populations aged 15 to 19 years of age have a low long term risk propensity for non-

incapacitating and incapacitating injuries. This is similar to the result found for the case of 

pedestrian injuries. This reduction in non-incapacitating and incapacitating injuries may be 

attributable to the New York State law that requires NYC bicyclists under 13 years of age to 

wear a state approved helmet (Lee et al., 2005, Kim et al., 2007). Because of the helmet law 

enforcement at a young age, it is possible that teenage bicyclists continue to use a helmet and 

bicycle more safely. However, a more in-depth causal analysis needs to be undertaken before a 

definitive connection can be drawn between helmet use and the fewer number of bicyclist 

injuries. 

The effects of the land-use and road network variables in Table 3b reveal a high risk 

propensity of non-incapacitating bicyclist injuries in tracts with a high proportion of commercial 

and industrial land-use, likely attributable to the higher levels of bicycling in and around 

commercial and industrial land-uses. Also, the presence of bicycling lanes and trails greatly 
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decreases the long-term risk propensity of incapacitating bicyclist injuries. This is intuitive, 

because of the resulting separation of motorized and bicycle traffic. Interestingly, however, the 

presence of bicycling lanes and trails does not affect the risk propensity for injuries at other 

severity levels. The results also indicate the exposure-related positive effects of the number of 

schools, office intensity, and park area in the tract on the long term risk propensity for “possible” 

injuries.  

In the group of the commute mode share and transit supply variables, there is a 

heightened long term risk propensity for non-incapacitating bicyclist injuries in tracts with a high 

walk commute mode share, presumably caused by generally higher bicyclist activity in zones 

with high walk commute mode share (the bicycling commute mode share, which would have 

been a more direct measure, was almost zero in the Census tracts in Manhattan; however, the 

walk commute mode share can be viewed as a surrogate measure of overall bicycling activity). 

Finally, Census tracts with a high percentage of workers who telecommute have a high risk 

propensity for “possible” and “non-incapacitating” bicyclist injuries. There is some evidence in 

the literature that telecommuting generates new short distance non-motorized trips during the 

middle parts of the day and in the evening (Andreev et al., 2010). Such non-motorized trips 

would lead to an exposure-triggered higher bicyclist risk propensity.  

 

5.2.2.2 Threshold Parameters 

Among the effects of the land-use and road network variables, two turned out to be statistically 

significant. High proportions of commercial and industrial land-uses, and high retail intensity, in 

a Census tract lead to an increase in non-zero count values for the “possible” bicyclist injury 

category.  

 

5.2.3 A Summary of Results and Implications 

The results in the previous few sections provide several important general planning insights. 

First, socio-demographics appear to be much more of an influencing factor for the count of 

pedestrian injuries of all severity levels than for the count of bicyclist injuries. This is intuitive, 

since socio-demographics may be viewed, in part, as being proxy measures of exposure. In this 

context, pedestrian travel is generally dictated by the lack of availability of other modes of travel 

(which is related to demographics), while bicycle travel is more associated with a choice-based 
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decision mechanism wherein bicycling is pursued for exercise and recreation (Xing et al., 2010, 

Coogan et al., 2007) Overall, Census tracts with a high population density, high proportion of 

Hispanic residents, high proportion of the population over 19 years of age, and with low 

education levels are particularly vulnerable to pedestrian injuries. As indicated earlier, this could 

be an exposure result, but could also be related to discrimination across neighborhoods in the 

level of non-motorized mode facility planning and investment. There is a clear need to continue 

to emphasize environmental justice considerations in traffic engineering and project 

planning/prioritization. Second, as anticipated in Section 3.1, the results for both pedestrian and 

bicyclist injuries indicate the particularly strong influence of land-use variables through the 

threshold effects, reinforcing the notion that distraction and pre-occupation among motorized 

drivers around commercial, industrial, and residential land-uses (relative to open and recreational 

land-uses) are issues of concern. At the same time, Census tracts with high built-up commercial 

and industrial land-use have a high long-term risk propensity of non-motorized injury (due to an 

exposure effect caused by higher pedestrian and bicycling activity). A similar situation applies to 

Census tracts with high office and retail intensity. Overall, there appears to be a situation of 

“dangerous convergence” where distraction and pre-occupation combine with high non-

motorized mode activity, suggesting the institution of information campaigns (and enforcement 

mechanisms) to ensure that motorized vehicle drivers, and non-motorized mode users, are 

particularly vigilant and avoid cell phone use and related distraction activities in densely built-up 

areas. Third, the results unequivocally underscore the need to invest in non-motorized mode 

infrastructure as a precursor to any actions directed toward increasing the share of non-motorized 

modes for the commute. That is, transportation policy actions that attempt to increase non-

motorized mode use through mixed land-use development or road pricing strategies, without 

concurrent investment in improved non-motorized mode facilities, are likely to be unsuccessful 

on three counts: (a) safety is a consideration in mode choice decisions (see Section 1), and there 

will be less traction in increasing non-motorized mode use without a clear information campaign 

on the safety investments being made to reduce non-motorized user safety risk, (b) any increase 

in non-motorized mode use in response to mixed land-use or pricing actions (notwithstanding the 

earlier comment) will lead to a higher count of non-motorized mode user injuries in general, and 

fatal pedestrian injuries in particular, if the status quo is maintained in terms of non-motorized 

mode infrastructure (as per our estimation results), and (c) those “financially-challenged” 
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segments of the population who may turn to non-motorized modes to avoid additional financial 

burden (in response to actions such as road pricing, even without investment in non-motorized 

facilities) become more exposed to injury risk, reinforcing what already appears to be 

environmental justice problems in the planning process. On the other hand, investment in non-

motorized mode facilities, such as investment in bicycle lanes and trails, when undertaken in 

concert with other demand management actions, addresses the three obstacles just identified. 

More generally, our results underscore the need to carefully consider safety issues when 

exploring demand management actions, even those demand management actions that may appear 

to be innocuous from a safety standpoint. For example, our estimation results suggest an increase 

in bicyclist injuries as the telecommuting share increases. Finally, the presence of schools and 

universities increases the long term risk propensity of injuries, even though limited to only the 

less severe injury categories, emphasizing the need for the continuation of federal programs such 

as the Safe Routes to School program (U.S. Department of Transportation or USDOT, 2005).  

 

5.2.4 Error Components and Spatial Effects 

Table 3c provides the estimates of the error components and spatial parameters. The variances of 

the error components generate cross-correlations among the injury counts by road user type and 

injury severity level. Among the parameters sπ  of the error terms qsω  (see Sections 2.1 and 3), 

only 1π  turned out to be statistically significant, suggesting the presence of Census tract-specific 

unobserved factors that impact the long-term risk propensity of the “possible injury” severity 

level for both pedestrians and bicyclists. In the set of sτ  parameters, only 2τ  of error term 2qu  
appears in the final specification, indicating Census tract-specific unobserved factors impacting 

pedestrian injury risk at all severity levels. The standard deviation σ  of the error term qv  is 

positive and statistically significant, reflecting the presence of common Census tract-specific 

unobserved factors that affect the risk propensity for all types of injuries at all severity levels. 

Overall, the results demonstrate the importance of considering a multivariate count modeling 

approach rather than estimating independent and univariate count models for each road-user 

type-injury severity level combination.  

The spatial autoregressive parameter δ  in the final spatial lag formulation is also highly 

statistically significant, with a positive value of 0.486. This result supports the hypothesis that 
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the number of non-motorized injuries in a Census tract is not just a function of its characteristics, 

but is also influenced by the observed factors (such as retail intensity, land-use type, and road 

network characteristics) and unobserved factors (such as county regulations, unobserved design 

features, and driving attitudes of the people in the neighborhood) of spatially proximate Census 

tracts. As we will demonstrate in Section 5.3, ignoring these spatial effects can substantially bias 

the estimated effects of exogenous variables on the count of injuries.  

  The spatial joint flexible count model (SJFC) is superior to both the joint flexible count 

model (JFC) model and the independent flexible count model (FC), as should be evident from 

the statistically significant spatial lag autoregressive parameter and other error components in 

Table 3c. Another way to demonstrate these improvements is by undertaking the adjusted 

composite likelihood ratio test or ADCLRT (see Bhat, 2011). The ADCLRT statistic for the 

comparison between the SJFC and JFC models is 7.07, which is greater than the critical chi-

squared value corresponding to one degree of freedom even at the 0.01 level of significance. 

Similarly, the ADCLRT statistic for the comparison between the SJFC model and the FC model 

is 427.29, which is higher than the critical chi-squared table value corresponding to four degrees 

of freedom at any reasonable level of significance. 

 

5.3 Aggregate Elasticity Effects 

The estimated model parameters in Table 3, and discussed in Section 5.2.1, do not directly 

provide the magnitude of impact of variables on injury frequency. In this section, we compute 

the aggregate-level “elasticity effects” from the SJFC models for selected variables (we focus 

only on the SJFC model, and only on selected variables, to focus the presentation and conserve 

on space). The variables selected are based on the discussion in Section 5.2.3, and include the 

following: (1) population density, (2) proportion of Hispanic population, (3) proportion of 

commercial land-use, and (4) proportion of bicycle lanes and trails. For each variable, the 

“elasticity” computed is a measure of the percentage change in total injury count (for each road-

user type-injury severity level combination) across the entire study region (see Appendix A for 

details). To compute the aggregate level “elasticity effect” of population density, we increase the 
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population density of each tract by 20%. For the remaining variables, we increase the proportion 

by 0.2 for each Census tract.10  

The elasticity effects for the SJFC model (along with their t-statistics) are presented in 

Table 4. The first entry in the second row of the table indicates that an increase in the proportion 

of the Hispanic population by 0.2 in a tract would, on average, result in about a 24.9% increase 

in the tract in the annual count of “possible injury” pedestrian injuries, while the second entry in 

the same row indicates a 54.3% increase in the annual count of “non-incapacitating” pedestrian 

injuries. Other entries may be similarly interpreted. The results indicate the statistical 

significance of all the implied elasticity effects. Further, three other important observations may 

be made. First, it is obvious that each variable can have quite different impacts on the counts of 

injuries based on road-user type and injury severity level, highlighting the potential pitfalls of 

using an aggregated total non-motorized injury count as the dependent variable. Second, the 

elasticity effects combine the effects of variables on both the long-term risk propensity as well as 

the threshold parameters. Thus, the effect of commercial land-use on the expected number of 

“possible” and “incapacitating” pedestrian injuries originates from the threshold effect, while its 

effect on the expected number of “non-incapacitating” injuries originates from the long-term risk 

propensity effect (which goes to reinforce our observations in 5.2.1). Third, we also computed 

the elasticity effects for the simple FC model that ignores the jointness of counts (in the number 

of injuries by road-user type and severity level) and spatial dependence. In general, the elasticity 

effects from the SJFC model are higher in magnitude than those from the FC model, a 

consequence of the “spillover” effects in the SJFC model that causes a spatial multiplier effect.11 

Specifically, a change in a variable in one Census tract influences the injury count in other 

Census tracts that then has a circular ripple impact back on the initial Census tract. The FC 

model ignores such spatial spillover effects because it considers the injury count in one Census 

                                                            
10 Strictly speaking, we should modify other proportions within appropriate groups of variables. For example, the 
sum of all land-use proportions after increasing the proportion of commercial land-use by 0.2 should continue to 
remain at 1.0 for each tract; this may be easily achieved by drawing away from each non-commercial land-use in 
direct proportion to the current distribution of each non-commercial land-use share in the tract. However, doing so 
makes it difficult to isolate the impacts of the variables under study because of the changes in other variables too. 
So, we follow a more straightforward approach to assess the impact of each proportion variable by simply increasing 
its value by 0.2. 
11 For the few cases where the FC model has a higher elasticity magnitude, the corresponding variable effect is 
through the thresholds and not through the long-term risk propensity variable that contributes to the spillover effect. 
Population density is the only exception, and the higher FC elasticity for this variable is because of the logarithmic 
transformation used for this variable.   
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tract to be independent of injury counts in other Census tracts. The result can be quite different 

estimates of variable effects. For instance, a 0.2 increase in the proportion of bicycle lanes and 

trails in a tract, as per the FC model, would result in only a 38% (67%) decrease in pedestrian 

(bicycle) non-incapacitating injury counts. In contrast, the SJFC model in Table 4 indicates a 

62% (89%) decrease in pedestrian (bicycle) non-incapacitating injury counts. This, and other 

similar results for other variables, underscores the potentially misinformed investments in crash-

related injury reduction countermeasures if jointness across counts of different types and/or 

spatial dependencies are ignored. 

 

6. CONCLUSIONS 

This paper has proposed a new econometric approach to specify and estimate a model of non-

motorized injury frequency. It is based on the recasting of count models as a special case of a 

generalized ordered-response (GOR) framework, which then conveniently allows for the 

accommodation of zero inflation, cross-correlation, and spatial dependency in spatial 

multivariate count model systems. A composite marginal likelihood inference approach is used 

to estimate the model parameters. To our knowledge, this is the first such formulation of a spatial 

multivariate count model in the literature.  

The paper has modeled the number of pedestrian and bicycle injuries by injury severity 

level in the Census tracts within Manhattan, New York. The empirical results highlight the need 

to (1) differentiate injury counts by road-user type as well as injury severity level, (2) use a 

multivariate modeling system for the analysis of injury counts by road-user type and injury 

severity level, rather than estimating independent univariate count models for each road-user 

type-injury severity level combination, and (3) accommodate a spatial lag structure to 

accommodate dependence effects in injury counts across space. Accommodating these important 

econometric considerations is not simply an esoteric scholarly issue, but has very real 

implications for accurately capturing variable effects, for predictive ability, and for informed 

decision-making.  

From a substantive standpoint, Census tracts with a high population density, minority 

population groups, low education levels, and high built-up density are particularly vulnerable to 

pedestrian and bicycle injuries. This suggests a need to examine environmental justice 

considerations in non-motorized mode facility provision, as well as consider information 
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campaigns (and enforcement mechanisms) to encourage motorized vehicle drivers, and non-

motorized mode users, to exercise particular caution and avoid distraction when driving in 

densely built-up areas. Our results also underscore the need to invest in non-motorized mode 

infrastructure and improve non-motorized road-user safety as a precursor to implementing travel 

demand management actions (such as mixed land-use development and road pricing) directed 

toward promoting non-auto mode use.  
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Figure 1a: Distribution of percentage of Census tracts associated with each count of 
possible pedestrian injuries alongside possible bicyclist injuries 

 
 
 

 

Figure 1b: Distribution of percentage of Census tracts associated with each count of non-
incapacitating pedestrian injuries alongside non-incapacitating bicyclist injuries



35 

 
Figure 1c: Distribution of percentage of Census tracts associated with each count of 

incapacitating pedestrian injuries alongside incapacitating bicyclist injuries 
 
 
 

 
Figure 1d: Distribution of percentage of Census tracts associated with each count of fatal 

pedestrian injuries alongside fatal bicyclist injuries 
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Figure 2: Thematic map of non-motorized injuries aggregated to Census tracts 



37 

 
 
 
 
 
 

Table 1: Distribution of Number of Injured Non-Motorists by Injury Severity Level 
 

Injury Severity  Pedestrian Bicyclist All Non-Motorists 

Possible injury 1700 67.7% 502 59.4% 2202 65.6% 

Non-Incapacitating injury 523 20.8% 259 30.7% 782 23.3% 

Incapacitating injury 250 10.0% 84 9.9% 334 9.9% 

Fatal injury 39 1.5% 0 0.0% 39 1.2% 

Total 2512 100.0% 845 100.0% 3357 100.0% 
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Table 2: Descriptive Statistics of Census Tracts (285 Observations) 

Variable Minimum Maximum Mean Std. Dev. 
Socio-Demographic Variables     

Total area in square meters (scaled by 10000) 4.13 293.99 19.70 19.67 
Population density (population per sq-meter) 0.00* 0.08 0.03 0.02 

Race/Ethnicity Variables     
Proportion of non-Hispanic White population 0.00 0.91 0.48 0.30 
Proportion of non-Hispanic Black and African American population 0.00 0.81 0.15 0.20 
Proportion of non-Hispanic Asian population 0.00 0.88 0.12 0.13 
Proportion of Hispanic population  0.00 1.00 0.23 0.23 
Proportion of all other non-Hispanic population 0.00 0.05 0.02 0.01 
Percent below poverty level 0.00 0.54 0.18 0.13 

Age Distribution     
Proportion of population aged 14 years and below 0.00 0.24 0.12 0.05 
Proportion of population aged 15-19 years 0.00 0.50 0.05 0.05 
Proportion of population aged 20-29 years 0.00 0.67 0.21 0.10 
Proportion of population aged 30-64 years 0.15 0.82 0.49 0.07 
Proportion of population aged 65 years and above 0.00 0.37 0.13 0.07 

Educational Attainment Distribution     
Proportion of population 18 years and above without high school degree 0.00 0.51 0.15 0.15 
Proportion of population 18 years and above with high school degree 0.00 0.44 0.14 0.09 
Proportion of population 18 years and above with some college or associate's degree 0.00 0.63 0.17 0.07 
Proportion of population 18 years and above with Bachelor's degree or higher 0.05 1.00 0.54 0.26 
Median household income (scaled by $10,000) 0.98 23.28 7.28 4.21 

Land-use and Road Network Variables     
Land-use type Distribution     

Proportion of commercial land-use 0.00 1.00 0.30 0.32 
Proportion of industrial land-use 0.00 0.96 0.07 0.17 
Proportion of residential land-use 0.00 1.00 0.57 0.35 
Proportion of other land-uses (vacant lots, open space, recreational etc.) 0.00 0.95 0.06 0.15 

Roadway Type Distribution     
Proportion of highways  0.00 0.78 0.02 0.07 
Proportion of local neighborhood roads and city streets 0.22 1.00 0.91 0.14 
Proportion of bicycle lanes and trails 0.00 0.40 0.03 0.07 
Proportion of other road types (alleys, driveways etc.) 0.00 0.45 0.04 0.11 

Activity Intensity Variables     
Number of schools 0.00 10.00 1.81 1.94 
Number of universities 0.00 5.00 0.15 0.50 
Park area in US Acres 0.00 7.06 0.06 0.44 
Intensity of office activity 0.00 9.57 0.79 1.72 
Intensity of retail activity 0.00 1.62 0.18 0.24 

Commute Mode Shares and Transit Supply     
Mode Share Distribution     

Drive alone 0.00 0.23 0.07 0.04 
Shared ride 0.00 0.17 0.02 0.02 
Transit 0.00 0.91 0.57 0.15 
Walk 0.00 1.00 0.22 0.15 
Telecommuting 0.00 0.38 0.06 0.04 
Other modes (taxicab, motorcyclist etc.) 0.00 0.39 0.06 0.04 

Transit Supply     
Number of bus stops 0.00 60.00 8.03 5.95 
Number of subway stops 0.00 6.00 0.49 0.81 

Distance between Centroids of Census Tracts (miles) 0.09 13.15 3.78 2.52 

* All Census tracts had a non-zero value of population density. But the value of this variable for some Census tracts is very low (of the order 
0.001 or lower), and so the minimum is listed as 0.00.
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Table 3a: Model Estimation Results for Pedestrian Injuries 

(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

Injury Severity Possible Non-
Incapacitating Incapacitating Fatal 

Parameters Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

 Long Term Risk Propensity               
Socio-Demographic Variables               

Population density (logarithmic)           0.152 8.45 
Proportion of Hispanic population  1.552 14.21 1.788 9.15 0.745 4.26     
Proportion of population aged 14 and below   -4.283 -4.93     -1.956 -12.47 
Proportion of population between ages 15-19 -0.035 -12.26 -0.044 -8.38     -0.083 -9.36 
Proportion of population 18 years and above 
with Bachelor's degree or higher -2.782 -12.04         -2.271 -21.79 

Land-use and Road Network Variables               
Proportion of commercial land-use   1.099 7.78         
Proportion  of highways   -3.305 -6.03         
Proportion local neighborhood roads and city 
streets   -0.944 -4.99         

Proportion of bicycle lanes and trails       -2.741 -3.28     
Activity Intensity Variable               

Intensity of office activity       0.136 3.28     
Number of schools 1.143 11.12             
Number of universities   0.181 2.87         

Commute Mode Shares and Transit Supply               
Walk commute mode share   1.169 3.50     2.275 26.79 

Threshold Parameters               
Threshold Specific Constants               

α4 -0.075 -4.87             

α5 -0.245 -11.66             

α11 -0.255 -9.13             
 γ Vector                

Constant 1.238 20.19 0.990 4.26 -1.223 -3.88 1.043 7.28 
Socio-Demographic Variables               

Median household income   0.030 5.12         
Land-use and Road Network Variables               

Proportion of commercial land-use 0.781 22.04     1.073 3.11     
Proportion of industrial land-use       1.668 4.35     
Proportion of residential land-use       1.112 3.41     

Activity Intensity Variable               
 Number of Schools   0.421 5.93         

Commute Behaviors and Transit Supply               
Transit commute mode share       -0.972 -2.88     
Walk commute mode share 1.065 13.23             
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Table 3b: Model Estimation Results for Bicyclist Injuries 
(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

Injury Severity Possible Non-Incapacitating Incapacitating 

 Parameter Estimate t-stat Estimate t-stat Estimate t-stat 

Long Term Risk Propensity       
Socio-Demographic Variables       

Proportion of population between ages 15-19   -0.044 -4.87 -0.023 -1.81 
Land-use and Road Network Variables       

Proportion of commercial land-use   0.591 2.19   
Proportion of industrial land-use   0.872 3.25   
Proportion of bike lanes and trails     -4.228 -3.48 

Activity Intensity Variable       
Number of schools 1.515 3.74     
Intensity of office activity 0.128 2.50     
Park area in US acres 0.655 18.85     

Commute Behaviors and Transit Supply       
Walk Commute mode share   1.148 1.73   
Telecommuting share 7.074 6.77 2.755 1.74   

Threshold Parameters       
Threshold Specific Constants       

α2     -0.219 -3.79 
α3     -0.433 -6.08 
α4   -0.486 -4.78   
α5   -0.877 -4.79   

γ Vector        
Constant -1.693 -26.79 -1.239 -2.81 -0.908 -3.99 

Land-use and Road Network Variables       
Proportion of commercial land-use 1.121 5.21     
Proportion of industrial land-use 1.901 8.59     

Activity Intensity Variable       
Retail Intensity     0.507 2.59 
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Table 3c: SJFC Model: Additional Parameters and Summary Statistics 
(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

 Estimate t-stat 

Error Components   

1π  – S.E. of error linked with “possible 
injury” injuries in a Census tract 

1.041 21.31 

2τ  – S.E. of error linked with pedestrian 
injuries in a Census tract 

0.421 2.45 

σ  – S.E. of error linked with individual 
Census tract 

0.597 5.67 

δ  (spatial correlation parameter) 0.486 8.01 

Number of observations 285 

Number of parameters estimated 59 

Log-composite likelihood at convergence -1694396.25 
 



42 

 

 

 

Table 4: Aggregate-Level Elasticity Effects of SJFC Model  

Variable 

Pedestrian Bicyclist 

Possible Non-
Incapacitating Incapacitating Fatal Possible Non-

Incapacitating Incapacitating 

Elasticity t-stat Elasticity t-stat Elasticity t-stat Elasticity t-stat Elasticity t-stat Elasticity t-stat Elasticity t-stat 

Population density 0.00 - 0.00 - 0.00 - 8.68 2.98 0.00 - 0.00 - 0.00 - 

Proportion of Hispanic 
population 24.85 6.31 54.33 3.54 24.76 3.82 0.00 - 0.00 - 0.00 - 0.00 - 

Proportion of 
commercial land-use 16.33 17.37 32.19 3.70 17.33 2.72 0.00 - 11.83 4.07 18.92 0.53 0.00 - 

Proportion of bicycle 
lanes and trails 0.00 - 0.00 - -61.66 -4.12 0.00 - 0.00 - 0.00 - -89.41 -6.97 
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APPENDIX A: Procedure to Predict the Expected Count Values for each Census Tract 

The expected value of injury count in Census tract q for each road-user type j and injury severity 

level s may be written as:  

,)()( ∑
∞

=

⋅==
0k

qjsqjs kkyPyE   (8) 

where )( kyP qjs =  is the probability of occurrence of k injuries of type j and injury severity level 

s in Census tract q. Although the summation in the equation above extends until infinity in our 

count model, we consider counts only up to k = 25 in our prediction procedure (this value 

represents the maximum count of injuries across Census tracts and across combinations of road-

user type and injury severity level in the estimation sample, corresponding to the possible injury 

severity level for pedestrian injuries; see Figure 1a). Beyond the count value of 25, the 

probabilities are very close to zero and hence do not have any significant impact on the predicted 

value. The expected value in Equation (8) is a function of the (QSJ×1) matrix of exogenous 

variables for all Q Census tracts, ),...,,,( 321 ′= Qxxxxx , as well as a function of the variable 

vector qz  embedded in the thresholds in Equation (2). 

The estimate of )( kyP qsj =  in Equation (8) for the FC model is obtained from Equation 

(1) in a fairly straightforward manner. For the JFC model, we need to accommodate the effects 

of the error covariances across different severity levels and road-user types within a Census tract, 

and, for the SJFC model, we also need to consider the spatial dependency effects across Census 

tracts. To estimate )( kyP qsj =  in these models, we simulate the QSJ×1 – vector *y , from 

Equation (4), five hundred times using the estimated values of δ , b, and the QSJ×1 – vector η . 

Subsequently, we compare each of the 500 draws of the thq  element of *y  with the 

corresponding thresholds for the thq  element from Equation (2), and assign the count value for 

each of the 500 draws based on this comparison. The share of each count prediction is taken 

across the 500 draws to estimate )( kyP qsj = .12  

                                                            
12 The predictions were not sensitive to the number of draws beyond about 400 draws, and so we settled on 500 
draws.  


