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Mathematical Formulation of the GHDM for the Current Study Involving Ordinal 
Outcomes and Ranked Outcomes 
For ease of presentation, we will suppress the index for decision-makers in our exposition 
below, and assume that all error terms are independent and identically distributed across 
decision-makers. Following Bhat’s (2015) GHDM formulation, let l be an index for latent 
variables (l=1,2,…,L). Consider the latent variable *

lz  and write it as a linear function of 
covariates: 

,*
llz η+′= wαl                                                                                                                           (1) 

where w is a )1~( ×D  vector of observed covariates (excluding a constant), lα  is a corresponding 

)1~( ×D  vector of coefficients, and lη  is a random error term assumed to be standard normally 

distributed for identification purpose.  Next, define the )~( DL × matrix ),...,,( 21 ′= Lαααα , and 

the )1( ×L vectors ) ,...,,( **
2

*
1 ′= Lzzz*z  and )'.,,,,( 321 Lηηηη =η  We allow a multivariate 

normal (MVN) correlation structure for η  to accommodate interactions among the unobserved 
latent variables: ],[~ Γ0η LLMVN , where L0  is an )1( ×L  column vector of zeros, and Γ  is 
an )( LL× correlation matrix. In matrix form, we may write Equation (1) as: 

η+= αwz* .                                                                                                                                            (2)                                                                                        

Now consider N ordinal outcomes (indicator variables as well as main outcomes) for 
the individual, and let n be the index for the ordinal outcomes ) ..., ,2 ,1( Nn = . Also, let nJ  be 

the number of categories for the nth ordinal outcome )2( ≥nJ  and let the corresponding index 

be nj ) ..., ,2 ,1( nn Jj = . In our empirical case, N = 14 (corresponding to 12 indicators and the 

ALT and ADLT dimensions, each with 5nJ = ). Let *~
ny  be the latent underlying variable whose 

horizontal partitioning leads to the observed outcome for the nth ordinal variable. Assume that 
the individual under consideration chooses the th

na  ordinal category. Then, in the usual ordered 
response formulation, for the individual, we may write: 

,~~~and,~~~~
,

*
1,

*
nn annannnn yy ψψε <<+′+′= −

*
n zdxγ                                                                      (3) 

where x  is an )1( ×A  vector of exogenous variables (including a constant) as well as possibly 
the observed values of other endogenous ordinal variables, and other endogenous ranked-
choice variables introduced as dummy variables (thus, in our case, if an individual selected a 
particular TBA, or a combination of TBAs, within their first three ranked activities, these 
endogenous variables may be included as dummy variables, though only in a recursive fashion 
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and not in a cyclic manner) , nγ~  is a corresponding vector of coefficients to be estimated, nd~  
is an )1( ×L vector of latent variable loadings on the nth ordinal outcome, the ψ~  terms represent 
thresholds, and nε~  is the standard normal random error for the nth ordinal outcome (note, 
however, that for the indicators (but not the main outcomes), typically the x  vector will not 
appear on the right side of Equation (3); also, there are specific identification conditions for the 
number of non-zero elements of nd~  that can be present in each indicator equation and across 
all indicator equations; please see Bhat, 2015 for additional details). For each ordinal outcome, 

nn JnJnnnn ,1,2,1,0,
~~...~~~ ψψψψψ <<<< − ; −∞=0,

~
nψ , 0~

1, =nψ , and +∞=
nJn,

~ψ . For later use, let 

)~...,~,~(~
1,3,2, ′= −nJnnn ψψψnψ  and .)~,...,~,~(~ ′′′= Nψψψψ 21  Stack the N underlying continuous 

variables *~
ny  into an )1( ×N vector *y~ , and the N error terms nε~  into another )1( ×N vector .ε

Define )~,...,~,~(~
21 ′= Hγγγγ  [ )( AN ×  matrix] and ( )N, dddd ~,...,~,~~

21=  [ )( LN ×  matrix], and let 

NIDEN  be the identity matrix of dimension N representing the correlation matrix of ε~  (the 
unit diagonals are needed for identification; for convergence stability and parsimony, we 
assume that the elements of the ε  vector are uncorrelated with each other, though specific 
elements of the *y~  vector can still be correlated through the stochatic latent constructs). 
Finally, stack the lower thresholds for the decision-maker ( )Nn

nan  ..., ,2 ,1~
1, =−ψ  into an )1( ×N  

vector lowψ~  and the upper thresholds ( )Nn
nan  ..., ,2 ,1~

, =ψ  into another vector .~
upψ  Then, in 

matrix form, the measurement equation for the ordinal outcomes (indicators) for the decision-
maker may be written as: 

up
*

low
** ψyψεzdxγy ~~~ ,~~~~ <<++= .                    (4) 

Now let there be G ranked outcome variables for an individual, and let g be the index 
for the ranked variables ),...,3 ,2 ,1( Gg = . Also, let Ig be the number of alternatives 
corresponding to the gth ranked variable (Ig≥ 3) and let gi be the corresponding index 

) ,...,3 ,2 ,1( gg Ii = . In our case, G=1 and I1 =7; however we present the framework for any 

number of ranked otcomes. Consider the gth ranked variable and assume the usual random 
utility structure for each alternative gi .   

,)(
ggggg gigigigigiU ς+′+′= *zβxb ϑ                                                                           (5) 

where x  is an )1( ×A  vector of exogenous variables (including a constant) as well as possibly 
the observed values of other endogenous ordinal variables (introduced in a recursive fashion), 
as defined earlier, 

ggib  is an )1( ×A  column vector of corresponding coefficients, and 
ggiς is 

normal error term. 
ggiβ  is an )( LN

ggi × -matrix of variables interacting with latent variables to 

influence the utility of alternative gi , and 
ggiϑ  is an )1( ×

ggiN -column vector of coefficients 

capturing the effects of latent variables and their interaction effects with other exogenous 
variables. If each of the latent variables impacts the utility of the alternatives for each ranked 
variable purely through a constant shift in the utility function, 

ggiβ will be an identity matrix of 
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size L, and each element of 
ggiϑ  will capture the effect of a latent variable on the constant 

specific to alternative gi  of nominal variable g.  Let ),...,( 21 ′=
ggIgg ςςςgς   1( ×gI  vector), and 

),(~ gΛ0
gIMVNgς . Taking the difference with respect to the first alternative, the only 

estimable elements are found in the covariance matrix gΛ


 of the error differences, 

),...,,( 32 ggIgg ςςς  =gς  (where )1,1 ≠−= iggigi ςςς . Further, the variance term at the top left 

diagonal of gΛ


 ),...,2 ,1( Gg =  is set to 1 to account for scale invariance. gΛ  is constructed 

from gΛ


 by adding a row on top and a column to the left. All elements of this additional row 

and column are filled with values of zero. In addition, the usual identification restriction is 
imposed such that one of the alternatives serves as the base when introducing alternative-
specific constants and variables that do not vary across alternatives (that is, whenever an 
element of x  is individual-specific and not alternative-specific, the corresponding element in 

ggib is set to zero for at least one alternative ).gi  To proceed, define ),...,,( 21 ′=
ggIggg UUUU  

1( ×gI  vector), ),...,,,( 321 ′=
gIg gggg bbbbb  AI g ×(  matrix), and ),...,, 21 ′′′′(=

ggIggg ββββ  











×∑

=

LN
g

g

g

I

i
gi

1
 matrix. Also, define the 










×∑

=

g

g

g

I

i
gig NI

1
matrix gϑ , which is initially filled with 

all zero values. Then, position the )1( 1gN×  row vector 1gϑ′  in the first row to occupy columns 

1 to 1gN  , position the )1( 2gN×  row vector 2gϑ′  in the second row to occupy columns 1gN +1 

to ,21 gg NN +  and so on until the )1(
ggIN×  row vector 

ggIϑ′  is appropriately positioned.  

Further, define )( ggg βϑϖ = LI g ×(  matrix), ∑
=

=
G

g
gIG

1



, ∑
=

−=
G

g
gIG

1
),1(~

( )′′′′= GUUUU , ... ,, 21   1( ×G


 vector), ),...,( 21 ′= Gςςςς 1( ×G


vector), ),...,,( 21 ′′′′= Gbbbb AG ×


(

matrix), ),...,,( 21 ′′′′= Gϖϖϖϖ LG×


( matrix), and ),...,,(Vech 21 Gϑϑϑϑ =  (that is, ϑ  is a 

column vector that includes all elements of the matrices Gϑϑϑ ,...,, 21 ). Then, in matrix form, 
we may write Equation (5) as: 

,ςϖ ++= *zbxU                                                                              (6) 

where ),(~ Λ0GGMVN ς .  As earlier, to ensure identification, we specify Λ  as follows: 

).matrix(3

2

1

GG

G













×























=

Λ0000

00Λ00
000Λ0
0000Λ

Λ                                                          (7) 
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In the general case, this allows the estimation of ∑
=









−

−G

g

gg II

1
1

2
)1(*

 terms across all the G 

nominal variables, as originating from 







−

−
1

2
)1(* gg II

 terms embedded in each gΛ


matrix; 

(g=1,2,…,G) . 
 
Let δ  be the collection of parameters to be estimated:

[Vech( ), Vechup( ), Vech( ), Vech( ), ,Vech( ), , Vech( )] ,=δ Γ Λ

 α γ d ψ b ϑ where the operator 
)"(Vech" .  vectorizes all the non-zero elements of the matrix/vector on which it operates and 

"Vechup( )".  indicates strictly upper diagonal elemenets.  
With the matrix definitions above, the continuous components of the model system may 

be written compactly as: 

η+= αwz* ,                                                                                                            (8) 

= + +

  

* *y γx dz ε , with Var ( ) ( matrix)N N N= ×ε IDEN  ,               (9) 

ςzbxU * ++= ϖ .                                                                                                                (10) 

To develop the reduced form equations, replace the right side of Equation (8) for *z in 
Equations (9) and (10) to obtain the following system: 

( )= + + = + + + = + + +   

      

* *y γx dz ε γx d αw η ε γx dαw dη ε ,                                                   (11)                                                                             

ςηαwbxςηαwbxςzbxU * +++=+++=++= ϖϖϖϖ )( .   

Now, consider the [( ) 1)]N G+ ×


 vector [ ] ,
′

′ ′ =  

*yU y U . Define 

   +
= =    +   



1

2

B γx dαwB
B bx αwϖ

and
′  ′ ′  +

= =    ′ ′ +   

1 12 N

12 2

Ω Ω Γ IDEN ΓΩ
Ω Ω Γ Γ Λ

  



d d d
d

ϖ
ϖ ϖ ϖ

.                      (12)        

Then ( , ).
+

Ω

N GyU ~ MVN B    

We now focus on the estimation of the model. For the case of ranked nominal variables, the 
utility differentials are arrived at based on the order of the ranking (for ease in presentation, we 
first present the estimation formulation for the case of a unique ranking scenario, i.e., when 
there are no tied-rankings, and subsequently provide the changes needed to accommodate the 
case of tied ranks, which is what is encountered in our actual empirical study). In particular, let 
rg be a specific rank ordering of the alternatives corresponding to the gth nominal variable. That 
is, 1

gr  is the first-ranked alternative, 2
gr  is the second-ranked alternative and so on. ,gRr  denotes 

the event that the alternatives are ranked in the order rg for the ranked variable g by the 
individual. According to the random utility maximization framework, the following 
relationship must hold for ,gRr , 

2 1 3 2 1, : 0, 0,..., 0I Ig g
g g g g g gi i i i ig r r r r r ri

R U U U U U U −− < − < − <r  
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The above latent utility differentials for the rank-ordered outcome g are stacked as

( )2 1 3 2 1, ,..., I Ig ggr r gr r gr r
u u u −

′ 
=  
 

gu . Now, define [ ] [ ] [ ]
′






 ′′′

= Guuuu ,...,, 21 , We now need to 

develop the distribution of the vector ( )[ ] ,
′

′ ′= 

*yu y u from that of ( )[ ] ,
′

′ ′= 

*yU y U . To do so, 

define a matrix M of size N G N G  + × +   


 . Fill this matrix with values of zero. Then, insert 

an identity matrix of size N into the first N rows and N columns of the matrix M. Next, consider 
the rows from 11 to 1N N I+ + − , and columns from 11 to .N N I+ +  These rows and 
columns correspond to the first ranked variable. We do the following in this sub-matrix:  place 
a value of ‘–1’ at the column corresponding to the first ranked alternative and ‘1’ at the column 
corresponding to the second ranked alternative. Similarly, in the second row, place a value of 
‘–1’ at the column corresponding to the second ranked alternative and ‘1’ at the column 
corresponding to the third ranked alternative. Continue this procedure for 1( 1)−I  rows.  . Next, 

rows 1N I+  through 1 2 2N I I+ + −  and columns 1 1N I+ +  through 1 2N I I+ + correspond to 
the second ranked variable. Repeat the above process. Continue this procedure for all G ranked 
variables. With the matrix M as defined, we can write ( , ),+ Ω





N Gyu ~ MVN B  where BB M=~  

and MMΩΩ ′=
~ .  

 However, to deal with the cases where different alternatives have identical rankings, 
the likelihood is calculated as the probability of all utility values that can result in the rank 
ordering depicted by the respondent. For example, if an individual q assigns the first rank to 
alternative 3, second rank to two alternatives (say, 2 and 4), and third rank to alternative 1, 
pertaining to the ranked variable g, the sub-matrix pertaining to this ranked outcome within the 
contrast matrix M  is structured to represent the following four conditions (suppressing q in 
the equation):  

3 4 3 12 2 1 40, 0, 0, 0
g g g g g g g gi i i i i i ir r r r r ir r r

U U U U U U U U− < − < − < − <  

This is equivalent to the following: 
0 1 1 0
0 0 1 1
1 1 0 0
1 0 0 1

g

− 
 − =
 −
 − 

M  

Note that the number of rows in gM varies depending on the number of ties at different rank 

levels. Therefore, let gG


be the number of rows for the contrast matrix produced by ranked 

variable g (this will depend on the ranking preferences provided by each individual and will 
not be constant across all individuals unlike the case of non-tied rankings). Therefore, the total 
number of rows for the contrast matrix pertaining to the ranked variables will be: 

1

G

g
g

G G
=

=∑
 
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Therefore, with the new matrix M of size N G N G  + × +   




as defined, we can write 

( , ),+ Ω



N Gyu ~ MVN B  where BB M=~  and MMΩΩ ′=
~ , for the case of tied ranking 

Next, define threshold vectors as follows: 

( ), G

′′ ′= −  




low lowψ ψ ∞ ([( ) 1]N G+ ×


vector) and ( ),up G

′′ ′=   
0 



upψ ψ ([( ) 1]N G+ ×


 

vector), 

where G− ∞  is a 1G×


-column vector of negative infinities, and G0   is another 1G×


-column 

vector of zeros. Then the likelihood function may be written as: 

( ) Pr  ,low upL  = ≤ ≤ δ  ψ yu ψ                                                                                               (13) 

 ( | , ) ,
r

N G
D

f dr+= ∫ Ω

r B 
     

 

where the integration domain }:{ uplowrD ψrψr 

≤≤=  is simply the multivariate region of the 

elements of the yu  vector determined by the observed ordinal outcomes, and the range 
),( ~~ G0G∞−  for the utility differences taken with respect to the utility of the ranked preference 

for the ranked outcome. The likelihood function for a sample of Q decision-makers is obtained 
as the product of the individual-level likelihood functions.  
 Since a closed form expression does not exist for this integral and evaluation using 
simulation techniques can be time consuming, we used the One-variate Univariate Screening 
technique proposed by Bhat (2018) for approximating this integral. The estimation of 
parameters was carried out using the maxlik library in the GAUSS matrix programming 
language. 
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Table 1. Loading of Indicators on Latent Constructs 

Attitudinal Indicators 
Loading of Indicators on Latent Constructs 

Tech Savviness Safety Concern Being Chill IPTT 
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

I like to be the first to have the latest technology 0.516 10.71           

Learning how to use new tech is often frustrating to me -0.413 -7.45           

Having internet connectivity everywhere I go is important to me 0.310 7.72           

I would feel comfortable having an AV pick up/drop off children 
without adult supervision     -0.795 -19.08       

I am concerned about the potential failure of AV sensors, 
equipment, technology, or programs     0.457 11.84     

I would feel comfortable sleeping while traveling in an AV     -0.792 -21.24     

AVs would make me feel safer on the street as a pedestrian or 
cyclist     -0.662 -18.34     

Having to wait can be a good pause in a day         0.600 15.94   

I prefer to do one thing at a time         0.163 6.16   

The time spent traveling to places provides a useful transition 
between activities     0.653 15.90   

I try to make good use of my time traveling       0.810 14.36 

The level of congestion on my daily travel bothers me       0.209 7.66 
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