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Mathematical formulation of GHDM model with only ordinal outcomes 

Consider the case of an individual {1, 2,..., }q Q . Let {1, 2,..., }l L  be the index of the latent 

constructs and let *
qlz  be the value of the latent variable l for the individual q. *

qlz  is expressed as a 

function of its explanatory variables as, 

* T
ql qlz  qlw α , (1) 

where ) ( 1Dqlw  is a column vector of the explanatory variables of latent variable l and ) ( 1Dα

is a vector of its coefficients. ql  is the unexplained error term and is assumed to follow a standard 

normal distribution. Equation (1) can be expressed in the matrix form as, 

 *
q q qαw ηz , (2) 

where  ( )1L*
qz is a column vector of all the latent variables, ) ( DLqw is a matrix formed by 

vertically stacking the vectors T T T( )q1 q2 qLw ,w , ...,w  and )1 (Dqη  is formed by vertically stacking 

1 2( , ,..., )q q qL   . qη  follows a multivariate normal distribution centered at the origin and having a 

correlation matrix of  ( )L LΓ , i.e., )~ ( ,LMVN Γq L0η , where L0  is a vector of zeros. The 

variance of all the elements in qη  is fixed as unity because it is not possible to uniquely identify a 

scale for the latent variables. Equation (2) constitutes the SEM component of the framework. 

 Let {1, 2,..., }j J  denote the index of the outcome variables (including the indicator 

variables). Let *
qjy  be the underlying continuous measure associated with the outcome variable  

qjy . Then, 

*
( 1) if qj jk j kqjy k t y t   , (3) 

where }{1, 2,..., jk K  denotes the ordinal category assumed by qjy  and jkt  denotes the lower 

boundary of the kth discrete interval of the continous measure associated with the jth outcome. 
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1)(jk j kt t   for all j and all k. Since *
jy  may take any value in ( , )  , we fix the value of 1jt  

and 1)( jj Kt     for all j. Since the location of the thresholds on the real-line is not uniquely 

identifiable, we also set 2 0jt  . *
jy  is expressed as a function of its explanatory variables as, 

* T T
qj qjy  *

qj q jdβ zx , (4) 

where ( )1E qjx is a vector of size of explanatory variables for the continuous measure *
qjy . 

 ( 1)E β  is a column vector of the coefficients associated with qjx  and ×1)(Ljd   is the vector of 

coefficeints of the latent variables for outcome j. qj  is a stochastic error term that captures the 

effect of unobserved variables on the value of *
qjy . qj  is assumed to follow a standard normal 

distribution. Jointly, the continuous measures of the J outcome variables may be expressed as, 

* *
q q q qβ + dzx + ξy ,  (5) 

where  1 J *
qy  and  1 J qξ  are the vectors formed by vertically stacking *

qjy  and qj  

respectively of the J dependent variables. ) ( EJ qx  is a matrix formed by vertically stacking the 

vectors  T T T, ,...,q1 q2 qJx x x  and ) (J Ld  is a matrix formed by vertically stacking  T T T, ,...,1 2 Jd d d . 

qξ  follows a multivariate normal distribution centered at the origin with an identity matrix as the 

covariance matrix (independent error terms). )~ ( ,JMVN IJq Jξ 0 . We assume the terms in qξ  to 

be independent because it is not possible to uniquely identify all the correlations between the 

elements in qη and all the correlations between the elements in qξ . Further, because of the ordinal 

nature of the outcome variables, the scale of *
qy  cannot be uniquely identified. Therefore, the 

variances of all elements in qξ  is fixed to one. The reader is referred to Bhat (2015) for further 

nuances regarding the identification of coefficients in the GHDM framework. 

 Substituting Equation (2) in Equation (5), *
qy  can be expressed in the reduced form as, 

  *
q q q q qy wβ + d αx η + ξ , (6) 

 *
q q q q qy wβ + α ηx d + ξd . (7) 
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In the R.H.S. of Equation (7), qη  and qξ  are random vectors that follow the multivariate normal 

distribution and the other variables are constants. Therefore, *
qy  also follows the multivariate 

normal distribution with a mean of  q qβ + dw αb x  (all the elements of qη  and qξ  have a mean of 

zero) and a covariance matrix of T +Σ Γ IJd d . 

, )~ (JMVN Σ*
qy b . (8) 

The parameters that are to be estimated are the elements of α , strictly upper triangular 

elements of Γ, elements of β, elements of d and jkt  for all j and }{3, 4,..., jk K . Let θ be a vector 

of all the parameters that need to be estimated. The maximum likelihood approach can be used for 

estimating these parameters. The likelihood of the qth observation will be, 
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     
    Σθ   , (9) 

where,  1 2, , , |J Jv v v Σ  denotes the probability density of a J dimensional multivariate normal 

distribution centered at the origin with a covariance matrix Σ at the point 1 2( , , , )Jv v v . Since a 

closed form expression does not exist for this integral and evaluation using simulation techniques 

can be time consuming, we used the One-variate Univariate Screening technique proposed by Bhat 

(2018) for approximating this integral. The estimation of parameters was carried out using the 

maxlik library in the GAUSS matrix programming language. 

 

Output predictions 

To predict the outcome for an individual, first the random error terms for the latent variables are 

drawn from a multivariate normal distribution that has a mean of L0  and a covariance matrix of Γ. 

Following this the latent variables are predicted using Equation (2). Then the random error terms 

of the outcome variables are drawn from independent standard normal distributions. The outcomes 

are then predicted in a sequential manner using Equation (3) and Equation (4). Since some of the 

outcome variables are used as explanatory variables for other outcome variables, the sequence 

used for estimating the outcomes is such that the outcome that is predicted thi will only have 

explanatory variables that are exogenous or that have been predicted in one of the previous ( 1)i 

steps.  
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Average treatment effects 

The expression for computing the ATE is as follows, 

    
1

1ˆ | |q j q

Q

jiAB
q

jATE P y i B P y i A
Q 

    , (10) 

where ˆ
jiABATE  denotes the ATE on the ith level of the jth outcome variable by applying a treatment 

that changes condition of individuals from A to B, (.)qP is a function that computes the probability 

for the individual q. Since the computation of this probability is cumbersome when the outcome 

variable under consideration is explained by other outcome variables that are also affected by the 

treatment, we use Monte Carlo methods to simulate the required probabilities. For approximating 

the probability  |q jP y i B , we make 1000 predictions for the individual q where each prediction 

is made using a different random draw. The process for making the prediction is the same as that 

described in the previous section except that the variables that are affected by the condition B is 

set as per the condition irrespective of the value generated by the prediction process. The estimate 

for  |q jP y i B  will then be the proportion of the number of cases where jy  assumes the value 

i to the total number of predictions. 
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Latent variable loadings and thresholds of indicators 

Variable (Minimum level – Maximum level) 
Loading Constant Threshold 2|3 Threshold 3|4 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Tech-savviness indicators                 

Computer use frequency  
(Never/Almost never – Everyday) 

0.803 17.59 2.620 27.86 0.952 17.43 1.727 25.49 

Frequency of internet use  
(Less than once a day – Many times a day) 

0.853 18.83 1.794 24.99 1.272 27.61     

Uses laptop (No – Yes) 0.494 15.99 0.769 20.29 

  
  
  

  
  
  

    

Uses tablet or e-book reader (No – Yes) 0.287 12.23 0.049 1.85     

Used voice activated digital assistant in smart 
devices (No – Yes) 

0.176 7.26 -0.669 -26.41     

Enthusiasm about riding in / sharing the road 
with AVs 

              

Enthusiasm about the development of AVs 
(Not at all enthusiastic – Very enthusiastic) 

1.850 18.30 2.574 19.82 2.420 21.78 4.599 23.23 

Anxiety about riding in / sharing road with AVs                 

Worried about the development of AVs  
(Not at all worried – Very worried) 

1.229 7.73 1.487 12.18 1.848 12.49 3.886 12.72 

 

 

 


