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ABSTRACT 
In this paper, we propose a Yeonjoo-Johnson (YJ) transformation to accommodate flexible 
specifications of stochastic terms in multivariate mixed data models in general, and ordered-
response models with binary endogenous explanatory variables (EEVs) in particular. The use of 
such a flexible parametric distribution lends additional robustness to the maximum likelihood 
(ML) estimator. The resulting bivariate YJ model is as easy to estimate as a bivariate normal 
model. More generally, the YJ transformation is an efficient way to capture flexible marginal error 
distributions, which then can be bound together using an implicit copula approach. The proposed 
approach can be applied to a number of different univariate and multivariate mixed modeling 
structures. In a demonstration application, in the current paper, the proposed model is applied to 
investigate the effect of urban living on walking frequency, considering the choice of urban living 
as being endogenous to walking frequency.  
 
Keywords: Ordered-Response Model, Mixed Data Modeling, Residential Self-Selection, Walking 
Frequency, Built Environment Effects 
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1. INTRODUCTION 
Econometric consumer choice models may have a variety of dependent outcome variables, 
including those that are continuous, grouped, binary, ordered-response, unordered-response (or 
nominal), count, or multiple- discrete-continuous. Increasingly, to recognize the jointness in 
decision-making regarding multiple dependent outcomes, there has been an emphasis on 
multivariate modeling approaches (see Bhat and Mondal, 2022 for a recent review of such 
approaches). In all of these models, typically referred to as multivariate mixed data models, 
stochasticity is introduced to recognize that there will always be unobserved individual-specific 
factors that impact the outcome variable. Such stochasticity is commonly assumed to originate in 
the context of an underlying latent variable for each outcome variable, which is then appropriately 
mapped to the actual observed outcome (except for the continuous case when the underlying latent 
variable is also the actual observed variable). For example, to analyze an ordered-response 
outcome, a latent preference underlying the outcome is assumed, which is then mapped to the 
observed ordered outcome based on a thresholding mechanism. Or to analyze a nominal outcome, 
a latent utility valuation associated with each alternative is assumed, which is then mapped tot he 
observed unordered outcome based on a utility maximizing decision principle. Stochasticity is then 
included in the latent preference (for the ordered-response case) or the utility valuation (for the 
nominal case) in the form of a kernel error term with or without random coefficients on exogenous 
variables. Joint multivariate models can then be developed through accommodating covariance on 
the kernel error terms (see, for example, Müller and Czado, 2018, Wei et al., 2019, Jiryaie and 
Khodadadi, 2019, and Kwon et al., 2022) and/or through multivariate parsimonious factoring 
mechanisms for the random coefficients (see, for example, Bhat, 2015, Ong et al., 2018, Dias et 
al., 2020, Kang et al., 2021). In the latter case, the jointness across outcomes is typically generated 
through the use of a limited number of latent constructs (or factors), themselves being underlying 
stochastic cumulatives of a battery of indicators representing attitudinal or lifestyle characteristics. 
If these stochastic latent constructs are used as determinants of the underlying latent variables 
affecting the endogenous outcomes (either with or without interactions with other exogenous 
variables), it leads to jointness across the endogenous outcomes.  
 Regardless of how jointness is developed in the models discussed above, almost all 
multivariate mixed data models are based on a multivariate normal distribution of the underlying 
latent variables of the outcomes (imposed either directly on the kernel error terms of each outcome 
and/or through the kernel error terms embedded in the latent constructs or factors). Unfortunately, 
the multivariate distribution of the error terms of the dependent outcomes (conditional on other 
observed exogenous variables) is unknown a priori. Purely out of convenience, rather than based 
on any underlying economic theory, it is common to a priori assume a multivariate normal 
distribution for the error terms. But the use of a multivariate normal distribution when a different 
multivariate distribution characterizes the error terms can, and in general will, lead to biased 
parameter estimates, especially of the treatment effects of one endogenous outcome on another 
(see, for example, Han and Lee, 2019, and Bhat and Mondal, 2022).  
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 The most general way to accommodate an unknown multivariate distribution would be, of 
course, to use a multivariate nonparametric joint distribution, with some assumptions related to 
smoothness and regularity imposed on the joint distribution (as in Gallant and Nychka, 1987, 
Vytlacil and Yildiz 2007, or Chesher and Rosen 2013). Such methods, however, quickly get 
extremely profligate in parameters because of series-based or similar approximations of the density 
function, especially when moving beyond a univariate distribution to a multivariate distribution 
(see Chen et al., 2006 and Denzel, 2019). Besides, no clear asymptotic distribution results are 
available for such models (needed to compute parameter standard errors), and any treatment effects 
of one endogenous outcome on another are not point-identified (Schwiebert, 2013; Han and Lee, 
2019). Similar issues of profligateness and kernel density estimation difficulty can arise when 
using semi-parametric approaches (such as those of Lewbel, 2000, Dong and Lewbel, 2015, Yildiz, 
2013, and Mu and Zhang, 2018). These semi-parametric approaches also provide unbiased 
estimators only under specific conditions (such as a large support requirement for the “special 
regressor” in the Dong and Lewbel (2015) approach; see Bontemps and Nauges, 2017).  

A convenient alternative to handle skewed or fat-tailed multivariate distributions for the 
error terms is to use a parametric copula approach. Essentially, rather than a completely non-
parametric multivariate distribution, this parametric copula approach breaks down the multivariate 
distribution into univariate specifications for each marginal distribution that are then tied together 
using a specific parametric copula dependence structure (see Joe, 1997 and Bhat and Eluru, 2009).. 
Within this copula approach, the use of non-parametric marginals leads to an infinite-dimensional 
parameter space and the usual maximum likelihood estimation approach fails to produce any 
meaningful estimator (Geman and Hwang, 1982). To overcome this, recent studies have 
considered what is called the sieve maximum likelihood estimation approach (see, for example, 
Zou et al., 2017, Xu and Lee, 2018; Han and Lee, 2019, Szabo et al., 2020, Huang and Xu, 2022). 
But this sieve-based approach, while providing clear asymptotic distribution results under usual 
regularity conditions, continues to be profligate in parameters and is computationally expensive 
(see Smith et al., 2020). On the other hand, a parametric copula, combined with flexible (but) 
parametric marginals, has advantages in terms of fewer parameters to estimate and has clear 
estimation efficiency advantages through the use of a parametric maximum likelihood estimation 
approach. In fact, earlier studies have shown that, as long as the marginal distributions are specified 
to be reasonably flexible (allowing for skewness and fat tails), a parametric copula dependence 
structure is able to very closely mimic any multivariate distribution (Chen, 2006). As further 
elucidated by Baillien et al. (2022), multivariate skewness and fat tails can be introduced in a 
multivariate copula either through skewed/fat tail margins, a skewed/fat tail copula, or both. 
However, as they go on to state, a skewed/fat tail copula over skewed/fat tail marginals 
substantially increases model complexity and may be considered “overkill”. Similarly, Denzer 
(2019) extensively compare an entire set of different copula dependency structures (including the 
Clayton copula, the Frank copula, the Gumbel, and the t copula) with the baseline Gaussian copula 
dependency structure for a binary response model with a binary endogenous explanatory variable 
(EEV). Based on evaluations of both bias and root mean squared error for the average partial 
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effects (APEs), they find that the Gaussian dependency structure performs very well even when 
alternate bivariate structures characterize the dependency. In another similar study, Han and Lee 
(2019), also focusing on a binary response model with a binary EEV, find that a bivariate model 
with flexible marginals is robust to misspecification of the bivariate dependency structure. Thus, 
in this paper, we consider the convenient Gaussian copula for the multivariate dependence 
structure, but build in substantial flexibility in the marginal distribution specification, as discussed 
below. Doing so ensures robustness, and also enables point identification as well as efficient 
estimation (Han and Lee, 2019).  
   
1.1. Flexible Parametric Marginal Distributions 
Two broad methods are available to generate flexible parametric densities with skew and/or excess 
kurtosis (fat tails). The first is to use a parametric skew distribution (such as a skew-normal or a 
skew-t distribution or the broader class of skew-elliptical distributions or even mixtures of skew 
distributions) and the second is to use a transformation method. In its simplest form, the density in 
the former approach takes the form of the product of a symmetric density function and a skewing 
component that typically is the cumulative distribution of the symmetric density (see Lee and 
McLachlan, 2022). The latter transformation method essentially translates each marginal 
distribution to a corresponding normal distribution through an implicit multivariate Gaussian 
copula across the marginals.1 Of the two, the transformation method affords more flexibility as it 
is not tied to a specific density function, and can also mimic a whole host of skewed and fat-tailed 
density functions. As an illustration, Gallaugher et al. (2020) have compared, using Mardia’s 
multivariate skewness and kurtosis metrics (Mardia, 1970) and multiple datasets for cluster 
analysis, the performance of two types of mixtures of skewed distributions with two transformation 
approaches (see more on this below). While they undertake their analysis at a multivariate level, 
their results apply to the univariate marginals that essentially get tied into a multivariate 
distribution. They conclude that “From the analyses on a variety of datasets…, it appears that no 
one method consistently outperforms the others and usually the performance is very similar if not 
identical”.  Further, as they state, the advantage of the transformation method is that it is much 
more parsimonious than the skewed approach, because the simple transformation approaches they 
use perform at least as well as complicated mixtures of skew distributions. The potency of the 
transformation method relative to the use of the more profligate density mixture approach is also 
evident in the extensive use of transformation method in the field of data science and analytics as 
a preprocessing step in classification/regression type models to turn general distributions 
underlying the outcome variable into a near-normal distribution (see, for example, Jadhav et al., 
2023 and Peterson, 2020). Doing so not only improves the specification, but also benefits the 
power of statistical tests used in data analysis, decreasing the risk of committing Type 1 or Type 

 
1 Mixtures of univariate skew distributions for each marginal distribution (in the skew approach) or transforming the 
target density function to a mixture normal distribution (in the transformation approach) provide additional flexibility 
for each marginal. However, such mixtures entail additional parameters that get particularly difficult to estimate and 
implement for a high dimensional joint model with many outcome variables.  
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II errors (Zimmerman, 1998 and Osborne, 2010). Thus, in this paper, we will focus exclusively on 
the transformation method for generating flexible univariate marginal distributions. 

Of course, within the class of transformation methods, there are a whole suite of possible 
transformations to address skewness and fat tails, including square root transformation, inverse 
transformation, logarithmic transformation, arcsine transformation, Box-Cox (BC) transformation, 
and the Yeo-Johnson (YJ) transformation (see Box and Cox, 1964, Yeo and Johnson, 2000, 
Peterson, 2020, Melnykov et al., 2021). Of these, the BC and YJ transformations have been shown, 
in analysis with both simulation and real empirical data, to be the best transformations in a wide 
variety of situations (see Osborne, 2010, Jadhav et al., 2023, Watthanacheewakul, 2021, and 
Marimuthu et al., 2022). In fact, most other transformations are special cases of the BC 
transformation for data on the positive half of the real line, depending on the value of the power 
parameter (for example, the square root transformation is the BC transformation with a power 
parameter of 0.5; the corresponding power parameters for the inverse and natural logarithm 
transformation are -1 and 0). Further, the YJ transformation is a simple extension of the restrictive 
BC transformation (which is applicable only to the positive half of the real line) to the entire real 
line, which makes it more appropriate for observable dependent outcomes that may take negative 
values too and to limited-dependent outcome models where the underlying latent variables span 
the entire real line. Thus, in the current paper, which involves the estimation of a multivariate 
limited-dependent outcome model (specifically, an ordered-response model with a binary 
endogenous explanatory variable or EEV), we consider YJ transformations for the latent variables 
underlying the ordered outcome as well as for the binary EEV.  

The YJ transformation for each univariate outcome is then coupled together using an 
implicit Gaussian copula to provide for a simple and flexible multivariate distribution for the latent 
variables underlying the multivariate dependent outcomes. Smith et al. (2020) show that using 
such an approach, which entails an implicit copula using element-wise transformations, 
considerably simplifies estimation and shows more accurate results than multivariate skew 
distributions, once again reinforcing the efficacy of the YJ transformation coupled with an implicit 
Gaussian copula.  

 
1.2. The Current Study in Context 
The use of the YJ transformation has only recently been introduced by Bhat and Mondal (BM; 
2022) for the flexible specification of stochastic terms in multivariate mixed data models. The 
application there relates to a joint model of neighborhood living type (a binary variable of high  
density living versus low density living) and monthly bicycling frequency (an ordinal variable with 
five categories). The formulation and application in the BM paper is based on an underlying latent 
construct (environmental consciousness) that is assumed to have a YJ-transformed normal 
distribution, which affects, and is also correlated with, the assumed normally distributed kernel 
error terms of the latent variables underlying the neighborhood living type/bicycling frequency 
outcomes. Their model is akin to a single endogenous non-normally distributed regressor in a joint 
probit-based binary-ordered response model system with the binary outcome serving as a treatment 
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variable. Unlike BM, in this paper, we specify the error terms of the outcome variables themselves 
to be YJ-transformed normal variables, resulting in a more flexible (non-probit) binary-ordered 
response model system (our model can equivalently be viewed as an ordered-response model with 
an endogenous binary variable). In this regard, the current paper constitutes the first formulation 
and application of a flexible multivariate non-normal limited-dependent variable model system 
with element-wise YJ transformation, which can be applied well beyond the specific case of the 
model system used here for illustration purposes. We then apply our proposed model to an 
empirical context of residential choice and walking frequency. 
 
2. METHODOLOGY 

2.1. YJ Transformation for a Univariate Random Variable 
The Yeo and Johnson (2000) or YJ transformation is a widely used approach that enables the 
transformation of potentially non-normal data to near normality and symmetry. It involves but a 
single additional transformation parameter, making it an efficient vehicle to achieve parsimony in 
mixed data modeling. When back-transformed, it has been shown to mimic a host of asymmetric, 
non-normal, and fat-tailed distributions.  

The YJ transformation considers a random variable l  and transforms it to an assumed 

normal random variable lG  (with a mean parameter of l  and variance of 2
l ) on the real line as 

follows, with an additional parameter 0 2 :l   

2

2

( 1) 1
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                                                                (1)                

The inverse transformation back from lG  to l  is: 
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1 1 (2 ) if 0
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1 1 if 0
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l l l

l l

l l l
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t G

G G
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 
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 

 
 

 




        


     

                                                                       (2)            

The notation above of l  and lG is used to make the association easier later on in the modeling 

system. When 0< l <1, l  is skewed to the right with a thick right tail, while if  1< l <2, l  is 

skewed to the left with a thick left tail. The normal distribution is returned for l  if l =1. Figure 

1 plots l  for l =0 and 2
l =1, and for different values of l  ( 0 1l  ). The plots are restricted 

to the 0 1l   range, because the corresponding plots for 1 2l   are mirror images of the 

plots shown, except with the skew toward the left. For easy comparison, we have centered the 

mode for all the resulting plots for l  at zero. The plots show the flexibility of the YJ 
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transformation to accommodate different levels of skew and tail thickness, especially given that 
the skew can be toward the right too (not shown in Figure 1). Also, across different random 

variables 1 2, ,..., L   , the direction and intensity of skew/tail can vary. Then, the different variables 

 ( 1, 2,..., )l l L   can be brought together into a multivariate distribution using an implicit 

Gaussian copula, as discussed next. For convenience, define  1 2, ,..., ( 1 vector)L L    ε , 

 1 2, ,..., ( 1 vector)LG G G L G , and 
1 2

-1 -1 -1
1 2( ) ( ), ( ),..., ( )

L Lt G t G t G     
-1
λt G  ( 1 vector)L .  

 

 
Figure 1: Density of transformed variable for different lambda values 

 
 
2.2. Construction of a Multivariate Distribution 
The most direct way to construct a multivariate distribution with the transformed normal univariate 
marginals is to assume a multivariate normal distribution for the transformed vector G  (that such 
an approach is equivalent to an implicit Gaussian copula approach is discussed in Smith et al. 
(2020), Loaiza-Maya et al. (2022), and Bhat and Mondal (2022). Specifically, we may write the 
cumulative distribution function for the vector ε as follows: 
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           (3) 

 .; ,LF μ Ω  in the equation above is the multivariate normal distribution function of dimension L  

with mean μ  and covariance matrix Ω . The net result is that we have now transformed the 

multivariate distribution of ε  to the multivariate normal distribution of G  through the use of the 

element wise YJ-transformation parameters l . To be noted also is that the elements of the mean 

vector μ  and the diagonal elements of the covariance matrix Ω  are simply the parameters of the 

normalized marginal components, so that the only remaining elements in the multivariate 
dependence structure characterizing the dependence structure of ε  correspond to the off-diagonal 
covariance  elements of Ω . Of course, using the properties of the multivariate normal distribution, 
we can finally write: 

( )Hε z =   1 * * 1 1; , ( ), with ,L LF        g μ Ω ω g μ Ω Ω ω Ωω  (4) 

where ω  is the diagonal matrix containing the square root of the variance elements of Ω . For 
completeness, we also write the corresponding density function as follows: 
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( )
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





 
             

   
 
 




ω g μ Ω ω g μ Ωg

g z
,  (5) 

where l  refers to the lth diagonal element of ω . sgn( )lz take the value of 1 if lz  is positive, the 

value of -1 if lz  is negative, and the value of 0 if lz  is zero.  

 
2.3. Estimation of Limited-Dependent Variable Models with EEVs 
Two primary approaches have been used in the literature to estimate limited dependent variable 
models (including ordered-response models) with one or more endogenous regressors. The first is 
the  control function (or two stage residual inclusion) method (see Rivers and Vuong 1988, 
Blundell and Powell 2004, Terza et al., 2008, Petrin and Train, 2010, Wooldridge, 2015, and Terza, 
2018), and the second is the maximum likelihood (ML) approach (see Heckman, 1978, Amemiya, 
1978, Bhat and Sardesai, 2006, Brownstone and Fang, 2014, Kang and Lee, 2014, Bhat et al., 
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2014, and Haddad et al., 2023). The first method is, however, applicable only for continuous EEVs, 
and not for EEVs that have a limited range (including discrete EEVs). The control function 
approach, as suggested by Terza et al. (2008), may work reasonably okay with limited-dependent 
EEVs when the endogeneity intensity is small (see Woolridge, 2015). But, as indicated by Wan et 
al. (2018), Mu and Zhang (2018) and Denzer (2019), such a control function approach requires the 
limited-dependent EEV to be a strictly increasing function of the first stage error. In other words, 
the first stage error (obtained as the difference between the limited-dependent EEV and its 
expected value in the population) is not independent of the exogenous variables in the EEV model, 
a necessary condition for the control function to be a consistent estimator. Thus, the control 
function is not, in general, appropriate for models with limited dependent EEVs.  

The second ML method is predicated on the correct specification of the multivariate error 
structure underlying the overall limited dependent variable system (including the main outcome 
and the limited-dependent EEVs). It is typical to consider a multivariate normal distribution in ML 
applications, though deviations from such a distribution can lead to inconsistent estimation, 
especially in the effect of the limited-dependent EEV (sometimes referred to as the treatment effect 
when this happens to be a discrete EEV). This is where flexible parametric multivariate 
distributions, particularly the marginal distributions as discussed earlier, can be substantially 
beneficial, while also being parsimonious in parameters and efficient in estimation. At the same 
time, because the ML estimator is a single-step estimator, standard errors are immediately 
available for all parameters. Further, the ML approach provides information on the joint (and 
marginal) distribution of the error terms.2,3 
 In this paper, we focus on the case of limited dependent variable models with limited-
dependent EEVs, and thus use the ML method for estimation, but with flexible parametric error 
distributions based on the YJ transformation, as discussed next in the specific context of an 
ordered-response model with a discrete EEV.  
 

 
2 Even when the control function approach is valid, as in the case when the EEV is continuous (rather than being 
limited-dependent), the maximum likelihood (ML) approach we develop here “chips away” at any robustness 
advantage that the two-stage control function approach may hold (in models with a continuous EEV, the control 
function approach does not rely on strong parametric assumptions as needed by the single-stage maximum likelihood 
approach; see Wooldridge, 2015). But, by using flexible parametric assumptions rather than the typical rigid normal 
parametric assumption for each of the EEV and main outcomes, our ML approach is much more robust and retains 
the many advantages of the single step ML estimation.  In any case, the control function approach is not even valid 
for the type of models of interest in the current paper.  
3 As discussed at length by Greene (2017) and Wooldridge (2010), there is no difference in the likelihood function 
development for model systems with or without discrete EEVs. Thus, while the model considered in this paper is for 
a limited-dependent outcome with a discrete EEV, the procedure we develop is immediately generalizable to a whole 
host of other multivariate mixed data model types, including sample selection models, endogenous switching models, 
multivariate mixed data models, and revealed preference-stated preference models, all of which currently typically 
use a restrictive multivariate error structure (see, for example, Lee, 1983, Hamed and Mannering, 1993, Bhat, 1997, 
Bhat and Sardesai, 2006, Kim and Brownstone, 2013, and Heydari et al., 2020).    
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2.4. Ordered Response Model Structure with Discrete EEV 
Ordered response model systems are appropriate when analyzing ordinal discrete outcome data. 
Examples include ratings data or Likert-scale type attitudinal/opinion data. The typical modeling 
approach considers the observed ordinal outcome as censored (or course) partitioning or 
thresholding of an underlying continuous random variable that is endowed with a natural ordering 
(see McKelvey and Zavoina, 1971 and Bhat, 1997). Greene and Hensher, 2010 provide a 
comprehensive history and treatment of the ordered-response model structure, which has been 
applied in a variety of fields, including (but not limited to) sociology, biology, marketing, and 
transportation fields.  
 In the usual form of the ordered-response model structure with an EEV, we write two 
equations, one for the EEV and the other for the ordered-response model: 

  
* * *
1 1 1 1 1 1 1

* *
2 2 1 2 2 1 2 0

, 1 if 0; 0 if 0

, if ; 1,2,... ; ,k k K

y y y y y

y y y k y k K



     

     

          

β

γ

x

x
         (6) 

The latent propensity *
1y  determines the EEV outcome 1y , while the partitioning of the latent 

propensity *
2y  determines the main ordered-response outcome 2y . 1x  and 2x  are vectors of 

exogenous variables (including a constant in each). β  and γ  are coefficients to be estimated, as 

is the treatment effect parameter  .4 The elements of the vectors 1x  and 2x  are assumed 

independent of the stochastic elements 1  and 2 , but 1  and 2  are correlated. k  is the upper 

bound threshold for ordinal level k for the outcome 2y

0 1 2 1 0 1( ... ;   , =0, ).K K K                For future use, define 

2 3 1( , ,..., ) .K    ψ For identification, we also maintain the usual exclusion restriction that there 

is at least one variable (“instrument”) that is contained in the vector 1x  but does not appear in the 

vector 2.x While there has been some confusion in the literature on whether such an exclusion 

restriction is necessary in multivariate limited-dependent variable models of the type in Equation 
(1) (see, for example, Wilde, 2000 and Rhine et al., 2006), Han and Lee (2019) show that such an 
exclusion restriction will, in general, be necessary and sufficient for identification of the model 
parameters. While the parameters may be identified even without the exclusion restriction in the 
specific case of the presence of a common continuous exogenous variable (but not a binary 

variable) in both 1x  and 2x  for a bivariate normal distribution of 1 2and  , only weak 

identification is suggested (at the very best) even in this case. And for more flexible marginal 

distributions for 1 2and  , as in the current paper, the exclusion condition is necessary. Also, in 

 
4 The non-constant coefficients in β and γ themselves can be considered as random coefficient vectors to accommodate 
unobserved heterogeneity in the sensitivity to the exogenous variables in x1 and x2, respectively. Doing so would not 
substantially change the basic formulation presented here, except that the resulting mixing would need appropriate 
integration. In this paper, we assume the non-constant coefficients in β and γ to be fixed to maintain focus on the non-
normality distributions of the kernel error terms, the main emphasis of the current paper.  
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the case when flexible marginal distributions  for 1 2and   are used (either in parametric or non-

parametric form), the findings from Han and Lee (2019) hold that, for point identification of the 
parameters, a restrictive dependence structure has to be specified for the joint distribution of 

1 2and  , even after allowing for an exclusion restriction. This restrictive dependence structure is 

satisfied by our use of the Gaussian copula with flexible parametric marginals.5  

Next, write 1 2and   in terms of their YJ-transformed normally distrtibuted counterparts 

1 2andG G as in Equation (1), and then construct a bivariate normal distribution for 1 2andG G

as a special case of Equation (3): 

1 2

1 1
1 1 1 2 2 2

1 * *

2

( ), (0,1); ( ), (0,1) , and

0 1
( , ), where and .

0 1

t G G N t G G N

G
BVN

G

  




  

      
               

G 0 Ω 0 Ω

 


         (7) 

As can be noted from above, the YJ transformation in our model is applied to the error terms. In 
the context of Equation (6), the transformations are thus applied to the conditional distributions 

 * *
1 1 2 2 1and , .y y y| x | x  The emphasis is on allowing the error distribution to potentially have a 

non-normal distribution. In contrast, in earlier transformation applications used with continuous 
observed dependent outcome variables (as discussed in Section 2.1; see also Atkinson et al., 2021), 
the transformations have been applied directly to the observed outcome variables to account for 
non-normality and heteroskedasticity in the observed dependent outcome. Similarly, Guerrero and 
Johnson (1982) applies a Box-Cox transformation to the odds ratio (computed from observed 
proportion data) for each group of individuals.  In our case, however, the underlying continuous 

random variables * *
1 2andy y  are not observed, and so we proceed by placing an identical 

transformation (across individuals) on the conditional (on 1 2andx x ) underlying latent variables 

(that is, the error terms in Equation (6)).  

Another important point of note is our normalization of the transformed variables 1G and 

2G  to be standard univariate normally distributed. Of course, this does not imply that the mean 

and standard deviation of the original (untransformed) error terms 1 2and  will be normalized to 

a mean of zero and standard deviation of 1. The mean and standard deviation of these error terms 

will be determined by the  YJ parameters 1  and 2 . In effect, 1  and 2  are estimated so as to 

characterize the distribution of the error terms (including the mean, the standard deviation, the 
skew, and tail thickness) that provide the best data fit to the observed discrete outcomes. This 

approach of normalizing the transformed variables 1G and 2G to standard normal distributions and 

allowing 1  and 2  to dictate the distribution of the untransformed error terms 1 2and   is 

 
5 These same identification issues also apply to joint models (such as a binary selection equation and an ordered-
response equation) that do not have treatment parameters, since the likelihood function take identical forms with or 
without the treatment parameters in such cases.  
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compatible with the location and scale invariance of the latent variables * *
1 2and y y . Besides doing 

so also nests the bivariate probit model (with the usual standard normalization on the error terms) 

as a special case of the proposed model when 1  = 2 =1.6  

 
2.5. Model Estimation 

From Equation (4), we may write the cumulative distribution of 1 2and   as follows: 

1 2, 1 2( , )H z z  =
1 2 1 2

* *
, 2 2 2 1 2 1 1 2 2( ) ; , , ( , , ) , ( ); ( ).H F g g g t z g t z              z g 0 Ω g Ω  (8) 

where 2 (.,., )  refers to the standardized bivariate normal distribution with correlation .   Next, 

define 1 ,1 2 ,0 2, , and .k k k k             β γ γx x x  The joint probabilities for the two 

regimes of 1 0y   and 1 1y   are: 

   
1 2 1 2

1 2 1 2

* *
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 (10) 

Now introduce the index q for individuals. Define a set of dummy variables qkM  (k=1,2,…,K): 

1qkM   if 2y k , and 0qkM   otherwise. Assuming independence across individuals, the 

likelihood function for estimation of the parameters in the model system is: 

 1 1(1 )

1 2 1 2
1

( , , , , ) ( 0, ) ( 1, )
q qk q qk

Q
y M y M

q q q q q q
q

L P y y k P y y k 




           β γ ψ .          (11) 

 
3. APPLICATION TO URBAN RESIDENCE CHOICE AND WALKING 

FREQUENCY 
3.1. Background 
Walking is a travel mode that requires no motorization, is a natural human-learned skill from 
childhood for most individuals, entails zero monetary cost, can ease traffic congestion on our 
roadways, and contributes to a reduction of the transportation sector’s carbon footprint (see Xia et 
al., 2013; Longo et al., 2015). At the individual level, walking, as a contributor to physical activity, 

 
6 There is no known closed form for the moments of the untransformed error vector 1 2( , )  ε  as a function of the 

YJ parameter vector 1 2( , )  λ  and the correlation  . But these moments can be estimated through numerical 

integration based on the probability density function in Equation (5).  
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can provide substantial health benefits, including both mental and physical. From a mental 
wellness standpoint, walking has known to be a calming technique that releases stress, relieves 
anxiety, and reduces depression (Pearce et al., 2022; Vetrovsky et al., 2017; Makela and Aktas 
(2023). The very act of being outdoors and feeling the associated social vibrancy has been noted 
to buoy spirits and generate a positive mindset (Pearson and Craig, 2014; Jimenez et al., 2021). 
From a physical wellness standpoint, walking, as part of a broader regimen of regular moderate-
intensity physical activity, can help reduce the risk of type 2 diabetes, chronic heart disease, 
hypertension, cardio-vascular diseases, various forms of cancer, and also other chronic diseases 
and disorders (Paluch et al., 2022, 2023; World Health Organization (WHO) guidelines on 
physical activity and sedentary behaviour: at a glance, 20207). As importantly, the benefits of 
walking can be accrued either through utilitarian walking (that is walking with a specific activity 
at the destination end) or recreational walking (such as walking without a specific destination, such 
as around the neighborhood for exercise or walking the dog). During the height of the pandemic, 
while there was fear of increased exposure to the COVID virus when outdoors (see Lima et al., 
2020, Sallis et al., 2020), there was some engagement in “recreational walking” as individuals 
walked around their homes as a means to take a break from being bottled up within their homes 
(Przybylowski et al., 2021; de Haas et al., 2020). Further, after the peak of the pandemic was 
behind us, and vaccinations became widely available, walking became quite prevalent as the fear 
of contracting COVID from fellow walkers decreased even further. This was particularly the case 
in specific demographic groups, such as those with high education and income levels (Kyan and 
Takakura, 2022; Hwang et al., 2023).  

An important related issue beyond demographic determinants of walking that has attracted 
substantial interest in the land use-transportation literature in the past is the differential walking 
tendency based on residential built environment. Of keen interest in particular over the years has 
been to disentangle associative effects from causal effects in the residential built environment (BE) 
influence on active travel behavior (for example, see Van Wee, 2009, Van Acker et al., 2014, Bhat 
et al., 2016). This is particularly important when using cross-sectional data that entails the joint 
observation, at a specific point in time, of the residential location of households and activity-travel 
choices. From an econometric perspective, the “single-point-in-time” observation co-mingles the 
“true” BE effect of residential location with an associative effect due to the non-random 
assignment of individuals to residential locations. Of course, if this non-random location 
assignment can be magically explained entirely through a combination of observed non-travel 
(including sociodemographic) characteristics and BE attributes, then a traditional travel model for 
the activity-travel dimension with BE attributes as explanatory variables would be adequate to 
tease out “true” causal BE effects. However, the more likely situation is the presence of unobserved 
antecedent personality, attitude, and lifestyle characteristics of individuals/households that 
simultaneously impact residential location choice and activity-travel behavior. The question then 

 
7 WHO guidelines on physical activity and sedentary behaviour: at a glance. Geneva: World Health Organization; 
2020. Licence: CC BY-NC-SA 3.0 IGO., https://iris.who.int/bitstream/handle/10665/337001/9789240014886-
eng.pdf, accessed January 5, 2024.  
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is whether the co-movement between walking intensity and residential density represents a true 
“causal” effect of density on walking intensity or simply an associative residential self-selection 
effect. Bhat and Guo (2007) discuss this residential self-selection issue at length, emphasizing its 
importance for policy-making. More recently, Guan et al., 2020 provided an exhaustive review of 
the earlier self-selection literature investigating BE effects on a whole host of travel-related 
decisions, including walking. While the fraction of the contribution due to associative and “true 
casual” residential BE effects has varied across studies based on the geographic, cultural, data 
type, analytic methodology, time-period, and travel outcome of interest, the importance of 
considering self-selection effects in assessing BE effects has not ever been in question. This 
underscores the importance of explicitly modeling the jointness in (that is, correlation in 
unobserved factors impacting) residential living choice and walking behavior.  

The importance of considering self-selection effects when examining residential BE effects 
on walking intensity takes on particular significance in a COVID-changed landscape, where the 
residential choice process of individuals has seen substantial upheaval. In particular, evidence 
indicates a substantial move of residences away from urban areas during the pandemic as 
individuals attempted to avoid contact with others (after all, about 90% of COVID infections 
worldwide were associated with urban highly walkable areas; see Lima et al., 2021 and Choi and 
Denice, 2022). Besides, with hybrid work locations (working from the office a few days and 
working remotely on other days) becoming a more accepted practice relative to pre-COVID times 
(see Asmussen et al., 2024), other residential factors (such as a desire for more space within homes, 
better school quality, and lower reported crime neighborhoods) have altered the trade-offs among 
attributes in residential decisions, contributing further to an exodus from urban to suburban/rural 
areas (Robbennolt et al., 2023). In this regard, there is a distinct possibility that those who relocated 
to the suburbs post the onset of the pandemic may have, at least in part, done so specifically to 
have more of a sense of mental comfort and personal safety to walk, away from the hustle-bustle 
of crowded urban areas that heighten the threat of contracting COVID (and other similar viruses 
in the future) and the general stress of walking in crowded locales. Indeed, Paydar and Fard (2021) 
allude to Alfonso (2005)’s five levels of needs that influence walking decisions, and discuss how 
the pandemic has altered these five levels, especially by way of elevating the importance of the 
basic lower-level needs of feasibility (related to personal limitations such as health conditions) and 
safety (considerations related to virus spread) when making walking decisions. Given that many 
datasets that capture walking behavior do not collect information on such basic lower-level 
walking needs, such considerations then can lead to a correlation in unobserved factors between 
residential choice and walking intensity. In fact, this correlation can be in ways that are even 
different from a pre-pandemic world. Unlike the usual finding in the pre-pandemic scientific 
literature that unobserved attitude/lifestyle factors (such as green consciousness) appear to lead to 
a positive correlation in the error terms of urban living and walking intensity (thus, overestimating 
the positive effect of the urban built environment if such correlation is ignored), the self-sorting 
into residential neighborhoods in a post-pandemic world may be such that those with a higher 
propensity to walk, due to unobserved basic-level walking needs of safety/comfort, may be more 
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resident in non-dense neighborhoods, possibly leading to a negative correlation in the error terms 
of urban living and walking intensity (thus, underestimating the “true” positive effect of the urban 
built environment itself). If this latter situation were the case, this would suggest that investing in 
urban-like walking infrastructure facilities, while being conscious of accommodating basic-level 
walking needs, would be a good policy instrument to promote walking across the board of 
residential neighborhoods. Of course, considerations of safety/comfort associated with COVID 
concerns are also likely to recede with time, and thus it is imperative anyway to account for any 
transient associative (i.e., correlation) effects when evaluating what are likely to be the “true” 
residential BE effects in a COVID-disrupted transportation and walking environment.  

In the current paper, we contribute to the extant land use-transportation relationship by 
examining residential BE effects on walking intensity in a post-COVID world. Further, we focus 
on not-so-young adults (50+ age group) in our analysis, given that some earlier descriptive research 
(see, for example, Rantanen et al., 2021 in Finland, Shaer and Hagshenas, 2021 in Iran, Yamada 
et al. 2020 in Japan, and Choe et al. in 2022 in Hong Kong) has indicated the particularly large 
impact of COVID-19 on the active-travel (including walking) patterns of the older adults. 
However, unlike these earlier descriptive before-after COVID studies undertaken during the height 
of the pandemic or just after, and in non-US contexts, we examine the walking behavior of older 
US adults employing a survey collected in late (October-November) 2022 (when the peak of the 
pandemic was decidedly in the rear view mirror). The emphasis is on current walking behavior, 
and we explore the effects of sociodemographic variables, as well as the endogenous effect of 
residential BE infrastructure, on walking intensity. Such an analysis is of value not just for 
transportation and social reasons (including reducing loneliness; see, for example, van de Berg et 
al., 2016), but also for health considerations. In particular, walking has been established to be 
particularly beneficial to older age adults in terms of reducing the risk of cardio-vascular disease, 
depression and dementia (Won et al., 2019, Roe et al, 2020, Paluch et al.,2022, 2023). A recent 
study (Garcia et al., 2023) further indicates that even as low as 10 minutes per day of brisk walking 
activity prevents premature deaths and lowers the risk of heart disease, stroke, and cancer.  

The BE attributes of the residential location of individuals in our study are captured using 
the single attribute of residential density, given the well-established strong association between 
density and other BE elements. This is clearly reflected in the long and strong precedent for doing 
so, as evidenced in the literature (see, for example, Bhat and Singh, 2000, Ewing and Cervero, 
2010, Cao and Fan, 2012, Kim and Brownstone, 2013, and Wang et al., 2021). As in most of these 
earlier studies, we use a binary classification of residential density as living in an urban area 
(associated with pedestrian-friendly BE) or a non-urban area(associated with a car-centric 
infrastructure environment) to capture BE effects (this urban/non-urban classification was based 
on the metropolitan statistical area of residence). The ordered-response outcome in our empirical 
analysis corresponds to an ordinal scale of weekly walking frequency (in days per week of walking 
for at least 10 minutes). Residence in an urban area (capturing walk-friendly BE attributes) is 
included as an endogenous outcome in the ordered-response walk frequency equation, to capture 
residential self-selection effects. The correlation in the error terms of (unobserved factors 
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affecting) the two equations may be positive or negative (as discussed earlier). After all, we do not 
know what these unobserved factors may be. The important thing is to recognize the potential 
endogeneity of urban residence to capture the “true” causal effect of urban BE on walking 
intensity. 

  
3.2. Data and Sample Description 
The walking survey of older adults in the US population used in the current paper was undertaken 
through the Foresight 50+ Consumer Omnibus panel survey, which is a mixed mode survey (online 
and telephone) funded and operated by the National Opinion Research Center (NORC) at the 
University of Chicago. The survey constitutes a probability-based panel designed to be 
representative of the US household population age 50 or older. The survey questions and survey 
instrument in the Foresight 50+ survey vary by month. The specific walking survey instrument 
used in the current paper was funded by the American Association of Retired Persons (AARP) and 
undertaken in July 2022.8 A sample of 1691 individuals aged 50 years or older was obtained with 
deliberate oversampling of individuals of non-White origin. The unweighted sample, therefore, 
includes 44.6% of White, non-Hispanic individuals (the corresponding census statistic is 71% for 
individuals aged 50 and over), 21.8% of individuals of Black, non-Hispanic origin (the 
corresponding census statistic is 11%), 9.6% of Asian, non-Hispanic origin (the corresponding 
census statistic is 6%), and 22.7% of individuals of Hispanic origin (the corresponding census 
statistic is 12%), and 1.3% of other (including mixed and other non-Hispanic races) race categories 
(the corresponding census statistic is 1%). The average age in the unweighted sample is 63.7 years 
(the corresponding census statistic is 65 years). Men were slightly over-represented (52% in the 
unweighted sample versus 48% in the census). The sample was weighted to the current population 
survey (CPS) benchmarks based on gender, age, education, and race/ethnicity to develop a 
representative (weighted) sample of the US adult population 50 years and older. 

The skew of the unweighted sample implies that descriptive statistics for the endogenous 
outcomes of urban residence and walking frequency from the unweighted sample cannot be 
directly generalized to the U.S. 50+ adult population. However, in the aggregate, the unweighted 
and weighted samples do not show too much divergence in the endogenous outcomes. The 
unweighted sample indicates 1461 (86.4%)  respondents residing in urban areas compared to 1386 
(81.9%) in the weighted sample. Similarly, by way of walking frequency (number of days of walk 
per week for at least 10 minutes at a time), the unweighted and weighted percentages were as 
follows: (a) Do not walk any day (19.2 unweighted versus 22.1 weighted), (b) Walk 1-2 days per 
week (17.0 unweighted versus 17.7 for weighted), (c) Walk 3-4 days per week (27.9 unweighted 
versus 25.0 weighted), (d) Walk 5-6 days per week (21.1 unweighted versus 18.8 weighted), and 
(e) Walk 7 days per week (14.8 unweighted versus 16.4 weighted).  

 
8 Additional details of the survey administration and methodology are available at 
https://www.aarp.org/pri/topics/health/prevention-wellness/walking-attitudes-habits-adults-50-older/. Accessed 
November 13, 2023.  
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In estimation, we use the unweighted sample because the focus of the current paper is on 
estimating individual-level relationships (how changes in exogenous demographics and the urban 
variable affect the outcomes). In such analyses, the critical consideration is whether the sampling 
is dependent (sampling strategy is endogenous to modeled outcomes) or independent (sampling 
strategy is exogenous to modeled outcomes). Weighting is needed for consistent estimation in the 
former case, but not the latter case. The sample in our case corresponds to the latter. In this 
exogenous sampling situation, the unweighted approach provides more precise parameter 
estimates and is to be preferred . Accordingly, in our model estimations, we use the unweighted 
approach (see also Wooldridge, 1995 and Solon et al., 2015). Besides, the sample exhibits good 
variation in the range of sociodemographic variables, allowing us to test a variety of functional 
forms for these variable effects. For example, age is collected as a continuous variable in the 
sample with good variation from 50 years to 92 years, which allows us to test linear, non-linear, 
as well bracket-specific dummy variable specifications for age. In combination, the exogenous 
sampling approach and the good variation in demographic variables enable us to estimate 
individual-level relationships that should be applicable to the larger population.  
 
3.3. Model Results 
A number of different specifications in terms of variables and the functional forms of variables 
were attempted in arriving at the final model specification. All variables, except age, are in either 
bracketed categories (income), or are naturally discrete. Examples of the latter include gender, 
race/ethnicity, education level, housing tenure, dwelling type, employment status (paid employee, 
self-employed, unemployed/laid off temporarily, unemployed/looking for job, 
unemployed/retired, and unemployed/ physically disabled), household structure (single adult, 
single parent, married or unmarried couple, nuclear family, joint family of related individuals with 
more than two adults aged 18 or more and at least one individual of 17 years of age or younger, 
household with more than two adults aged 18 or more and no individual 17 years or younger), and 
residence region of the U.S.9 The influence of the bracketed and discrete exogenous variables were 
tested as dummy variables in the most disaggregate form possible, and progressively combined for 
parsimony based on statistical tests.  For the continuous age variable, alternative functional forms 
(such as a continuous linear form, a continuous logarithm form, a piece-wise linear form, and a set 
of dummy variables for different ranges) were tested. At the end the effect of age was best 
represented in dummy variable form. Further, we examined interaction effects across variables, 
including between urban and gender, urban and race/ethnicity, and urban and household structure 
in the walk frequency equation (after accounting for the jointness through correlation effects 
between the urban residence and walk frequency endogenous outcomes), but none of these came 
out to be statistically significant.   

 
9 The region of the U.S. was classified into four regions; Northeast, South, West, and Midwest; based on the Census 
Division of residence  as follows: (a) New England and Mid-Atlantic = Northeast, (b) South Atlantic, West South 
Central and East South Central = South, (c) Pacific and Mountain=West, (d) East North Central and West North 
Central = Midwest.  
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The final model specification is presented in Table 1. The parameters for the urban or non-
urban residence model component represent the elements of the β  vector (that is, the effect of 

exogenous variables on the propensity to live in an urban region), while those for the walk 
frequency component refer to the elements of the γ  vector and the urban “treatment” effect  

parameter   (that is, the effect of exogenous variables and “urban” residence on the propensity 
underlying walking frequency).  In Table 1, categories that do not appear in the column for urban 
living propensity or walk frequency propensity constitute the base categories. A ‘-’ in the table 
implies that the corresponding coefficient was not statistically significant at even the 10% level of 
significance.  

The results indicate that individuals from higher income households, with higher than a 
bachelor’s degree, and older individuals (80 years or older) are more likely than their peers to be 
urban residents. In the context of a post-COVID landscape, these are quite interesting and suggest 
some shifts in residential choice patterns from before. There appears to be more of a move away 
from urban areas (to non-urban areas) among individuals with lower incomes and with low formal 
education degrees, in their quest to get better quality housing farther away, facilitated also by 
increased teleworking potential for erstwhile “blue collar” jobs (see Asmussen et al., 2023). 
Besides, recent studies have suggested that there has been a tempering in the market potential 
differential for employability between urban and non-urban areas, which would once again spur 
moves of low income individuals and those with low formal education degrees toward non-urban 
areas (Blumenberg and Wander, 2022). The higher tendency of older individuals to be located in 
urban areas may be tied to the reluctance to move away from current residences relative to younger 
individuals. Older individuals typically are averse to changes in life rhythms because stability 
provides a form of mental self-esteem boost (a sense of control and reduced stress/anxiety) for 
them at a time when their physical self-esteem may be on the decline (Duque et al., 2021).  

While some effects on residential location may have shifted in the aftermath of the COVID 
pandemic, others do not appear to have. In particular, individuals who identify as white non-
Hispanic and those who live in an owned single-unit house (that is, do not live in rented apartment 
dwellings) are unlikely urban area residents. This is tied to non-white individuals having limited 
opportunities of residential mobility over decades, containing them to urban areas with a high 
supply of rental apartment dwellings. This may be traced to the long history of racial discrimination 
in the housing sector in the United States, offering more opportunities to white families to secure 
government-insured mortgages, while non-white families were not afforded the same level of 
benefits (Faber, 2020; Bhat et al., 2022). Also, individuals in the south and midwest of the country 
are less likely to be located in urban areas, as these parts of the country have large swaths of land 
with more spatial dispersion of residences. 
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Table 1: Main outcome results (coefficients represent effects on underlying latent propensity) 

Variables  

Urban 
Neighborhood 

Living 

Walk Frequency 
(days per week) 

Coeff. t-stat Coeff. t-stat 

Annual Household Income     

$75,000-$149,999 0.375 3.704   

$150,000 and higher 0.884 4.771   

$100,000 and higher - - 0.114 1.983 

Higher than Bachelor’s Degree 0.307 3.117 - - 

Woman - - -0.124 -2.362 

Age     

  75 years or older - - -0.231 -2.750 

  80 years or older 0.475 2.312 - - 

White Non-Hispanic -0.736 -8.523 - - 

House Owned -0.353 -2.953 - - 

Apartment Dwelling 0.523 3.390 - - 

Unemployed and Disabled - - -0.397 -3.789 

Unemployed and Retired - - -0.124 -2.258 

Geographic Residence Region     

South and Midwest -0.358 -3.942 - - 

West - - 0.181 3.090 

Correlation between the Normally Transformed 
Underlying Propensities between Urban Residence and 
Walking Frequency Error Terms 

-0.257 (t-statistic -2.687) 

“True” Causal Effect of Urban Neighborhood Living NA NA 0.467 2.540 
YJ Parameters (t-statistic computed with respect to the 
value of 1.000)  

1.000* - 0.526 2.843 

Constant and Thresholds     

Constant  1.683 12.731 0.446 2.802 
Threshold between walk 1/2 days per week and 3/4 
days per week 

- - 0.440 1.934 

Threshold between walk 3/4 days per week and 5/6 
days per week 

- - 1.168 5.197 

Threshold between walk 5/6 days per week and 7 days 
per week 

- - 2.068 9.053 

* YJ parameter for the urban residence error term fixed to one because it was not statistically significantly different 
from one at any reasonable level of significance.  
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In terms of walking frequency, individuals from high income households (100K per year 
or over) are more likely to walk over multiple days of the week relative to individuals from low 
income households (less than 100K per year), while women tend to have a lower walking 
propensity compared to men. Both of these results may be tied to time availability, with both low 
income earners and women well known to be time poor because of work-related and, in the case 
of women, also home-related responsibilities (see Bernardo et al., 2015, Cerrato and Cifre, 2018, 
and Mondal and Bhat, 2021). The result that older individuals (75 years and over), and those 
unemployed due to disabilities or who have retired, have a depressed walking propensity than their 
peers may be attributed to actual or perceived mobility limitations. From a geographic standpoint, 
residents from the west of the country are, in general, more predisposed to walk frequently.  

As discussed earlier, we control for possible association in the residential choice-walking 
frequency choices when investigating the “true” causal effect of residential choice on walking 
frequency. Our results suggest that rural areas are better characterized (than urban areas) by 
unobserved basic-level walking needs of safety/comfort factors, which also promote walking 
frequency. This is evidenced by the negative correlation in the error terms between the urban area 
living propensity and the walk frequency equations. After accommodating for this association, the 
results show a clear positive “true” causal effect of urban living on walking frequency. If the 
association effects due to unobserved effects were ignored, the “true” urban effect gets 
underestimated. In fact, if the association is ignored, the urban effect becomes statistically 
insignificant (coefficient is 0.0740 with a t-statistic of 0.926). Overall, the results indicate that, in 
the aftermath of the worst of the pandemic, built environment factors associated with urban 
residence continue to have an important positive causal influence on walking activity engagement 
of “not-so-young” adults over the course of the week, consistent with earlier studies (see, for 
example, Lotfata et al., 2022). At the same time, the negative association between urban living and 
walk frequency suggest that walking environments need to be designed to feel less crowded (such 
as through the design of wide sidewalks and a well-distributed network of pedestrian walkways 
throughout the urban landscape to reduce pedestrian movement clustering), so that basic-level 
walking needs related to safe health environments are fulfilled.  

The YJ parameters  indicated that the urban equation error is not statistically significantly 
different from one at any reasonable level of significance, implying that we cannot reject that the 
urban error term is indeed normally distributed. So, we constrained the YJ parameter to the value 
of one. However, the YJ parameter for the walking frequency error term is significantly lower than 
one, indicating a highly rightward skew; that is, a small number of individuals have a high walk 
frequency. As we will note in the next section, ignoring this rightward skew has substantial 
implications for the estimated causal effect of urban form on walk frequency.  

Finally, the constants and thresholds toward the end of the table do not have any substantive 
behavioral interpretation, though they serve the important purpose of mapping the latent 
propensities underlying the urban residence and walk frequency latent propensities to the 
corresponding categorical outcomes.  
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3.4. Data Fit Measures 
We compare our proposed bivariate YJ model with three other restrictive versions: (i) a model that 
imposes error normality for both the urban residence and walk frequency outcomes as well as 
ignores endogeneity of urban residence (independent normal model), (ii) a model that considers 
the endogeneity in urban residence, but considers bivariate normality (bivariate normal model), 
(iii) a model that ignores the endogeneity in urban residence, but considers YJ-transformations for 
the walk frequency outcome (independent YJ model; as in our proposed model, in this model too 
we could not reject the hypothesis of normality of the error term in the urban residence outcome), 
and. All these models are nested within our proposed “bivariate YJ model”, making it easy to 
compare performances using the likelihood ratio test. The relevant likelihood-based data fit 
measures are provided in the top panel of Table 2. Likelihood ratio (LR) tests (when the proposed 
model is compared to the three restrictive versions) yield values that are higher than the critical 
chi-squared table values at any reasonable significance level (at the respective degrees of freedom).  

In addition to the likelihood-based data fit measures, we also compute more intuitive non-
likelihood based data fit metrics. At a disaggregate level, we compute the average (across 
individuals) probability of correct prediction (for the joint outcome of urban/non-urban living and 
walk frequency).  At an aggregate level, we compare the predicted and actual (observed) shares in 
each of the ten combinations of residence type and walk frequency, and compute a weighted 
average percentage error (WAPE) across all the ten possible combinations. The middle panel of 
Table 2 presents these non-likelihood data fit measures. The results clearly show that the 
predictions from our proposed model are closer to the observed values at both the disaggregate 
and aggregate levels. Indeed, the aggregate match of the predicted and actual values for our 
proposed bivariate YJ model is remarkable, especially given that the proposed model includes just 
one additional parameter (corresponding to the error term shape for the walk frequency model) 
relative to the bivariate normal model. Of course, we will also note that the WAPE for the other 
models are also not too bad, but the superior fit of the proposed model for each and every 
combination is clear. Interesting too is that, while the bivariate normal model does have a 
statistically better log-likelihood at convergence at the 95% confidence level (and also a better 
average probability of correct prediction) relative to the independent normal model, the difference 
between these two models from a data fit perspective at the aggregate level is not too substantial 
(in fact, the independent normal model does marginally better; this can happen because the 
emphasis of the maximum likelihood estimation procedure is on maximizing the probability of the 
chosen alternative for each individual, not on aggregate predictions). In contrast, the proposed 
bivariate YJ model has a clear superior fit at both the disaggregate and aggregate levels.  
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Table 2: Data fit and ATE measures 
Measure 

Type 
Metric 

Independent 
Normal Model  

Bivariate Normal 
Model 

Independent YJ 
Model 

Proposed Bivariate 
YJ Model 

 
 
 
Likelihood 
Based 
Measures 

Log-likelihood at convergence -3215.54 -3213.46 -3211.29 -3207.49 

Number of non-constant/non-threshold parameters 15 16 16 17 

Log-likelihood at constants and thresholds only  -3353.17 

Log-likelihood at zero (equal shares) -3893.67 

LR test: Proposed Bivariate YJ vs Independent Normal LR = 16.1> 𝜒ሺଶ,଴.଴ହሻଶ ൌ 5.99 

LR test: Proposed Bivariate YJ vs Bivariate Normal LR =11.94 > 𝜒ሺଵ,଴.଴ହሻଶ ൌ 3.84 

LR test: Proposed Bivariate YJ vs Independent YJ LR = 7.6> 𝜒ሺଵ,଴.଴ହሻଶ ൌ 3.84 

 
 
 
 
 
 
 
 
Non-
likelihood 
Based 
Measures  

Average Probability of Correct Prediction (APCP)  0.1729 0.1731 0.1741 0.1748 

Actual versus Predicted Number of Individuals 
Predicted Number 

Combination Category 
Actual 

Number 

Non-urban residence and do not walk at all 57 48.48 48.34 53.04 56.16 

Non-urban residence/walk 1-2 days a week 36 41.11 41.51 40.89 37.41 

Non-urban residence/walk 3-4 days a week 56 64.35 64.93 61.44 55.63 

Non-urban residence/walk 5-6 days a week 45 45.90 46.04 44.39 44.61 

Non-urban residence/walk 7 days a week 36 30.26 30.04 30.33 36.82 

Urban residence and do not walk at all 268 276.62 276.76 272.84 269.62 

Urban residence/walk 1-2 days a week 252 248.64 248.74 246.90 251.05 

Urban residence/walk 3-4 days a week 416 407.94 407.43 410.00 415.94 

Urban residence/walk 5-6 days a week 311 307.77 306.99 311.63 310.63 

Urban residence/walk 7 days a week 214 219.93 220.22 219.54 213.13 

Weighted Average Percentage Error (WAPE) 3.42% 3.60% 2.53% 0.46% 

Estimated 
Urban ATE 
Effect 

ATE 0.062 0.812 0.163 1.004 

%ATE 1.8% 29.9% 5.0% 39.2% 
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3.5. Estimated Causal Effect of Urban Area Residence 
The results from the previous section illustrate the better data fit of our proposed model, but does 
not provide an indication of the extent of mis-estimation (if at all) of the substantive “true” causal 
effect of urban residence on walk frequency. For this, we examine the impact of urban area 
residence using an average treatment effect or ATE (see Heckman and Vytlacil, 2000; Heckman 
and Vytlacil, 2001; and Bhat and  Eluru, 2008).10 In the current empirical context, the average 
treatment effect (ATE) refers to the expected walk frequency shift for a randomly picked 
household (from the entire pool of households independent of currently observed residential 
neighborhood) if it were to reside in an urban neighborhood relative to a non-urban neighborhood.  
It represents the “true” causal effect of urban residence on walk frequency. For ease in the 

computation of this ATE effect, we assign a cardinal value kc  to each ordinal walk frequency 

category k as follows: (a) Do not walk any day (k=1, 1 0)c  , (b) Walk 1-2 days per week (k=2, 

2 1.5)c  , (c) Walk 3-4 days per week (k=3, 3 3.5)c  , (d) Walk 5-6 days per week (k=4, 4 5.5),c   

and (e) Walk 7 days per week (k=5, 5 7)c  . Then, the ATE metric is computed for our proposed 

model as follows (using the same notations as earlier): 

       

        
2 2 2 2

2 2 2 2

,1 1,1 ,0 1,0
1 1 1

,1 1,1 ,0 1,0
1 1

1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

Q K K

k k k k k k
q k k

Q K

k k k k k
q k

ATE c t t c t t
Q

c t t t t
Q

   

   

   

   

 
  

 
 

                

               

  

 
    (12) 

For the more restrictive bivariate normal model, after estimation, we compute the ATE effect 
without the YJ transformations appearing in the equation above. For the independent YJ model, 
the ATE takes the same form as Equation (12) after estimation, while, for the independent normal 
model, the ATE takes the same form as for the bivariate normal model except that the coefficients 
correspond to the case when the error correlation is ignored. In addition, we also compute the % 
ATE effect, considering the walk frequency predicted by our proposed model for a random 
household if it were located in an urban location as the base. To be noted here is that we do not 
observe the walk frequency for a random household if were in an urban location; this is a 
counterfactual scenario that can be obtained only through prediction. This counterfactual 
prediction is obtained from each model and used as the basis to compute the %ATE for the model 
(this counterfactual walk frequency prediction, in days of walk per week, for a random household 
if located in a non-urban area is 3.37 for the independent normal model; 2.72 for the bivariate 
normal model; 3.28 for the independent YJ model, and 2.55 for the bivariate YJ model).  

The bottom panel of Table 2 presents these ATE effects for each of the four models. The 
first numeric value (0.062) indicates that a random household would walk an additional 0.062 days 
per week if in an urban setting rather than a non-urban setting, corresponding to a %ATE effect of 

 
10The ATE effect, as discussed in this section to determine the urban neighborhood residence effect on walk frequency, 
can also be used to estimate the magnitude effect of any other sociodemographic, employment, or geographic 
residence region variable on walk frequency. However, we confine attention here to the urban residence effect.  
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1.8% (that is, the independent normal model predicts that a random household would have 1.8% 
additional walk days if in an urban environment relative to a non-urban environment). The 
difference in ATE effects across the many models is rather clear. For the independent models, the 
ATE effect is substantially underestimated because of the negative correlation in the error terms 
of the urban residence equation and the walk frequency equation (that is, the fact that individuals 
with a high walk frequency propensity tend to locate themselves in non-urban areas gets comingled 
with the true “causal” effect, lowering the ATE substantially). The bivariate models disentangle 
the correlation effect from the “true” causal effect, which shows up as a much higher ATE effect. 
Even so, the bivariate normal model does underestimate the “true” causal effect (an ATE of 0.812 
or about 30% ATE in the bivariate normal relative to an ATE of 1.004 or about 40% ATE in the 
bivariate YJ model). This underestimation of the “true” causal ATE effect of urban residence on 
walk frequency in the bivariate normal model is due to the asymmetry and rightward skew of the 
error term of the walk frequency propensity (as correctly recognized by the bivariate YJ model but 
ignored by the bivariate normal model). Of course, the extent of differences in the ATEs between 
a restrictive distribution model and the proposed more general distribution model will be specific 
to each empirical context considered, which implies that it is best to estimate the proposed model 
proposed rather than a priori settling for a restrictive structure that may provide inaccurate results.  
 Finally, in terms of the residential self-selection effect, one may estimate this from the 
realization that any model that ignores the correlation between the urban residence and walk 
frequency equations comingles the associative effect of urban residence and the “true causal” 
effect of urban residence. Thus, considering the two YJ-based models, the ATE for the independent 
YJ model comingles the “spurious” self-selection and “true” causal urban residence effects, while 
the ATE for the bivariate model estimates the “true” causal effect. From the ATEs, one may then 
estimate the total of the two effects to be 1.004+(1.004-0.163)=1.845. Then, the self-selection 
effect amounts to 45.6% and the “true” causal effect amounts to 54.4%. 
 
4. CONCLUSIONS 
In this paper, we have shown the promise of the YJ transformation to accommodate flexible 
specifications of stochastic terms in multivariate mixed data models in general, and ordered-
response models with discrete EEVs in particular. To our knowledge, this is the first such 
formulation and application in the econometric literature. The use of such a flexible parametric 
distribution leads to added robustness of the maximum likelihood (ML) estimator. The resulting 
bivariate YJ model is as easy to estimate as a bivariate normal model. More generally, the YJ 
transformation is an efficient way to capture flexible marginal error distributions, which then can 
be bound together using an implicit copula approach. The proposed approach can be applied to a 
number of different univariate and multivariate mixed modeling structures, including sample 
selection models, endogenous switching models, multivariate mixed data models, and revealed 
preference-stated preference models. It can also be employed for empirical analysis in a variety of 
travel behavior, traffic safety, urban planning, education, public health, geography, and  
environmental economics fields, among other fields.  
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The proposed model is applied in the current paper to investigate the effect of urban living 
on walking frequency, considering the choice of urban living as being endogenous to walking 
frequency. While this endogeneity has been attributed in the past to unobserved individual factors 
such as green consciousness, our results, in the context of a post-pandemic world, suggest that 
lower level needs of walking feasibility and safety related to health and virus spread considerations 
may be the more dominant individual factors affecting walking frequency today and also leading 
to a generic predisposition of those with a high walking propensity to locate themselves in non-
crowded non-urban areas. This is consistent with the findings from Payd and Fard who note that 
high-density cities have been more vulnerable to the spread of COVID and so “more basic walking 
needs may play a more important role in the daily walking patterns of inhabitants”. This is 
particularly so for the “not-so-young”, because of the increased vulnerability of older individuals 
to COVID. The net result is a need to understand how best to design walking infrastructure that 
not only adheres to the traditional notions of pedestrian friendliness (such as narrow streets, 
continuity in walkways, frequent crossing points, and low speed limits), but also provides a sense 
of health safety from contagion spread. Doing so proactively would be beneficial in preparation 
for future pandemics. The takeaway also is that, with shifting residential choices, improved 
walking infrastructure (as proxied by the “urban” variable in our analysis) can elevate walking 
frequency across the board in all geographic areas, pointing to the importance of supporting 
policies to invest in walk-friendly environments in a post-pandemic world. 
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