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ABSTRACT 
This paper describes the application of a comprehensive vehicle fleet composition and evolution 
model system that is capable of taking a base year vehicle fleet and evolving it over time in 
annual time steps through the events of vehicle disposal, replacement, and acquisition.  The 
model system is sensitive to a host of socio-economic, demographic, built environment, and 
vehicle technology and price variables, making it ideally suited for such an application.  Coupled 
with a demographic forecasting model system that evolves the population over time, the vehicle 
evolution simulator is able to predict changes in vehicle fleet composition, miles of travel, fuel 
consumption, and greenhouse gas emissions under a wide range of scenarios. Based on the 
findings from the study, it appears that future technological innovations (increase of driving 
range, for example) and pricing levels (doubling of gas cost) will have greater impacts on vehicle 
fleet composition, utilization, energy consumption, and greenhouse gas emissions than more 
incentive based approaches such as free HOV lane access for alternative fuel vehicles.    
 
Keywords: vehicle fleet composition modeling, vehicle miles prediction, microsimulation 
modeling, vehicle and population evolution model application, estimation of energy and 
greenhouse gas emissions 
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INTRODUCTION 
Over the past several years, there has been considerable progress in the modeling of household 
vehicle fleet composition and utilization behavior (1, 2).  These models make it possible to 
forecast the mix of vehicles that households will own and the extent to which each vehicle in a 
household fleet will be driven (utilized) under a wide variety of scenarios and system conditions.  
More recently, a comprehensive vehicle fleet simulation and evolution model system was 
developed as part of a larger activity-based travel demand model development effort for the 
Southern California Association of Governments (SCAG).  The activity-based travel demand 
model system, called SimAGENT (Simulator of Activities, Greenhouse emissions, Energy, 
Networks, and Travel), is capable of simulating the activity-travel patterns of all households and 
individuals in the Southern California region, a model region that includes a population of about 
18 million in the 2008 model base year (3).  The vehicle fleet composition and evolution model 
system is capable of evolving the household fleet mix over time by reflecting and modeling 
household decisions to acquire, replace, and dispose of vehicles on an annual time scale (4). 
 The objective of this paper is to apply this model system, in conjunction with a 
population evolution model system, to a few different vehicle policy scenarios and forecast the 
impacts of the policy actions on vehicle fleet composition, and resultant energy and emissions 
estimates of the future.  In the face of recent legislative initiatives in California (such as SB375 
and AB32; 5), it is imperative that transportation demand forecasting model systems include 
vehicle fleet composition and evolution simulator capable of reflecting dynamics in the vehicle 
fleet mix (and resultant changes in fuel consumption and greenhouse gas emissions) brought 
about by socio-economic, demographic, technological, built environment, and policy changes.   
 The remainder of this paper is organized as follows.  The next section offers a brief 
overview of the vehicle fleet simulator.  The third section describes the policies considered for 
evaluation in this paper.  Results of the policy simulations are offered in the fourth section.  
Concluding remarks are offered in the fifth and final section.   
 
SIMULATION MODEL SYSTEM 
For purposes of this study, there are a few specific modules or components of SimAGENT that 
have to be invoked so that forecasts of vehicle fleet composition, and energy and emissions, can 
be obtained.  This section presents a brief description of these specific modules.  
 
Vehicle Fleet Simulator 
The vehicle fleet simulator (4) consists of two principal components: (1) The vehicle selection 
module and (2) The vehicle evolution module. Each vehicle type alternative in the vehicle 
selection module is defined as a combination of six vehicle body types (compact car, car, small 
cross utility vehicle, sport utility vehicle or SUV, van, and pick-up truck), seven fuel types 
(gasoline, flex fuel, plug-in hybrid, compressed natural gas (or CNG), diesel, hybrid electric, and 
fully electric), and five age categories (new, 1-2 years, 3-7 years, 8-12 years, and more than 12 
years old). Thus, there are a total of 211 vehicle type alternatives including the alternative of no-
vehicle. The model system accommodates multiple vehicle ownership and usage dimensions by 
assuming that vehicle fleet and usage decisions are determined through a series of unobserved (to 
the analyst) repeated discrete-continuous choice occasions. This framework mimics the 
dynamics in the vehicle acquisition process by accommodating the impacts of the types of 
vehicles already owned on the type of vehicle that may be purchased in a subsequent purchase 
decision. The number of choice occasions in such a “vertical” choice behavior is linked to the 



Paleti, Bhat, Pendyala, Goulias, Adler, and Bahreinian 2 

number of adults in the household. In particular, since the number of vehicles is almost never 
greater than the number of adults in the household plus two in the data, the number of choice 
occasions is set to be equal to the number of adults plus two. At each choice occasion, the 
household may choose not to purchase a vehicle or to acquire a vehicle of a certain type. In the 
framework, the decision of the number of vehicles owned by the household is endogenously 
determined as the sum of those choice occasions when the household chooses to acquire a certain 
vehicle type. Overall, the vehicle selection module jointly models all base year vehicle fleet 
characteristics in a unifying framework.  

In the vehicle evolution module, the number of choice occasions for evolving the vehicle 
fleet each year is set equal to the current vehicle fleet plus one. This assumes that households do 
not add more than one vehicle to their current fleet in any given year after considering 
replacements; however, the model structure can easily handle any number of additional vehicles 
(beyond replacements). For any existing vehicle, the household has three options: (1) Keep the 
vehicle, (2) Dispose the vehicle, and (3) Replace the vehicle (and choose vehicle type and usage 
level for the replacement vehicle). In addition to evolutionary choice options corresponding to 
existing vehicles, households may also choose “not to add a vehicle” or “to add a vehicle” (in the 
latter case, the vehicle type and usage of the added vehicle must be simulated). All of the models 
in the evolution module are binary logit models that consider temporal dependency across 
transaction decisions. The vehicle type and usage of all replacement/added vehicles are 
determined using the vehicle type choice model from the vehicle selection module. The vehicle 
type choice model includes existing vehicle fleet characteristics and the replaced vehicle 
characteristics as explanatory variables. This captures dependencies between future vehicle type 
choices (during evolution) and vehicles already owned and getting replaced. 

All of the models in the vehicle fleet simulator are estimated using a unique dataset that 
includes comprehensive information on vehicle ownership and usage decisions of households, 
including current fleet composition, potential future fleet composition, and vehicle evolution 
plans. The vehicle fleet simulator incorporates innovative methodological approaches to address 
the problem of multiple vehicle holdings and use, as well as to deal with the gamut of vehicle 
evolution decisions, all in a comprehensive and implementable forecasting framework. 
Specifically, the simulator encompasses state-of-the-art household vehicle type choice, usage, 
and evolution models estimated using a special-purpose 2008-2009 vehicle survey data set 
collected from 6577 households in the State of California by Resource Systems Group, Inc. 
(RSG) for the California Energy Commission (CEC). The survey has three components: (1) a 
revealed choice (RC) component, which collected information about current and past vehicle 
holdings and usage, (2) a stated intentions (SI) component, which collected information on 
replacement plans of existing vehicles and vehicle addition plans, and (3) a stated preference 
(SP) component, which collected information about vehicle choices that respondents would 
make under hypothetical policy, price, refueling infrastructure, and vehicle attribute scenarios.   

  
Population Evolution Simulator  
Any forecasting exercise must recognize explicitly that the population does not remain static 
over the forecast period.  As time progresses, households evolve, persons evolve, and the vehicle 
fleet composition and utilization patterns evolve.  The population evolution model system used 
in this study is based on the CEMSELTS (Comprehensive Econometric Microsimulator of 
Socioeconomic, Land use, and Transportation Systems) model system which is capable of 
simulating and evolving a population over time (6, 7).  The socio-economic modeling system is a 
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comprehensive simulator of the lifecycle processes that households and individuals experience 
over time including, for example, such phenomena as household migration, aging and mortality, 
fertility, labor force participation, education, household formation and dissolution, and work and 
school location transitions. A complete description of the population evolution model system and 
the data sets used to estimate model components is provided elsewhere (7).  
 

Vehicle Fleet Prediction 
The forecasting exercise conducted in this paper is performed using the sample of 6577 
households in the California Energy Commission (CEC) survey.  This sample has been found to 
be reasonably representative of the population in the State of California (4) and is therefore a 
suitable sample for applying the evolution model system.  The evolution process starts off with 
the vehicle holdings observed in the data for the base year (2008).  For each vehicle in the base 
year, the model predicts whether the household decides to keep, scrap, or replace the vehicle 
starting with the oldest vehicle in the vehicle fleet. If there is a scrap decision, the corresponding 
vehicle is removed from the fleet and the existing vehicle fleet characteristics are updated. 
Similarly, if there is/are replacement decision(s), then the corresponding vehicle(s) from the 
vehicle fleet is/are removed and the vehicle selection module is invoked to determine the 
characteristics of the new vehicle(s) that replaces (replace) the existing vehicle(s). After 
determining the transaction decisions associated with existing vehicles in the fleet, the household 
decision to purchase a new vehicle is simulated. If there is an “add vehicle” decision, then the 
vehicle selection module is invoked to determine the characteristics of the new vehicle.  

For any new household created during the population evolution process, the synthetic 
choice occasions for each newly created household are constructed based on the number of 
adults in the household. Then, the vehicle selection module is applied to determine the vehicle 
type (body type, vintage and fuel type of the vehicle) and the associated annual mileage at each 
of the synthetic choice occasions, updating the vehicle fleet characteristics after each synthetic 
choice occasion. This process generates the vehicle fleet characteristics for all new households.  

This evolution procedure is executed on an annual basis/cycle until the forecast year is 
reached. During this process, the population evolution model system is deployed to evolve the 
population over time.  Based on the new socio-economic and demographic profile of households 
and individuals, the vehicle evolution model predicts the vehicular fleet mix in each year of the 
simulation.  This annual evolutionary process reflects the dynamics of the person population and 
vehicle population and provides rich information useful to understanding changes in regional 
characteristics over time.  The land use, built environment, and network accessibility measures 
that influence population evolution (residential and work locations, for example) and vehicle 
evolution are treated as exogenous to the forecasting exercise undertaken in this study.  In 
reality, however, it is plausible to expect built environment and network accessibility measures 
to change in response to changes in vehicular technology and household location choices; thus 
such built environment and network accessibility measures are, in reality, endogenous to the 
model system.  However, the application of the population and vehicle evolution model systems 
within this study required the study team to assume that such data is exogenous to the evolution 
model systems.     

For the analysis of the policy scenarios, the random seeds used in the microsimulation 
process for each household and for each vehicle choice decision occasion over the course of the 
forecasting period are held fixed at the base case values to ensure that any changes in the vehicle 
fleet characteristics and associated mileages are attributable to the policy under consideration.  
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Fuel Consumption and Greenhouse Gas Emissions Calculations 
The vehicle fleet composition and evolution simulator predicts annual vehicle usage along with 
the vehicle type for each vehicle in a household. This enables the estimation of the total annual 
fuel consumption by dividing the annual mileage for each vehicle in the fleet with a 
corresponding fuel economy value (in miles per gallon) based on the vehicle type. The average 
fuel economy value across all makes/models within each vehicle type (as defined by a 
combination of body type, vintage, and fuel type) is used as the fuel economy estimate for any 
particular vehicle type.  For all vehicle types until model year 2012, fuel economy data provided 
by the US Department of Energy is used; this data is freely available for download at 
http://www.fueleconomy.gov/feg/download.shtml.  For all model years beyond 2012, it is 
assumed that fuel economy will continue to improve, especially in light of federal legislative 
actions mandating higher fuel economy standards in future years.  It is therefore assumed that 
new model years will come with an annual fuel economy increase of three percent.  For example, 
if a new Gasoline car provides 35 mpg in 2012, then the same car would provide a mileage of 
35×1.03 = 36.05 mpg in 2013.   

In addition, the study accounts for the proposed new corporate average fuel economy 
(CAFE) standards for all light duty vehicles of model years 2017 to 2025. Specifically, the new 
standards require all passenger cars (including sub-compacts to large sedans and station wagons, 
crossover utility vehicles, SUVs, and minivans) to have a minimum fuel economy of 37.8 miles 
per gallon (mpg) in model year 2012 and 56.0 mpg in model year 2025 and all light trucks to 
have a minimum fuel economy of 34.1 mpg in model year 2012 and 49.6 mpg in model year 
2025 (8). So, all new model years starting 2017 are set to meet these new CAFE standards in 
case their mileage computed using a three percent annual increase in fuel economy values as 
described earlier comes out to be lower than the CAFE standard. 

A series of assumptions and calculations are made to compute energy consumption and 
tailpipe emissions for different vehicle types. The study team had to make reasonable 
assumptions regarding the entry of new vehicles into the market.  For example, there are 
currently no all-electric sport utility vehicles and minivans in the market.  It is assumed that such 
vehicles will become available starting in the model year 2015. The following is a list of 
assumptions and procedures used to facilitate the computations:  

 
 All costs associated with vehicle usage including vehicle purchase price and vehicle 

maintenance cost are expected to increase by three percent every year. 

 For hybrid-electric vehicles and plug-in hybrids, it is assumed that the liquid fuel (which 
produces GHG emissions) used in the vehicles is gasoline (and not any other fuel such as 
diesel or flex fuel). For example, if the fuel economy value of a hybrid-electric vehicle is 
estimated to be 90 miles per gallon, then it is assumed that the vehicle provides a mileage of 
90 miles per gallon of gasoline.  

 The fuel economy value estimates of compressed natural gas (CNG) and fully electric 
vehicles represent the miles per gallon of gasoline equivalent (MPGe) values.  

 For CNG vehicles, a Gasoline Gallon Equivalent (GGE) factor of 0.51 cubic feet (at 3600 
psi, which is the pressure in most CNG cylinders) is used to convert the gallons of gasoline to 
equivalent volume of CNG with the same energy content.  
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 All fully electric vehicles emit zero greenhouse gas (GHG) emissions and thus are not 
considered in the GHG emissions calculation1.  
 

At the end of this step, the total fuel consumption by gasoline, diesel, flex fuel, and CNG is 
obtained.  Since the liquid fuel in hybrid-electric and plug-in electric vehicles is assumed to be 
gasoline, they do not appear separately in the list of fuel types in this study.  

The associated 2CO  emissions are estimated based on the following equation that EPA 
uses for all emissions inventory calculations: 
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The following steps and assumptions are embedded in the greenhouse gas emissions calculation 
procedure:  

 The oxidation factor in the equation accounts for the fact that some percentage of carbon 
remains un-oxidized. EPA suggests using an oxidation factor of 0.99. Also, EPA uses 2,421 
and 2,778 grams as the carbon content in gasoline and diesel vehicles (9).  

 It is assumed that all flex fuel vehicles use E85 blend which contains 85 percent ethanol and 
15 percent gasoline. Thus, the carbon content of flex fuel is obtained as 2,421x0.15 = 363.15.  

 The 2CO  emissions from CNG vehicles are computed using a carbon content value of 490 
grams of carbon per cubic meter of CNG. This value is obtained from the Bio-energy 
Feedstock Information Network (BFIN) website (10).  

 All of the 2COnon GHG emissions including ON2 , 4CH , and HFC (hydrofluorocarbons) 

usually constitute 5% of total GHG emissions; so the total 2CO emissions is multiplied by a 

factor of 







95

100
to obtain the total GHG emissions (9). 

 
POLICIES CONSIDERED 
The study involved exercising and testing the model system for a variety of policy, market-
based, and technological scenarios.  In the interest of brevity, and to illustrate the types of 
sensitivity that the model is capable of reflecting, this paper offers a detailed description of 
results obtained when the model system was employed to analyze the impacts of three distinct 
types of policies:  

1) Incentive-based policy: Free HOV lane access for all non-gasoline vehicles (CNG, 
hybrid-electric, plug-in hybrid, and fully electric) 

2) Future market scenario: Price of gasoline doubles (in real dollars) 

3) Technology-based scenario: Driving range of CNG vehicles and fully electric vehicles 
will be greater than 200 miles  

                                                            
1 In the current study, we consider only the tailpipe emissions that occur due to vehicle usage but not life-cycle 
emissions which include production and distribution emissions associated with the fuel. 
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In order to illustrate the ability of the model to reflect changes brought about by a combination of 
scenarios, the impacts of a combination of the future market scenario and technology-based 
scenario are also considered and documented in this paper.   

In the baseline scenario against which all policy scenarios are compared, it is assumed 
that new vehicle mileage values, vehicle purchase prices, fuel costs, and maintenance costs 
increase by three percent every year.  New vehicle mileage values are adjusted if necessary to 
match CAFE standards set by federal policy (as mentioned earlier).  Across all scenarios, it is 
assumed that the timeline when vehicles of different fuel types become available is exactly the 
same.  This paper documents the impact of the policy and market scenarios on the total number 
and share of vehicles owned by households, consumption levels of different fuels, and the 
associated GHG emissions. 

 
RESULTS OF EVOLUTIONARY MODEL SYSTEM APPLICATION 
The model system was applied to forecast the person population and the vehicle population, and 
associated fuel consumption and GHG emissions, to the years 2020 and 2030.  The results of the 
effort are described in this section. 
 
Population Evolution Model 
The population evolution model was applied to the baseline survey sample of 6577 households 
and all of the persons residing in the respondent households.  Treating 2008 as the base year and 
assuming the 6577 households constitutes a base year population, the population size and age 
distribution forecast by the population evolution model system for horizon years 2020 and 2030 
were compared against established forecasts furnished by the California Department of Finance 
(11) and Pitkin and Myers (12).  As it is not appropriate to compare actual numbers, the 
population growth and the age distribution of the population were compared for the horizon 
years.   
 In general, it is found that the population evolution model is able to replicate established 
forecasts quite well.  The population evolution model used in this study grew the population (of 
6577 households) by 9.41 percent to the year 2020; the corresponding population growth 
increases predicted by California Department of Finance and Pitkin and Myers (11, 12) are 9.39 
and 9.35 percent respectively.  By the year 2030, the study forecast a population growth of 18.53 
percent.  This is slightly lower than, but still very much in line, with the established forecasts of 
19.46 percent and 19.90 percent growth predicted by the California Department of Finance and 
Pitkin and Myers (11, 12) respectively.   

An examination of the age distribution of the future year population predicted by the 
population evolution model system suggests that the model system tends to age the population 
more than that implied by the established forecasts.  The age distribution of the base year 
population (i.e., the respondent sample of the survey) is already skewed in favor of older age 
groups when compared with the true population distribution provided by the California 
Department of Finance and Pitkin and Myers (11, 12).  The model system then appears to age the 
population further at a rate that is faster than that implied by the two established benchmark 
forecasts.  In the year 2020, for example, the percent of individuals 65 and above is predicted to 
be 23 percent in the study (increased from 14.8 percent in the base year); the corresponding 
percent is 15 percent in the California Department of Finance and Pitkin and Myers (11, 12) 
forecast (increased from 11.5 percent in the base year).  Similar differences are seen in the 2030 
forecast as well.  In the year 2030, the study predicts that 28.5 percent of the population will be 
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65 or above; the corresponding forecast provided by the California Department of Finance and 
Pitkin and Myers (11, 12) is just under 19 percent.  It appears that the model is aging the 
population, but may not be adequately reflecting international immigration patterns which 
balance and moderate the aging of the population. The differences in age distribution have 
implications; as vehicle fleet composition is sensitive to socio-economic and demographic 
characteristics, the aging of the population will impact vehicle fleet forecasts produced in this 
study.  The results of the model application effort should be interpreted with this cautionary note 
in mind.  Nevertheless, the exercise is useful in demonstrating the application of the model for 
analyzing alternative scenarios.     
 
Vehicle Fleet Forecasts 
The vehicle fleet forecasts that result from the application of the vehicle evolution model system 
are presented in Table 1.  The base year values are those for 2008, the year of the California 
Energy Commission survey.  Assuming a standard progression as per the assumptions outlined 
earlier in this paper, baseline estimates of various attributes may be obtained for the forecast 
years of 2020 and 2030.  In the base year of 2008, it is found that the 6577 households own 
13016 vehicles.  Under baseline growth conditions, the number of vehicles increases to 15548 
and 16697 respectively in 2020 and 2030. Although the number of vehicles increases, the vehicle 
ownership per household actually decreases, presumably because the increase in the number of 
households is greater than the increase in the number of vehicles.  It is likely that the aging of the 
population (predicted by the population evolution model) contributes to this phenomenon; 
households with older individuals are likely to be smaller in size and have fewer cars.  Moreover, 
individuals in these age groups may have ceased driving thus reducing car ownership and driving 
levels.  The results are consistent with the population evolution predicted by the socio-economic 
model system.   
 The vehicle fleet forecasts under baseline growth conditions suggest that the share of 
pick-up trucks will drop, and then increase again in the year 2030.  This is likely an artifact of 
the assumptions about technology availability that are inherent to the study.  The study assumes 
that fuel-efficient options among pick-up trucks become available starting in the year 2020.  
With respect to fuel type, it is found that – even in the baseline growth conditions – the share of 
gasoline vehicles drops dramatically.  The share of gasoline vehicles drops to less than one-half 
of the value in the base year.  As the baseline growth scenario incorporates a number of 
assumptions regarding the availability of fuel efficient and alternative fuel vehicles in horizon 
years, it is not surprising to see the vehicle fleet composition shift considerably towards 
alternative fuel vehicles in the future.  The share of flex fuel vehicles increases dramatically, 
along with that of hybrid vehicles (both plug-in hybrid and hybrid electric) and diesel vehicles.  
Based on the vehicle fleet evolution model predictions in this study, the future is likely to be 
characterized by a heterogeneous mix of vehicle types on the nation’s roadways.  As households 
shed gasoline cars and acquire newer fuel efficient and alternative fuel vehicles, the age 
distribution of the fleet undergoes considerable change as well.  The fleet becomes considerably 
younger with nearly 30 percent of the vehicles new in the years 2020 and 2030, compared to a 
much smaller 5.82 percent of vehicles classified as new in the base year of 2008.    
 If free HOV lane access is granted to all non-gasoline vehicles (CNG, hybrid-electric, 
plug-in hybrid, and fully electric), then the total number of vehicles in the population increases 
slightly.  It appears that there may be greater acquisition of vehicles (particularly non-gasoline 
vehicles) to take advantage of the free HOV lane access afforded these vehicles.  There is no 
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appreciable change in the body type distribution between the baseline scenario forecasts and the 
HOV lane access scenario forecasts.  In general, with inherent assumptions that technology 
options become available in the future in both scenarios, it is not surprising that both scenarios 
produce similar body type distributions for the fleet forecast. The age distribution is likewise 
rather similar between the baseline forecast scenario and the free HOV lane access scenario. The 
difference, as expected, is seen primarily in the fuel type distribution. With free HOV lane access 
for alternative fuel vehicles, the share of gasoline cars falls further to just about one-third of all 
vehicles in the year 2030.  The share of flex fuel vehicles falls as well (because the HOV lane 
access is not granted to these vehicles.  The share of all other vehicle fuel types increases with 
rather large increases in plug-in hybrid and hybrid electric vehicle shares.  The share of diesel 
vehicles drops relative to the baseline scenario as consumers shift to the various types of electric 
vehicles.   
 In the case of the scenario where gas cost doubles, it is found that vehicle ownership 
levels decrease.  The total number of vehicles increases more modestly from the base year 
(relative to the baseline forecast scenario) and the average number of vehicles per household 
decreases considerably, reaching  a value of 1.62 in 2030 (relative to 1.98 in the base year of 
2008).  When gas cost doubles, there is shorter term shift towards smaller vehicle body types.  
The share of compact cars increases (relative to the base year of 2008) and is higher than that 
forecast in the baseline growth scenario.  Although the share of cars decreases, the share of small 
cross utility vehicles increases considerably when compared with the 2008 share.  The share of 
larger vehicles such as sport utility vehicles and pick-up trucks decreases.  As the study assumes 
the availability of fuel efficient versions of the large vehicles starting in 2020, the share of large 
vehicle body types increases once again between 2020 and 2030.  An examination of the age 
distribution shows that vehicles become considerably younger in the short term, as households 
turnover their fleet more rapidly in response to a doubling of gas cost.  However, in the long term 
(to 2030), the share of older vehicles increases (relative to 2020) while the share of vehicles in 
the 1-7 year age range decreases.   
 The doubling of gas cost is predicted to have an appreciable impact on fuel type 
distribution in the fleet.  However, the model system predicts that the shift away from gasoline 
cars is smaller in this scenario than the free HOV lane access scenario.  In the doubling of gas 
cost scenario, the share of gasoline vehicles stays at about 40 percent; in the free HOV lane 
access scenario, the share of gasoline vehicles dropped to about 33 percent.  While the share of 
pure electric vehicles goes up across the two scenarios, the share of hybrid and plug-in electric 
hybrid vehicles is lower in the gas cost doubling scenario than the free HOV lane access 
scenario.  These findings are consistent with the notion that traveler choices and behavior are 
largely insensitive to changes in fuel price; travel demand is generally inelastic with respect to 
gas prices (13, 14).   
 The scenario where driving range of CNG and fully-electric vehicles is dramatically 
increased to over 200 miles offers forecasts that are quite consistent with expectations.  Vehicle 
ownership levels are slightly higher than in the baseline growth scenario, presumably because 
households acquire the new high-range alternative fuel vehicles.  In the body type distribution, it 
is found that the share of vans increases considerably relative to the other scenarios.  It is likely 
that households (which have aged over time) would like to acquire comfortable and family-
friendly vans that are easy to drive when there is no range anxiety associated with the electric 
and CNG versions of these vehicles.  The age distribution shows that households are inclined to 
acquire new electric vehicles with no range issues; the percent of new vehicles in the fleet is 
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about 40 percent in the forecast years under the increased driving range scenario.  The most 
dramatic shift can be seen, as expected, in the fuel type distribution.  The share of fully electric 
vehicles increases dramatically to constitute about one-fourth of the fleet in the scenario forecast 
years.  The share of gasoline vehicles drops to about one-third of all vehicles.   
 As expected the combination scenario shows a more dramatic impact across the 
dimensions of interest.  With a doubling of gas cost coupled with a dramatic increase in driving 
range, the shares of CNG and fully electric vehicles increase even further relative to all other 
scenarios. The shares of gasoline, flex fuel, and other types of electric vehicles drop even further.  
Overall, it can be seen that the vehicle evolution model system, coupled with a population 
evolution model system, is able to provide vehicle fleet forecasts that are intuitive and insightful 
in response to changes in policy, market, and technology availability conditions.      
  
Fuel Consumption and Emissions Forecasts 
Table 2 presents the fuel consumption and greenhouse gas emissions forecasts for the alternative 
scenarios considered in this study.  In the baseline scenario, it is found that average annual 
household mileage decreases over the long term, but average annual vehicle mileage increases.  
With the aging of the population (as predicted by the population evolution model system), it is 
likely that household sizes are reduced and presence of children is less relative to the base year. 
As a result, household mileage reduces; on the other hand, the increased discretionary time that 
older people have, combined with the increased share of alternative and clean fuel vehicles, is 
likely to result in an increase in per vehicle mileage.  As households are forecast to own fewer 
vehicles in the future, the vehicles that they do have end up being driven more on a per-vehicle 
basis.  In the baseline scenario forecast, it is found that gasoline consumption decreases 
considerably while consumption of other fuels increases.  This is consistent with the earlier 
findings reported in Table 1 where the share of gasoline vehicles drops dramatically from the 
base year to the forecast years.  As a consequence, the simulation results show that greenhouse 
gas emissions (last row of Table 2) decrease substantially in the forecast years (under the 
baseline scenario).  
 With free HOV lane access, it should be recalled that households shifted to electric 
vehicles of all types and decreased share of gasoline, flex fuel, and diesel vehicles.  This shift in 
fleet mix is reflected in the results for this scenario in Table 2.  While there is no appreciable 
change in mileage values relative to the baseline scenario, it is found that the total gasoline 
consumption is slightly higher in the free HOV lane access scenario relative the baseline 
scenario.  This is likely because of the large increase in the share of plug-in hybrid and hybrid- 
electric vehicles that was forecast by the vehicle fleet forecasting model system.  The energy 
consumption of these vehicles was converted into equivalent gasoline consumption and their 
greater presence in the fleet mix contributes to greater gasoline consumption.  On the other hand, 
there is a decrease in flex fuel consumption and diesel consumption relative to the baseline 
scenario.  The total emissions show a considerable drop, presumably because the hybrid electric 
and plug-in hybrid electric vehicles emit less greenhouse gas emissions than diesel vehicles and 
flex fuel vehicles (both of which exhibited larger shares in the baseline scenario case).   

A doubling of gas cost results in a decrease in the annual average household mileage, 
both relative to the base year and relative to the baseline forecast.  It appears that the doubling of 
gas cost results in a lower utilization (miles driven) of vehicles and the vehicle fleet composition 
and utilization model system is able to reflect this phenomenon.  On a per-vehicle basis, 
however, it is found that average annual vehicle mileage is higher in the future under the 
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doubling of gas cost relative to the base year.  With fewer vehicles owned by households relative 
to the base year, it is not unexpected for the mileage accrued on a per-vehicle basis to be larger 
relative to the base year.  However, this value is smaller relative to the baseline scenario forecast 
suggesting that the doubling of gas cost has a dampening effect relative to a baseline growth 
scenario.  As expected, doubling of gas cost brings about a substantial decrease in total gasoline 
consumption relative to the base year, and relative to the baseline forecast.  Only the 
consumption of CNG increases relative to the baseline scenario as the share of these vehicles in 
the fleet increases and the price of CNG remains unchanged. The reduced vehicle miles of travel 
coupled with a shift in vehicle fleet mix (there is an increase in CNG and fully-electric vehicle 
share in this scenario) contributes to a substantial drop in total greenhouse gas emissions in this 
scenario.  The drop in greenhouse gas emissions is considerably larger in this scenario than in the 
free HOV lane access scenario.  This is consistent with expectations; the free HOV lane access is 
an incentive to use alternative fuel vehicles, but not reduce vehicle utilization.  The doubling of 
gas cost is an incentive to both use alternative fuel vehicles and reduce vehicle utilization 
(wherever a gasoline vehicle is involved).  This combination contributes to the rather large drop 
in emissions seen in the last row of Table 2 for this scenario.   

The increase in driving range for CNG and fully-electric vehicles is associated with an 
increase in average annual household mileage and a rather stable per-vehicle average annual 
mileage relative to the baseline scenario.  With the elimination of range anxiety, travelers are 
now able to drive vehicles longer distances and this contributes to the increased mileage relative 
to the baseline scenario.  As the vehicle fleet mix shifts considerably with a greater share of CNG 
and fully-electric vehicles, the gasoline consumption drops substantially in this scenario.  
Compared to the baseline scenario, gasoline consumption is lower by about 35 percent (the 
corresponding percent reduction in the doubling of gas cost scenario is 13.4 percent in 2030).  
Similarly, the consumption of flex fuel drops substantially, while the consumption of CNG fuel 
increases relative to the baseline scenario.  When compared with the gas cost doubling scenario 
and the free HOV lane access scenario, the increased driving range scenario offers the largest 
decreases in greenhouse gas emissions.   
 As expected a combination scenario offers even greater benefits with the reductions in 
gasoline consumption and greenhouse gas emissions virtually equal to the sum of the reductions 
seen when the policy actions were implemented in isolation.  The combination scenario involves 
a doubling of gas cost and an increase in the driving range for CNG and fully-electric vehicles.  
In the combination scenario, it is seen that mileage is fairly stable; the doubling of gas cost is 
compensated by the increase in driving range and the combination scenario results in mileage 
values rather similar to those seen in the baseline forecast scenario.  However, reductions in 
gasoline consumption and greenhouse gas emissions amount to nearly 50 percent in the year 
2030 when compared with the baseline scenario.   
  
CONCLUSIONS 
This paper describes the application of a comprehensive vehicle fleet composition and evolution 
model system that is capable of evolving a base year vehicle fleet in an annual time step.  The 
model system operates in a microsimulation framework at the level of the household and is 
therefore ideally suited for integration in activity-based travel demand modeling approaches.  
The model takes a base year vehicle fleet of a household and then evolves the vehicles through 
the lifecycle events of disposal, replacement, and new vehicle acquisition.  The vehicle fleet 
simulation model system is coupled with a socio-economic (demographic) forecasting model 
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system so that the population of a model region can be evolved over time, and the evolution of 
the vehicle fleet can reflect socio-economic shifts in the population. The various model 
components of the vehicle fleet evolution model system are estimated using a vehicle choice 
survey data set conducted by the California Energy Commission in the State of California.   
 The vehicle fleet simulator is applied to a host of scenarios to investigate the ability of the 
model system to provide forecasts of vehicle fleet composition, annual fuel consumption, and 
greenhouse gas emissions under alternative scenarios. The population and vehicle fleet are 
evolved in annual time steps to the years 2020 and 2030 (starting with a base year of 2008) for 
the 6557 households in the survey sample. Based on the findings from the study, it appears that 
future technological innovations (increase of driving range, for example) and pricing levels 
(doubling of gas cost) will have greater impacts on vehicle fleet composition, utilization, energy 
consumption, and greenhouse gas emissions than more incentive based approaches such as free 
HOV lane access for alternative fuel vehicles.  Given that under some policy scenarios, the share 
of electric vehicles can increase substantially, it is important to undertake more comprehensive 
analysis of the additional burden that this shift would put on the electricity infrastructure of a 
region. Also, innovative strategies to meet the demand must be explored to facilitate this 
impending transition towards electric vehicles (15).  Also, this study and the model system it 
utilizes focus only on the emissions associated with vehicle operation. However, although fully 
electric vehicles produce zero emissions while in operation, there are some emissions associated 
with the car manufacturing and electricity generation processes. A more comprehensive well-to-
wheel analysis is needed to understand the overall impact of these policies on the environment 
(16).  This study did not explicitly consider vehicle purchase price related scenarios, but the 
model system is fully capable of analyzing such scenarios.  As there may be federal subsidies 
and tax rebates associated with the purchase of certain vehicle types, the model system may be 
applied to the analysis of such policies and purchase price scenarios.  Such an exercise remains a 
task for future research.   
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TABLE 1  Vehicle Fleet Composition in 2020 and 2030 

    

Baseline Forecast 

Scenario 

  
Base 
Year  

HOV Lane Access Gas Cost Doubles 
Increased Driving 

Range 

Combination: Gas Cost 
Doubles + Increased 

Driving Range 

  2008 2020 2030 2020 2030 2020 2030 2020 2030 2020 2030 

Total Number of Vehicles 13016 15548 16697 15609 16908 14832 15823 16091 17422 15536 16843 
Average Number of Vehicles 
per Household  

1.98 1.84 1.71 1.84 1.73 1.75 1.62 1.90 1.78 1.83 1.72 

Body Type                     
Compact Car 22.24 23.65 21.56 23.72 20.59 24.74 22.29 20.23 17.55 21.92 17.87 
Car 28.15 26.38 24.53 27.60 26.10 26.15 25.47 23.11 21.91 24.85 23.84 
Small cross utility vehicle 5.57 8.67 6.97 7.34 5.50 9.20 7.63 8.69 7.15 10.65 7.80 
Sports utility vehicle 20.02 19.93 19.88 20.43 19.62 19.34 18.42 19.95 17.98 15.95 14.90 
Van 6.84 7.18 8.06 6.51 8.11 7.25 8.30 17.76 22.12 17.68 23.94 
Pick-up truck 17.18 14.20 19.00 14.40 20.07 13.32 17.90 10.25 13.29 8.95 11.65 

Fuel Type                       
Gasoline 96.45 45.07 40.65 36.45 32.87 42.17 39.13 36.65 33.33 29.06 27.22 
Flex Fuel 0.26 14.45 12.85 10.99 9.34 14.93 12.99 8.35 6.84 6.67 5.25 
Plug-in Hybrid 0.02 9.48 12.01 14.01 17.88 9.57 12.07 5.23 6.98 4.06 5.19 
CNG 0.07 0.49 0.43 0.67 0.75 0.80 0.86 3.36 3.74 5.41 5.25 
Diesel 2.23 12.72 15.18 10.54 11.46 12.20 13.49 15.18 15.04 11.88 11.98 
Hybrid Electric 0.93 15.08 15.22 22.79 22.16 14.49 14.78 8.17 7.00 6.23 5.98 
Fully Electric 0.04 2.71 3.66 4.56 5.54 5.85 6.68 23.06 27.07 36.69 39.13 

Vintage                       
New 5.82 30.34 29.73 29.62 28.85 32.65 33.91 40.09 38.15 39.04 36.13 
1-2 years 14.98 19.55 15.55 20.26 15.61 19.07 14.73 16.71 12.40 17.26 12.68 
3-7 years 35.69 21.57 18.48 21.33 18.38 20.40 16.73 19.05 15.62 19.50 15.12 
8-12 years 23.89 16.07 20.08 15.81 19.49 15.66 18.43 13.54 18.04 13.99 18.51 
More than 12 years old 19.63 12.47 16.16 12.98 17.68 12.23 16.20 10.60 15.78 10.21 17.56 
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TABLE 2  Vehicle Mileage, Fuel Consumption, and Emissions in 2020 and 2030 

2008 
Baseline 

Scenario 

 HOV Lane Access Gas Cost Doubles 
Increased Driving 

Range 

Combination: Gas Cost 
Doubles + Increased 

Driving Range 

2020 2030 2020 2020 2030 2030 2020 2030 2020 2030 

Average Annual Household 
Mileage (miles) 

25368.10 26666.83 24244.68 26664.96 24283.39 25219.69 22844.96 27925.92 25292.33 26775.42 24392.05 

% change from 2008  -- 5.12 -4.43 5.11 -4.28 -0.59 -9.95 10.08 -0.30 5.55 -3.85 

% diff. from Baseline  --  --  -- -0.01 0.16 -5.43 -5.77 4.72 4.32 0.41 0.61 

Average Annual Vehicle 
Mileage (miles) 

12818.53 14530.57 14205.29 14472.78 14050.42 14405.42 14124.52 14703.15 14202.44 14601.02 14167.75 

% change from 2008  -- 13.36 10.82 12.91 9.61 12.38 10.19 14.70 10.80 13.91 10.53 

% diff. from Baseline  --  --  -- -0.40 -1.09 -0.86 -0.57 1.19 -0.02 0.48 -0.26 

Total Mileage (miles)/10^6 166.85 225.92 237.19 225.91 237.56 213.66 223.49 236.59 247.43 226.84 238.63 

% change from 2008  -- 35.41 42.16 35.40 42.39 28.06 33.95 41.80 48.30 35.96 43.02 

% diff. from Baseline  --  --  -- -0.01 0.16 -5.43 -5.77 4.72 4.32 0.41 0.61 

Total Fuel Consumption: 
Gasoline (in gallons)/10^6 

7.78 5.31 4.78 5.47 5.02 4.69 4.14 3.72 3.10 2.70 2.40 

% change from 2008  -- -31.66 -38.59 -29.60 -35.41 -39.65 -46.81 -52.14 -60.14 -65.30 -69.10 

% diff. from Baseline  --  --  -- 3.01 5.17 -11.70 -13.39 -29.97 -35.10 -49.23 -49.68 

Total Fuel Consumption: 
Flex Fuel (in gallons)/10^6 

0.02 1.16 0.95 0.87 0.68 1.08 0.90 0.68 0.53 0.53 0.36 

% change from 2008  -- 5436.45 4433.10 4086.68 3167.29 5070.05 4196.27 3143.73 2425.32 2430.45 1623.77 

% diff. from Baseline  --  --  -- -24.38 -27.92 -6.62 -5.22 -41.41 -44.29 -54.29 -61.97 

Total Fuel Consumption: 
CNG (in gge)/10^6 

0.01 0.04 0.03 0.06 0.06 0.06 0.06 0.30 0.32 0.45 0.42 

% change from 2008  -- 578.31 455.62 909.49 974.46 884.40 909.22 5113.54 5442.60 7692.70 7124.25 

% diff. from Baseline  --  --  -- 48.82 93.38 45.12 81.64 668.60 897.55 1048.83 1200.21 

Total Fuel Consumption: 
Diesel (in gallons)/10^6 

0.19 1.02 1.10 0.85 0.86 0.89 0.93 1.07 0.93 0.77 0.69 

% change from 2008  -- 434.52 475.68 344.82 350.67 368.29 386.90 459.25 386.77 305.77 259.34 

% diff. from Baseline  --  --  -- -16.78 -21.72 -12.39 -15.42 4.63 -15.45 -24.09 -37.58 

Total Emissions 
(grams)/10^6 

73994.89 60444.94 55763.35 59156.22 54513.76 53329.03 48129.17 46047.04 38478.69 33481.03 29448.73 

% change from 2008  -- -18.31 -24.64 -20.05 -26.33 -27.93 -34.96 -37.77 -48.00 -54.75 -60.20 

% diff. from Baseline  --  --  -- -2.13 -2.24 -11.77 -13.69 -23.82 -31.00 -44.61 -47.19 

 


