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ABSTRACT 
A variant of the traditional multiple discrete-continuous extreme value (MDCEV) model that 
obviates the need to have budget information, labeled as the L -profile MDCEV model, has 

been proposed recently. This new model structure breaks the strong linkage between the discrete 
and continuous choice dimensions of decision-making. But recent studies show that this L -

profile model may not work well in situations when, even if the budget is unobserved, the budget 
is known to be finite and small in magnitude. The reason is that the formulation, while ensuring 
the positivity of consumptions of the inside goods (that may or may not be consumed), does not 
guarantee, within the model formulation and estimation itself, the positivity of the consumption 
of the essential outside good. In this paper, we develop a formulation based on a reverse Gumbel 
structure for the stochastic terms in the utility functions of alternatives that develops a closed-
form probability expression, while also accommodating the positivity requirement for the outside 
good. The ability of our proposed Budget-based Reverse Generalized L -profile model (labeled 

the BR-GL -profile model) to recover true underlying model parameters is assessed. Our results 

clearly point to the benefit of employing the proposed model (relative to extant linear outside 
utility profile models in the literature) in empirical contexts when there is reason to believe that a 
finite ceiling applies to the budget (even if the budget is unobserved) or if the budget is actually 
available. In the latter case when the budget is available, our proposed model is a serious 
contender to the traditional  -profile-MDCEV model and will generally outperform the 

traditional  -profile-MDCEV when the consumption share of the outside good is high.  

  
Keywords: MDCEV models, multivariate distributions, linear outside good utility, utility theory, 
consumer theory, reverse Gumbel distribution. 
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1. INTRODUCTION 
Many consumer choice situations involving a portfolio or package choice of elemental 
alternatives, along with the amount of a continuous quantity to allocate to the chosen elemental 
alternatives, lend themselves nicely to analysis using a direct utility maximization approach (see 
Wales and Woodland, 1983). Bhat (2005, 2008) coined the term multiple discrete-continuous 
(MDC) choices for such situations, because these situations allow for the possibility of the 
choice of multiple elemental alternatives, including both a discrete element as well as a 
continuous element. A particularly appealing closed-form model structure following the MDC 
paradigm is the MDC extreme value (MDCEV) model (Bhat, 2005, 2008), which has now been 
applied in a wide variety of choice contexts (see, for example, Ma et al., 2019, Shin et al., 2019, 
Varghese and Jana, 2019, and Mouter et al., 2021).  

In recent years, a variant of the MDCEV, based on employing a linear utility structure for 
one or more outside goods (that are essential and always consumed), has received increasing 
attention (see Bhat, 2018, Bhat et al., 2020, and Saxena et al., 2021). Such a structure has the 
advantage of not needing the budget quantity, which indeed may be unobserved in many 
situations, as well as facilitates the modeling of multiple discrete-grouped (MDG) data where the 
amounts of consumptions are observed in grouped categories rather than in continuous form. It 
also loosens the strong tie between the discrete and continuous choice dimensions embedded in 
the traditional MDCEV model. This linear utility form (for the outside good) MDCEV model is a 
neat structure, but, as indicated in Saxena et al. (2021), may not work well in terms of data fit 
and prediction ability when the overall budget amount, even if unobserved, is known to be small. 
On the other hand, the formulation does very well when the budgets are large. The reason is that 
the formulation, while ensuring the positivity of consumptions of the inside goods (that may or 
may not be consumed), does not guarantee, within the model formulation and estimation itself, 
the positivity of the consumption of the essential outside good.1 In addition, the estimators used 
thus far for the formulation with a linear utility form for the outside good do not explicitly 
recognize the budget constraint during estimation. But the probability that the consumption of 
the outside good will be positive (and that the budget constraint is met) increases as the total 
value of the budget increases, and tends to the value of 1 for the situation when the budget tends 
to infinity.   

In a related effort, Mondal and Bhat (2021) recently proposed a reverse Gumbel 
distribution for the stochastic elements in the utility of alternatives (that is, a Type-1 extreme 
value Gumbel form based on the limiting distribution of the minimum of random variables rather 
than the traditional Type-1 extreme value Gumbel form based on the limiting distribution of the 
maximum of random variables), while maintaining a linear utility structure for the outside good. 
The main motivation for the use of the reverse Gumbel with the linear outside good utility 
structure is that it leads to a closed-form probability expression for the MDC consumption 

                                                 
1 It is not necessary that the outside good consumption must be above zero in all consumption situations. However, 
most MDC choice modeling applications in the literature involve situations where the outside good is essential (in 
that some part of the budget is always allocated to it). Therefore, it is important to formulate models that ensure a 
positive consumption for the outside good.  
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pattern, regardless of the number of linear budget constraints that dictate the MDC choice. 
Again, this formulation is useful for the case when budgets are not observed for each (or any) of 
the constraints. However, the same issues of bias in parameter estimates, poor fit to data, and 
poor prediction ability permeate through this alternative formulation if the budgets along any of 
the constraints determining choice are small in magnitude.  

In this paper, we develop a formulation, also based on the reverse Gumbel structure for 
the stochastic terms in the utility functions of alternatives, that develops a closed-form 
probability expression while also accommodating the positivity requirement for the outside good. 
This is done through a truncation scheme that still yields a compact and closed-form likelihood 
expression. Importantly, the procedure works with both observed and unobserved budgets. In the 
case of observed budgets, a linear utility profile for the outside good can provide better results 
than the traditional MDCEV in cases when a very high proportion of the budget is allocated to 
the outside good (see Bhat, 2018 for a detailed explanation). And, in the case of unobserved 
budgets, it can place a finite limit value (a ceiling) on what a reasonable budget may be.    

The rest of this paper is structured as follows: The next section lays out the 
microeconomic framework and statistical specification of the proposed model. Section 3 presents 
the forecasting approach for the model, while Section 4 examines the performance of the 
proposed model using simulation experiments. Section 5 presents an empirical application of the 
proposed model. Section 6 summarizes the paper and identifies future research directions.  
 
2. THE LINEAR OUTSIDE GOOD UTILITY PROFILE MDCEV MODEL STRUCTURE  
Assume without any loss of generality that the essential Hicksian composite outside good is the 
first good. Consider the generalized version of the L -profile utility functional form (which we 

will refer to as the GL  profile) as presented in Equation (19) of Bhat et al. (2020) (this variant 

helps provide additional flexibility than would be possible otherwise, as discussed later in 
Section 2.5). Assuming that the budget information and the continuous consumption values for a 
sample are available, the MDC formulation is written as: 

1 1
1 1

2

( ) 1 1
K

k k
k

k k

x
U x


  

 
 



        
   

x      (1) 

1
2

. . ,
K

k k
k

s t x p x E


            

where the utility function )(xU  is quasi-concave, increasing and continuously differentiable, 

0x  is the consumption quantity ( x  is a vector of dimension )1( K  with elements kx ), and 

k  and k  are parameters associated with good k. The parameter   is a fixed satiation 

parameter across all the inside goods (however, note that the effective satiation is different across 

the inside goods because of the presence of the good-specific k  parameter). The constraint in 

Equation (1) is the linear budget constraint, where E is the total expenditure across all goods k 
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( 1,  2,...,k K ) and 0kp  is the unit price of good k (with 11 p  to represent the numeraire 

nature of the first essential good). The function )(xU  in Equation (1) is a valid utility function if 

0k  and 0k  for all k, and 1   (As discussed in detail in Bhat, 2008, Section 6.1,   can 

take negative values, but this creates instability in estimation; thus, it is common practice to 

require   to be positive, which implies that 0 1).   k  represents the baseline marginal 

utility, and k  is the vehicle to introduce corner solutions (that is, zero consumption) for the 

inside goods ( 2,  3,...,k K ), but also serves the role of a satiation parameter through translation 

(higher values of k  imply less satiation). The   term represents an exponential satiation effect 

that is held fixed across all the inside goods (as explained in Bhat, 2008, it is difficult empirically 
to identify a separate   satiation effect for each inside good, while also having separate k  

satiation effects; further, the   satiation effect in the utility profile form of Equation (1) would 
not be identifiable unless there is price variation across the goods, as discussed later). Even so, 
for stability, in specific empirical contexts, it may be necessary to normalize   to a specific 
value (such as, say 0,  in which case the expression in Equation (1) takes the usual L  

profile for the inside goods).2 There is no 1  term for the first outside good because it is, by 

definition, always consumed. Further, as in the traditional MDCEV, we maintain the assumption 
that there are no cost economies of scale in the purchase of goods; that is, we will continue to 
retain the assumption that the unit price of a good remains constant regardless of the quantity of 
good consumed.  
  
2.1. Optimal Allocation and Identification Issues 
To ensure the non-negativity of the baseline marginal utility, while also allowing it to vary across 

individuals based on observed and unobserved characteristics, k  is usually parameterized as 

follows: 

 kkk   zβexp , , ,...,2 ,1 Kk    (2) 

where kz  is a set of attributes that characterize alternative k and the decision maker (including a 

constant), and k  captures the idiosyncratic (unobserved) characteristics that impact the baseline 

utility of good k. A constant cannot be identified in the β term for one of the K alternatives. 

Similarly, individual-specific variables are introduced in the vector kz  for (K–1) alternatives, 

with the remaining alternative serving as the base.  
To find the optimal allocation of goods, the Lagrangian is constructed and the first order 

equations are derived based on the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian 
function for the model, when combined with the budget constraint, is: 

                                                 
2 The L  profile function form for inside good k takes the form ln 1k

k k
k

x 

 

 
 

.  
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







 



K

k
kk xpEUL

1

)( x ,  (3) 

where   is a Lagrangian multiplier for the constraint. The KKT first order conditions for optimal 

consumption allocations ( *
kx ) are as follows: 

1
1 0;     

 11*

1 0k
k k

k

x
p



 


  
    
   

 if consumption = *

kx  ( 0* kx ), k = 2, 3,…, K, (4) 

 1 0k kp
     if 0* kx , 2,3,...,k K . 

Substituting 1
1

    into the latter two equations, using the statistical specification for the 

baseline preference functions from Equation (2), defining (1 )   , and taking logarithms, 

we get: 
*

1

1
ln ln 1 ln lnk

k k
k

x
p 

 
 

    
 

 if consumption = *

kx  ( 0* kx ), k = 2, 3,…, K, (5) 

1

1
ln ln lnk kp 


   if 0* kx , 2,3,...,k K . 

After some additional algebraic operations, Equation (5) may be written in terms of error 
differences between each inside good and the outside good as: 

1 1, ,k k k kV V      
 

  if consumption is equal to *

kx  (k = 2, 3,…, K), where 0* kx  

0 1 1, ,k k k kV V      
 

 if 0* kx  (k = 2, 3,…, K), where (6) 

*

ln 1k
k k

k

x
V


 

   
 

β z , 
1

lnk k kV V p


 


, 0k kV  β z , 0 0

1
lnk k kV V p


 


 (k = 2, 3,…, K), and 

1 10 1 1.V V V    
 

β z  

An important note based on the above equation system is that, if there is no price variation across 

the inside goods (that is, 1kp   for all inside goods ( 2,3,...,k K ), in addition to the numeraire 

price 1 1p   of the outside good), the (1/ ) ln kp  drops out entirely from the KKT conditions.  

This implies that, in our linear outside good utility structure,   will be estimable only if there is 
price variation. An obvious normalization, in the absence of price variation, is to set  =1, which 
is equivalent to setting the parameter   in the GL  profile of Equation (1) to the value of 0. 

But, in the presence of price variation, the reciprocal of   is the coefficient on the ln kp  

parameter, allowing estimation of 1    in our utility profile (even so, it may be necessary in 
some contexts to pre-set  =1 (that is, 0)   for stability).  
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2.2. Condition for Positive Allocations for Consumed Goods 
The linear outside good utility basis of the model above has the advantage of model estimation 

when there is no budget information. This is because the outside good consumption, *
1x , does not 

appear in the KKT conditions of Equation (4). The GL -profile MDCEV formulation above 

guarantees the positivity of the consumed inside goods. To see this, from Equation (4), we can 
write: 

 
* *

(1/ )

1

1 if 0 ( 2,3,..., )k
k k k

k

x x k K
p



 


 
    
 
 

. But, from the inequality condition of Equation 

(4), it should also be true that 
 (1/ )

1

1k

kp





 
 

 
 

, because otherwise * 0 ( 2,3,..., ).kx k K   Thus, 

if the model predicts that * 0 ( 2,3,..., )kx k K  , the predicted consumption value will be 

positive. However, there is no guarantee in the formulation above that *
1x  will be positive for 

finite budgets. The implicit assumption in the linear profile outside good MDCEV models, made 
explicit in Mondal and Bhat (2021) and Saxena et al. (2021), is that the budget, while being 
unobserved, is very large and tends toward infinity. This is in contrast to Bhat’s (2008) original 
non-linear utility MDCEV Model, where the primal feasibility condition of positive consumption 
of all goods (including the outside good), given a budget, is immediately satisfied based on the 
complementary slackness KKT first-order stochastic conditions (see footnote eight of Pinjari and 
Bhat, 2021). Further, in the case of finite observed budgets, the linear profile outside good 
MDCEV model structures used thus far in the literature do not accommodate the positivity 
requirement on the outside good (notwithstanding the fact that the L MDCEV model structure 

was conceived for the case of unobserved budgets, with an implicit assumption of very large 
budgets). To show this, if the budget were E and only the first M inside goods are consumed, the 
consumption of the inside good in the GL -profile model would be given by: 

 
1

*
1 (1/ )

2 1

1
M

k
k k

k k

x E p
p



 






 
   

 
 

 .               (7) 

If the above outside good consumption is to be positive, it must be true that  

 
1

2
1 1

2

1
,  where

1

M

k k k
k

M

k k
k

p

E p

 
  
 








 
  






.            (8) 

However, there is nothing in the KKT conditions of Equation (4) that maintains this restriction. 
Essentially, when budgets are observed (or even when budgets are unobserved, but there is some 
reasonable ceiling for the budgets), the likelihood expression in all the linear utility outside good 
profile MDCEV model will be based on stochastic KKT conditions that provide a possible 
optimal solution (this solution being the set of estimated model parameters) that then has to be 
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checked for primal feasibility to be declared as the true optimal point (primal feasibility here 
refers to the requirement that the outside good consumption be strictly positive; that is, that 
Equation (8) holds). In effect, the model estimation is one step toward optimal consumption 
determination, which then needs to be vetted through a back-end forecasting stochastic 
truncation process to satisfy primal feasibility and obtain true optimal consumptions. Of course, 
when the budgets are large (moving toward infinity), the denominator of the expression in 
Equation (8) also moves toward infinity, and the condition of Equation (8) will be immediately 
met in the estimation process because of the already existing requirement that 1 >0 (as 

maintained through the exponential specification for 1 ). Thus, as budgets become large, there is 

less need to consider any error truncation operations (for the error term 1  in the inside good 

utility, given the error terms k  for the consumed inside good utilities) during forecasting, 

because positivity of the outside good will be near-guaranteed during the estimation step itself. 
On the other hand, when budgets are tight, there would be more need for truncation operations 
during forecasting. Thus, while positivity of the outside good can also be guaranteed during 
forecasting, this is done post-estimation. This can, and generally will, lead to biased parameter 
estimates, relatively poor model fit and poor predictions, because the likelihood of observed 
consumptions is maximized (in the maximum likelihood estimation process) while allowing a 
non-zero probability of infeasible consumptions (see Saxena et al., 2021). For instance, the 
maximization process in estimation may provide parameters that are such that it assigns non-zero 
probability density values to consumption patterns that drive the outside good consumption to 
zero or negative values (that is, non-zero and potentially high likelihood of infeasible 
consumption patterns). So, while this issue can be corrected in forecasting when budgets are 
observed, the model parameters themselves would not be as appropriate as when only the 
feasible consumption patterns are explicitly considered in the estimation phase itself (thus 
providing parameter estimates that correctly assign non-zero probability density values to only 
the feasible consumption patterns).  
 To summarize, we then need to develop a likelihood function based on the stochastic 
KKT conditions of Equation (4), but while also maintaining the restriction of Equation (8). Note 
that maintaining this restriction automatically ensures that the budget constraint is met (during 
estimation), for the restriction is obtained from a combination of two primal feasibility 
constraints – the budget constraint in Equation (7) and the positivity of the consumption value of 
the outside good.  
 
2.3. Statistical Specification 
The specification of the model is completed once assumptions are made regarding the joint 

distribution of the k  terms. The L MDCEV specification of Bhat (2018) and Bhat et al. (2020) 

uses the Type-1 extreme value (or Gumbel) distribution with non-standardized scale (based on 
the limiting distribution of the maximum of random variables). Unfortunately, doing so makes it 
difficult to maintain the restriction of Equation (8) and certainly does not result in a closed-form 
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expression. However, it is possible to develop a closed-form model accommodating the 
restriction of Equation (8) if we assume a Gumbel distribution based on the limiting distribution 

of the minimum of random variables for the k  terms, and assume a standardized scale. That is, 

assume that the error terms k  are independent and identically distributed (IID) with a standard 

reverse-Gumbel distribution. The density functions of the standard Gumbel and standard reverse-
Gumbel are plotted in Figures 1a and 1b; as can be observed from these two figures, the reverse-
Gumbel is obtained by reflection of the Gumbel about the y-axis. The probability density 
function and the cumulative density function of the standard reverse-Gumbel distribution are 
provided below. 

( ) . and ( ) Prob( ) 1 for 1,2,3,...,
u u

k k

e u e
ku e e u u e k K        f F . (9)                         

Based on the above reverse Gumbel distribution form for each error term, it is easy to see that 
one can write the joint multivariate survival distribution function (SDF) for the error terms 

1k k     as follows (see Appendix A for the derivation through straightforward integration) 3:  

2 3 2 2 3 3

2

1
( , ,..., ) Prob( , ,..., )

1 k

K K K K
w

k

w w w w w w

e

  



    
  
 


ηS .   (10) 

The multivariate cumulative distribution function (CDF) of the η vector can be written as a 
function of the SDFs corresponding to the random variates as follows: 

| |
2 3 2 2 3 3

{2,... },| | 1

( , ,..., ) Prob( , ,..., ) 1 ( 1) ( ) ,D
K K K D D

D K D

w w w w w w  
 

      ηF S w           (11) 

where SD (.) is the SDF of dimension D, D represents a specific combination of the   terms 

(representing a specific sub-vector of the η vector; there are a total of 
2( 2) ( 2,2) ( 2,3) ... ( 2, 2) 2 1KK C K C K C K K            possible combinations, |D| is the 

cardinality of the specific combination D, and Dw  is a sub-vector of the vector 

3 4( , ,..., )K= w w ww  with the appropriate elements corresponding to the combination D extracted.  

 
2.4. Probability Expressions Ignoring Positivity of Outside Good (the Reverse-
GL MDCEV Model or the R-GL MDCEV Model) 

For presentation compactness, define 0 0 10k kV V V 
   and 1( 2,3,..., ).k kV V V k K  

   If the 

restriction in Equation (8) is ignored, based on the KKT conditions, we get the expression below 
in the Reverse Gumbel-GL (or the R-GL ) MDCEV model for the consumption pattern where 

the first M inside goods are consumed at levels *
kx  ( 2,3,..., 1k M  ):  

 
                                                 
3 The ηk error terms are essentially multivariate logistically distributed with a correlation of 0.5, with the SDF 
expression as given below.  
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 
2 2,0 3 3,0 ,0

2 3

* *
2 1

2 3 1 2 3 2 2

2 3 1 2,0 3,0 ,0
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| |  ... ( , ,..., , , , , ) ,...,

( , ,..., , , , , )
| |  

...

M M M M K K

M M K

M

V V V

M M M K M M K

M
M M M K

P x x

J V V V d d d

V V V
J
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

  

     

  
  

   

 



  

    

  

  






  

  
  

   

  η

f

F

2 2 3 3 1 1
1 , ,..., M M

M V V V    
     

 

1 1

1 1| |
1 11 1

{ 2, 3,..., },| | 1

0
1 1

exp exp

| | ! ( 1)

exp( ) exp( ) exp( )

M M

k k
i iD

M MM M
D M M K D

k k k
k k k D

V V

J M

V V V

 

 
  

   

  

    
    

                   

 


  

 

  
,         (12) 

where , ||
1

2 



 




i

M

i

fJ *

1
i

i i

f
x 

 
   

. The probability that all the inside goods are consumed at 

levels * * *
2 3, ,..., Kx x x  is: 

 * * *
2 3

1
2 3 4

1

, ,...,

exp

| |  ( , , ,..., ) | | !  .

exp( )

K

K

k
i

K KK

k
k

P x x x

V

J V V V V J M

V






 
 
  

 
 
 








f

                 (13)               

As one would expect, the expression in Equation (13) is the same probability as what would have 
been obtained had the traditional Gumbel distribution been used for the k  rather than our 

reverse Gumbel, because the density function of the differenced Gumbel error terms remains the 
same (which is the multivariate logistic distribution with 0.5 correlation). However, the 
probability expression is the same only for the probability of all goods being consumed (that is, 
only for the case represented by Equation (13)). For the cases where some inside goods are 
consumed and some are not (as in Equation (12)), or all inside goods are not consumed (see 
below), the probability expressions will differ between using the traditional Gumbel and the 
reverse Gumbel, because of the integration spaces being different. The probability that none of 
the inside goods are consumed is: 

 
10

0 10 10 0

| | | |

{2,..., },| | 1 {2,..., },| | 1

1
0,...,0 1 ( 1) 1 ( 1)

1 k k

V
D D

D K D V V D K D V V

k D k D

e
P

e e e    

 

     
       
   

 
 



   
.       (14)      
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2.5. Probability Expressions Considering Positivity Requirement of Outside Good (the 
Budget-based R-GL  or BR-GL MDCEV Model) 

Taking the logarithm of Equation (8), we get the condition for the positivity of the outside good 
as follows, given that the first M inside goods are consumed: 

 
1 1

1 1 0
2 2

ln exp( ) ln( )
M M

k k k k k k
k k

V V p E p   
 

 

        
 
  .  (15) 

Substituting   exp( )k ko k kh V p  and re-arranging, the condition may be re-written as: 

1 1

1 1
2 2

ln , where ln( )k

M M

k k k
k k

h e G G V E p 
 

 

            
  .  (16) 

The probability of the condition above is: 

1
*
1 1

2

( 0) ln k

M

k
k

P x P h e G




                
 .  (17) 

Interestingly, the above probability has a closed-form solution. This is because of a surprisingly 
elegant property that the survival distribution function (SDF) of the difference between a reverse 
Gumbel distribution and the logarithm of the weighted sum of independent exponentially 

distributed random variables (note that exp( )k  is exponentially distributed, as long as k  is 

standard reverse-Gumbel) has a closed form (see Appendix B for the derivation).4 That is,  

1
*
1 1 1

2

2

1
( 0) ln

1 )

k

M

k M
Gk

k
k

P x P h e G
h e









                    



.  (18) 

Finally, we can write the probability expressions for the consumption pattern with positive 
outside good consumption by a simple truncation mechanism as follows (for a derivation of the 
expressions below, please see Appendix C): 

   

   

 

* * *
2 3 1* * * *

2 3 1 1 *
1

* * * * *
2 3 1 2* * * * * *

2 3 1 2 1 *
1

1

 , ,...,  ,0,...,0,0
 , ,...,  ,0,...,...,0,0 | 0

( 0)

 , ,...,  , ,...,
 , ,...,  , ,..., | 0

( 0)

 0,0,0,...,0,...,0,...,0...,0,...0 |

M

M

M M K

M M K

P x x x
P x x x x

P x

P x x x x x
P x x x x x x

P x

P x




 
 

 


 


 * 0  0,0,0,...,0,...,0,...,0...,0,...0 .P 

  (19) 

 

                                                 
4 The property here applies only if each ( 1,2,..., )k k K   is standard reverse-Gumbel. But, by including an extra 

parameter α in the utility function of Equation (1) (rather than pre-imposing the traditional L -MDCEV profile that 

constrains α = 0), we recover a level of flexibility in the model through the α parameter, even as we constrain the 
scale to be standardized. Of course, as discussed in Section 2.1, α is estimable in our formulation only if there is 
price variation across the inside goods. 
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Substituting the expression from earlier for the untruncated probabilities in the numerator of the 
expressions above provides the necessary closed-form expressions.  
 
2.6. Revisiting the Truncation Condition  
The linear outside good utility function in Bhat (2018) and Bhat et al. (2020) is valuable as a 
model in the case when budgets are not observable. However, as discussed in Saxena et al. 
(2021), this linear outside good utility model will perform well only when there is reasonable 
support for budgets being very large, or equivalently, for the investment in the outside good(s) 
being much larger than the investment in the inside goods. The reason for this should be clear 
from the truncation probability in Equation (18). As the budget along the constraint becomes 

larger (that is, as E  becomes larger), so does 
1

2

ln( )
M

k k
k

E p 




  . And, correspondingly, G  

becomes negative and larger and larger in magnitude. Thus, when the budget E  tends toward 

infinity (becomes very large), G  . From Equation (18), *
1( 0) 1.P x    Thus, estimating 

without any truncation correction will not affect the accuracy of the model results with very high 
(tending toward infinity) budgets. Effectively, when the budget is high and allocation to the 
inside goods is relatively small, there is little need for truncation. On the other hand, with small 

overall budgets, the truncation correction probability *
1( 0)P x   will be sizeable, and thus 

estimation without truncation can create problems.  
 As just discussed, in cases when the budget information is not available, but it also is not 
reasonable to assume that the budget is very large, the linear outside good utility function will 
not perform well. In such a case, one way to proceed would be to set a finite upper limit value as 
an approximation to the budget within the context of the proposed BR-GL MDCEV model. 

 
2.7. Discrete Consumption Probability Expressions 
The discrete consumption probability expressions are useful when comparing, after the models 
are estimated, the discrete consumption performance of our proposed BR-GL MDCEV profile 

models with the traditional  -profile MDCEV model of Bhat (2008). We first present the 

discrete consumption probability expression for the R-GL MDCEV Model for each possible 

consumption bundle.  For the R-GL MDCEV Model, we may write:  

2 2,0 1 1,0 ,032 1

2 12 2,0 3 3,0 1 1,0

2 3 1 2 1

2 3 1 2

( 1, 1, , 1, 0, , 0, 0)

 ... ... ( , ,..., ) ,..., ,

M M K K K KM

M K KM M

M M K K

V V V

K K K

V V V

P d d d d d d

d d d

   

    

     
   

  

  

   



    

     

      
  

  

 

f
  (20) 

where 2 3( , ,..., )K  f  represents the multivariate density function (pdf) of the random variates 

2 3, ,..., K   . The above expression may be expressed as:  
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2 3 1 2 1

| |
2,0 3,0 1,0 | | 2,0 3,0 1,0 ,0

{ 2,..., 1, },| | 1

( 1, 1, 1, 0, 0, 0)

( , ,..., ) ( 1) ( , ,..., , ),

M M K K

D
M M M D M D

D M K K D

P d d d d d d

V V V V V V

  

  
   

     

  

 

      S S V
           (21)      

where SN (.) for any dimension N is the multivariate survival distribution function given by 

Equation (10), D represents a specific combination of the non-consumed goods (there are a total 

of 12 1K M    possible combinations of the non-consumed goods), |D| is the cardinality of the 

specific combination D, and ,0D
V  is a vector with elements ,0dj

V  of the non-consumed goods Dj  

appearing in combination D. The discrete consumption probability for the case of none of the 
inside goods being consumed is already provided in Equation (14), while the discrete 
consumption probability for the case of all the inside goods being consumed is given by: 

2 3 1 2 1 1 2,0 3,0 ,0( 1, 1, 1, 1, 1, 1) ( , ,..., )M M K K K KP d d d d d d V V V              S .                       (22) 

The corresponding expressions for the BR-GL MDCEV model may then be obtained by 

dividing the expressions above by *
1( 0)P x  .  

 
3. FORECASTING PROCEDURE 
The forecasting procedure described in this section is based on the BR-GL MDCEV model. 

 

Given: The input data kz  and kp , and estimates of the model parameters 

2 3( , , ,..., , ) , where 1 .K        β  As earlier, 
1

1

 
 
 

 


.  

 Step 1: Draw K independent realizations of k  (say k ), one for each good ( 1,2,..., )k k K  

from the reverse extreme value distribution with location parameter of 0 and the scale 
parameter equal to one; label this distribution as REV(0,1) . 

 Step 2: Compute ,0 ,0k k kH V    for each inside good 2,3,...,k K  using the inputs, and set 

1,0H  for the outside good to be an arbitrary value higher than the maximum of the ,0kH  

values across the inside goods.   

 Step 3: Re-order the goods in descending order of ,0kH ; let G be the vector of the re-ordered 

indices of the outside and inside goods (with the outside good appearing as the first entry and 
the ordering of the inside goods starting from position 2); set a new index m ( 1, 2,...,m K ) 

for this new ordering of the outside and inside goods. Let 0H  be the re-ordered vector of 

values of ,0kH  so that 0 1,0 2,0 ,0 1,0 ,0( , ,..., ,... , )m K KH H H H HH     , where ,0 ,0

[1: 1]

( )m k
k

k m

H Max H
 


G

  

for 2,3,...,m K . The notation [1: 1]k m G  denotes all goods k that are not in locations 

from the first spot (for the outside good) to the spot m–1 in the vector G. 
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 Step 4: Set M=2.  

 Step 5: If 1 ,0 ,MH    set the consumptions of all the re-ordered inside goods m=M to m=K to 

zero. STOP. 

 Step 6: If 1 ,0 ,MH   compute exp( )M M M  z .  

 Step 7: If  
 

2
1 1

2

ln

M

k k k
k

M

k k
k

p
>

E p

 








 
 
  
  
 




β z , declare the inside good M as being selected for 

consumption and forecast the continuous value of consumption as follows: 
*

1 0exp( ) 1 .M M M Mx V       
  Set M=M+1. Go to Step 5.  

 Step 8: If 
 

2
1 1

2

ln

M

k k k
k

M

k k
k

p
<

E p

 








 
 
  
  
 




β z , declare the inside good M as not being selected for 

consumption. STOP. 

 

In cases when the budget information is not available, but is known to be finite, the analyst may 
set a finite upper limit value as an approximation to the budget not only in estimation (see 
Section 2.6), but also set that same finite value for E in the forecasting algorithm above. 
 An interesting insight from the forecasting procedure is that, unlike the case of the L -

profile utility with infinite budgets where the consumption intensity of any inside good is 
independent of the price or attributes of other inside goods (see Saxena et al., 2021), there is 
cross-alternative demand dependency in our proposed BR-GL MDCEV model. That is, a 

change in price (or any other attribute) of one inside good will impact the demand of the other 
inside goods in both the discrete and continuous dimensions of consumption. This is 
straightforward to note for the discrete dimension from Step 7 of the forecasting procedure 
above. In the following discussion, we will focus on a price increase, though the discussion is 
equally relevant to changes in other alternative attributes. First, for 0 1  ,  <0. Now 
consider the case of M=3 at step 7. The discrete consumption condition for M=3 is 

   2 2 2 3 3 3
1 1

2 2 2 2

ln
p p

>
E p p

    


 

 
 

   
β z . An increase in the price 2p  of the first consumed inside 

good decreases the numerical value of the right side (note that, because  <0, when 2p  increases, 

the numerator in the first part of the above expression decreases, while the denominator of the 
first part of the same expression increases). Thus, the likelihood that the condition above will 
hold increases, implying that an increase in the price of one inside good will increase the discrete 
consumption probability of other inside goods. To show the cross price-demand effects for the 
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continuous consumptions, from the optimality conditions, it should be true that  

 
* *

(1/ )

1

1 if 0 ( 2,3,..., )k
k k k

k

x x k K
p



 


 
    
 
 

.  

Following the notation in the forecasting algorithm, let the discrete consumption condition in 

step 7 hold for M=2. Then, using the index m for the ordered listing of goods as in step 3, and *
mx  

for the continuous consumption of the mth ordered good if consumed, 

 
* 2
2 2(1/ )

1 2

1x
p



 


 
  
 
 

.  

Thus, as 2p  increases,  (1/ )

2p


 increases (because 0 1  , given (1 ) and 0 1      ), 

and therefore, as expected, *
2x  decreases. Also,  

 
* 2

2 2 2 2(1/ )

1 2

1p x p
p



 


 
  

 
 

.  

The first derivative of *
2 2p x  with respect to price 2p  is: 

 

*
2 2 2

2(1/ )
2 1 2

( ) 1
1 1

p x

p p


 


           
. 

The right side of the expression above is negative because 0 1  . In other words, as 2p  

increases, *
2 2p x  decreases. Now let M=3 be selected for consumption based on the discrete 

consumption condition of the first part of Step 7. Then the budget constraint will be: 
* *

2 2 3 3p x p x E  . 

As *
2 2p x  decreases when 2p  increases, a larger quantity of *

3x  can now be consumed at a given 

price 3p . Another way to see this directly in the forecasting procedure is that, with an increase in 

2p , a higher draw of 3  is possible in step 6 (thus increasing 3 ), while still adhering to the 

discrete consumption condition in step 7 for M=3. Then, the continuous consumption value of 
*
3 3 1 30 3exp( ) 1x V       

  can be higher than earlier. Therefore, an increase in price of one 

of the inside goods (with no changes in prices in any of the other inside goods) will lead to an 
increase in both the discrete and continuous consumptions of other inside goods.  
 
4. SIMULATION EVALUATION 
The simulation exercises undertaken in this section examine the effect of varying budgets 
(implicitly changing the proportion of consumption of the outside good relative to the combined 
consumption on the inside goods) on the performance of different models, as discussed below. 
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4.1. Experimental Design 
In the design, we generate a sample of 3000 observations with four alternatives and two 
independent variables in the qkz  vector in the baseline utility for each alternative (we introduce 

the subscript q for individuals here; 1, 2,...,3000q  ).5 For this simulation experiment, we 

consider a constant, but only in the baseline preference for the outside good. We set the 

coefficient on this constant to 0.75 (that is, 0 0.75).   Of the two independent variables, the first 

is a dummy variable, while the other is a continuous variable (the use of alternative specific 
variables in the inside goods are suppressed to allow for a parsimonious specification for the ease 
of presentation of the simulation results). That is, consider the following for the qkz  vectors (k=1 

is the outside good): 

 1 2 2 3 3 4 41,0,0 ,  0, , ,  0, , , and 0, ,q q q q q q q q q qy z y z y z               z z z z . (23) 

For the dummy variable ( qy ) in ( 2,3, 4)qk k z , we treat this as an individual-specific variable 

(that does not vary across alternatives). To construct this dummy variable, 3000 independent 
values are drawn from the standard uniform distribution. If the value drawn is less than 0.5, the 
value of ‘0’ is assigned to the dummy variable. Otherwise, the value of ‘1’ is assigned. The 
coefficients on this dummy variable are specified to be 0 for the first two inside alternatives 

(k=2,3) and 1.0 for the third inside good (k=4). Thus, a single parameter 1  (=1.0) is to be 

estimated for the dummy variable. The values for the continuous variable 2qz  are drawn from a 

standard univariate normal distribution, while the corresponding values 3qz  and 4qz  are drawn 

from a univariate normal distribution with mean 0.5 and standard deviation of 1. The parameter 

2  on this continuous variable is specified to be 1.25 2( 1.25).   We will consider the case of 

no price variation in this paper, and so the value of   is normalized to zero (and not estimated; 
doing so implies that our budget-based reverse-GL  model and the reverse- L  profile model 

but with a given finite budget E are identical, because the scale of the error terms is set to 1 in the 

reverse- L  profile). Furthermore, the satiation parameter for the first inside good is set to 0.75e  

(that is, 2 2.117)  . The corresponding satiation parameter values for the second and third 

inside goods are set at 1e  (that is, 3 42.718 and 2.718)   . Once generated, the independent 

variable values are held fixed in the entire rest of the simulation exercise.  
 

                                                 
5 To keep the discussion tight in terms of the data generation process and also to avoid clutter in the presentation of 
the detailed simulation results, we have limited the number of alternatives to four and the number of independent 
variables to two. However, we have also undertaken a similar simulation exercise with eight alternatives and 19 
independent variables. The substantive results from this more extended simulation exercise are the same as those 
from the four-alternative case discussed here. These results are available upon request from the authors.  
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4.2. Comparing the Reverse GL -profile (or the R-GL -profile) with the Budget-based R-

GL -profile (or the BR-GL -profile)  

As a recap, the reverse GL -profile (or the R-GL -profile) MDCEV model employs a linear 

baseline utility for the outside good and uses a reverse Gumbel stochastic term in the baseline 
utilities of the goods. We compare this R-GL -profile model with the budget-based R-GL -

profile (or the BR-GL -profile) of this paper, which accommodates the case of observed 

budgets or the case of unobserved but “known-to-be finite” budgets, while also expressly 
recognizing the positivity constraint for the consumption of the outside good at the estimation 
stage. For the comparison of these two models, the budget values are varied from a low of 50 
units to a high of 1000 units, with intermediate values of 250, 500, and 750 units (for a total of 
five budget values). Since the R-GL -profile model does not explicitly consider the positive 

consumption of the outside good, we should expect a deterioration in the performance of the R-
GL -profile MDCEV model at the low budget values while the BR-GL -profile MDCEV 

model, which recognizes the budget constraint, should do reasonably well at all the budget 
values.  

Using the design presented in the previous section, we generate the consumption quantity 

vector *xq  for each individual using the forecasting algorithm for the BR-GL -profile MDCEV 

model (as discussed in Section 3). The parameters to be estimated from the data generating 

process correspond to 0 1 2 2 3 4[ 0.75, 1.0,  1.25, =2.117, =2.718, =2.718] .            For 

each of the five values of total budget considered (ranging from 50 units to 1000 units), the data 

generation process is undertaken 500 times with different realizations of the k vector (for each 

individual) to generate 500 different data sets (for a total of 2500 data generations of 3000 
observations each). For each of the 2500 datasets, we estimate the R- L -profile and the BR-

L -profile models. The performances of the models in recovering the “true” parameters, their 

standard errors, as well as predicting the consumption values are evaluated as discussed in 
Section 4.4.6 
 
4.3. Performance Metrics 
The performances of the models in recovering the “true” parameters, their standard errors, as 
well as predicting the consumption values are evaluated as follows: 

(1) For each of the two simulation experiments, estimate the parameters using each of the two 
models for each of the 2,500 data sets. Estimate the standard errors. For each model in each 
simulation experiment, and for each budget level (in the first experiment) and each outside 
good constant value (in the second experiment), do the following: 

                                                 
6 The budget allocation to the inside goods (as a percentage of the total budget) varied approximately between a 
mean value (across the 500 data sets) of 31%  for the budget of 50 to 7% for the budget of 1000 (the specific mean 
values for the other budget values were as follows: 21% for the budget of 250, 16% for the budget of 500, and 11% 
for the budget of 750).  
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(2) Compute the mean estimate for each model parameter across the 500 data sets to obtain a 
mean estimate. Compute the absolute percentage (finite sample) bias (APB) of the 
estimator as: 

.100
 valuetrue

 valuetrue-estimate mean
(%) APB   

(3) Compute the standard deviation of each parameter estimate across the 500 datasets, and label 
this as the finite sample standard deviation or FSSD (essentially, this is the empirical 
standard error). Compute the FSSD as a percentage of the true value of each parameter. 

(4) Compute the mean standard error for each model parameter across the 500 datasets, and label 
this as the asymptotic standard error or ASE (essentially this is the standard error of the 
distribution of the estimator as the sample size gets large, and is a theoretical approximation 
to the FSSD).  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula, compute the APB 
associated with the ASE of the estimator as: 

ASE-FSSD
(%) 100

FSSD
APBASE    

(6) Examine the data fit at a disaggregate level by comparing the log-likelihood values at 
convergence of the models. A rigorous statistical test of data fit cannot be undertaken using 
traditional nested likelihood ratio tests, because the models are not nested forms of each 
other. But the model with the higher log-likelihood value is to be preferred, because all the 
models have the same number of estimated parameters. Based on the log-likelihood values 
for each of the 500 runs (corresponding to the 500 datasets), compute a mean log-likelihood 
value. A comparison of the mean log-likelihood values at convergence provides an 
evaluation of the overall multiple discrete-continuous (MDC) component of fit. 

(7) In addition to the MDC component of fit, for each of the 500 datasets, compute the effective 
log-likelihood value for the pure multiple discrete consumption component using Equations 
(14), (21), and (22) for the R-GL -profile model, and by dividing the R-GL -profile 

expressions by *
1( 0)P x   for the BR- L -profile model. Compute the predicted probability 

of the observed discrete choice for each observation (which can be one of eight discrete 
choice combinations based on whether or not each of the inside goods (k=2,3,4) is consumed 
or not) at the converged values, and compute the corresponding predictive log-likelihood 
function value for the pure discrete component. Again, based on the log-likelihood values for 
each of the 500 runs (corresponding to the 500 datasets), compute a mean predictive discrete 
consumption-based log-likelihood value. A comparison of the mean log-likelihood values at 
convergence provides an evaluation of the discrete component of fit. At the disaggregate 
level, compute the average probability of correct prediction for the discrete consumption for 
each individual, and then compute an average across all individuals. This average probability 
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of correct prediction at a dataset-level is then averaged across the 500 datasets to obtain a 
single average probability of correct prediction.  

(8) Finally, at the aggregate level, examine model fit at both the discrete consumption level as 
well as the continuous consumption level. For the discrete level, for each dataset, predict the 
aggregate share of individuals participating in each of the eight possible discrete outcomes, 
and compare these predicted shares with the actual percentages of individuals in each 
combination (using the weighted mean absolute percentage error or MAPE statistic, which 
is the MAPE for each combination weighted by the actual percentage shares of individuals 
participating in each combination). Next, compute the average of the weighted MAPE 
statistic across the 500 datasets. For the continuous consumption level, for each dataset, 
compute an aggregate mean (across observations) of the observation-level continuous 
consumptions for each of the goods using step (7) of the forecasting algorithm with 1000 
error vector replications per individual observation), and compute an MAPE by comparing 
the mean of the predicted aggregate consumption of each of the goods with the 
corresponding actual mean value of consumption of the good (ignoring zero consumptions 
based on the discrete choice, so this MAPE corresponds to consumption conditional on a 
positive discrete consumption decision). Then, average the dataset-level MAPE (across the 
500 datasets) to obtain an overall MAPE for the continuous consumption quantity. 

 
4.4. Simulation Results 
Table 1 provides the parameter recovery results for the comparative study between the R-GL -

profile with the BR-GL -profile. For each of the six parameters to be estimated, the first row 

provides the true value, followed by the estimate obtained and the following metrics for each 
estimate: APB, FSSD, ASE, and APBASE. The first set of numeric columns refers to the BR-
GL -profile, while the last set of columns corresponds to the R-GL -profile (each sub-column 

corresponds to one of the five different budgets). The results from the table indicate that the BR-
GL -profile model (that recognizes the positivity condition on the outside good during 

estimation) consistently outperforms the R-GL -profile model (that ignores the positivity of the 

outside good during estimation). As one would expect, this difference is particularly discernible 
at lower budget levels; in particular, the mean APB for the BR- GL -profile model (of 15.752%; 

see penultimate row of Table 1) in the case of the budget with 50 units is about half the mean 
APB for the corresponding R- GL -profile (of 28.941%). This is, because, as discussed earlier, 

the truncation correction probability term becomes more sizeable (and discernibly less than the 
value of one) at low budget values.7 The APBASE term across both the models are comparable, 

                                                 
7 The difference in APB between the budget of 50 and the budget of 250 within each of the BR-GL -profile and R-

GL -profile models may appear quite large. The difference in performance between the budget of 50 and 250 for 

the R-GL -profile model is to be expected, because, with the budget of 50 and no correction for negative outside 

good consumptions (that is, no correction for infeasible consumption patterns), the parameters are likely to be way 
off relative to the case of the higher budget of 250. But it might seem surprising that this happens even for the BR-
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although the BR- GL -profile model again performs slightly better overall, and in particular in 

the lower budget cases.  
 In addition to evaluating the model’s ability to accurately recover parameters, we also 
provide data fit measures at an aggregate as well as disaggregate level. Table 2 presents the 
results of the likelihood-based data fit measures (first row panel) and the non-likelihood based 
data fit measures (second row panel). Across all such metrics, the proposed BR-GL -profile 

model outperforms the R-GL -profile model. This is particularly observable, as expected, for 

the metrics corresponding to the budget level of 50 units. The likelihood metric at convergence is 
far superior to the BR-GL -profile at 50 units. The other entries in Table 2 indicate that the 

difference in the two models is particularly so for the continuous consumption values.  For 
example, at the aggregate level of continuous consumptions, the MAPE is 19.74% for the case of 
a budget level of 50 for the BR-GL -profile model, while the corresponding MAPE is 38.60% 

for the R-GL -profile model. On the other hand, the discrete consumption predictions, based on 

the likelihood or non-likelihood data fit measures, are not very different between the two models 
for any budget value, reflecting the fact that all the linear profile-based models loosen the tie 
between the discrete and continuous consumptions.  

Overall, in terms of parameter recovery ability as well as likelihood and non-likelihood 
fit measures, the proposed BR-GL -profile model performs definitively better than the non-

budget based R-GL -profile model, particularly for low budget scenarios.  

 
5. EMPIRICAL APPLICATION 
In this section, we demonstrate an application of our proposed model to the case of employed 
individuals’ weekly activity participation.  
 
5.1. Sample Description 
The data source for the empirical application is drawn from the Dutch Longitudinal Internet 
Studies for the Social Sciences (LISS) panel, which is a probability sample of Dutch households 
based on the country’s population register. The panel, administered via the internet by 
CentERdata (www.lissdata.nl), is a standard social monthly survey undertaken in 2009, 2010, 
and 2012. In this study we focus on the data from the last wave (October 2012). The survey 
included questions about individuals’ week-long activity participation and respondents’ reported 

                                                                                                                                                             
GL -profile, which only allows for a feasible solution space. In fact, there is a pattern of consistent reduction in the 

APB going from a budget of 50 to a budget of 1000 even for the BR-GL -profile model. The reason is that, as 

discussed in Section 2.6, with small overall budgets, the truncation correction probability *
1( 0)P x   will be sizeable. 

And as the truncation correction probability increases, there is more non-linearity introduced in the likelihood 
function, making it more difficult to accurately recover the parameters, leading to the higher APB at lower budgets 
even for the BR- GL -profile model. Nonetheless, it is clear that not only does the BR- GL -profile model 

outperform the R- GL -profile models at all budgets, but also that the  BR- GL -profile model performs much more 

respectably than the R-GL -profile even at low budget levels. 



  19 

time allocation to various activities (including work) during the immediate seven days prior to 
the survey (Cherchye et al., 2012). The weekly time use data is complemented with socio-
demographic information drawn from the LISS panel.   
             The sample used in our analysis includes individuals who are the sole workers within 
their respective households. The time-use decisions of such individuals are likely to be distinctly 
different from other unemployed individuals or employed individuals in a multi-worker 
household. Several consistency checks were performed to obtain the estimation sample of 1,193 
workers, the details of which can be found in Astroza et al. (2017). The focus of our analysis is 
the weekly time-use decisions of these individuals, subject to the weekly time budget constraint 
of 168 hours. We consider the following five non-work, non-education, and non-sleep activities 
as the inside goods (the percentage of individuals participating in each of these five activities, 
and the average weekly hours for those who participate in each of the activities, is also provided 
next to the activities):   

1) Household chores, such as cleaning, laundry, shopping, cooking, gardening, odd jobs, car 
washing, and care for children or parents, but not personal care. (98.1% participation rate, 
with an average of 16.85 weekly hours among participants) 

2) Personal care, such as time on washing, dressing, meeting biological needs (excluding 
sleep), visiting the hairdresser, and seeing the doctor (52.1% participation rate, with an 
average of 6.23 weekly hours among participants). Note that all individuals spent some 
time on personal care, but the personal care time here refers to time beyond what may be 
considered mandatory personal care time (based on an assumption that individuals spend 
about one hour per day on mandatory personal care activities, which then gets included as a 
component of the outside good).8   

3) Administrative chores and assistance, such as managing own family finances and 
helping family/non-family members (93.2% participation rate, with an average of 7.54 
weekly hours among participants). 

4) Leisure, including in-home and out-of-home recreational activities, such as watching TV, 
reading, practicing sports, hobbies, visiting family or friends, going out, walking the dog, 
cycling, and being intimate (94.3% participation rate, with an average of 26.18 weekly 
hours among participants). 

5) Social, including religious activities, civic and volunteer activities, and attending social 
gatherings. (42.5% participation rate, with an average of 11.67 weekly hours among 
participants). 

The multiple discrete-continuous dependent variable corresponds to weekly participation 
and weekly time investment in each of the above five inside activity purposes. The outside good 
constitutes all remaining time, including work, education, travel, and sleep. Also, the unit price 

                                                 
8 The one hour per day assumption for mandatory personal care is based on Lee (2008), who indicates that 
grooming, which typically is done in the morning, takes up, on average, a little more than 30 minutes for men and 
about 45 minutes for women every morning.  
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for time use in each of the inside activities is unity since the decision variables themselves 
represent time investments.  
 
5.2. Model Results 
In this section, we demonstrate an application of the proposed BR-GL -profile MDCEV model 

rather than provide an extensive commentary on substantive interpretations and policy 
implications. But, within the context of the data available, we explored alternative variable 
specifications to arrive at the best possible specification (including considering alternative 
functional forms for continuous independent variables such as income and age, including a linear 
form, piecewise linear forms in the form of spline functions, and dummy variable specifications 
for different groupings). The final variable specification was based on statistical significance 
testing as well as intuitive reasoning based on the results of earlier studies.  

The results of our empirical application are provided in Table 3, and are discussed below 
by variable category. The coefficients represent the impact of variables on the logarithm of the 
baseline preference (that is, they correspond to the β vector elements in Equation (2)) except for 
the satiation effects discussed later).  

 
Individual Characteristics: Our results suggest that women are more likely than men to partake 
in household chores relative to social, leisure, and administrative chores. Earlier family time-use 
studies have clearly established a gender asymmetry in household responsibilities, even when 
women work full-time outside the home (see Bernardo et al., 2015, Bernstein, 2015, and Cerrato 
and Cifre, 2018). While this asymmetry has been attributed to the continued societal expectation 
that household chores rest squarely on the shoulders of women, there is also literature that 
suggests that women see the responsibility of household chores as a source of identity and 
power, and are reluctant to relinquish such responsibilities (see Martinez and Paterna, 2009 and 
Vieira et al., 2019). Table 3 also indicates that women have a higher propensity for participation 
in personal care, a finding that is consistent with women placing more emphasis on their 
appearance than men. In the psychology and gender development literature (see, for example, 
Mafra et al., 2020, Quittkat et al., 2019, Borland and Akram, 2007), this need to look good has 
been associated with socially-learned behaviour (through exposure to marketing campaigns of a 
feminine image) as well as traced to an evolutionary explanation of women using their own 
looks to provide themselves a competitive physical edge to attract the most desirable males, 
thereby attaining some amount of social power themselves (through the social power of the 
“desirable” male) in what has been a male-dominated society for much of human existence. 

Age is also found to be a key determinant in individuals’ time use behaviour, with those 
in the age group of 45 years or younger generally partaking less in all the “inside” activity 
purposes.  Younger individuals and those who are middle-aged are in the formative and rising 
years of their careers, and are likely to spend more time at work (part of the outside activity) than 
other non-career and financial/retirement planning activities (see Olmo-Sánchez and Maeso-
González, 2014, Regitz-Zagrosek, 2012, and Henager and Cude, 2016). Of course, those in the 
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middle age group may be in relatively settled relationships (see, for example, Williams et al., 
2016), leading to a rise in participation in household chores and leisure activities to the same 
intensity level as those older than 45 years of age, as reflected in the absence of a coefficient for 
“household chores” and “leisure” purposes corresponding to those in the “30–45 years” age 
group.  

 
Household Demographics: Household size has a positive effect on the baseline preference for 
administrative chores and assistance, reflecting added finance planning obligations and 
household responsibilities (including assistance to friends/family members) in large-sized 
households. Moreover, larger families provide more opportunity to interact and partake in social 
activities. But household composition also matters, in addition to household size. Specifically, 
the presence of children (less than 15 years of age) increases participation in household chores 
and lowers the propensity to participate in leisure. These results are not surprising, as child-care 
related activities take priority for parents at this life-cycle stage, and also has been shown to lead 
to time poverty/social exclusion among working parents (see for example, Bernardo et al., 2015 
and Craig and Brown, 2016).  

Our results also indicate that a lower household income (for weekly income levels of 750 
or less euros relative to higher income levels) leads to increased participation in administrative 
chores (family finances related activities and helping family members) and social activities. The 
latter result is not surprising, since social activities may be perceived as a low-cost recreational 
outlet for low-income families. Besides, this effect may also be proxying for the effect of the 
closer-knit extended family and community unit of socialization among immigrants in the 
Netherlands, who generally earn less than domestic-born citizens. 

 
Baseline Preference Constants: The baseline preference constants do not have any substantive 
interpretations, and simply serve as instruments to better fit the discrete participation rate and 
continuous consumption values of the inside goods. 
 

Satiation Effects Through k  Parameters: To allow heterogeneity in the parameters across 

individuals, while also guaranteeing the positivity of the parameters, they are parameterized as 

=exp( )ωk k k   . The estimates in Table 3 for the satiation effects correspond to the elements of 

the k  vector.  A positive value for a k  element implies that an increase in the corresponding 

element of the ωk  vector increases k , which has the result of reducing satiation effects and 

increasing the continuous consumption quantity of alternative k (conditional on consumption of 

alternative k). On the other hand, a negative value for a k  element implies that an increase in 

the corresponding element of the ωk  vector decreases k , which has the result of increasing 

satiation effects and decreasing the continuous consumption quantity of alternative k (conditional 
on consumption of alternative k). The specification related to the satiation parameters are 
available in the bottom panel of Table 3. 
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Interestingly, the satiation parameter results suggest that while women have a higher 
propensity to participate in personal care activities, this does not necessarily translate to longer 
participation durations subject to participation (in fact, there is a marginally significant negative 
effect of the “female” variable on satiation for personal care in Table 3). That is, there is little 
difference between men and women in time investment, among individuals who partake in 
personal care during the week. The age effects on satiation reveal that, while younger individuals 
are less likely to partake in personal care, administrative chores, and social activities during the 
week, they participate for longer periods in these activity purposes if they participate. This may 
be reflecting a justification effect or a “fixed cost” effect, wherein once the relatively time-poor 
young individuals decide to participate in these activities, they decide to invest a good amount of 
time in it. Finally, as the number of individuals in a household increases, not only does 
participation in household chores increase, but so does the time invested in household chores.  

The constants in the satiation effects (last row of Table 3) generally reflect the high 
duration of time investment in leisure activity and the low duration of time investment in 
personal care activity. These constants also adjust for the sample range of explanatory variables 
and the magnitudes of the estimated baseline preferences to provide the best fit for the 
continuous consumption values.  

 
5.3. Data Fit Measures 
In this section, we examine the data fit measures of three models for the empirical time-use data. 
The three models are the proposed BR-GL -profile model, the R-GL -profile model, and the 

traditional -profile-based MDCEV model. The last of these; the traditional  -profile-based 

MDCEV model; employs a non-linear baseline utility for the outside good, requires an observed 
budget, and guarantees positivity of all goods that are predicted to be consumed. This model uses 
the usual extreme value error based on the limiting distribution of the maximum of random 
variables in the baseline utilities of the goods. As discussed in detail by Bhat (2018), the model is 
known to tie the continuous predictions (how much of an inside good to consume) and the 
discrete predictions (whether an inside good will be consumed) very tightly, leading to possibly 
poor predictions of the discrete choice, especially when the consumption of the outside good is 
very large. On the other hand, the BR-GL -profile, which relaxes the strong tie between the 

discrete and continuous predictions, may do better on the discrete predictions than the traditional 
 -profile-MDCEV model, especially at high consumptions of the outside good. However, it may 

also produce worse continuous predictions than the traditional  -profile-MDCEV model for the 

consumed goods. Thus, a comparison of the BR-GL -profile is undertaken with the  -profile-

based MDCEV model, in addition to a comparison between the BR-GL -profile and R-GL -

profile models. 
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5.3.1. Likelihood-Based Data Fit Measures 
The likelihood-based data fit measures in terms of log-likelihood at convergence, predictive log-
likelihood value at the discrete consumption level as well as the average probability of correct 
prediction for all the three models are provided in Table 4. Our proposed model outperforms the 
R-GL -profile model in all the above metrics, highlighting the value of considering the 

positivity of the outside good consumption in estimation. However, the traditional  -profile-

based model performs better in terms of the overall MDC fit as observed from the marginally 
better log-likelihood convergence value, although our proposed model does substantially better 
in terms of the predictive discrete log-likelihood measure and average probability of correct 
prediction at the discrete consumption level. To evaluate and compare the performance of these 
models further, we also examine the non-likelihood based aggregate fit measures discussed next.  
 
5.3.2. Non-Likelihood Based Data Fit Measures 
The aggregate-level fit measures for the three models are shown in Table 5. For ease of 
presentation, we provide the pairwise predictions of activity participation at the disaggregate 
level for the five activities in our application (based on whether or not an individual participates 
in each of these five activities, there are a total of 25 = 32 activity-combinations; however, to 
make our presentation simple and to avoid clutter, we only provide pairwise predictions of 
activity participation, which corresponds to 10 possible combinations). For each of the three 
models (the proposed BR-GL -profile model, the R-GL -profile model and the traditional -

profile-based MDCEV model), the predicted number of individuals participating in each 
pairwise combination at the discrete level is computed and provided in the top panel of Table 5. 
Our proposed model with a weighted MAPE (weighted with respect to the actual observed 
shares) value of just over 11% outperforms both the R-GL -profile model (MAPE of 16.5%) 

and the traditional -profile-based MDCEV model (MAPE of 21%), reinforcing the superior 

performance of our proposed model in the discrete dimension based on the likelihood based fit 
measures.    

The aggregate fit measures in the bottom panel of Table 5 correspond to the conditional 
continuous consumption dimension (that is, the average predicted continuous values; in our 
context, these values are the number of hours in a week for which an individual engages in the 
respective “inside” activity, given that an individual decides to participate in that activity). The 
proposed BR-GL -profile model with the weighted MAPE of 27.73% performs much better 

than the R-GL -profile model which has a MAPE of over 41%. However, the traditional         

 -profile-based MDCEV model with a weighted MAPE of just over 20% provides the best 

prediction along the continuous consumption quantity (conditional on discrete participation).  
 

5.3.3. A Summary Discussion 
The motivation for this paper was to propose a model that accommodates the positivity 
constraint on the outside good during estimation of the linear outside good utility model form. In 
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the case when the budget is unobserved and may be expected to be large, the R-GL -profile 

model is the model to use. But if there is reason to believe that a finite ceiling applies to the 
budget, even if the budget is unobserved, the BR-GL -profile should be the model to use. And, 

if budget is available, finite, and the investment in the inside goods is not small relative to the 
investment in the outside good, our proposed BR-GL -profile must be the preferred model 

relative to the R-GL -profile model. These results are clearly evident in the superior 

performance of our proposed model relative to the R-GL -profile in both the simulation 

experiment as well as in our empirical demonstration.  
In the case when the budget information is available, the best approach would be to 

estimate both our proposed BR-GL -profile as well as a traditional  -profile-MDCEV model. 

The advantage of our BR-GL -profile is that it disentangles the discrete and continuous 

consumption decisions, which, in general, will provide better discrete choice predictions, 
especially when the budget is large and the outside good takes up a substantial share of the 
continuous consumption. This is discussed at length in Bhat (2018). However, the continuous 
consumption predictions from our BR-GL -profile may be better or may be worse than the 

traditional  -profile-MDCEV model, depending upon the empirical context. If it turns up that 

the BR-GL -profile provides a better fit at the discrete level as well as the continuous level 

relative to the traditional  -profile-MDCEV model, the choice would be clear. But, if the BR-

GL -profile provides a better fit at the discrete level, but not as good a fit as the traditional  -

profile-MDCEV model at the continuous level, the decision may be rather subjective. In such a 
situation, the analyst will have to examine the relative performances at both the discrete level and 
the continuous level, and make a final determination based on the context of the study and the 
relative priorities for the accuracy of the discrete and continuous predictions. While much more 
extensive investigations in different simulation/empirical contexts is needed to make additional 
definitive remarks on the performance of our proposed model and the traditional  -profile-

MDCEV, our preliminary explorations suggest that even in cases when the latter model performs 
better than our proposed model at the continuous level, the performance difference may not be 
by much. However, the traditional  -profile-MDCEV model can perform much worse than our 

proposed model at the discrete level.  
 

6. CONCLUSIONS 
The traditional MDCEV model has now been widely used in a number of empirical contexts to 
analyse consumer discrete-continuous decisions. However, it is applicable only for cases when 
the budget is observed, and the model formulation also very closely ties the discrete and 
continuous decisions. More recently, a variant of the traditional MDCEV, based on adopting a 
linear utility form for the outside good, has received some attention. Labeled as the L -profile 

model, this new model structure not only does away with the need to observe budgets, but also 
breaks the strong linkage between the discrete and continuous choice dimensions of decision-
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making. But recent studies show that this L -profile model may not work well in situations 

when, even if the budget is unobserved, the budget is known to be finite and small in magnitude. 
The reason is that the formulation, while ensuring the positivity of consumptions of the inside 
goods (that may or may not be consumed), does not guarantee, within the model formulation and 
estimation itself, the positivity of the consumption of the essential outside good.  
 In this paper, we have developed a formulation, based on a reverse Gumbel structure for 
the stochastic terms in the utility functions of alternatives, that develops a closed-form 
probability expression, while also accommodating the positivity requirement for the outside 
good. This is done through a truncation scheme that still yields an elegant closed-form 
expression. Importantly, the procedure works with both observed and unobserved budgets. The 
ability of our proposed Budget-based Reverse Generalized L -profile model (labeled the BR-

GL -profile model) to recover true underlying model parameters is subsequently compared with 

that of the linear outside good utility model without the outside good positivity consideration 
(labeled the R-GL -profile model). This evaluation is undertaken using an experimental set-up 

with varying budget levels. In addition, we demonstrate an application of our proposed BR-
GL -profile model to the weekly time-use decisions of individuals using the 2012 wave of the 

LISS (Longitudinal Internet Studies for the Social Sciences) Dutch panel data, compare the data 
fit of the proposed model with the R-GL -profile model and the traditional  -profile-MDCEV 

models.   
Our results clearly point to the distinct benefit of employing our proposed BR-GL -

profile model (over the linear outside utility profile models proposed thus far and employed in 
the literature) in empirical contexts where there is reason to believe that a finite ceiling applies to 
the budget (even if the budget is unobserved) or if the budget is actually available. In the latter 
case, our proposed model is a serious contender to the traditional  -profile-MDCEV model. In 

such a case, it would be best to estimate both our proposed model and the traditional model, 
before making a final determination of which model to use.  

Future research should focus on approaches to include the proposed truncation scheme 
into Bhat’s (2018) flexible MDCEV model form as well as develop methods that ensure that the 
resulting truncation-based flexible MDCEV model also conforms to global utility-maximizing 
behavior across the multiple discrete and continuous consumption choices. 
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1(a)                                                                                                       1(b)                         
 

Figure 1: (a) Type-1 Extreme Value (Maximum) or Gumbel Distribution; (b) Type-1 Extreme Value (Minimum) or Reverse-
Gumbel Distribution 



29 

Table 1: Parameter Recovery Results for Experiment 1 

Parameters 
Metrics BR- GL -profile R- GL -profile 

Budget 50 250 500 750 1000 50 250 500 750 1000 

0  

True value 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Estimate 0.920 0.833 0.801 0.780 0.756 1.152 0.918 0.844 0.816 0.799 
APB (%) 22.667 11.067 6.800 4.000 0.800 53.663 22.403 12.516 8.857 6.471 
FSSD 0.032 0.030 0.031 0.031 0.029 0.032 0.029 0.027 0.031 0.029 
ASE 0.035 0.033 0.032 0.032 0.032 0.038 0.034 0.033 0.032 0.032 
APBASE (%) 9.250 9.315 4.109 3.173 8.107 17.974 14.012 18.578 5.382 10.515 

1  

True value 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Estimate 0.889 0.942 0.965 0.978 1.001 0.731 0.887 0.937 0.960 0.965 
APB (%) 11.100 5.800 3.500 2.200 0.100 26.896 11.254 6.317 4.027 3.525 
FSSD 0.052 0.047 0.049 0.045 0.047 0.050 0.046 0.048 0.044 0.048 
ASE 0.045 0.045 0.046 0.046 0.046 0.045 0.045 0.045 0.046 0.046 
APBASE (%) 13.205 3.464 5.820 1.725 2.586 11.264 1.812 4.486 2.947 4.044 

2  

True value 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 
Estimate 1.132 1.180 1.205 1.239 1.246 0.971 1.138 1.188 1.207 1.217 
APB (%) 9.440 5.600 3.617 0.880 0.320 22.351 8.972 4.934 3.407 2.650 
FSSD 0.022 0.023 0.021 0.020 0.021 0.018 0.022 0.022 0.019 0.020 
ASE 0.021 0.020 0.020 0.020 0.019 0.021 0.020 0.020 0.019 0.019 
APBASE (%) 5.689 14.836 8.289 2.711 6.866 16.854 9.505 12.395 0.721 4.268 

2  

True value 2.117 2.117 2.117 2.117 2.117 2.117 2.117 2.117 2.117 2.117 
Estimate 2.462 2.335 2.264 2.205 2.155 2.547 2.276 2.230 2.182 2.164 
APB (%) 16.300 10.300 6.928 4.153 1.816 20.295 7.528 5.344 3.060 2.220 
FSSD 0.050 0.046 0.046 0.043 0.046 0.058 0.045 0.046 0.043 0.046 
ASE 0.047 0.045 0.044 0.044 0.044 0.048 0.045 0.044 0.044 0.044 
APBASE (%) 5.420 1.624 4.335 3.127 2.985 18.118 1.077 3.591 3.750 5.031 

3  

True value 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 
Estimate 3.133 3.000 2.929 2.860 2.843 3.299 2.989 2.876 2.824 2.814 
APB (%) 15.270 10.385 7.760 5.223 4.582 21.375 9.972 5.814 3.905 3.547 
FSSD 0.046 0.044 0.039 0.044 0.043 0.050 0.043 0.038 0.043 0.041 
ASE 0.044 0.042 0.041 0.041 0.041 0.044 0.041 0.041 0.041 0.041 
APBASE (%) 5.495 6.587 6.628 5.471 3.749 12.674 5.159 7.797 4.623 0.354 

4  

True value 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 2.718 
Estimate 3.254 3.122 3.020 2.914 2.881 3.508 3.083 2.948 2.866 2.849 
APB (%) 19.734 14.878 11.100 7.205 6.011 29.068 13.417 8.476 5.458 4.829 
FSSD 0.049 0.045 0.043 0.038 0.044 0.046 0.051 0.042 0.037 0.046 
ASE 0.044 0.042 0.042 0.042 0.043 0.043 0.042 0.042 0.042 0.042 
APBASE (%) 11.844 6.794 1.517 12.158 2.256 5.046 17.500 0.323 13.259 8.708 

  Mean APB 15.752 9.672 6.618 3.943 2.272 28.941 12.258 7.233 4.786 3.874 
  Mean APBASE 8.484 7.104 5.116 4.727 4.425 13.655 8.177 7.862 5.113 5.487 
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Table 2: Data Fit Measures for Simulation Experiment 

Data Fit Measure 
BR- GL -profile R- GL -profile 

50 250 500 750 1000 50 250 500 750 1000 

Likelihood based data fit measures                     

Log-likelihood value at convergence -13446.90 -18282.60 -19364.70 -19801.50 -20103.30 -13616.50 -18386.70 -19429.10 -19847.80 -20139.90 

Predictive log-likelihood for discrete 
consumption  

-4711.45 -4737.96 -4676.05 -4639.91 -4639.79 -4719.17 -4736.01 -4676.35 -4641.83 -4636.86 

Non-likelihood based disaggregate data fit 
measure  

                    

Average probability of correct prediction  0.280 0.269 0.274 0.277 0.276 0.277 0.269 0.274 0.276 0.277 

Non-likelihood based aggregate data fit 
measures  

                    

Weighted MAPE for aggregate shares  11.11 5.94 4.24 4.26 3.75 11.91 6.11 4.34 4.32 3.67 

Overall MAPE for continuous consumption 
quantity  

19.74 7.60 6.71 5.87 7.08 38.60 12.49 8.48 6.82 7.43 
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Table 3: Empirical Application Results (using the BR- GL profile) 

 Variables 

Coefficient estimates (t-stats) 

Household 
chores 

Personal 
care 

Admin. 
chores and 
assistance 

Leisure Social 

Individual characteristics           

Female 0.489 
(4.66) 

0.693 
(7.50) 

- - - 

Age (Base: More than 45 years)           

Below 30 years -0.624 
(-1.81) 

-0.403 
(-1.26) 

-0.595 
(-2.01) 

-0.715 
(-1.49) 

-0.314 
(-0.98) 

30-45 years - -0.291 
(-2.74) 

-0.545 
(-5.83) 

- -0.270 
(-2.77) 

Household sociodemographic           

Household size - - 0.145 
(3.89) 

- 0.138 
(4.01) 

Presence of child(ren) 0.607 
(3.37) 

- - -0.361 
(-2.90) 

- 

Weekly household income  
(Base: Greater than equal 750 Euros) 

          

Less than 500 Euros - - 0.223 
(2.06) 

- 0.400 
(4.10) 

500-749 Euros - - 0.170 
(1.76) 

- 0.331 
(3.96) 

Baseline preference constant 2.890 
(16.29) 

4.135 
(17.27) 

1.590 
(5.68) 

3.811 
(20.22) 

-0.024 
(-0.16) 

Satiation effects           

Female - -0.284 
(-1.82) 

- - - 

Age (Base: More than 45 years)           

Below 30 years - 0.341 
(1.33) 

- 0.706 
(1.67) 

0.810 
(3.55) 

30-45 years - 0.315 
(1.87) 

- - 0.470 
(3.31) 

Household size 0.138 
(1.83) 

- - - - 

Satiation constant 0.841 
(7.04) 

-1.676 
(-5.87) 

1.196 
(9.16) 

1.884 
(21.40) 

1.269 
(1.53) 
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Table 4: Likelihood-based Data Fit Measures for Empirical Study  

Metrics BR- GL -profile R- GL -profile 
Traditional  
 -profile 

Log-likelihood at convergence -18646.6 -19450.6 -18575.0 

Predictive log-likelihood at the discrete 
consumption level 

-2320.3 -2422.3 -2782.9 

Average probability of correct prediction 0.211 0.203 0.178 
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Table 5: Data Fit Measures for Empirical Study  

Discrete choice consumption: Number of 
individuals with consumption in outside 
good and joint participation in… 

Actual 
number 

BR- GL -

profile 
R- GL -

profile 
Traditional 
 -profile 

Household chores, Personal care 615 656 697 425 

Household chores, Administrative chores 1091 1094 1097 1056 

Household chores, Leisure 1120 1120 1121 1094 

Household chores, Social 499 552 610 270 

Personal care, Administrative chores 581 636 677 377 

Personal care, Leisure 601 644 686 407 

Personal care, Social 243 401 451 111 

Administrative chores, Leisure 991 1067 1069 874 

Administrative chores, Social 1060 741 655 753 

Leisure, Social 474 545 601 381 

Weighted Mean Absolute Percentage Error - 11.3% 16.5% 21.0% 

Continuous consumption (conditional on 
positive discrete choice consumption) 

Observed 
BR- GL -

profile  
R- GL -

profile  
Traditional 
 -profile  

Household chores 16.85 14.12 9.88 21.22 

Personal care 6.23 3.58 3.27 7.54 

Administrative chores 7.54 5.22 4.87 10.52 

Leisure 26.18 19.52 15.80 28.32 

Social 11.67 7.04 6.14 14.63 

Weighted Mean Absolute Percentage Error - 27.73% 41.64% 20.10% 
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APPENDIX A: Integration to Arrive at the Multivariate Survival Distribution Function 
 
To show that the multivariate survival function collapses to a closed-form expression as shown 
in Equation (10), we start off with the probability expression as below: 

2 3 2 2 3 3( , ,..., ) Prob( , ,..., )K K Kw w w w w w     ηS  

2 2 1 3 3 1 4 4 1 1= Prob( , , ,..., )K Kw w w w                since 1k k    .     

Based on the property of the standard reverse-Gumbel distribution, we can write the above 
probability as     
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The integrand above can be simplified as follows: 
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Therefore, the integration in Equation (A.1) can be re-written as, 
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To evaluate this integration, let 1
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Then the integration takes the following form (ignoring the limits for the moment), 
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Now, evaluating the limits, we have, 
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Therefore, Equation (A.1) takes the following result: 
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Which is exactly the expression in Equation (10). 
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APPENDIX B: Derivation of the Closed-form Expression for the Probability Condition 
related to the Positivity of the Outside Good Consumption 

 
We start off with the probability expression given in Equation (17) of the text. 
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Based on the property of the standard reverse-Gumbel distribution, we can write the above 
probability expression as     
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Given that the random variables 2 , 3 ,…, 1M   are independent, the integration in Equation 

(B.2) can be re-written as, 
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We solve the first integration 
2

I as below: 
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To evaluate this integration, let 2
2(1 )Gs e e h  . 

Therefore, 2
2 2(1 )Gds e e h d   . 

 
The first integration then takes the following form (ignoring the limits for the moment), 
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This is a straightforward integration to solve, which results in 
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Similarly, following the exact same approach, we have, 
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Therefore, the probability expression in Equation (B.1) results into the following closed-form 
expression. 
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This is exactly Equation (18) in the text. 
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APPENDIX C: Derivation of the Conditional Likelihood Expression that Ensures Positive 
Outside Good Consumption 

 
Consider the following probability expression that ensures positive consumption of the outside 
good: 
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The set of optimal consumptions in the above expression can be equivalently represented using 
the corresponding set of KKT conditions from Equation (4) in the text. Hence, the above 
expression can be written as: 
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Expanding the above conditional probability expression, we get: 
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The numerator in the above expression is the joint likelihood of the KKT conditions in Equation 
(4) and the truncation condition in Equation (8) necessary for ensuring positive consumption of 
the outside good. Note that Equation (8) implies truncation on the distributions of baseline 
preference parameters of only the chosen alternatives. Therefore, the numerator of the above 
expression includes redundant conditions specific to the stochastic parameters of the chosen 
alternatives. To remove such redundancies from the numerator, consider the sets of conditions 
specific to only the chosen alternatives. That is, consider the following set of conditions from the 

numerator (after substituting 1
1

   for  ):   
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From Equation (C4), the expression for k  is 
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(C5) to rewrite the latter equation as: 
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Simplifying the expression in Equation (C6), we get 
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The above condition is always true in observed data, and therefore the condition in Equation 
(C5) becomes redundant in the numerator of Equation (C3). Hence, the expression in Equation 
(C3) can be written as: 
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