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ABSTRACT 
Ranking data provide important additional information related to valuation because of the implied 
preference sequence among all alternatives, rather than just the top choice preference. This 
additional information from a preference ranking can be exploited to achieve a certain desired 
precision in choice model estimation with a much smaller sample size, making ranked data surveys 
much more cost-effective than first-choice surveys. In this paper, we propose a spatial rank-
ordered probit (SROP) model that accommodates both spatial lag effects as well as spatial drift 
effects. To our knowledge, this is the first such formulation and application of an SROP model in 
the econometric and transportation literature. An application of the proposed model is 
demonstrated in a travel mode choice ranking experiment among seven alternatives, including 
autonomous vehicle (AV) private ride-hailing and AV pooled ride-hailing.  
 
Keywords: Ranked data analysis, probit models, spatial econometrics, travel mode choice, 
autonomous vehicles.   
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1. INTRODUCTION 
In consumer surveys involving choice situations, the first-choice (“the most preferred alternative”) 
approach is the most common method to elicit preference information from respondents. However, 
more information regarding consumer preferences can be extracted if the individuals are asked to 
rank alternatives based on a preference ordering, instead of being asked to pick only the most 
preferred one. In particular, the additional information from a preference ranking can be exploited 
to achieve a certain desired precision in choice model estimation with a much smaller sample size, 
making ranked data surveys more cost-effective than first-choice surveys.  

In spite of the promising theoretical efficiency of the rank-ordered model over first-choice 
models, the rank-based method continues to remain in the backseat as a tool for preference 
elicitation, especially when compared to the substantial methodological advancement and 
empirical implementation over the past three decades in the single-choice framework.  This 
predilection toward first-choice models may be primarily attributed to the conception that ranked 
data are not very reliable because of the cognitive demands placed on respondents in ranking 
several alternatives. In particular, several studies in the past (for example, Chapman and Staelin, 
1982, Foster and Mourato, 2002, and Hausman and Ruud, 1987) have raised concerns about the 
reliability of the rankings provided among the less-preferred alternatives, citing the inability of 
individuals to clearly distinguish between the utilities of alternatives lower down in the preference 
ordering. These studies illustrate that, when using the rank-ordered logit (ROL) model proposed 
by Beggs et al. (1981), which is the most commonly used structure for analyzing rank-ordered 
data, the coefficient estimates attenuate toward zero as one goes down the rank sequencing 
hierarchy (the decision among lower ranked alternatives is also referred to as the decision at higher 
“rank depth” or “explosion depth”). This attenuation has been ascribed to an increasing variance 
of the kernel extreme-value error term at higher rank depth, and has been taken as evidence that 
individuals are more precisely able to form their utilities for alternatives and translate those utilities 
into an equivalent choice at higher levels of rankings than at lower levels of ranking. Or, 
equivalently, that individual responses at lower ranking levels are not reliable, calling into question 
the veracity of using ranking data (relative to traditional first-choice data) as a means to collect 
individual responses (see, for example, Caparros et al., 2008 and Scarpa et al., 2011).  

In contrast to the generally prevailing notion that ranking data are inherently unreliable, 
Yan and Yoo (2014) used simulations and analytical computations to show that the attenuation of 
parameter estimates at higher rank depth is specific to the ROL model, which explodes the rank-
ordering decision framework into sequential pseudo-choice decisions. In doing so, the ROL model 
completely ignores the fact that individuals become decreasingly able, in a systematic sense, to 
discriminate among the alternatives at higher rank depth, incorrectly interpreting this systematic 
discrimination difficulty as a higher error variance (which then leads to the attenuation of 
coefficients toward zero at higher rank depths). But this attenuation-associated limitation is 
specific to the use of the type-1 extreme value error term for the utilities in the ROL model, and 
does not, in general, extend to models that use any other (even independent and identically 
distributed or IID) error distribution. In this context, as Nair et al. (2019) point out, it is by far 
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much more appropriate to use normal error terms (even if only IID) for the utilities of alternatives 
in the analysis of ranked data, resulting in the rank-ordered probit (ROP) model.1 Besides, the ROL 
maintains independence across the utilities of the ranked alternatives, which can be relaxed in the 
ROP model.  

Even as the field is moving more toward embracing ranking data through the use of the 
ROP model, there continues to be a rapidly increasing interest in recognizing and incorporating 
spatial dependency among decision-makers. Such spatial inter-relationships engender a stochastic 
dependence in choice across individuals, and is inspired by Tobler’s (1970) first law of geography 
that: “Everything is related to everything else, but near things are more related than distant things.” 
(see also LeSage and Pace, 2009, Anselin, 2010, Arbia, 2014, Moscone and Tosetti, 2014, Bhat, 
2015, Franzese et al., 2016, and Elhorst et al., 2016; Billé and Arbia, 2019 provide a good recent 
review). In this spatial econometrics field, the workhorse spatial formulation continues to be the 
spatial lag structure that allows spatial spillover effects due to both observed and unobserved 
factors. However, much of this focus on spatial/social dependency has been confined to traditional 
first-choice discrete models. In fact, we are unaware of a spatial/social model in the context of 
rank-ordered models. Also to be noted is that, even within the context of spatial first-choice 
discrete models, the use of normal kernel error terms (leading to a binary/multinomial probit 
framework) in the utility function is ubiquitous, because of the conceptual ease in allowing spatial 
dependence through a single autoregressive parameter and generating global spatial dependency 
effects through the use of the very desirable properties of a multivariate normal distribution.  

In this paper, we propose a methodological framework for a spatial ROP model and 
illustrate its effectiveness in empirical implementation. The estimation of the proposed model is 
undertaken using the maximum approximate composite marginal likelihood (MACML) inference 
approach proposed by Bhat (2011, 2014). Relative to several other full-information methods in the 
literature to accommodate spatial dependency in the single-choice context, including the recursive 
importance sampling (RIS) estimator (see Beron and Vijverberg, 2004) and the Bayesian Markov 
Chain Monte Carlo (MCMC)-based estimator (see LeSage and Pace, 2009), the MACML 
approach involves a much lower dimensionality of integration (of the order of twice the number 
of alternatives minus one rather than the product of the number of observational units times the 
number of alternatives minus one). Also, unlike Generalized Method-of-Moment (GMM) type 

                                                 
1 If the error terms of the utility of alternatives do not follow a type 1 extreme value distribution (even still assuming 
independently and identically distributed (IID) error terms across alternatives), the probability of a ranking pattern 
can no longer be written as the product (across rank depths) of the probabilities of choosing the most preferred 
alternative among the unranked alternatives at each rank depth. That is, for any generic distribution (even maintaining 
IID) of the error terms, except for the type 1 extreme value (as maintained in the ROL model), the probability of 
selecting an alternative at a rank level must be conditioned on the ordering of alternatives that have already been 
ranked. This immediately diminishes the coefficient instability pattern that is manifested across rank depths in the 
ROL. More specifically speaking, the difference between the ROP and ROL models for ranking data is not the same 
as the difference between a multinomial probit model and a multinomial logit model in the context of first-choice data 
analysis, but substantially more dramatic; conceptually speaking, the ROL model is an “impossible” structure for 
ranking data analysis, based on Luce and Suppes’s (1965) impossibility theorem (Theorem 51, page 357). In other 
words, this is another way to state that the ROL is an “impossible” structure for ranking data and should be avoided 
(see also Schechter, 2010).   
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estimators (see Klier and McMillen, 2008, Carrion-Flores et al., 2018) that are applicable to low 
intensities of spatial dependency (see Franzese et al., 2016), the MACML approach is applicable 
for low as well as high levels of spatial dependency. The MACML approach is also easily able to 
accommodate unobserved heterogeneity in the sensitivity to exogenous variables (thereby also 
allowing spatial drift effects, in which unobserved factors affecting the sensitivity to a variable 
themselves get spatially correlated).2 Finally, the MACML approach benefits from the use of 
recent analytic approximation methods (see Bhat, 2018) that allow the computation of the 
multivariate normal cumulative distribution (MVNCD) accurately and substantially faster 
compared to traditional simulation-based methods. As we demonstrate in the current paper, all of 
these advantages of the MACML inference approach in the context of single-choice models can 
be harnessed to accommodate spatial dependence within ranked data too. 
 To summarize, the focus of the current paper is to develop a methodological framework 
and formulation for the spatial rank-ordered probit (SROP) model and propose a MACML 
inference approach to estimate parameters. The rest of this paper is structured as follows. The next 
section presents the model framework and estimation procedure. Section 3 presents a simulation 
experiment to evaluate the performance of our proposed estimator. Section 4 presents the results 
from the application of the proposed model to a “future mobility” travel mode choice context. The 
final section summarizes important findings from the study and concludes the paper. 
 
2. METHODOLOGY 
2.1 Model Formulation 
Consider a consumer q (q = 1, 2,…,Q) who ascribes a utility qiU  to alternative i (i=1, 2,…,I). For 

ease in presentation, we assume that all alternatives are available for ranking for each individual, 
and that individuals provide a full ranking of the alternatives. These assumptions are innocuous 
and help in presentation.3 In our proposed methodology we employ a spatial lag type dependence.4  

                                                 
2 See Bhat (2015) for a detailed treatment of spatial drift effects. As explained there, such drift effects are not only 
due to unobserved location-specific unobservables that may be correlated over space, but also motivated from the 
perspective of self-selection in the social interactions literature (see Moffitt, 2001 and Hartman et al., 2008). If not 
appropriately recognized and accommodated, the resulting self-selection can manifest itself incorrectly as 
social/spatial interactions. For example, in a travel mode choice context, households and individuals who intrinsically 
prefer walking or bicycling may be drawn toward neo-urbanist built environment residential locations with good land-
use mixing and high built-up density. The net result is that individuals and households with similar mode use 
propensities and sensitivity to observed built environment attributes may be in close proximity, but this is not a result 
of social/spatial interactions after locating in a neighborhood or the causal influence of built environment attributes; 
rather, it may be attributable to self-selection of individuals regarding their residential location choices based on their 
mode use preferences (see Guo and Bhat, 2007 for a detailed discussion of such residential self-selection effects).   

3 The case of tied rankings provided by one of more consumers can be easily extended within this framework. This 
entails a simple modification to the contrast matrix as discussed in Nair et al. (2018). 

4 Interestingly, many spatial formulations in the literature have considered spatial interactions to be a “nuisance” issue, 
and have employed a spatial error structure, which cannot accommodate spatial spillover effects (that is, a change in 
a variable affecting the dependent outcome of one individual will not affect the dependent outcome of other individuals 
in proximal space).  As indicated by Beck et al. (2006), McMillen (2010), and Bhat (2015), the spatial error structure 
necessitates the rather illogical position that space matters in the error process but not in the effects of exogenous 
variables. On the other hand, the spatial lag specification, in reduced form, allows symmetry in spatial dependence 
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In a typical spatial lag formulation, we write the spatially-dependent utility as follows: 

;  , ~ ( , ),qi qq q i q qi qi q q q K
q

U δ w  U MVN 


 
     

 
 β x β b β β 0 Ω   (1) 

where qqw   is the usual distance-based spatial weight corresponding to units q and q  (with 

0qqw  and 1

 qq

q

w )  for each (and all) q,  1 1     is the spatial lag autoregressive 

parameter, qix  is a ( 1)K  -column vector of exogenous attributes (including a constant for each 

alternative, except one of the alternatives), and qβ  is an individual-specific ( 1)K  -column vector 

of corresponding coefficients that varies across individuals based on unobserved individual 

attributes. As indicated in Equation (1), qβ  is assumed to be a realization from a K-variate 

multivariate normal distribution (denoted by (.,.)KMVN in Equation (1)), with a mean vector b 

and covariance matrix Ω LL . We also assume that qi  is independent and identically normally 

distributed across q, but allow a general covariance structure across alternatives for individual q. 

Specifically, let 1 2( , ,..., )q q q qI   ε  ( 1I vector). Then, we assume ~ (0, )q IMVNε Λ . 

Appropriate (and innocuous) scale and level normalization must be imposed on Λ  for 
identifiability. This is because the utility of all the alternatives can be multiplied by a positive 
constant without changing the rank-ordering of the utilities (relating to the need for scale 
normalization); similarly, a constant can be added to all the utilities which will once again not alter 
the rank-ordering of the utilities (relating to the need for level normalization). Specifically, only 
utility differentials matter in ranking choice models, just as in traditional discrete choice models 
(see Alvo and Yu, 2014; page 171). Taking the utility differentials with respect to the first 

alternative, only the elements of the covariance matrix 1Λ  of 1 1 ( 1)qi qi q i      are estimable. 

However, the inference approach proposed here, like the traditional GHK simulator, takes the 
difference in utilities in a specific way that is a function of the observed ranking (as discussed 

later). Thus, if individual q is observed to choose ranking qr , the covariance matrix 
qr

Λ  is desired 

for the individual. But, even though different differenced covariance matrices are used for different 
individuals, they must originate in the same matrix Λ. To achieve this consistency, Λ is constructed 

from 1Λ  by adding an additional row on top and an additional column to the left. All elements of 

this additional row and additional column are filled with values of zeros. An additional 
normalization needs to be imposed on Λ because the scale is also not identified. For this, we 
normalize the element of Λ in the second row and second column to the value of one. Note that 
these normalizations are innocuous and are needed for identification. The Λ matrix so constructed 
is fully general. Also, as in MNP models, identification is tenuous when only individual-specific 
covariates (that is, covariates such as age, gender, and household income that do not vary across 
alternatives) are used (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion 
                                                 
through both spatial spillover effects as well as spatial error correlation effects.  
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restrictions are needed in the form of at least one individual characteristic being excluded from 
each alternative’s utility in addition to being excluded from a base alternative (but appearing in 
some other utilities). But these exclusion restrictions are not needed for covariates whose values 
vary across alternatives (in a travel mode context, such covariates may include mode-specific in-
vehicle travel times, travel costs, and waiting times). 

The model above may be written in a more compact form by specifying the 'qqw  terms as 

the elements of an exogenously defined distance-based spatial weight matrix W that is row-

normalized by construction (note that 1

 qq

q

w ), and defining the following vectors and 

matrices:  

1 2( , ,..., )q q q qIU U U U    ( 1I  vector), 

1 2( , ,..., )Q   U U U U , 1 2( , ,..., )Q   ε ε ε ε   ( 1QI  vectors),   

1 2( , ,..., )q q q qI x x x x  ( KI   matrix), ) ,...,,( 21  Qxxxx  (QI K  matrix),  1 2, ,..., Q


  β β β β               

( 1QK  vector) , ( matrix), ( matrix)Q QIDEN QK QK IDEN QK QK     Ω Ω Λ Λ   

1

2

3

( )

0 0 0. 0

0 0 0 0

0 0 0 0

0 0 0 0 Q QI QK

 
 
 
 
 
 
 
 

x

x

x x

x




 
     



 

  1
( matrix).QI I QI QI


     S IDEN W IDEN  HIDEN  refers to the identity matrix of H 

dimensions.  Then, we can write Equation (1) in matrix notation as: 

 , so that ~ ( , ), with and .QIMVN         U S xb xβ U B Ξ B Sxb Ξ S xΩx Λ S           (2)  

Note that the above model includes the usual spatial lag effect through the component  S xb  , 

but also the spatial drift effect as captured by the component Sxβ . That is, allowing for unobserved 

heterogeneity in the coefficients on one or more independent variables immediately also leads to 
a spatially-correlated nature of the sensitivity to the corresponding independent variables, as 
discussed earlier. 
  
2.2 Model Formulation 
To progress to estimation, define a contrast matrix for individual q based on the observed ranking 

qr  of alternatives for the individual. Specifically, let the first ranked alternative for individual q be 
1

qr , the second ,2

qr  and so on until the last-ranked alternative .I

qr  Then, the following )1( I

inequalities should hold: .0,0,0 12312  I
q

I
qqqqq qrqrqrqrqrqr

UUUUUU  To write these 
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inequalities in vector notation, define a contrast matrix qM with (I-1) rows and I columns, each 

row representing one inequality and each column representing an alternative. Fill all the elements 
of the matrix with zeros. Then, in the first row, place an entry of ‘1’ in the column corresponding 
to the second-ranked alternative, and a ‘-1’ in the column corresponding to the first-ranked 
alternative (corresponding to the first inequality above). In the second row, place an entry of ‘1’ 
in the column corresponding to the third-ranked alternative, and a ‘-1’ in the column corresponding 
to the second-ranked alternative (corresponding to the second inequality above), and so on until 
placing an entry of ‘-1’ in the column corresponding to the penultimate-ranked alternative, and a 
‘1’ in the column corresponding to the last-ranked alternative (corresponding to the last inequality 
above). Next develop a ( 1)Q I QI  block-diagonal matrix M , with each ( 1)I I   block 

containing the matrix qM for a specific individual. Thus, in the case of I=5 and Q=2, and if the 

first individual’s ranking (from top choice to last choice) is 4>1>2>3>5, and the second 
individual’s ranking is 2>5>3>4>1, the M matrix is as below: 

1 0 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 1 0

 
  
 
  
 
 

 
 
 

  

M =  

 Then, the likelihood of the observed sample (i.e., individual 1 having the ranking 1r , 

individual 2 having the ranking 2r ,…, individual Q having the ranking Qr ) may be written 

succinctly as Prob[ ]QIMU 0 , where QI0 is a column vector of zeros of length QI . The parameter 

vector to be estimated is ( , , , )  ,   θ b Ω Λ where Ω  is a column vector obtained by vertically 

stacking the upper triangle elements of the matrix Ω , and Λ  is another column vector obtained 
by vertically stacking the non-zero and non-normalized elements of the matrix Λ. Defining 

and , C MB Ψ MΞM the likelihood function is: 

1
1 2 ( 1)( ) Prob( , ,..., ) ( ), ,      Q Q IL r r r 

      
*θ ω C Ψ   (3) 

where 1 1, 
 *Ψ ω Ψω Ψω  is the diagonal matrix of standard deviations of Ψ , and  ( 1) .,.Q I  is 

the standard multivariate cumulative normal distribution function of dimension ( 1)Q I  .  

The likelihood function above entails the evaluation of a ( 1)Q I  -dimensional integral, 

which is literally infeasible to compute accurately using traditional frequentist and Bayesian 
simulation techniques. In this paper, we use Bhat’s (2011) maximum approximate composite 
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marginal likelihood (MACML) approach, enhanced with new procedures to accurately evaluate 
the MVNCD function based on Bhat (2018). 

 
 2.3 The MACML Procedure 
The MACML procedure (see Bhat, 2011 for details) constitutes an important and pivotal 
contribution in the field that combines the composite marginal likelihood (CML) approach with 
the use of accurate analytic approximations for the MVNCD function. The CML inference 
approach is based on maximizing a surrogate likelihood function that compounds much easier-to-
compute, lower-dimensional, marginal likelihoods (see Varin et al., 2011 for an extensive review 
of CML methods; Lindsay et al., 2011 and Bhat, 2014 are also useful references). The CML 
approach, in a pairwise context, has been used earlier in spatial contexts by Bhat and colleagues 
(see Ferdous and Bhat, 2013, Bhat et al., 2017), and is particularly suited for spatial analysis 
because it is based on compounding (multiplying) pairwise probabilities of observation q choosing 

the ranked slate of alternatives qr  and observation q  choosing the ranked slate .qr   The CML 

estimator (in this instance, the pairwise CML estimator) is then the one that maximizes the 
compounded probability of all pairwise events. The properties of the CML estimator may be 
derived using the theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011, Bhat, 
2014). Specifically, under usual regularity assumptions (Xu and Reid, 2011), the CML estimator 
is consistent and asymptotically normal distributed (this is because of the unbiasedness of the CML 
score function, which is a linear combination of proper score functions associated with the 
marginal event probabilities forming the composite likelihood; for a formal proof, see Bhat, 2014). 

The pairwise CML function for the proposed model may be written as follows: 
1 1

1 ' 1 1 ' 1

1
*

2 ( 1) 1
1 ' 1

( ) Prob( , )

( , ),

Q Q Q Q

CML qq q q
q q q q q q

Q Q

I qq qq
q q q

L L r r
 

 
     



   
  

 

  

   

  C Θ


θ

                                                                               (4) 

where  1 * 1 1,  , ,
qq qq qqqq qq qq qq qq qq qq  

  
        Θ Θ ΘC ω Δ C Θ ω Θ ω Θ Δ ΨΔ


qqΘω  is the diagonal matrix of 

standard deviations of qqΘ , and qq Δ  is a [2 ( 1)] [ ( 1)]I Q I    -selection matrix constructed as 

follows: (1) First fill the entire matrix with values of zero, (2) Place an identity matrix of size            

( 1I ) occupying the first through ( 1)thI   rows and the  ( 1) ( 1) 1
th

q I    through 

 ( 1) 1
th

q I   columns, and (4)  place another identity matrix of size ( 1I ) occupying the last  

( 1I ) rows and the  ( 1) ( 1) 1
th

q I     through  ( 1)
th

q I  columns. 

The CML function in the equation above needs the evaluation of a 2 ( 1) 1I   -

dimensional MVNCD function. For that, we use Bhat’s (2018) matrix-based implementations to 
analytically approximate the MVNCD function, leading up to the MACML estimator. In this 
paper, we use Bhat’s Two-Variate Bivariate Screening (TVBS) method for evaluating the 
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MVNCD function. The pairwise marginal likelihood function of Equation (4) comprises the 
evaluation of 2/)1( QQ  MVNCD evaluations if the weight matrix is based on an inter-

observation distance metric with no distance bound. This can itself become quite time consuming 
for large Q. However, previous studies (see, for example, Varin and Vidoni, 2008) have shown 
that spatial dependency drops quickly with inter-observation distance. In this situation, the pairs 
formed from the closest observations provide much more information than pairs that are very far 
away. In fact, as demonstrated by Bhat et al. (2010) and Varin and Czado (2008) in different 
empirical contexts, retaining all pairs may reduce estimator efficiency. The “optimal” distance (say 

threshd
~

) for including pairings can be based on minimizing the trace of the asymptotic covariance 

matrix )ˆ(θCMLV  (see later for the formula for )ˆ(θCMLV ). Once threshd
~

is determined, construct a Q×Q 

matrix R
~

 with its thq  column filled with a Q×1 vector of zeros and ones as follows: if the 

observational unit q  is not within the threshold distance threshd
~

of unit q, the thq  row has a value 

of zero; otherwise, the thq  row has a value of one.  By construction, the thq  row of the thq  column 

has a value of one. Let qq ]
~

[R  be the thqq  element of the matrix R
~

, and let . ]
~

[
~ 1

1 1
 


 


Q

q

Q

qq
qqW R  

Define a set qG  of all individuals (observation units) that have a value of ‘1’ in the vector q]
~

[R , 

where q]
~

[R  is the thq  column of the vector R
~

. Then, the CML function may be reduced to the 

following: 
1

1 ' 1

( ) .

q

Q Q

CML qq
q q q

q G

L L



  



 θ  (5) 

Under usual regularity assumptions (Molenberghs and Verbeke, 2005, Xu and Reid, 2011, 
Bhat, 2014), the CML estimator of θ is consistent and asymptotically normal distributed with 
asymptotic mean θ and asymptotic covariance matrix given by the inverse of the Godambe’s 

(1960) sandwich information matrix as )ˆ(θCMLV
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  (6) 

The “vegetable” matrix J may be computed using a windows resampling procedure (see Heagerty 
and Lumley, 2000). To do so, overlay the spatial region under consideration with a square grid 

providing a total of Q
~

 internal and external nodes. Then, select the observational unit closest to 
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each of the Q
~

 grid nodes to obtain Q
~

 observational units from the original Q observational units 

( 1,  2,  3, ,q Q   ). Let q~
~
R  be the 1Q  matrix representing the thq~  column vector of the matrix

R
~

, let q~
~
C  be the set of all individuals (observation units) that have a value of ‘1’ in the vector q~

~
R

, and let q~y  be the sub-vector of y with values of ‘1’ in the rows of q~
~
R . Let qN ~  be the sum (across 

rows) of the vector q~
~
R  (that is qN ~  the cardinality of qC 

 ), so that the dimension of q~y  is .1~ qN  

Let ql~  be the index of all elements in the vector q~y , so that ql~ =1,2,…, qN ~ . Next, define 

  .2/)1( ~~~  qqq NNC


 Then, the J matrix maybe empirically estimated as: 
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 One additional issue regarding estimation. The analyst needs to ensure the positive 

definiteness of the covariance matrix Ω  and the correlation matrix 1Λ . We achieve this using a 

Cholesky decomposition approach (by parameterizing the likelihood function in terms of the 
Cholesky-decomposed parameters). In addition, the spatial dependence parameter   needs to be 
bounded between –1 and +1. For this, we parameterize   as follows: 

 
 

exp 1
.

exp 1













  

A further simplification is also possible in case the number of alternatives being ranked (I) 
is large. In such a case, even the CML estimator proposed above can get unwieldly, since it requires 
the estimation of an MVNCD function of dimension 2*(I–1). In such an event, a rank-breaking 
approach within each individual followed by the CML is possible. Such an approach has been 
suggested for an aspatial rank-order utility maximizing model by Zhao and Xia (2018) (see also 
Soufiani et al., 2014 and Khetan and Oh, 2016). For symmetric distributions such as the normal 
distribution in the utilities, Zhao and Xia show that the following rank-breaking approach will 
yield a consistent and asymptotically normal (CAN) CML estimator: Use a uniform ranking and 
uniform, fully connected, and symmetric CML weighing approach. That is, all sub-rankings of 
length l from the larger ranking are all given the same weights regardless of the ranking positioning 
of specific sub-rankings, and all implied sub-rankings are considered with the same weight 
regardless of the ordering of alternatives in a sub-ranking. For example, if the full ranking has 
three positions (with three alternatives), then sub-rankings of length 2 may be used during 
estimation as long as the weights for the sub-ranking of the first two ranked alternatives and 
another sub-ranking of length 2 comprising the last two ranked alternatives are equally weighted; 
and all sub-rankings of alternatives of length 2 are considered (position 1 and position 2, position 
1 and position 3, and position 2 and position 3)  with equal weight regardless of which alternative 
is in which position of the sub-ranking. Essentially, the approach has the potential to further reduce 
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the dimensionality of the MVNCD evaluation in the CML estimator to 2*l instead of 2*(I–1). But, 
in most contexts in which the number of alternatives is in the order of 10 or less, the analytic 
approximation for the MVNCD function used in the current paper should enable implementation 
of the MACML estimator without the need for any prior rank-breaking (the estimation routine 
coded in the GAUSS matrix programming language is available at 
https://www.caee.utexas.edu/prof/bhat/CodeRepository/CODES/SpatialRank/Gauss_Codes_SROP.zip). 

A final note on estimation. An additional simplification is possible in estimation by 
approximating the matrix inverse in the autoregressive multiplier term S. Defining 

I W W IDEN , we may write:

       1
2 2 3 3 ....QI QI   


        S IDEN W IDEN W W W     

Since taking the inverse of a matrix is time-consuming, approximating this inverse by using a 
suitable order of terms on the right side of the above equation can provide substantial 
computational efficiency. Future research should investigate, using simulation, the optimal 
“computational-accuracy trade-off” of using different orders of terms.  

  
3. SIMULATION 
The simulation exercises undertaken in this section assess the ability of the proposed MACML 
estimator in recovering the parameters of the proposed spatial rank-ordered probit model from 
finite samples, as well as investigate the effects of ignoring the spatial drift and spatial lag effects. 
This is achieved by generating simulated data sets with known underlying model parameters.  
 
3.1 Simulation Design 
For the simulation study, a four-alternative choice situation is considered. A total of Q=600 
observation units is assumed. For this simulation experiment, we do not consider constants in the 
utilities, and focus on the parameters on the independent variables, and the spatial parameter. Two 
independent variables are used in the utility equation (these are the elements of the qix  vector). 

For the first independent variable, the values for the first two alternatives are generated from a 
standard univariate normal distribution, while the values for the second two alternatives are 
generated from a univariate normal distribution with a mean of 0.5 and standard deviation of 1. 
For the second independent variable, the values for the first two alternatives are generated from a 
univariate normal distribution with a mean of 0.5 and standard deviation of one, while the values 
for the second two alternatives are generated from a standard univariate normal distribution. Once 
generated, these independent variable values are held fixed in the entire rest of the simulation 
exercise. A random coefficient (across observation units) is assumed on the first variable, while a 
fixed coefficient is assumed on the second variable. The mean of the coefficient on the first 
independent variable and the fixed coefficient on the second independent variable are both 

assumed to be one (that is, 1 2( , ) (1,1) ).b b   b  The variance on the random coefficient on the first 
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variable is set at 1.0; thus, 11 0, 1 0,
,

0 00 0

   
    

  
Ω  which is a degenerate matrix but is written in 

this form to show the correspondence with the notation in the earlier section. Of course, in 
estimation, fixed coefficients are handled in a straightforward manner because they are completely 

excluded from the qx  vector in the construction of the x  matrix in Equation (2).   

For the covariance matrix Λ of the kernel error terms of the four alternatives, we use a 
diagonal matrix to restrict the number of parameters to be estimated in our simulation, while also 
focusing on the spatial dependency and spatial drift effects of interest.  

33

44

0 0 0 0 0 0 0 0

0 1 0 0 0 1 0.0 0.0

0 0 Λ 0 0 0.0 1.2 0.0

0 0 0 Λ 0 0.0 0.0 1.5

   
   
    
   
   

  

  

To generate the spatial lag dependency, a rectangular grid of size 5,800 meters (3.604 
miles) by 3,800 meters (2.361 miles) is considered, and partitioned by vertical and horizontal 
gridlines spaced 200 meters apart. Next, 600 observational units are located at the intersection 
points of the gridlines. The spatial weight matrix W (of size 600×600) is created using the inverse 
of the square of distance on the coordinate plane between observational units. This spatial matrix, 
once generated, is held fixed in all simulations. Finally, we consider two cases of the spatial lag 
parameter  , 0.25 and 0.7, reflecting low spatial dependency and high spatial dependency values.  

 
3.2 Data Generation and Performance Metrics 

In total, the simulation design includes six parameters: 1 2 11 33 44( , , , , , ).b b    The simulation 

experiments entail assuming underlying “true” values for these parameters and generating data 
sets for estimation for each of the two cases of Ω  values. In particular, for a given combination, 

first compute the matrix   1

QI I


    S IDEN W IDEN . Next compute xb , and also draw a 

realization for β  as Q independent draws from a normal distribution with mean 0 and variance 

11.  Then, draw a realization for  ~ ( , )MVN 0 Ω  using the constructed covariance matrix. 

Finally, one can construct the utility vector     U S xb xβ  . Then, for each observation unit, 

the alternatives are ranked based on these utility values, i.e., the alternative with the highest utility 
value in ranked 1, followed by assigning a rank of 2 to the alternative with the second highest 
utility value and so on. The above procedure is repeated 250 times with different realizations of 

andβ   to generate 250 different data sets for each of the two cases of  . For each dataset, the 

six model parameters are estimated using the MACML method. In addition, we also estimate 
restrictive versions of the proposed spatial random-coefficients ROP (or simply SROP) model on 

the 500 data sets, corresponding to (1) the “no spatial drift” model (that is, 11 0  , but 0  , 

which corresponds to a spatial fixed coefficients model) (2) the “no spatial lag” model (that is, 
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,0  but 11 0  , which corresponds to the aspatial random-coefficients ROP), and (3) 0,   

and 11 0  , which, of course, is the regular aspatial fixed-coefficients ROP. Across all these 

models and the proposed model in the current paper, a total of 2000 estimations are undertaken.  
 The results from the estimations are translated to measures of performance in terms of the 
ability to recover the “true” parameters and their standard errors. A comparison of the many 
restricted models with the proposed model is also undertaken. The procedure is as follows, for 
each of the two cases of : 
(1) Estimate the parameters using each of the models for each data set s (of the 250 data sets 

generated). Estimate the standard errors. 
(2) Compute the mean estimate for each model parameter across the data sets to obtain a mean 

estimate. Compute the absolute percentage (finite sample) bias (APB) of the estimator as: 

.100
 valuetrue

 valuetrue-estimate mean
(%) APB             (8) 

(3) Compute the standard deviation for each model parameter across the data sets, and label this 
as the finite sample standard deviation or FSSD (essentially, this is the empirical standard 
error). 

(4) Compute the median standard error for each model parameter across the data sets and label 
this as the asymptotic standard error or ASE (essentially, this is the standard error of the 
distribution of the estimator as the sample size increases). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula, compute the APB 
associated with the ASE of the estimator as: 

ASE-FSSD
(%) 100

FSSD
APBASE                    (9) 

(6) Compare the three restrictive formulations discussed in the first paragraph of this section with 
the proposed model, based on the mean APB measure across all parameters and the adjusted 
composite log-likelihood ratio test (ADCLRT) value (see Pace et al., 2011 and Bhat, 2014 for 
more details on the ADCLRT statistic, which is the equivalent of the log-likelihood ratio test 
statistic when a composite marginal likelihood inference approach is used; this statistic has an 
approximate chi-squared asymptotic distribution). The ADCLRT statistic needs to be 
computed for each data set separately, and compared with the chi-squared table value with the 
appropriate degrees of freedom. Here we identify the number of times (out of the 250 
estimations corresponding to the 250 data sets) that the ADCLRT value rejects the restrictive 
model in favor of the proposed general spatial model.   
 

 In addition, to examine the efficiency gains from using a rank-ordered elicitation 
mechanism rather than the more traditional first-choice elicitation mechanism, we also estimate a 
spatial multinomial probit (SMNP) model, which considers only the top choice preference, for 
each of the generated datasets. Then, we compute the trace value of the covariance matrix of 
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parameters given by )]ˆ([ θVCMLtr  from the SROP and SMNP models for each dataset (the trace 

value provides the sum of the sampling variances across all model parameters). Finally, we 

compute the mean )]ˆ([ θVCMLtr  values for the SROP and SMNP models across all the 250 datasets 

(and for both the cases of the spatial lag parameter values). The model that provides a lower mean 
trace value is the preferred one. 
 
3.3 Simulation Results 
The simulation results are discussed in three parts. First, an analysis of the ability of the proposed 
MACML approach to recover the spatial rank-ordered probit model parameters is presented in the 
next section. Second, the implications of ignoring the spatial dependency and spatial heterogeneity 
effects are discussed in Section 3.3.2. This is followed by a brief discussion on the comparison of 
the efficiency between the SROP and the SMNP models  
 
3.3.1 Parameter Recovery Ability of our Proposed Model 
Table 1 provides the results for the ability of our proposed MACML approach to recover the 
parameters of the SROP model. The top panel of the table is for the low spatial autoregressive 
coefficient (δ=0.25), while the bottom panel is for the high spatial autoregressive lag coefficient 
(δ=0.70). In the low spatial lag case, the absolute percentage bias (APB) ranges from 1.20% to 
3.10 %; the corresponding APB for the high spatial lag ranges from 1.43% to 7.93%. The recovery 
of the mean parameters is generally better than the covariance parameters, particularly in the high 
spatial lag case. This result is not surprising, because the covariance parameters enter the likelihood 
function in a more complex non-linear fashion, and the extent of this non-linearity is more 
pronounced in the high spatial dependency case (note that the S matrix gets applied in a non-linear 
fashion to the Ω  matrix during estimation; see Equation (2)).  The spatial parameter is recovered 
with remarkable accuracy in both the cases with APB values of 1.20% and 1.43%. Overall, the 
average APB across all parameters (see the last row under the “Absolute Percentage Bias (APB)” 
column in each panel) is 2.07% for the low spatial coefficient case and 4.16% for the high spatial 
correlation case, which indicates that our proposed MACML approach is able to recover 
parameters with substantial accuracy.  

The APBASE metric values, presented in the last column of Table 1, provide a sense of 
the accuracy of the asymptotic standard error of the estimates. The mean APBASE values (of 7.93 
for low spatial dependency and 12.87 for high spatial dependency) may seem to be on the high 
end, but is simply a reflection of the very low values of FSSD in the first place. In terms of absolute 
difference, the ASE values are quite close to the FSSD values. Interestingly, of all the parameters, 
the spatial dependency parameter is the most precisely estimated indicating that our approach is 
very effective in accurately and precisely capturing spatial effects. The APBASE values for the 
covariance terms are generally higher than the mean parameters for both cases, again due to the 
non-linearity effect discussed earlier.  
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3.3.2. Effects of Ignoring Spatial Dependence and Drift Effects  
In this section, we discuss the implications of ignoring the spatial dependence effect and the spatial 
drift effect. Table 2 provides the results of four models (the proposed SROP model, the “no spatial 
drift” model, the “no spatial lag” model, and the traditional (aspatial fixed coefficients) ROP 
model. In comparing with the “no spatial drift” model, the mean APB values for the SROP model 

is computed without considering the APB values for the 11  parameter, because the 11  parameter 

is implicitly fixed at zero in the “no spatial drift” model. For comparison with the “no spatial lag” 
model, the mean APB value for the SROP model is computed without considering the APB values 
for the   parameter, which is fixed at zero for the “no spatial dependence model”. And, finally, 

for the comparison with the traditional ROP, the APB values for both the 11 and   are ignored.  

The results indicate that the mean APB values are higher for all the three restricted models 
relative to the SROP model proposed in this paper. It is illustrative to note that the “no spatial lag” 
model performs substantially better than the “no spatial drift” model in the low spatial dependency 
case, while the opposite is the case for high spatial dependency; this is to be expected because, at 
low spatial dependency, ignoring the spatial lag effect should be of less consequence than ignoring 
the aspatial unobserved heterogeneity component. Perhaps more importantly, the results clearly 
indicate the substantially higher bias of all the three restricted models for the high spatial lag case 
relative to the low spatial lag case. Again, this is to be expected, because a high level of spatial lag 
translates into high levels of spatial dependency as well as high spatial drift effects (both effects 
contain the S variable in which the spatial autoregressive parameter δ is embedded). The last row 
of Table 2 indicates that our proposed SROP model rejects the three restricted specifications for 
each of the 250 data sets generated and the mean adjusted composite likelihood ratio test 
(ADCLRT) statistic value is substantially higher than the relevant table chi-squared statistic at any 
reasonable significance level.  

 
3.3.3. Efficiency Gain in the Use of the Rank-Ordered Framework. 
In this section, we discuss the efficiency gains offered by the rank-ordered elicitation mechanism 
relative to the most preferred (first-choice) elicitation mechanism. For the low spatial lag case 

(δ=0.25), the mean ˆ[ ( )]CMLtr V θ  value of the covariance matrix for the SROP model is 0.041, while 

the corresponding value is 0.122 for the SMNP model. For the high spatial lag case (δ=0.70), the 
values are 0.060 and 0.167, respectively, for the SROP and SMNP models. In both the low and 
high spatial lag cases, the trace value for the SROP model is almost a third of that from the SMNP 
model, indicating that the SROP model is by far the preferred model from an efficiency standpoint.  
 
3.3.4. Simulation Results Summary 
Overall, the simulation results show that, irrespective of the magnitude of spatial dependence, the 
MACML estimator recovers the parameters of the SROP model very well. In addition, the results 
clearly highlight the bias in estimates if spatial dependence and/or spatial drift are ignored when 
one or both are actually present. We also find that at high spatial dependency, ignoring one or both 
of the spatial lag and spatial drift effects has severe consequences to the parameter estimates, 
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underscoring the importance of capturing both effects in spatial models (because the level of the 
spatial autoregressive lag parameter will not, in general, be known in advance). Finally, the 
efficiency gain in using the SROP model is also highlighted by the simulation results. 

 
4. EMPIRICAL APPLICATION 
Travel mode choice studies abound in the literature, though there have been much fewer of these 
that consider spatial dependency (see for example, Bhat and Zhao, 2002, Dugundji and Walker, 
2005, Goetzke 2008, and Sidharthan et al., 2011). Further, even the few that recognize spatial 
dependence do so in very restrictive and limited ways and within a first-choice context. In fact, to 
our knowledge, the current application is the first to use a rank-ordered model of travel mode 
choice even in an aspatial context. Of course, besides using rank-ordered data, we also consider 
both spatial lag and spatial drift effects within a single-comprehensive and integrated framework.  
 
4.1 Data and Sample Formation 
We demonstrate an application of our proposed model in the context of non-work/non-mandatory 
mode-choice behavior using a sample drawn from the 2019 multi-city Transformative 
Technologies in Transportation (T4) Survey. The T4 survey was conducted in Phoenix (Arizona), 
Atlanta (Georgia), Tampa (Florida) and Austin (Texas). In this study, we use the sample collected 
from the Austin (Texas) area. The distribution effort resulted in a convenience sample of 1,127 
respondents (for the city of Austin), which was reduced to a final set of 928 individuals, after 
removing 199 individuals who either did not correctly respond to the ranking question used in this 
study or submitted an incomplete response form.  

The survey elicited several user characteristics and choices associated with travel behavior, 
including through the use of a stated preference (SP) question that asked respondents to rank, in 
the context of a future autonomous world, their mode choice preferences (from most preferred to 
least preferred) for non-work/non-mandatory trips. The mode choice alternatives were as follows: 
private vehicle (human driven or autonomous), bicycle, public transport (bus/rail), human-driven 
private ride-hailing (ride-hailing alone with a human driver), human-driven pooled ride-hailing 
(ride-hailing with others with a human driver), autonomous vehicle (AV) private ride-hailing 
(same as private ride-hailing, except the vehicle will be autonomous), and AV pooled ride-hailing 
(same as pooled ride-hailing, except the vehicle will be autonomous).5  

The SP experimental design was characterized by three trip attributes -- wait time, in-
vehicle travel time, and total trip cost. A total of 36 scenarios were developed based on a random 
blocking approach and an orthogonal fractional factorial design, and each respondent was asked 
to rank the alternatives for one randomly selected scenario. Appropriate procedures were in place 
to ensure that every scenario was realistic (for example, the cost by pooled ride-hailing cannot be 
higher than that of private ride-hailing). Additionally, a non-mandatory trip purpose was also 

                                                 
5 There was no distinction in the survey between the human-driven private vehicle travel mode and an AV private 
vehicle travel mode, because the thrust of the ranking exercise was to elicit information on the preferences for a private 
vehicle (whether AV or human-driven) versus other non-private vehicle modes.  
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randomly assigned to this question (which varied across individuals) by selecting one of the 
following four statements before presenting the choice experiment: 

- Suppose you are going to a mall to do some shopping (e.g., to purchase clothes, books, etc.).  
- Suppose you are going to the airport.  
- Suppose you are going out to spend some time with your friends (e.g., going to their house 

or to a bar).  
- Suppose you are going out to get food (e.g., dinner at a restaurant or breakfast at a diner).  

We define these four trip purposes as “Shopping”, “Airport-access”, “Socializing” and “Eating-
out”. Figure 1 shows a sample of the actual question presented to respondents.  

Additionally, point location information of each individual (in terms of latitudes and 
longitudes) was imputed based on the residential information provided in the survey. The distance 
between residential locations was used as the spatial proximity measure to develop the weight 
matrix, and also provided the basis for the construction of a comprehensive set of built environment 
(BE) characteristics associated with an individual’s residence. Specifically, geocoded residential 
locations were overlaid on census block groups, and then the BE characteristics of the block group 
(as extracted from the U.S. EPA Smart Location Database; see Ramsey and Bell, 2014) were 
attributed to the individual’s residence.  
 
4.2 Data Description 
Table 3 provides a description of the ranking preferences of the respondents. For ease in 
presentation and for an overall understanding of user preferences, we present the ranking 
preferences in groups of “Top ranked”, “Within top 2 ranks”, “Within top 3 ranks”, “Within top 4 
ranks” and “Within top 5 ranks”. Also, we will use the acronym “HD” for human driven and “RH” 
for ride-hailing. Thus, the seven modes will be referred to as private vehicle, bicycle, public 
transport, HD private RH, HD pooled RH, AV private RH, and AV pooled RH. From the table, 
we observe that individuals are overwhelmingly in favor of private vehicle use, with more than 
70% assigning the top rank to this mode; the second most favored (as the top rank) mode; public 
transport; is substantially behind at close to 9%. However, beyond the first rank, at every other 
rank depth, HD private RH appears to be the second ranked mode after private vehicle. That is, a 
large fraction of those who indicate private vehicle use as their top choice also indicate HD private 
driven RH as their second ranked choice. In terms of overall ranking, bicycle appears to be the 
least favored mode with about 64% ranking it outside the top five. The ranking trend also suggests 
that private RH is generally preferred over pooled RH. Interestingly, in spite of the general buzz 
about the advent of AVs, HD RH services appear to be preferred over AV RH services.  
 
4.3 Variable Specification and Estimation Process 
To employ our proposed spatial model, the weight matrix needs to be pre-specified. Several weight 
matrix specifications were considered in our empirical analysis to characterize the spatial lag 
dependence. These included (1) the inverse of a continuous distance specification where the 
distance is measured as the Euclidean distance between each individual’s locations (2) the inverse 
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of the square of the continuous distance specification, and (3) the inverse of the cube of the 
continuous distance specification and (4) the inverse of the exponential of the continuous distance 
specification. We also explored alternative distance thresholds to select the pairs of observations 
for inclusion in the composite marginal likelihood (CML) estimation. As indicated earlier, this 
threshold band determination may be based on minimizing the trace of the variance matrix of 

parameters given by )]ˆ([ θVCMLtr . We explored alternative distance thresholds of 0.5 miles, 1 mile, 

2.5 miles, 5 miles, 7.5 miles and 10 miles. We did not include thresholds beyond the 10 miles 
range because the implied spatial dependence fades very rapidly and becomes negligible beyond 
10 miles; also, the trace of the variance matrix started to increase beyond the five miles range. For 
each of the four different weight matrix specifications, the pattern of the trace values was identical 
as we moved from the lowest distance threshold (0.5) to the highest distance threshold (10.0). In 
particular, for each of the four weight matrix specifications, the trace value decreased from 0.5 
miles until 2.5 miles, and then started increasing beyond 2.5 miles. That is, the best estimator 
efficiency was obtained at 2.5 miles. Further, the results indicated that the best spatial weight 
matrix specification was the inverse of the square of the continuous distance specification with the 
2.5 miles distance band. This determination was based on the composite likelihood information 
criterion (CLIC) statistic, which may be used to compare the data fit of non-nested formulations 
(see Varin and Vidoni, 2005).  

Several different variable specifications and functional forms of the variables were also 
simultaneously explored to arrive at the final specification. Our specifications included 4 sets of 
variables: (1) individual characteristics, (2) household characteristics, (3) built environment (BE) 
attributes and (4) Trip level attributes. We also attempted random coefficients on many variables, 
but the only one that turned out to be statistically significant was the one related to population 
density specific to the bicycle mode. 

Overall, while our emphasis here is on examining spatial dynamics/drift effects, we 
investigated alternative empirical specifications based on statistical fit, intuitiveness, parsimony 
considerations, and the insights offered by the substantial earlier mode choice literature. 
Specifically, in terms of statistical fit, we used the adjusted composite likelihood ratio test 
(ADCLRT) statistic (see Pace et al., 2011 and Bhat, 2011) to compare nested models and the 
composite likelihood information criterion (CLIC) introduced by Varin and Vidoni (2005) to test 
non-nested models. The final specification includes some variables that are not statistically 
significant at the usual 5% level of significance. These are retained because the effects of these 
variables are intuitive and also because of the relatively small sample size in our spatial analysis.  

 
4.4 Estimation Results 
The estimation results are presented in Table 4 for the proposed SROP model, and are discussed 
below by variable category. These parameter estimates provide the directional effects of variables 
on the utility of the different alternatives.6 We do not present the corresponding results for the 

                                                 
6 Please note that these parameter estimates do not provide the magnitude of variable effects on the choice probability 
of the different alternatives, nor do they necessarily even provide the directional effects of variables on the choice 
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other more restrictive models, because the substantive directions of effects on the utility of 
alternatives were similar in all models. However, we present the data fits from the more restricted 
models in Section 4.5, as well as compare the implied elasticity results from the SROP model and 
one of the restricted models in Section 4.6. Also, to maintain attention on spatial issues, we will 
keep the discussion of the estimation results concise and brief. However, our results do also 
contribute to the mode choice literature in the context of emerging mobility options. Of particular 
note is that we include both a human-driven option as well as an autonomous vehicle option for 
the ride-hailing mode.  
 
4.4.1 Parameter Estimates for Individual Characteristics 
The results in Table 4 indicate that women have a higher propensity to use private vehicles and 
the bicycle mode, and a lower propensity to use all forms of ride-hailing services (for both human-
driven and autonomous vehicles), relative to the base mode of public transit. These results are 
consistent with those of Asmussen et al. (2020), who observe a higher need for driving control 
among women. Besides, women have been known to be (a) more reluctant to use human-driven 
RH services due to security considerations (see, for example, Tirachini, 2020 and Kang et al., 
2021) as well as (b) more disinclined to embrace AV RH services due to experiencing stronger 
(relative to men) feelings of nervousness and fear in anticipation of negative outcomes when 
adopting new technology (see Croson and Gneezy, 2009 and Lavieri and Bhat, 2019). Finally, the 
higher tendency of women to use active (walk and bicycle) modes may be attributed to a generally 
heightened health consciousness of women relative to men (see Ek, 2013) as well as a higher 
degree of environmental concern and social altruism of women (Desrochers et al., 2019). 

The effects of age and possession of driving license in Table 4 suggests that older 
individuals over the age of 50 years and those with a driving license are strongly inclined toward 
the use of privately-owned vehicles. The former result is possibly a manifestation of the heightened 
need for mobility control among older individuals (Nikitas et al., 2018, Asmussen et al., 2020). 
The latter result is not surprising and may be a reflection of a general affective emotion of personal 
vehicle ownership and personal control of mobility (see, for example, Haustein, 2021).  

Individuals with a graduate degree have a low preference for the bicycle mode relative to 
other modes and a marginally significant higher preference for AV pooled RH. The first result is 
rather surprising, given the generally higher health consciousness and higher green lifestyle 
associated with highly educated individuals (see McCright, 2010, Jaafar et al., 2017). However, in 
a fast-changing mobility landscape when AVs are also brought into modal consideration sets, 
Lavieri and Bhat (2019) observe that productive use of travel time, along with environmental 
consciousness, starts playing an important role in the mobility choice decisions of those highly 
educated.  

                                                 
probability of the alternatives. This is because of the non-linear nature of the probability model, as well as because of 
the spatial autocorrelation dependence among individuals. A better characterization of the directionality and 
magnitude of variable effects may be obtained through the elasticity effects discussed in Section 4.5.1.  
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 Finally, in the set of individual characteristics, individuals who are employed have a higher 
inclination (relative to their unemployed peers) to use privately owned vehicles and private RH 
services (by both human-driven and autonomous vehicles). This generic preference for private 
travel modes is supported by earlier literature in the ergonomics and occupational health fields 
(see Jansen et al., 2003, Mohren et al., 2010), which suggest that employed individuals experience 
elevated psychosomatic feelings of stress and life balance conflicts, and are engulfed by feelings 
of ‘wanting to be left alone for a while after work’.  
 
4.4.2 Parameter Estimates for Household Characteristics 
Among the household demographic data available, we find the rather expected results that 
households with more than one vehicle and with three or more members have a distinct preference 
for the private vehicle. These results reflect the ability, convenience, and desire to travel as a family 
in private vehicles for non-mandatory leisure-oriented trips.  

Household income, not surprisingly, has an important impact on mode choice decisions. In 
particular, individuals in high income households have a strong preference for “private” travel, 
either in their own vehicles or in RH vehicles. This is a reflection of the traditional influence of 
high income on private car use as well as its extension to other new/emerging mobility options that 
preserve the element of privacy in travel.  
 
4.4.3 Parameter Estimates for Built Environment Attributes 
Several built environment attributes were tested (in continuous and categorical forms); however, 
only population and employment density (in their continuous forms) of the residential location 
turned out to be statistically significant as explanatory variables. Both population density and 
employment density have a positive effect on the use of the bicycle mode, potentially because of 
better bicycle lane infrastructure in neo-urbanist high density regions and short distances of travel 
(Braun et al., 2019). Also, individuals residing in high population density locations tend to have a 
higher propensity for human-driven (HD) pooled RH, reinforcing a similar finding in Kang et al. 
(2021). Additionally, the results show evidence of heterogeneity in the effect of population density 
on bicycle utility (see the standard deviation on population density in the “Bicycle” column in 
Table 4). When compared with the mean effect of population density on bicycle utility, the 
implication is that a vast majority (97%) of individuals residing in higher population density 
neighborhoods have a higher probability of selecting the bicycle mode relative to those residing in 
lower population density neighbourhood, though the effect is reversed for 3% of individuals. As 
importantly, this unobserved heterogeneity, when combined with the spatial lag effect, leads to a 
spatial drift effect, as discussed in Section 1. In particular, individuals who intrinsically prefer 
walking locate themselves close to one another and cluster in high density neighborhoods, not 
because of social interaction after locating there or because of high density living, but because they 
are commonly attracted to live in such neighborhoods.   
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4.4.4 Parameter Estimates for Trip Level Attributes 
Our results support the increasing need to disaggregate non-work purposes in mode choice 
modeling. Not surprisingly, the use of private vehicles is preferred over all other alternatives for 
shopping trips, a reflection of the convenience of private vehicles when carrying shopping bags 
especially when shop-hopping from one store to another. In fact, as observed by Gilibert et al. 
(2019), individuals do not even prefer private RH modes for shopping because of wait times and 
shop-hopping. As far as airport trips are concerned, private vehicles and private RH services are 
the most preferred. Such private modes of transportation provide a sense of time control and peace 
of mind, particularly as travel time reliability and reaching the airport in good time become 
paramount (see Tam et al., 2011). For social trips, the private vehicle continues to be a preferred 
mode of choice, attributable to social activities being undertaken in groups (either inter- or intra-
household) (unfortunately, the stated preference survey did not include attributes related to party 
size and composition; these would be variables to consider in future efforts). As indicated by the 
negative coefficient on the social trip purpose variable for the bicycle mode, the bicycle mode is 
not the most convenient and appropriate for social activities, with clothes getting ruffled and 
weather-caused appearance and body feel considerations also at play. The impact of the social trip 
purpose on the ride-hailing services provides interesting insights; specifically, individuals have a 
clear and positive preference for AV-based RH services (both in private and pooled modes) relative 
to human-driven RH services, the bicycle mode, and the public transport mode. RH services, in 
general, provide a good option to private vehicle use, particularly to avoid drinking while driving.  

The travel time and travel cost coefficients are negative and estimated to be -0.09 and -0.31 
respectively (these coefficients did not show substantial variation by travel mode or by trip 
purpose, nor did we find statistically significant unobserved heterogeneity in these coefficients; 
we should also note here that we did not partition total travel time by in-vehicle and out-of-vehicle 
times in our stated ranking experiment). The results suggest a value of travel time (VTT) of about 
$17.42/hour. This value of travel time estimate is close to that observed in Alonso-González et al. 
(2020) and Kang et al. (2021) in the context of ride-hailing services.  
 
4.4.5 Spatial Dependency (Autoregressive Lag) Parameter 
The spatial lag parameter is estimated to be 0.649 and is statistically very significant, clear 
evidence of substantial spatial dependency among individuals in mode choice preferences. As we 
note in Section 4.5, ignoring this spatial dependency has severe consequences for both model fit 
as well as model coefficient estimates. In particular, ignoring the spatial parameter is tantamount 
to ignoring heteroscedasticity across individuals in the error term (since the spatial error 
specification also leads to error heteroscedasticity across individuals in addition to spatial 
autocorrelation), rendering parameter estimation in an aspatial model both inconsistent and 
inefficient. The extent of the inconsistency and inefficiency will vary depending on the empirical 
context; however, testing and accommodating for any spatial effects should always be an important 
consideration. 
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4.4.6 Constants 
The estimated constants in the last row of Table 4 do not have any substantive interpretations, and 
simply represent adjustments in the utilities of alternatives after accommodating the other variables 
in the model. 
 
4.4.7 Covariance/Correlation Terms 
In the estimation spatial rank-ordered model, only the covariance matrix of the error differences is 
estimable (with the scale for one of the error differences normalized to one). This condition is the 
same as for the single-choice multinomial probit model. The differenced error covariance matrix 
is not strictly interpretable, because multiple (undifferenced) error covariance matrices can all be 
consistent with the same differenced covariance matrix. However, the structure of the error-
differenced covariance matrix appeared to point to a high positive correlation across all the four 
ride-hailing alternatives. 
   
4.5 Measures of Data Fit 
To evaluate the goodness of fit, we compare our model with the three restricted rank-ordered model 
versions of "no spatial drift”, “no spatial lag”, and “aspatial fixed coefficients”. To do so, we use 
the ADCLRT statistic identified in an earlier section. In addition, we compute an average 
probability of correct prediction for each of the models. For this, we use a procedure identical to 
that used in the simulation experiment design, except that the parameters used in determining the 
individual level utilities of the many alternatives are based off the estimated coefficients and 
covariance matrix estimates from the MACML estimation. Next, the procedure is applied 10000 
times and the probability of the observed ranking for each individual is obtained as the fraction of 
times of the 10000 repetitions that the observed ranking turns out to be the predicted ranking. The 
average probability of correct prediction (APCP) of the rank-ordering is computed as the average 
across individuals of the probability of the observed ranking. Next, using the procedure just 
discussed, we also compute the average probability of first choice (APFC) across individuals.  
Further, in addition to the disaggregate ADCLRT, APCP, and APFC metrics, we also examine the 
performance of the models in an intuitive way at the aggregate level by computing the predicted 
aggregate number of individuals selecting each modal alternative as the top (single) choice from 
each of the rank-ordered models, and comparing these predictions with the actual numbers to 
compute the absolute percentage error (APE) statistic.  

The results of this data fit assessment are provided in Table 5. The MACML values at 
convergence clearly favor the SROP model over the other models, and this is also reflected in the 
ADCLRT statistics that show that the SROP model rejects all the other three restrictive models at 
any reasonable level of significance. The APCP and APFC metrics of the SROP are also higher 
than their counterparts from the other models. At the aggregate level, the SROP is once again the 
winner, especially compared to the “no spatial lag” and aspatial ROP models.   

Finally, to compare the efficiency gain from using ranked data, we compute the trace value 

of the variance matrix of parameters, ˆ[ ( )]CMLtr V θ , similar to the simulation experiment, for the 
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SROP model as well as a spatial multinomial probit (SMNP) model for first-choice. The 
ˆ[ ( )]CMLtr V θ  of the SROP model is 0.245, while that of the SMNP model turned out to be 0.339, 

reinforcing the advantage of the ranked data as compared to the more traditional first-choice 
elicitation mechanism in terms of estimation efficiency.  
 
4.5.1 Elasticity Effects and Implications 
The coefficients in Table 4 do not directly provide a sense of the magnitude and direction of effects 
of each variable on each of the alternatives; therefore, we compute aggregate-level “pseudo-
elasticity effects” of the exogenous variables to characterize the impact of each variable. In the 
current analysis, we have two types of exogenous variables: categorical variables (they are gender, 
age category, possession of license, educational qualification, employment status, vehicle 
availability, household size, income category and trip purpose category) and continuous variables 
(they are population density, employment density, travel time and travel cost). Except for trip 
purpose (which is a nominal exogenous variable), all other categorical variables appear as binary 
variables in the final specification. For each binary (dummy) variable, we first predict the shares 
of each mode in the sample using the probability of first choice, as discussed in Section 4.5, after 
assigning the base value of “0” for the binary variable for each individual. This provides the “Base” 
shares for each dummy variable. Next, we switch the value of the dummy variable from zero to 
one for every individual and repeat the entire process to obtain the average shares for this 
“Treatment” case.  The average “pseudo” elasticity effect is then reported to be the difference 
between the “Treatment” and the “Base” vectors as a percentage of the “Base” vector. A similar 
procedure is used for the trip purpose multinomial model, except the “Treatment” case refers to 
each of the shopping, airport-access, and social trip purposes, with the “eat-out” purpose being the 
base. For the continuous variables, we increase the value of the variable by 20% and express the 
percentage change with respect to the original shares (i.e., keeping the original values of the 
continuous variables as “Base”). 

Table 6 provides the pseudo-elasticity effects for the SROP model.7 The numbers in the 
table may be interpreted as the percentage change in the shares of each mode due to a change in 
the exogenous variable. For example, the first numeric entry of -23.31% in the table indicates that 
the probability of a woman choosing public transit is about 23.3% less than that of a man; in other 
words, in a random sample of 100 women, 23 fewer individuals would select public transit 

                                                 
7 We also computed the corresponding effects for the aspatial random-coefficients ROP model that ignores the spatial 
drift and spatial lag effects but accommodates unobserved heterogeneity (this is the aspatial counterpart to the SROP 
model). These elasticities for the aspatial model are not presented in Table 6 to avoid clutter, but are available in an 
online supplement at https://www.caee.utexas.edu/prof/bhat/ABSTRACTS/SpatialRank/OnlineSupp.pdf. Suffice it to 
say that the elasticity effects from the aspatial model were significantly lower than those from the SROP model, a 
consequence of the “spillover” effects in the SROP model that causes a spatial multiplier effect. Specifically, a change 
in the utility for individual A (due to a change in a specific exogenous variable) influences the utilities of alternatives 
of other individuals, which then have a “circular” influence back on the utilities of the alternatives for individual A. 
This “circular” influence is reinforcing because of the positive spatial lag parameter. By ignoring such a multiplier 
effect, the aspatial model underestimates the effects of policies directed toward behavioural modification changes or 
BE/transportation system changes.  
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compared to in a random sample of 100 men. Similar interpretations can be provided for 
continuous variables as well. For example, the last row of Table 6 indicates that when AV pooled 
RH cost is increased by 20%, the probability of choosing public transport increases by 1.22%. The 
directions of the elasticity effects of the model are pretty much consistent with the discussions in 
the previous section. The table suggests that the most important variables among the binary 
variables affecting mode-choice decisions are (1) gender (2) age (3) possession of driving license 
(4) education level, (5) household vehicles and (6) annual income. Although the continuous 
variables cannot be directly compared in terms of relative importance, the percentage share 
changes across the modes for an increase of 20% in all the BE and travel level-of-service variables 
are moderate in magnitude compared to the impact of the individual and household variables.  

By way of implications, our proposed SROP mode choice model suggests substantial and 
significant spatial interaction among decision-makers in selecting their mode preferences. Ignoring 
these impacts will, in general, lead to biased coefficient estimates and potentially misinformed 
policy actions. From a substantive perspective, our model results suggest, very broadly speaking, 
that policies to nudge individuals to adopt more environmentally friendly and pooled travel modes 
would be more effective if directed toward behavioural change in specific demographic groups 
rather than on built environment or trip level changes. Also, it is clear that gender effects play a 
substantial role in mode choice decisions in the emerging new era of mobility options. In particular, 
the first row in Table 6 highlights the strong aversion of women toward ride-hailing services, 
especially those that are autonomous (see the last two columns of the first numeric row which 
indicate more than 50% reduction in shares between men and women). As highlighted by 
Pflugfelder (2018), Asmussen et al. (2020), and Dannemiller et al. (2021), women have elevated 
levels of safety concerns regarding ride-hailing as well as place less trust in AV technology. Any 
efforts to increase comfort levels with ride-hailing in general, and autonomous RH use in 
particular, among even a small set of women may help get many more women to eschew private 
car use and promote shared RH service use (in private or pooled forms), especially because of 
spatial spillover effects. Similarly, our results also underscore the importance of promoting the use 
of ride-hailing services (private and shared as well as AV or non-AV) among older individuals, 
perhaps by making RH smartphone apps simpler and less cluttered to reduce the cognitive burden 
for older individuals. In fact, it is well established in the gerontology and psychology literature 
that aging is typically associated with a decline in cognitive ability (such as memory, attention, 
and verbal and visual/spatial information retention; see Deary et al., 2009, Boot et al., 2013), 
suggesting the need for human-machine interfaces (HMI) to be simple, uncluttered, voice-
activated, and with multi-modal audio/visual interfaces (see Morgan et al., 2017). Besides by 
eschewing private vehicles and embracing RH options, older individuals also may be able to 
expand their social networks and benefit from less social exclusion.  

The built environment effects reflect the fact that individuals residing in high (employment 
or population) density neighborhoods are more likely (than those residing in low density 
neighborhoods) to choose public transit, bicycle, and the pooled RH modes, with population 
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density particularly increasing bicycle and HD pooled RH choice, and employment density 
particularly elevating the AV pooled RH mode.  

From a trip purpose standpoint, the private vehicle seems to be the most preferred mode of 
transportation for shopping, airport-access and social purposes (relative to the eat-out purpose). 
However, the AV RH service (in both private and pooled modes) also appears to be an attractive 
option for the social trip purpose. The predisposition toward the AV RH pooled services can be 
further promoted by potentially discouraging private vehicle use in socially active downtown or 
other high density areas (for example, through the reduction of parking facilities or cordon-based 
congestion pricing strategies), while allowing RH pooled vehicles full access to these areas. This 
will not only nudge the public to shift to a more sustainable mode, but can also help in reducing 
driving while intoxicated (DWI) infractions. At the same time, though, in the context of modal 
level of service effects, the pseudo-elasticity measures suggest that disincentivizing private vehicle 
use (for example, by increasing cost) would provide rather limited returns because users have a 
strong preference for the private vehicle mode (see the low magnitude of private vehicle elasticity 
effects in response to private vehicle travel time/cost changes in Table 6). This “stickiness” toward 
the private vehicle mode suggests that government policies need to go beyond private vehicle-use 
disincentive schemes if they are to have any substantive impact on non-work private vehicle mode 
use share. A multi-pronged effort that combines congestion pricing and high parking cost schemes 
with policies promoting high occupancy vehicle use (such as subsidized pooled RH rides and 
public transit rides, and high occupancy vehicle use lanes) is needed.  

 
5. CONCLUSIONS 
In this paper, we propose a spatial rank-ordered probit (SROP) model that accommodates both 
spatial lag effects as well as spatial drift effects. To our knowledge, this is the first such formulation 
and application of a SROP model in the econometric and transportation literature. The SROP 
model is estimated using the maximum approximate composite marginal likelihood (MACML) 
method, employing a recently-developed fast and accurate analytical approximation method to 
evaluate the multivariate normal cumulative distribution function. We evaluate the parameter 
recovery ability of the MACML estimator through a simulation experiment and also estimate three 
restricted versions of our proposed model. The simulation results indicate that our proposed 
MACML approach is able to recover the true parameters remarkably well with an average (across 
parameters) absolute percentage bias less than 5%. Furthermore, the severe bias that one would 
introduce if the spatial lag and/or spatial drift effects are ignored is also evidenced in the simulation 
experiment.  

We demonstrate an application of our proposed model in a mode choice context using a 
sample drawn from the 2019 multi-city Transformative Technologies in Transportation (T4) 
Survey for the city of Austin. Our analysis results indicate a strong and significant spatial 
autoregressive lag parameter and, because of unobserved heterogeneity on the population density 
variable, also spatial spillover effects. Ignoring these dependencies and dynamics will, in general, 
lead to inconsistent and inefficient estimates of parameter effects. This is highlighted by computing 
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the elasticity effects of variables, which indicates that the model that ignores spatial effects quite 
substantially underestimates variable elasticity effects. From a substantive point of view, the 
results underscore the importance of demographics and lifecycle factors in mode choice 
preferences, which appear to be orders of magnitude more important than built environment 
attributes and transportation system attributes in an era of new and emerging mobility services.  

A limitation of our empirical analysis is that the “private vehicle” considered both the 
human-driven and autonomous variants together. Therefore, it was not possible to disentangle the 
sensitivity of the variables separately for “private human-driven” and “private autonomous” 
vehicles. Future survey efforts should strive to separate these two modes. Even so our empirical 
application does provide important insights in the context of relatively recent and future ride-
hailing services. Besides, the focus of this paper was to propose and demonstrate the value of a 
spatial rank-ordered model. In this regard, we hope that researchers and practitioners will 
reconsider the use of ranking data in modeling choice behavior, rather than inappropriately and 
summarily dismissing this type of data collection as being unreliable. Also, in an era of emerging 
mobility options, diffusion effects play a key role in market adoption rates, and our spatial rank 
ordered probit (SROP) provides the ability to explicitly and effectively account for such effects in 
travel modeling. 
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Figure 1: Example of ranking question presented to users (this example corresponds to a shopping purpose trip; the trip-

purpose scenarios were varied across respondents)  
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Table 1: Parameter recovery ability of the MACML approach 

Low spatial coefficient case (δ=0.25) 

Parameter 
True 
Value 

Mean 
Estimate 

Absolute 
Percentage 
Bias (APB) 

Finite 
Sample 

Standard 
Deviation 
(FSSD) 

Asymptotic 
Standard 

Error (ASE) 
APBASE 

(%) 

1b  1.000 1.016 1.60 0.065 0.071 9.23 

2b  1.000 1.020 2.00 0.092 0.088 4.35 

11  1.000 0.969 3.10 0.098 0.088 10.20 

33  1.200 1.169 2.58 0.077 0.072 6.49 

44  1.500 1.471 1.93 0.097 0.111 14.43 

  0.250 0.253 1.20 0.035 0.034 2.86 

Overall mean value across parameters 2.07     7.93 

High spatial coefficient case (δ=0.70) 

Parameter 
True 
Value 

Mean 
Estimate 

Absolute 
Percentage 
Bias (APB) 

Finite 
Sample 

Standard 
Deviation 
(FSSD) 

Asymptotic 
Standard 

Error (ASE) 
APBASE 

(%) 

1b  1.000 1.022 2.20 0.073 0.082 12.33 

2b  1.000 1.030 3.00 0.104 0.093 10.58 

11  1.000 1.053 5.30 0.108 0.122 12.96 

33  1.200 1.261 5.08 0.082 0.097 18.29 

44  1.500 1.619 7.93 0.101 0.119 17.82 

  0.700 0.710 1.43 0.019 0.018 5.26 

Overall mean value across parameters 4.16  
  12.87  
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Table 2: Ignoring the effects of spatial dependency 

Evaluation 
Metric 

δ = 0.25 δ = 0.70
 

SROP 
Model 

“No spatial 
drift” 
Model 

“No spatial 
lag” Model 

ROP 
Model 

SROP 
Model 

“No spatial 
drift” 
Model 

“No spatial 
lag” Model 

ROP 
Model 

Mean APB 2.07 24.88 6.82 33.01 4.16 28.86 34.26 54.67 

Mean 
APBASE 

7.93 18.86 13.61 24.11 12.87 22.02 26.39 27.18 

Mean 
composite 
log-
likelihood 
value at 
convergence 

-9989.26 -10576.15 -10139.62 -10706.22 -10101.12 -10534.07 -11151.77 -11641.99 

Number of 
times the 
adjusted 
composite 
likelihood 
ratio test 
(ADCLRT) 
statistic 
favors the 
SRC-ROP 
model 

- 

All 250 
times when 
compared 

with 

84.32
1    

value 
(mean 

ADCLRT 
statistic is 
803.01) 

All 250 
times when 
compared 

with 

84.32
1    

value 
(mean 

ADCLRT 
statistic is 
172.61) 

All 250 
times when 
compared 

with 

99.52
2    

value 
(mean 

ADCLRT 
statistic is 
947.11) 

- 

All 250 
times when 
compared 

with 

84.32
1    

value 
(mean 

ADCLRT 
statistic is 
602.73) 

All 250 
times when 
compared 

with 

84.32
1    

value 
(mean 

ADCLRT 
statistic is 
1324.26) 

All 250 
times when 
compared 

with 

99.52
2    

value 
(mean 

ADCLRT 
statistic is 
2761.39) 
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Table 3: Dependent variable (ranking) description 

Mode Top ranked Within top 2 ranks Within top 3 ranks Within top 4 ranks Within top 5 ranks 

Private vehicle 70.4% 79.6% 86.1% 89.3% 93.3% 

Bicycle 4.3% 13.7% 21.9% 28.9% 36.3% 

Public Transport 8.7% 29.5% 43.0% 55.9% 63.3% 

HD private RH* 5.2% 31.9% 52.8% 73.3% 86.5% 

HD pooled RH 2.3% 12.9% 34.2% 56.9% 82.4% 

AV private RH 6.4% 20.8% 38.7% 55.8% 73.8% 

AV pooled RH 2.7% 11.6% 23.3% 39.9% 64.4% 

*HD – Human Driven, RH-Ride hailing, AV= Autonomous Vehicle.  
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Table 4: Estimation results for the empirical application 

 Variables 
Public 

Transport 
(base) 

Private 
vehicle 

Bicycle 
HD private 

RH 
HD pooled 

RH 
AV private 

RH 
AV pooled 

RH 

Individual characteristics        

Female (Base: Male)  0.142  (3.10) 0.083  (2.66) -0.047 (-2.78) -0.033 (-2.32) -0.08 (-5.12) -0.071 (-4.29) 

Age greater than 50 years (Base: Less than 50 
years) 

 0.581  (1.76) - - - - - 

Possession of a driver’s license (Base: No 
possession) 

 0.138  (3.76) - - - - - 

Completed graduate degree (Base: lower than 
graduate degree) 

 - -0.297 (-3.48) - - - 0.012  (1.41) 

Employed (Base: Not employed)  0.127  (2.96) - 0.011  (1.54) - 0.021  (4.31) - 

Household characteristics        

Household has more than one vehicle (Base: 
Less than 1 vehicle) 

 0.159  (1.81) - - - - - 

Household size 3 or more (Base: Less than 3)   0.209  (3.18) - - - - - 

Household income (Base: <$50,000)        

Income ≥ $100,000  0.234  (3.01) - 0.024  (3.66) - 0.011  (1.51) - 

Built environmental attributes        

Population density (people/acre)  - 0.081  (4.69) - 0.041  (6.21) - - 

    Population density (standard deviation)   0.043  (1.89)     

Employment density (people/acre)  - 0.090  (1.76) - - - - 

Trip level attributes        

Trip purpose (Base: Eat-out)        

Shopping purpose  0.156  (1.77) - - - - - 

Airport-access purpose  0.109  (2.17) - 0.011  (1.69) - 0.011  (1.69) - 

Social purpose  0.153  (2.84) -0.047 (-1.72) - - 0.093  (1.87) 0.093  (1.87) 

Travel time (minutes) -0.090 (-3.42) 

Travel cost ($) -0.310 (-9.12) 

Spatial dependency (δ)  0.649  (9.98) 

Constant -- -0.284 (-4.56) -0.392 (-6.07) 0.093  (5.62) 0.048  (2.21) 0.061  (1.76) 0.020  (1.12) 
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Table 5: Data fit measures with respect to restricted rank-ordered versions 

Evaluation Metric 
Models 

SROP Model “No spatial drift” Model “No spatial lag” Model ROP Model 

Mean composite log-likelihood value at 
convergence 

-37,638.45 -37,978.89 -40,783.22 -41,246.89 

ADCLRT  
394.49 

 ( 2

2
3.84  ) 

4088.36 

 ( 2

2
3.84  ) 

5189.22 

 ( 2

2
5.99  ) 

APCP 0.0023 0.0021 0.0018 0.0017 

APFC 0.359 0.348 0.258 0.256 

Predicted shares for the first choice 

Mode 
Observed first 

choice 

SROP Model 
“No spatial drift” 

Model 
“No spatial lag” Model ROP Model 

Predicted APE Predicted APE Predicted APE Predicted APE 

Public Transport 81 66 18.50 68 16.05 69 14.81 67 17.28 

Private vehicle 653 565 13.47 560 14.24 525 19.60 522 20.06 

Bicycle 40 77 92.50 71 77.50 89 122.50 88 120.00 

HD private RH 48 56 16.67 58 20.83 66 37.50 69 43.75 

HD pooled RH 21 36 71.43 39 85.71 33 57.14 35 66.67 

AV private RH 59 82 38.98 80 35.59 78 32.20 76 28.81 

AV pooled RH 26 46 76.92 52 100.00 68 161.54 71 173.08 

Weighted MAPE     22.19   22.85   30.17   31.25 
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Table 6: Pseudo-elasticity effects 
Variable Base Treatment Public Transit Private vehicle Bicycle HD private RH HD pooled RH AV private RH AV pooled RH 

Sociodemographic Effects 

Gender Male Female -23.31 17.36 3.55 -49.87 -30.32 -58.54 -52.49 

Age Less than 50 Greater than 50 -38.90 23.34 -29.48 -55.02 -50.74 -35.39 -36.79 

License possession No Yes -45.81 31.40 -36.12 -70.10 -57.60 -51.91 -45.15 

Completed graduation No Yes 31.47 5.12 -71.35 13.84 9.38 7.66 32.15 

Employed No Yes -9.88 6.56 -3.56 4.35 -11.58 7.76 -13.65 

Household vehicles 1 or less More than 1 -20.58 15.75 -16.23 -32.71 -23.18 -25.04 -14.78 

Household size Less than 3 3 or more -15.35 10.71 -12.02 -26.30 -23.94 -17.44 -22.03 

Annual income < $100,000 > $100,000 -21.56 8.89 -12.56 8.22 -41.23 9.82 -48.69 

Built-Environment Effects 

Population density  20% increase 2.21 -0.09 5.04 -6.35 12.55 -2.22 1.24 

Employment density 20% increase 3.79 0.22 0.62 -14.14 8.58 -20.31 19.88 

Trip Level Attributes 

Trip purpose Eat-out Shopping -19.58 11.13 -13.90 -29.20 -23.03 -15.41 -19.45 

Trip purpose Eat-out Airport-access -23.26 8.04 -15.29 1.02 -29.59 0.65 -22.65 

Trip purpose Eat-out Social -17.99 8.98 -35.25 -21.58 -18.65 3.21 4.56 

Public Transit Travel Time 20% increase -10.22 0.21 2.65 0.65 6.25 -0.25 4.25 

Private Vehicle Travel Time 20% increase 4.81 -0.36 2.14 5.58 -3.27 -0.77 3.18 

Bicycle Travel Time 20% increase 2.22 0.68 -15.22 0.56 3.65 1.25 2.15 

HD private RH Travel Time 20% increase 1.66 0.54 0.48 -14.76 4.25 3.56 4.22 

HD pooled RH Travel Time 20% increase 1.25 0.38 2.54 4.35 -12.36 -0.22 3.56 

AV private RH Travel Time 20% increase 2.24 0.32 2.04 3.22 4.56 -11.25 2.31 

AV pooled RH Travel Time 20% increase 1.11 0.45 1.25 2.54 4.23 1.25 -15.99 

Public Transit Travel Cost 20% increase -21.55 0.59 3.11 1.25 2.56 -0.15 3.22 

Private Vehicle Travel Cost 20% increase 4.05 -0.81 4.25 1.30 3.17 1.31 2.35 

HD private RH Travel Cost 20% increase 2.15 0.21 1.52 -22.65 3.89 2.25 4.35 

HD pooled RH Travel Cost 20% increase 1.05 0.15 -0.22 3.25 -29.65 5.63 4.25 

AV private RH Travel Cost 20% increase 3.21 0.22 1.10 5.55 4.34 -20.98 3.25 

AV pooled RH Travel Cost 20% increase 1.22 0.19 0.46 4.12 5.66 3.07 -31.22 

 


