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ABSTRACT 
There is growing interest in multivariate dependent outcome models that include a mixture of 
different kinds of discrete and continuous variables. This may be attributed to at least two reasons. 
The first is the ability to generate multivariate distributions through the use of relatively flexible 
copula-based methods and/or effective factorization techniques for the covariance matrices. The 
second is the development of computationally efficient ways to estimate models based on 
variational methods for Bayesian inference or maximum approximate composite marginal 
likelihood methods for frequentist inference. However, there are two important assumptions in 
earlier mixed data models: (i) marginal normality of unobserved factors that generate jointness 
among the main outcome variables of interest, and (ii) independence between the unobserved 
factors and the propensity equations underlying the main outcomes of interest. 

In the current paper, we simultaneously relax both these assumptions and develop a flexible 
Generalized Heterogeneous Data Model (GHDM) for mixed data modeling. We then propose a 
hybrid MSL-MACML inference approach for estimation. We demonstrate an application of our 
proposed model in the context of individuals’ high-density residential neighborhood living choice 
and monthly bicycling frequency. The empirical results highlight the benefits of our proposed 
methodology, both from a policy standpoint as well as a predictive data fit standpoint.  
 
Keywords: Multidimensional mixed data models; latent variables; maximum approximate 
composite marginal likelihood (MACML) estimation; GHDM; built environment; bicycling. 
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1. INTRODUCTION 
The literature on multivariate dependent outcome models that include a mixture of different kinds 
of discrete and continuous variables has increased in recent years. This may be attributed to at least 
two reasons. The first is the ability to generate multivariate distributions through the use of 
relatively flexible copula-based methods (see, for example, Müller and Czado, 2018, Wei et al., 
2019, Jiryaie and Khodadadi, 2019, and Kwon et al., 2022) and/or the use of effective factorization 
techniques for the covariance matrices that reduce the number of covariance parameters to be 
estimated (see, for example, Ong et al., 2018, Dias et al., 2020, Moore et al., 2020, and Kang et 
al., 2021). The second is the development of computationally efficient ways to estimate models 
based on variational methods for Bayesian inference (where a target distribution, which may be 
the posterior or an augmented posterior, is approximated with a simpler distribution; see, for 
example, Smith et al., 2020) or maximum approximate composite marginal likelihood methods for 
frequentist inference (where the likelihood function is replaced by a surrogate likelihood function, 
combined with efficient ways to estimate the multivariate normal cumulative distribution function; 
see, for example, Bhat, 2014, and Bhat, 2018). The effectiveness of such developments is 
evidenced in the sampling of studies identified above that focus on applications that span several 
fields, including transportation, clinical biology, environmental science, actuarial science, and 
economics, just to name a few.  

The not-so-uncommon approach in many fields in the face of multivariate mixed data, until 
the developments just discussed, was to simply ignore the presence of any common underlying 
unobserved factors (attitudes, values, and lifestyle factors) of decision-makers that impact the 
dependent outcomes simultaneously (that is, to a priori assume that the covariance matrix involved 
in the modeling of the dependent variables are purely diagonal). But, doing so can lead to 
inefficient estimation of covariate effects because of throwing out valuable dependency 
information across the outcomes (Teixeira-Pinto and Harezlak, 2013), poor statistical power in 
testing and poor control of type I error rates (De Leon and Zhu, 2008), and (perhaps most 
importantly) inconsistent estimates of the structural effect of one endogenous variable on another 
(see Bhat, 2015). The last of these issues refers to the general concept of endogeneity bias as 
typically labeled in the econometric literature. Specifically, ignoring that an “explanatory” 
covariate may be endogenous to another dependent variable of interest is tantamount to a 
sequential decision-making process (rather than recognizing the bundled nature of the multiple 
outcomes), and can inflate or deflate the effect of the endogenous “explanatory” covariate on the 
other dependent variable of interest. The important point of note is that such mis-estimated effects 
are not simply an econometric (esoteric) nuisance, but can lead to mis-informed policy actions. 
Examples from the transportation literature in this regard include the classic residential “self-
selection” effect in activity-pattern analysis (see, for example, the recent studies by Lu et al., 2018, 
Leung et al., 2019, and Zang et al., 2019) and traffic control placement “self-selection” effect in 
crash analysis (see, for example, Bhat et al., 2014 and Heydari et al., 2020). In the former case, the 
issue is that if households that are environmentally conscious (say an unobserved variable) choose 
to locate in transit and pedestrian friendly “neo-urbanist” neighborhoods that are characterized by 
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high land use density as well as have a strong preference for non-motorized modes of 
transportation, then at least some of the structural effect of living in neo-urbanist environments on 
the preference for non-motorized mode use may be associative (caused by environmental 
consciousness) rather than causal. Ignoring this possibility in a cross-sectional analysis can inflate 
the “true” effect of living in a neo-urbanist neighborhood on non-motorized mode use, which can, 
in turn, lead to misinformed land-use policies. In the latter case of crash analysis, it is possible that 
the location for the placement of a specific traffic control measure based on what traffic engineers 
identify as a high-risk crash site (say due to limited sight distance or some other topographical 
feature) may also be immediately identified by motorists as being relatively dangerous (that is, 
motorists may be more careful when they encounter a specific topographic feature, leading to low 
crashes at the site). Ignoring this crash risk perception of traffic engineers and motorists (that 
essentially creates an unobserved association such that the placement of the control measure is 
intrinsically correlated with a low intensity of crashes) may lead to an inflated estimate of the 
“true” effectiveness of the traffic control measure (see Mannering and Bhat, 2014 for a more 
detailed discussion of such issues in the safety literature). 

In the general context of covariate endogeneity as discussed above, there has been a 
substantial amount of work in the econometric literature on the simultaneous modeling of multiple 
continuous variables. However, there has been relatively little emphasis on multiple non-
continuous variables. Bhat (2015), Jiryaie et al. (2016), and Jiryaie and Khodadadi (2019) provide 
reviews of the many different approaches for modeling multiple and mixed data outcomes.1 Of 
these, a whole class of structural equations models (SEMs), Generalized linear latent and mixed 
models (GLLAMM) and item response theory (IRT) models (all of which use factorization 
approaches to make the covariance matrix more parsimonious) have received particular attention 
because of their parsimonious specification. In this category of factorization-based mixed models, 
there are two types of latent variables. The first type is the latent continuous variable assumed to 
underly non-continuous observed outcomes (and tied to the observed outcomes through either a 
utility maximization rule for nominal outcomes or through a thresholding structure for ordinal, 
grouped, and count outcomes). A second type corresponds to latent constructs (factors) that 
develop the efficient factorization structure and the parsimonious covariance structure among the 

                                                 
1 Such methods include (a) the general location model (GLOM) (which assumes an arbitrary marginal distribution for the discrete 
outcomes and a conditional (on the discrete component) normality assumption for the continuous outcomes, but is not suitable for 
ordinal outcome variables and does not accommodate dependence between nominal and ordinal outcomes; see De Leon and 
Chough, 2013), (b) the conditional grouped continuous model (CGCM) (which is based on a “reverse-factorization” approach to 
employ a latent variable representation for binary/ordinal outcomes, and assumes a multivariate normal (MVN) distribution for the 
continuous outcomes, but cannot be directly extended to the case of nominal outcomes; see by De Leon (2005), (c) the general 
mixed data model (GMDM) (which extends the CGCM to include nominal varibles by using a GLOM for the joint distribution of 
the nominal and continuous outcomes, and a CGCM for the joint distribution of the ordinal and continuous outcomes, which, like 
the GLOM, resorts to a factorization approach in which an artificial hierarchy is assumed in which the the multidimensional discrete 
outcomes are intermediate responses and the ordinal/continuous outcomes are the ultimate responses; see De Leon and Carriégre 
(2007) and Wu et al. (2013), (d) Methods that tie all the mixed outcomes based on their latent or observed continuous variable 
representations (rather than using different types of linkages for different types of outcomes, as in the GMDM; such methods 
assume an multivariate normal distribution or a Gaussian copula over the error terms of the entire set of latent and observed 
continuous variables characterizing the many types of outcomes, but become cumbersome when used with many nominal variables 
or many dependent outcomes due to an explosion in the number of covariance parameters to be estimated; see for example, Bhat 
et al., 2014 and Dias et al., 2020), and the method discussed in the text.  
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error terms of the first type of latent variables.  In the rest of this paper, we will strictly use the 
term “latent variables” to refer to the first type discussed above and the term “latent constructs” to 
refer to the second factor-type variables.  

The factorization-based approaches discussed above are predominantly used for cases with 
no nominal dependent variables, and the proposed maximum likelihood estimation approach gets 
unwieldy with many dependent variables (see Bhat and Guo, 2007, Pinjari et al., 2008, Feddag, 
2013, Ong et al., 2018, and Smith et al., 2020). Within the transportation literature, Ben-Akiva et 
al., 2002 and Bolduc et al., 2005 used an SEM model structure with a nominal outcome (usually 
referred to as an integrated choice and latent variable or ICLV model). But the focus was on a 
single nominal outcome, rather than a mix of different types of dependent variables outcomes. The 
ICLV model uses type-I extreme value errors in the nominal outcome utility, mixed with normally 
distributed stochastic latent factors  (Ben-Akiva et al., 2002, Bolduc et al., 2005, Vij and Walker, 
2014). Bhat and Dubey (2014) proposed a different SEM-type model formulation for the ICLV 
model, based on a multivariate probit (MNP) kernel for the nominal outcome. They also propose 
a different estimation approach compared to the maximum simulated likelihood estimation 
(MSLE) estimation of the ICLV model. Specifically, they employ Bhat’s (2011) maximum 
approximate composite marginal likelihood (MACML) inference approach, which leads to well-
behaved surfaces for the gradient/hessian functions and shows an order-of-magnitude reduction in 
computational time.   

Bhat (2015) further generalized Bhat and Dubey’s probit kernel and MACML estimation 
approach by proposing the generalized heterogeneous data model (GHDM), which, while 
retaining the factorization-based latent construct approach, extends to the case of multiple nominal 
outcomes, multiple ordinal variables, multiple count variables, and multiple continuous variables. 
Bhat et al. (2016a) further extended the GHDM to include the case of dependent variables that are 
of the multiple-discrete-continous type.  The GHDM is general enough to accommodate many 
other models in the literature as special cases, and has been used in many different applications, 
including recently by Blazanin et al., (2022), Asmussen et al. (2022), and Dannemiller et al. (2021). 
Straightforward variants of the model are available to accommodate longitudinal and spatial/social 
clustering, such as implemented in Vinayak et al. (2018) and Bhat et al. (2016b).  

Despite the general features of the GHDM model, there are two important assumptions 
embedded in almost all implementations of the GHDM and other mixed models. 
  
1.1. Multivariate Normality  
The first assumption of almost all mixed models to date is that of marginal normality of the latent 
variable underlying each outcome of the multivariate mixed data, conditional on explanatory 
variables. However, using a normal distribuion may not be appropriate when the actual distribution 
is skewed (asymmetric) and/or has more tail risk (that is, the normal distribution may not assign 
adequate probabilities at the extreme left end or right end of the marginal data, conditional on 
exogenous variables). For instance, in the transportation field, the propensity to participate in 
recreational activities may be skewed to the right and have a fat right tail, with a small number of 
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individuals having a very large propensity to recreate. Similarly, in the finance/actuarial science 
field, the returns from portfolio investments may be skewed toward the left, with a fat left tail, 
implying a larger possibility of losses than that implied by the normal distribution (see, for 
example, Chin et al., 2016). Further, ignoring such issues for any single dependent outcome will, 
in general, lead to inconsistent estimates in not only the individual equation for that mixed 
dependent outcome, but also potentially to inconsistent estimates for all other equations as the 
error gets compounded and leads to an underestimation of the likelihood of extreme joint events. 
In the general mixed data literature, there have been a handful of studies that have considered non-
normal marginal distributions through the use of copula distributions (a copula is essentially a 
multivariate functional form for the joint distribution of random variables derived purely from pre-
specified (but arbitrary) parametric marginal distributions of each random variable; see Bhat and 
Eluru, 2009). To be sure, such copula models have a long history, with the classic estimation of 
two-equation sample selection models with a multinomial logit selection model that uses an 
extreme value error term in the utility function being a very specific case (see Lee, 1983, and 
applications of this technique in Hamed and Mannering, 1993, Bhat, 1996, and Bhat, 1998). 
However, the implementation of this copula approach in a broader sense to two-equation models 
came only a little later (see, for example, Bhat and Eluru, 2009, Spissu et al., 2009, Pinjari et al., 
2009) and the implementation in a general multivariate context with many mixed outcomes has 
been much more recent (see, for example, Müller and Czado, 2018 and Wei et al., 2019). The 
problem with the implementation of this approach with a large number of dependent outcomes, 
though, is that the number of covariance parameters explodes quadratically with an increase in 
dependent variable outcomes. To resolve this issue, some recent studies have suggested a 
factorization approach with a copula structure imposed on the latent constructs (or factors) rather 
than the error terms of the latent variables underlying the dependent outcomes, thereby allowing a 
flexible marginal distribution for each latent construct. This reduces the number of parameters to 
be estimated in the model, similar to the GHDM model (but which assumes an a priori multivariate 
normal distribution for the latent constructs). Doing so allows non-normality in the overall error 
term of each latent variable (because the latent constructs impact the latent variables of the 
dependent outcomes; see Bhat et al., 2015, Jiryaie et al., 2016, Oh and Patton, 2017, and Loaiza-
Maya and Smith, 2019). In this paper, we follow this approach of introducing non-normality, but 
different from these earlier efforts, do so through a special flexible type of copula approach for the 
latent constructs of the GHDM model that facilitates stability in estimation while also not 
profligate in parameters. 
  
1.2. No Dependence Among Latent Constructs and Kernel Error Terms 
The second assumption in the GHDM and every other mixed model we are aware of is that the 
latent constructs are completely independent of the error terms in the latent variables underlying 
the dependent outcomes (in econometric parlance, all of the factor-based models a priori assume 
that the factors are independent of the dependent outcomes). However, this assumption may be 
violated in a number of application contexts, including the case where the factors (latent 



 

5 

constructs) represent attitudes and the dependent outcomes being studied represent behavioral 
outcomes. In such a case, it is typical to assume that attitudes influence manifested behavior 
(Wicker, 1969, Ajzen, 1991). Specifically, individual attitudes interact with (are moderated by) 
subjective social norms (unwritten rules or expectations, or an individual’s perceptions of how 
others in their life would perceive specific events/actions) and perceived behavioral control 
(perception of an individual’s confidence in the ability to pursue a specific action) to form clear 
behavioral intentions (or readiness to implement a certain behavior) that then gets translated into 
actual behavior when the next opportunity arises to realize the behavior. This so-called “theory of 
planned behavior” (or TPB), however, assumes a one-directional flow from attitudes to intention 
to behavior (Ajzen, 1991). In reality, behavior itself can lead to a change in attitudes. Thus, 
consider the case that, in general, environmentally-conscious households do live in high density 
neighborhoods and use car modes less. But some households low on the scale of environmental 
consciousness may find themselves (due to a variety of circumstances, say because of the desire 
to stay close to other family members) locating in a high density neighhborhood and using non-
car modes of transportation. Over time, such households may become more aware of the benefits 
of the use of non-car modes and become more environmentally conscious, which implies that not 
only can attitudes affect behavior, but behavioral choices can also affect attitudes. Similarly, some 
environmentally conscious households may decide to live in a low density, car-oriented 
neighborhood to have more space in the home for children, which can cause cognitive dissonance 
and a sense of feeling like a hypocrite. According to the social psychology literature (Festinger, 
1957), this unpleasant sensation may be shed quickly in one of many ways (such as seeking new, 
and conveniently selected, information that attempts to play down the effects of car-use on the 
environment or trivializing the attitude by deciding that avoiding car use is not going to change 
the world). While these ways of dealing with cognitive dissonance have been well documented in 
the social pyschology field, they also have been found in transportation-related studies such as van 
de Coevering et al. (2016, 2018), Wang and Lin (2019), Kroesen (2019), De Vos et al. (2018), and 
De Vos and Singleton (2020) using before-after studies of travel-related behavior/attitudes in the 
context of a residential relocation. This is another case of behavioral choices influencing attitudes. 
Of course, this bi-directional relationship between attitudes and behavioral choices has a temporal 
component to it, where attitudes affect behavior and then the behavioral actions influence attitudes 
over time. However, many publicly collected and available multivariate data sets are cross-
sectional, and so any analysis with such cross-sectional data should consider the attitude-behavior 
data as a package observation. Thus, if the relationship between attitudes and residential 
location/car use were as discussed above, this would lead to a positive correlation (due to 
unobserved factors) affecting the environmental conscious (EC) construct on the one hand and 
high density living/non-car mode use on the other (shown by bidirectional arrows marked as (1) 
in Figure 1a). We characterize this dimension of correlation effects as the EC endogeneity effect. 
Of course, after controlling for the EC endogeneity effect, there is likely an additional stochastic 
EC effect on high density neighborhood (HDN) living as well as on non-motorized mode use 
(shown by unidirectional arrows marked as (2) in Figure 1a). These effects result in residential 
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self-selection when capturing effects of HDN living on non-motorized mode use (marked also by 
“+”, showing a moderate intensity of self-selection). Finally, there is the “true” causal effect of 
HDN living on non-motorized mode use (shown by the unidrectional arrow marked as (3) in Figure 
1a, and by “++”, assuming a high intensity of this effect). Now assume that the EC endogeneity 
effect is completely ignored as in Figure 1b. This will overestimate the effect of the environmental 
consciousness attitude on HDN/non-motorized mode use, thus exagerrating the error correlation 
between high density living and non-motorized mode use (that is, will  inflate the contribution of 
the residential self-selection effect; see Figure 1b, where this effect is marked by a “++”). This, in 
turn will underestimate the “true” causal effect of HDN living on non-motorized mode use 
(marked by ‘+’ on the unidirectional arrow (3) in Figure 1b). Of course, how things turn out in a 
specific empirtical context may vary, but the example above actually reflects the empirical results 
obtained later in our study. 
  
1.3. The Current Paper 
In the current paper, we simultaneously relax both the assumptions discussed in the previous 
section. First, we use the important insight that the analyst can consider flexible non-normal 
parametric distributions in each mixed outcome of a multivariate model by considering marginal 
non-normal parametric distributions for each latent construct and then consider a copula 
distribution to connect these non-normal marginal distributions for the latent constructs into a 
single multivariate distribution. Then, since the mixed outcomes are specified to be a function of 
a much smaller set of the unobserved latent constructs in measurement equations, it immediately 
recognizes the possibility of non-normality of the latent variable underlying each mixed dependent 
outcome. While a tantalizingly simple concept, this is a powerful and efficient means to introduce 
non-normality in the latent variables of the dependent outcomes (see Bhat et al., 2015). Different 
from Bhat et al. (2015), in allowing for marginal non-normality in the latent constructs, we use a 
Yeo-Johnson (YJ) transformation (Yeo and Johnson, 2000) that converts each latent construct into 
a marginal univariate normal distribution, and then enjoins the resulting univariate normal 
marginals using an implicit Gaussian copula. This approach is referred to as a variational 
approximation method in Bayesian inference (see, for example, Smith et al., 2020), because it is 
based on approximating the (unknown) target or augmented posterior density of the parameters of 
a relationship, given data, by a tractable parametric family of densities). This approach accounts 
for fat tails if present, while also accommodating asymmetry in the marginal distributions. Unlike 
commonly used copula approaches that assume a specific a priori parametric form for each margin 
(each latent construct in our case), the YJ transformation for each margin allows the data to 
determine the distribution of each margin during the process of estimation. Additionally, stability 
is introduced in our approach of using a YJ transformation first and then tying the YJ-transformed 
marginal normal constructs using a multivariate Gaussian Copula (that is, a simple multivariate 
normal distribution for the transformed constructs) because the scale elements of the multivariate 
Gaussian copula are exactly the scales of the transformed marginal constructs. Thus, no additional 
constraints are needed in our approach for identification of the copula parameters. Finally, our 
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approach makes it computationally efficient to compute the multivariate density function of the 
latent constructs, relative to computing the corresponding density function with general copula 
methods (see Smith, et al. 2020 for a detailed discussion).  

Second, and differently from all earlier mixed models based on a factorization approach 
that ignore dependence between the factors (latent constructs in our case) and the marginal error 
terms underlying the latent variables (or, for short, the kernel error terms) of the main dependent 
outcomes of interest, we expressly consider this dependence in our flexible GHDM model. These 
kernel error terms are tied to the factors using the same copula as used to tie the latent constructs 
(factors) themselves together, as discussed in the previous paragraph. To do so, and also for ease 
in estimation and empirical analysis, conditional on the factors and exogenous variables, we 
assume the kernel error terms to be independent and normally distributed across outcomes. This 
keeps the number of parameters to a limited number in the multivariate analysis, while still 
allowing a rich dependence structure across the outcomes in the usual spirit of a factor-based 
approach.2 It is in enjoining the kernel error terms and latent constructs that the Gaussian copula 
comes in particularly handy, because, rather than a formal copula-based approach, one can take a 
direct multivariate density approach as the entire set of dependent kernel errors and transformed 
(flexibly non-normal) latent constructs (factors) essentially take a multivariate normal distribution.  

Third, the generated multivariate normal distribution of kernel errors and transformed 
constructs is closed under any affine transformations and under marginalization. Additionally, 
conditioning on a subset of non-normal random variables (latent constructs in our specification) 
leads to a multivariate normal distribution for the remaining subset of normally-distributed variates 
(kernel error terms of the dependent outcomes in our specification). These properties enable the 
use of very fast analytic approximations developed by Bhat (2018) for the multivariate normal 
cumulative distribution (MVNCD) function evaluations involved in the composite marginal 
likelihood of the outcomes conditional on the flexibly non-normal latent constructs, over which 
the distributions of the latent constructs can be integrated out through a maximum simulated 
likelihood (MSL) approach. That is, the estimation is achieved using a combination of the 
maximum simulated likelihood (MSL) technique (to accommodate the non-normal latent 
constructs) and Bhat’s MACML inference approach (to accommodate the kernel normal error 
structure; see Bhat, 2011 and Bhat, 2014). The combination harnesses the advantages of each of 
these approaches. The MSL approach is general and can be used to estimate models with any 
distribution. However, the approach can be computationally expensive to ensure good asymptotic 
estimator properties, and can be prohibitive and literally infeasible (in the context of the 
computation resources available and the time available for estimation) as the number of latent 
constructs increases (see Bhat, 2011). On the other hand, the MACML approach is simple, 
computationally efficient, and simulation-free. It easily and accurately is able to accommodate 
even a high number of multivariate normally distributed variates, providing both more accuracy 

                                                 
2 Note, however, that the overall error for the latent variables underlying the dependent outcomes is still not normal, because of the 
mixing of the non-normally distributed latent constructs (factors) over the normally distributed kernel error terms. Thus, the overall 
error terms of the dependent outcomes capture both tail risk at the marginal level as well as extremal dependence at the sub-
asymptotic level with the YJ transformation approach.  
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(smaller bias in parameters) and an order-of-magnitude improvement in computational efficiency 
relative to the MSL inference approach (see Paleti and Bhat, 2013, and Patil et al., 2017). However, 
it is not suitable with non-normal factors or latent constructs. The combination of the MSL and 
MACML is especially well suited for the case when there are relatively few factors (so that the 
simulation does not involve very high dimensions) and many dependent outcomes (so that the 
MACML computational accuracy and efficiency can be realized). In the current paper, we use the 
fast analytic approximations developed by Bhat (2018) for the multivariate normal cumulative 
distribution (MVNCD) function.  

Fourth, unobserved taste variations (i.e., unobserved heterogeneity in sensitivity to 
response variables in each dependent outcome) can also be introduced efficiently and in a non-
normal fashion through interactions of explanatory variables with the latent variables. This issue 
of unobserved parameter heterogeneity has rarely been discussed in multivariate mixed data 
modeling, but, ignoring such unobserved heterogeneity can lead to inconsistent estimation of all 
parameters in the multivariate system. Importantly, in our approach, the random coefficients across 
all dependent outcomes are based on a handful of latent constructs, substantially cutting down on 
the number of random parameters and also providing a more intuitive interpretation of the random 
parameters (as originating because of latent construct variations) rather than as arbitrary individual 
variable-specific random coefficients. At the same time, should there be a need to specify a 
naturally bounded distribution (such as a power log-normal distribution or a Rayleigh distribution 
for cost and time coefficients in a travel choice model) for a specific variable for one or more 
dependent outcomes, it can easily be imposed over the proposed model by folding the relevant 
random coefficient as another element of the proposed copula formulation, and using a simple 
mixing approach to estimation (similar to Bhat and Lavieri’s (2018) approach in the case of a 
unidimensional nominal choice model).  

To summarize, in this paper, we develop a flexible and general GHDM model for mixed 
data modeling and propose a hybrid MSL-MACML inference approach for estimation. To our 
knowledge, this is the first study to propose such a flexible methodological structure for multiple 
mixed outcomes modeling. The rest of this paper is structured as follows. The next section provides 
a brief discussion on the YJ transformation mechanism. Section 3 presents the proposed model 
formulation and estimation procedure. Section 4 presents an empirical application of the proposed 
model in the context of individual’s bicycling propensity and residential choice decision. Finally, 
concluding remarks are provided in Section 5. 

 
2. THE YJ TRANSFORMATION 
The Yeo and Johnson (2000) or YJ transformation has been widely used to transform data to near 
normality and symmetry for the marginal distributions. While other transformations are also 
available (see Goerg, 2015 for a discussion), the YJ transformation has the advantage of being a 
single-parameter transformation (so that only one additional parameter needs to be estimated to 
transform a non-normal distribution to a normal distribution for each margin, which leads to 



 

9 

parsimony in mixed data modeling). It has also been found to be robust and effective, and 
simplifies computations in econometric analysis (Smith et al., 2020).  

The YJ transformation extends the well known Box-Cox transformation of a random 

variable/parameter lZ  to an assumed normal random variable/parameter lG  (with a mean 

parameter of l  and variance of 2
l ) on the real line as follows, with an additional parameter 

0 2 :l   
2

2

( 1) 1
if 0

2
~ ( , ) ( )

( 1) 1
if 0

l

l l

l
l

l
l l l l

l
l

l

Z
Z

G N t Z
Z

Z



 


 



   
    

  

                                                                (1)                

The transformation above is from the non-normal variable/parameter to the normal. The implied 
reverse transformation is as follows: 
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The transformation above allows for an asymmetric distribution for lZ  as well as thicker tails 

relative to the traditional normal distribution. To illustrate, Figure 2 plots lZ  for l =0 and 2
l =1, 

and for different values of l  ( 0 2l  ). When 0< l <1, lZ  is skewed to the right with a thicker 

right tail, while if  1< l <2, lZ  is skewed to the left with a thicker left tail. When l =1, the normal 

distribution is returned for lZ . Thus, the YJ transformation allows for skew and fat tails. Across 

different variables/parameters 1 2, ,..., LZ Z Z , the direction and intensity of skew/tail can vary. For 

future use, we define  1 2, ,..., ( 1 vector)LZ Z Z L Z ,  1 2, ,..., ( 1 vector)LG G G L G , and 

1 21 2( ) ( ), ( ),..., ( )
L

-1 -1 -1
λ λ λ Lt G t G t G   

-1
λt G  ( 1 vector)L .  

 
Construction of a Multivariate Gaussian Copula 
Next, we construct an implicit Gaussian copula, by considering a multivariate normal distribution 

for the transformed lG  variables/parameters with another set of eS  ( 1, 2,...,e E ) 

variables/parameters. The eS  variables/parameters are considered normally distributed in their 

univariate margin, with mean e L   and variance of 2
e L  ).  Let  1 2, ,..., ( 1 vector)ES S S E S  

Then, we have the following result for the multivariate distribution for the untransformed lZ  

variables and the normally distributed eS  variables: 
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z s Z z S s

G g S s g

g s μ  1 2 1 2, , ( , ,..., , , ,..., ) ( , )L L L L E G S          Ω μ μ μ

          (3) 

and the diagonal elements of Ω  are the variances of the marginal elements (and thus are 

immediately identifiable).  .; ,L EF  μ Ω  in the equation above is the multivariate normal 

distribution function of dimension L E  with mean μ  and covariance matrix Ω  Thus, the 

multivariate distribution of ( , )  Y Z S  is now translated to the multivariate normal distribution 

of ( , ) .  Y G S  Next, partition the covariance matrix Ω  as follows: G GS

GS S

 
  
 

Ω Ω
Ω

Ω Ω
. 

Immediately then, using the conditional distribution properties of the multivariate normal 
distribution, we are able to write the conditional distribution of the vector S conditional on Z as 
follows: 

( ) ( ) ~ ( , ),

( ) and .

E S

S GS G G S S GS G GS

MVN  

    -1 -1

S | Z z S | G g μ Ψ

μ Ω Ω g μ μ Ψ Ω Ω Ω Ω




  (4) 

This conditional distribution for S given Z, while accommodating the dependence between the two 
random vectors, plays a central role in the estimation of the proposed flexible GHDM model, as 
discussed in the next section. 
  
3. THE FLEXIBLE GHDM FORMULATION  
There are two components to the model: (1) the latent variable SEM, and (2) the latent variable 
measurement equation model. These components are discussed in turn below. As appropriate and 
convenient, we will suppress the index q for decision-makers ( 1, 2,...,q Q ) in parts of the 

presentation, and assume that all error terms are independent and identically distributed across 
decision-makers. Also, for ease in presentation, we will consider a combination of continuous, 
ordinal, and nominal outcomes in the presentation, though extension to include count variables 
and multiple discrete-continuous variables also is straightforward (see, for example, Bhat, 2015). 
   
3.1. Latent Variable SEM 

Let l be an index for latent variables (l=1,2,…,L). Consider the latent variable *
lZ  and write it as 

follows in terms of its YJ-transformed counterpart *
lG  (based on Equation (1)). 

* 1 * *( ), where ( ,1).
ll l l lZ t G G N
  α w                                                                                                               

where w is a )1
~

( D  vector of observed covariates (excluding a constant), lα  is a corresponding 

)1
~

( D  vector of coefficients, and *
lG  is a normal random error term with variance one (the 
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normalization is for identification purposes; see Stapleton, 1978).3 Next, define the )
~

( DL   matrix 

),...,,( 21  Lαααα , and the )1( L  vectors 1 2 1 2( , ,..., ) , ( , ,..., )* L LG
       μ w w w λα α α , 

realizations of the random vector * * *
1 2(Z , Z ,..., Z )L *Z  as * * *

1 2(z , z ,..., z )L *z , and corresponding 

realizations of the random vector * * *
1 2(G ,G ,...,G )L *G  as 

* * * * *
1 2(g ,g ,...,g ) ( ( ), 1,2,..., )

lL l lg t z l L  *g . Then, ~ ( , )* *G G
MVN*G μ Ω , where the latent 

constructs are correlated through the non-diagonal correlation terms in *G
Ω . The vector of latent 

constructs *Z is thus characterized by the parameter vectors α  and λ , and the correlation terms 

embedded in *G
Ω  (say stacked into a  ( 1) / 2 -vector )*G

L L  Ω . In the typical GHDM, the 

vector λ  is a priori assumed to be equal to L1  (that is a vector of length L with all elements equal 

to 1).  
   
3.2. Latent Variable Measurement Equation Model (MEM) Component 
We will consider a combination of continuous, ordinal, and nominal outcomes. For compactness 
in notation, we will confine the presentation to a single nominal outcome, though extension to 
multiple nominal outcomes is very straighforward as in Bhat (2015).  

Let there be H continuous outcomes ) ..., , ,( 21 Hyyy  with an associated index h 

) ..., ,2 ,1( Hh  . Let ( )h h h h hy    γ x d x
 *Z

 
in the usual linear regression fashion, where x  is an 

)1( A  vector of exogenous variables (including a constant) as well as possibly the observed 

values of other endogenous variables. hγ  is a corresponding compatible coefficient vector.4 h


x  is 

an ( )hN L


-matrix of variables interacting with the latent constructs to influence hy  (with 

appropriately placed zero elements in specific columns), hd  is an ( 1)hN 


-column vector of 

coefficients capturing the effects of latent constructs and their interaction effects with other 

exogenous variables, and h  is a normally distributed measurement error term (if there are no 

interaction terms and the latent constructs have only a direct non-interactive effect, hN


=L). Stack 

the H continuous outcomes into an )1( H vector y, and the H error terms into another )1( H  
vector ) ..., , ,( 21  Hε . Also, let Σ  be the covariance matrix of ε , which is restricted to be 

diagonal in our factor model (where the latent vector *Z represents the factor vector and serves as 
the vehicle to generate covariance between the outcome variables. Define the )( AH   matrix 

                                                 
3 We exclude the constant in the covariate vector w for identification purposes. As we discuss in Section 3.2, we consider a constant 
in the vector of exogenous variables x in the continuous outcomes, as well as in the underlying continuous functions related to the 
ordinal indicators/outcomes and nominal outcomes; therefore, allowing for a separate constant in the covariate vector w simply 
will shift the constant value in these other measurement equations with no material effect in estimation/prediction.  
4 In joint limited-dependent variable systems in which one or more dependent outcome variables are not observed on a continuous 
scale, such as the joint system considered in the current paper that has discrete dependent variables, the structural effects of one 
dependent variable on another can only be in a single direction. This applies to all occurrences of the vector x in other parts of the 
model.  
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1 2( , ,..., )H   γ , and the 
1

H

h
h

N L


  
 



 matrix 1 2, ,..., )H    
   
x x x x   matrix. Also, define the 

1

H

h
h

H N


  
 




 matrix d , which is initially filled with all zero values. Then, position the 1(1 )N


 

row vector 1d  in the first row to occupy columns 1 to 1N


 , position the 2(1 )N


 row vector 2d  in 

the second row to occupy columns 1 1N 


 to 1 2 ,N N
 

 and so on until the (1 )HN


 row vector Hd  

is appropriately positioned.  Further, define 


dx (H L  matrix) and Vech( )   (that is, 
is a column vector that includes all elements of the matrix ).Then, one may write, in matrix form, 
the following measurement equation for the continuous outcomes: 

  *Zy γx ε .                                                                                                                     (5) 

Next, consider N ordinal outcomes for the individual, and let n be the index for the ordinal 
outcomes ) ..., ,2 ,1( Nn   (some of these will be purely indicators of latent constructs, facilitating 

the estimation of the SEM component of the model, that is, estimation of the vectors α  and λ  in 

Section 3.1) . Also, let nJ  be the number of categories for the nth ordinal outcome )2( nJ  and 

let the corresponding index be nj ) ..., ,2 ,1( nn Jj  . Let *~
ny  be the latent underlying variable whose 

horizontal partitioning leads to the observed outcome for the nth ordinal variable. Assume that the 

individual under consideration chooses the th
na  ordinal category. Then, in the usual ordered 

response formulation, for the individual, we may write: 
* *

, 1 ,, and ,
n nn n n n n a n n ay y      *Z    γ x d                                                                       (6) 

where nd  is an )1( L  vector of latent variable loadings on the underlying propensity of the nth 

ordinal outcome, the ~  terms represent thresholds, and n~  is the standard normal random error 

for the nth ordinal outcome. For each ordinal outcome, 
nn JnJnnnn ,1,2,1,0,

~~...~~~    ; 

0,
~

n , ,1 0n  , and 
nJn ,

~ . For later use, let ,2 ,3 , 1( , ..., )
nn n n n J    ψ     and 

1 2( , ,..., ) .N  ψ ψ ψ ψ     Stack the N underlying continuous variables *~
ny  into an )1( N vector *y~ , 

and the N error terms n~  into another )1( N  vector ε~ . Define 1 2( , ,..., )N    γ γ γ γ  [ )( AN   matrix] 

and  1 2, ,..., Nd d d d   
 [ )( LN   matrix], and let NIDEN  be the identity matrix of dimension N 

representing the correlation matrix of ε~  (so,  ~ ,N N NMVNε 0 IDEN ; again, this is for parsimony 

purposes, given the presence of the unobserved *Z  vector to generate covariance. For the pure 

ordinal indicators of the latent constructs, all elements of the vector n
γ  are set to zero. Finally, 

stack the lower thresholds for the decision-maker  Nn
nan  ..., ,2 ,1~

1,   
into an )1( N  vector lowψ~  

and the upper thresholds  Nn
nan  ..., ,2 ,1~

,   into another vector .upψ  Then, in matrix form, the 
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measurement equation for the ordinal outcomes (indicators) for the decision-maker may be written 
as: 

,     γ      * * *
low upy x dZ ε ψ y ψ .                                                                                        (7) 

Finally, consider the nominal (unordered-response) variable. Let I be the number of 
alternatives let i be the corresponding index ( 1,  2,  3,...,  )i I . Assume that the individual under 

consideration chooses the alternative m . Also, assume the usual random utility structure for each 
alternative i .  

( ) ,i i i i iU    *Zb x x                                                                           (8) 

where x  is as defined earlier, ib  is an )1( A  column vector of corresponding coefficients, and 

i  is a normal error term. i
x  is an ( )iN L -matrix of variables interacting with latent variables to 

influence the utility of alternative i, and i  is an ( 1)iN  -column vector of coefficients capturing 

the effects of latent variables and their interaction effects with other exogenous variables.5 The 

fact that *Z  is stochastic immediately implies the presence of random coefficients on the 

exogenous variables appearing in the matrix i
x . Besides, because we are allowing the latent 

constructs to have asymmetry and tails, the random coefficients are allowed to take a flexible 
distributional shape. Importantly, the random coefficients on multiple exogenous variables are 
generated through only a handful of latent constructs, making the specification very parsimonious. 

Let 1 2( , ,... )I      1( gI  vector), and ~ ( , )I IMVN 0 IDEN . The usual identification 

restriction is imposed such that one of the alternatives serves as the base when introducing 
alternative-specific constants and variables that do not vary across alternatives (that is, whenever 
an element of x  is individual-specific and not alternative-specific, the corresponding element in 

ib is set to zero for at least one alternative i). To proceed, define 1 2( , ,..., )IU U U U  ( 1I   vector), 

1 2 3( , , ,..., )I b b b b b  (I A  matrix), and 1 2, ,..., )I       x x x x  
1

I

i
i

N L


  
 
  matrix. Also, define the 

1

I

i
i

I N


  
 

  matrix  , which is initially filled with all zero values. Then, position the 1(1 )N  row 

vector 1  in the first row to occupy columns 1 to 1N  , position the 2(1 )N  row vector 2  in the 

second row to occupy columns 1N +1 to 1 2 ,N N  and so on until the (1 )IN  row vector I  is 

                                                 
5 Of course, as in any discrete choice model, only differences in utilities matter, which implies that any individual-
specific covariates in the vector x can appear in the utilities of utmost I–1 alternatives. This also applies to the latent 
construct elements in *Z . Any element of *Z that is purely a function of individual-specific covariates in the SEM 
component can be introduced in the utilities of utmost I–1 alternatives. Also, in multinomial probit models, 
identification is tenuous if only individual-specific covariates appear in the vector x and if elements of *Z are a 
function of purely individual-specific variables (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, 
exclusion restrictions are needed in the form of at least one individual characteristic being excluded from each 
alternative’s utility in addition to being excluded from a base alternative (but appearing in some other utilities). But 
these exclusion restrictions are not needed when there are alternative-specific variables.  
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appropriately positioned.  Further, define ( ) x  (I L  matrix) and Vech( )   (that is,   

is a column vector that includes all elements of the matrix  ). Then, in matrix form, we may write 
Equation (8) as: 

  *ZU bx   .                                                                             (9) 

To proceed further, let ( )E H N I   . Define *, , [ 1 vector],E
       

U
 y y y

( , , )   
 γ γ γ b  [E×A matrix], ( , , ) [ matrix],E L    

 d d   and ( , , )    ς
 ε ε ε  vector),1( E  

where AN0  is a matrix of zeros of dimension A N . With these matrix definitions, the MEM latent 

variable component of the model system may be written compactly as:                                                              

  *Z
  

y γx d ε , with MVN , ), ( matrix)E ε ε N

I

E E

 
   
  

Σ 0 0

(0 Ω Ω 0 IDEN 0

0 0 IDEN

 

ε ~ .  (10)                         

Define ( , ) *Y Z

ε . The correspondence of our notations with the previous section should now be 

clear, with *Z  taking the place of Z, and 

ε  taking the place of S . Then, following the previous 

section, we may write the joint cumulative multivariate distribution of Y  exactly as in Equation 
(3) after translating it into an equivalent joint cumulative multivariate standard normal distribution 

of ( , ) *Y G
 ε . Next, partition the covariance matrix Ω  of Y as follows: 

* *

*

G G

εG





 
  
 





Ω Ω
Ω

Ω Ω
. 

The elements of the covariance matrix *G 
Ω   corresponding to the correlations between the 

transformed vector of the latent constructs, *G , and the pure indicator-related kernel error terms 
in the vector ε  are normalized to zero for identification. Also, without any loss of generality and 

for identification considerations, we will normalize the correlation between the elements of *G
and the utility of the first alternative in the nominal variable to zero. Immediately then, using the 
conditional distribution properties of the multivariate normal distribution, we are able to write the 
conditional distribution of the 


ε vector conditional on Z* as follows: 

*

*

* * * *

*
1 2

( ) ( ) ~ ( , ),

( ) and , with ( , ,..., ) .* * * * * * *

E

E ε LG ε G G G ε G G ε G

MVN

       
g

-1 -1

g

| Z = z | G = g μ Θ

μ Ω Ω g μ 0 Θ = Ω -Ω Ω Ω μ w w w  

  


ε ε

α α α
 (11) 

The traditional mixed models (including the GHDM model) assume that all entries of the 
covariance matrix *G 

Ω   are identically zero, a priori imposing the restrictions that the latent 

construct vector (that is, factor vector) *Z  is independent of the kernel error terms of the dependent 

outcomes of interest. However, in our flexible model, we allow dependence between the *Z vector 

and the kernel error terms that are not pure indicators of the *Z  vector. 
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3.3. Model Identification 
Let δ  be the collection of parameters to be estimated:

[ , Vech( ),Vech( ),Vech( ), ,Vech( ), Vech( ),Vech( )] ,δ λ ψ Σ Ω
 α γ d  where the operator )"(Vech" .  

vectorizes all the non-zero elements of the matrix/vector on which it operates. Sufficient conditions 
for identification of all parameters in δ  are identical to that discussed at length in Bhat (2015) 

based on O’Brien’s exposition. However, the sufficiency condition for identification of 

γ  in Bhat 

(2015) is unnecessarily stringent; as long as the elements of α  in the SEM model component are 

identified solely from the ordinal indicator variables (for which n
γ =0 in Equation (6)), there is no 

need for additional exclusion restrictions between the vectors x  and w (see Bhat and Dubey, 
2014). In particular, identification is achieved if the following conditions hold:  

(a) *G
Ω in the structural equation is specified to be a correlation matrix, with each latent 

variable correlated with at least one other latent variable (if L ≥ 2),  

(b) diagonality is maintained across the elements of the error term vector ε


 (that is, Σ


 is 
diagonal),  

(c) If L ≥ 2, for each latent construct, there are at least two indicator variables that load only 
on that latent construct and no other latent construct (that is, there are at least two factor 
complexity one indicator variables for each latent variable) (see Reilly and O’Brien, 1996); 
If L=1, there are at least three indicator variables that load on that latent construct (that is, 
there are at least three factor complexity indcator variables for the latent variable).  

(d) For the indicator variables that load only on a single latent construct, the dependence 
between the kernel error terms of those indicator variables and the corresponding latent 
construct is maintained to be zero.   

(e) The dependence between the latent constructs and the kernel error term of the utility of one 
of the alternatives for the nominal variable (say the first alternative) is set to zero (this is, 
of course, because only utility differences matter in the nominal variable modeling).  

 
3.4. Model Estimation 
To estimate the model, the first order of business is to develop the conditional likelihood function 
of the dependent outcomes, given the latent construct values. To do so, using Equation (11), we 
begin by writing Equation (10) in conditional form as follows: 

*( ) ( ) ~ ( , ), where .MVN       * * * * * *

g
Z z z Z z B Θ B z μ

     
y γx d ε | γx d                           (12) 

Next, under the utility maximization paradigm, consider an individual who chose the alternative 

m. Then, i mU U must be less than zero for all i m . Let ( )im i mu U U i m   ,  and stack the 

latent utility differentials into a vector  1 2, ,..., ;m m Imu u u i m
    

u .  We now need to develop the 
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distribution of the vector *, , [( 1) 1 vector]E
        

u uy y y given ( )* *Z z  from that of 

( )* *Z z

y . To do so, define a matrix M of size    1E E  . Fill this matrix with values of zero. 

Then, insert an identity matrix of size H+N into the first H+N rows and H+N columns of the 
matrix M. Next, consider the rows from 1 to 1H N H N I     , and columns from 1H N   

to E.  Insert an identity matrix of size ( 1)I   after supplementing with a column of ‘-1’ values in 

the column corresponding to the chosen alternative. With the matrix M as defined, we can write 

( ) ( , ),MVN* *u Z z B ΘE -1y ~  where B MB  and Θ MΘM . Next, partition the vector B  

into components that correspond to the mean of the vector y  (for the continuous variables), and 

 * ,


 'yu u  (for the ordinal outcomes and the nominal outcomes). Correspondingly, partition the 

matrix Θ : 

1E
 

  
 u

B
B

B 





y  vector and     

    

 
    

u

u u

Θ Θ
Θ

Θ Θ


 

 


 
y y

y

 

 The conditional distribution of u , given y and ( )* *Z z , is MVN with mean 

   -1
u u u B B Θ Θ B  

   
y y yy

 
and variance   -1

u u u u  Θ Θ Θ Θ Θ   

    
y y y . Next, define threshold vectors as 

follows: 

 1, ,I 

    low lowψ ψ
   ([( 1) 1]N I    vector) and  1, I 

    up upψ ψ
  0 ([( 1) 1]N I  

 

vector), 

where 1I   is a ( 1) 1I   -column vector of negative infinities, and 1I 0  is another ( 1) 1I   -

column vector of zeros. Also, let u  ω 


be a diagonal matrix containing the square root of the 

variance elements of uΘ 


, and let    1 1

( ) , ( ) , and
    low low up upψ ψ   

    
u u u uτ ω B τ ω B

   1 1* .
 u u u uΘ ω Θ ω   

  
 Also, let d  be an index that takes values from 1 to ( 1)N I  , and let 

,low d  and ,up d  represent the elements of the vectors lowτ  and upτ , respectively. Then the 

likelihood function, conditional on Z*, may be written, in its most general form, as: 

( ) ( ) ( , ) Pr .HL f |       
* *δ Z z B Θ u

  y y low upy ψ ψ                                                            (13)                     

Based on the inclusion-exclusion probability law, and for all Fretchet class of multivariate 
distribution functions with given univariate margins (of which the multivariate normal distribution 
is a part), the expression in Equation (13) can be re-written with the matrix definitions above as 
follows: 

12
*

1
1

( ) ( ) ( , ) ( 1) ( ; )
N I

S

S
A

H N I S
S

L f
 

 


    * *
uδ Z z B Θ τ Θ 

 y yy |                                                   (14) 



 

17 

where S represents a specific combination of length ( 1)N I   of the ,low d  and ,up d  scalars across 

all possible d values such that both ,low d  and ,up d  are disallowed in the combination for any S 

(there are 12N I   such combinations, each of length ( 1)N I  , and we will represent the resulting 

vector of elements in combination S as Sτ ), SA  is a count of the number of lower threshold 

elements ,low d  appearing in the vector Sτ , and 1N I  (.,.) is the standard multivariate normal 

cumulative distribution (MVNCD) function of dimension ( 1)N I  . In the case when all the 

ordinal variables are pure indicator variables of the latent constructs (that is, there is no dependence 
between the error terms underlying these ordinal variables and the latent constructs), the 
conditional likelihood of Equation (14) reduces to: 

  *
, , 1

1

( ) ( ) ( , ) ( ) ( ) ( ; ),
N

H up d low d I
d

L f   


 
      

 
* *

I-1 uδ Z z B Θ 0 Θ


y yy |                          (15) 

where *
uΘ


 refers to the sub-matrix of *
uΘ 


 corresponding only to the utility elements of the nominal 

variable. The MVNCD functions can be evaluated using the very accurate analytic approximation 
methods developed by Bhat (2018) and embedded within the MACML inference technique. In 
particular, in the case that N is very large or I is very large (>10 say), one may use a pairwise 
likelihood function for the conditional likelihood function of Equation (14), exactly similar to the 
traditional GHDM (see Section 3.3 of Bhat, 2015). Finally, the unconditional likelihood function 
may be obtained as follows: 

* * *
1 2

* * *
1 2

* * * *
1 2( ) ... ( ) | ( )  ( ) ...

L

L

z z z

L L

z z z

L L h dz dz dz
  

  

      * *δ δ Z z z                                                              (16) 

The above equation can be re-written based on transforming the density of the random variable 

vector *Z  to the corresponding multivariate normal vector *G , using the usual Jacobian 
transformation result: 

* *

*

* * **
* * * * * 1 2

* * * *
1 2

* * * * * * * *
1 2 1 2

( ) Prob( ) ( ) = ( ) ... , from which

( ) ... ( ) ... .

L

L

L L

dg dg dgd
h f abs f

d dz dz dz

h dz dz dz f dg dg dg

      



*

*

Z G G

Z G

g
z Z z g g

z

z g

       (17) 

Substituting the above equality in Equation (16), and defining a diagonal matrix *G
ω whose entries 

correspond to the square root of the diagonal entries of the matrix *G
Ω , the result is: 

   

   

* * *
1 2

* *

* * *
1 2

* * * * * *

1 2

1

* *

1

( ) ... ( ) | ( )  ( ) ...  = ( ) ( ) ( )

( ) ( ) ; , where

L

L

* * *
l

g g g

L

g g g

L

LG G G
l

L L f dg dg dg L f d

ω L d

   

   

 

 

  

    
 
 

   

 




   

*

*

*

*

*

g =-
* -1 * * -1 *

λ λG G

g =-

g =-
* -1 *

λ G

g =-

δ δ Z t g g δ Z t g g g

δ Z t ω g μ g Ω g g* 1 *[ ],*G

  *G
ω g μ

  (18) 



 

18 

*
lG

ω  is the lth diagonal element of the matrix *G
ω , and  .;.L  represents the standard multivariate 

normal density function. The integration in Equation (18) can be undertaken using usual 
simulation-based procedures, thus combining the maximum simulated likelihood approach with 
an analytic method to evaluate the MVNCD function.  

There are two final issues. The first is that the covariance matrices Ω  has to be positive 
definite. The simplest way to ensure the positive-definiteness of these matrices is to use a 
Cholesky-decomposition and parameterize the CML function in terms of the Cholesky parameters 
(rather than the original covariance matrices). Also, except for the diagonal elements 
corresponding to the continuous outcome variables, all other diagonal entries of this matrix are 

normalized to one (primarily for identification). To achieve this, we parameterize Ω  as ,*
Ω Ωω Ω ω  

where Ωω  is the diagonal matrix of the square root of the elements of Ω  (with the elements 

corresponding to the non-continuous outcomes/indicators fixed to one) and *Ω  being a correlation 

matrix. Then, the parameters actually estimated correspond to the non-fixed elements of Ωω  and 

the Cholesky elements of *Ω . We use a spherical parameterization of the Cholesky of the 
correlation matrix to ensure a positive-definite correlation matrix in estimation (see Bhat and 
Mondal, 2021). The parameters to be estimated in the model may be written as: 

*[ ,Vech( ),Vech( ),Vech( ), ,Vech( ),Vech( ),Vech ,Vech( )] , α γ d
 

Ω Ω
δ λ ψ Σ (ω ) L where *Ω

L  is the 

spherically-parameterized lower Cholesky matrix of the matrix *Ω . 
 The second issue relates to the starting parameters. In our experimentation of alternative 
procedures to arrive at good starting values, the following procedure worked well: (a) First 
estimate the SEM model alone using only the indicators of the latent constructs (this is basically 
equivalent to the estimation of a multiple-indicator multiple-cause (MIMIC) model; see O’Brien, 

1994 and Reilly and O’Brien, 1996 (that is, estimate *, Vech( ), , , and Vech( ))Gλ ψ Ω α d , (b) 

Estimate the parameters of the measurement equation model for the actual dependent outcomes of 
interest, assuming zero correlations between the latent construct errors and the errors of the 
dependent outcomes of interest (that is , , , Vech( ), and Vech( )Σb d  , fixing the SEM 

coefficients to that estimated at step (a) and setting all the elements of *G 
Ω   to be zero) (c) Estimate 

the correlation parameters between the latent construct errors and the dependent outcome errors 

(that is, the elements of *G 
Ω  ) fixing all other coefficients from steps (a) and (b), and (d) Use the 

coefficient vector from the estimation results in step (c) to begin the iterations for the overall 
estimation of the model system. 
 
4.  MODEL APPLICATION 
4.1. Background 
In this section, we demonstrate an application of our proposed flexible GHDM framework and 
compare its effectiveness with the traditional GHDM structure and its variants. To do so, we 
undertake an empirical study to investigate individuals’ bicycling propensity as an ordered 
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outcome and residential choice (high-density neighborhood living vs. low/medium density 
neighborhood living) as a binary outcome. Promoting bicycling and walking modes of 
transportation has been of substantial interest to transportation planners, as these non-motorized 
travel modes are associated with zero mobile-source emissions, lead to lower levels of traffic 
congestion, and foster an active and healthy lifestyle (Manaugh et al., 2017, Park and Akar, 2019, 
Bhat et al., 2017). In this regard, one thread of scientific enquiry has focused on evaluating the 
extent of benefits in investing in non-motorized-friendly built environment (BE) policies and 
infrastructure (for example, construction of exclusive bike lanes, traffic safety measures 
prioritizing bicycle users, building walk/bike friendly neighborhood with ample bicycle docking 
facilities and protected lanes). Bhat and Guo (2007) discuss many possible methodological 
directions that such an enquiry may take, each with its own advantages and disadvantages. But the 
data typically available for such an analysis is cross-sectional, and so much effort has gone into 
disentangling associative effects (that is, residential self-selection effects wherein individuals may 
choose a residential location based on their bicycling preferences) from “true” causal effects of 
residential BE attributes. This entails recognizing that residential choice may be endogenous to 
non-motorized mode use decisions, typically by modeling both choices as a “bundle” or a package 
choice using cross-sectional data (see, for example, Pinjari et al., 2008, Pinjari et al., 2011, Paleti 
et al., 2013, Bhat et al., 2013, Jarass and Scheiner, 2018, Wolday et al., 2019, Guan and Wang, 
2019, Kroesen 2019, Deng and Zhao, 2022, and Millard-Ball et al., 2022). In this paper, along 
these lines, we consider the two dimensions of high-density neighborhood (HDN) living and 
bicycling frequency as our outcomes of interest in our proposed flexible GHDM methodological 
framework. 
 The express focus of this empirical study is primarily to demonstrate an application of our 
proposed flexible GHDM model. However, within the context of the data available, we tested 
several functional forms of the exogenous variables to arrive at the final specification. 
Subsequently, we provide a substantive interpretation of the variable effects. Moreover, we also 
provide a comparative analysis between our proposed model and the traditional GHDM variants 
(which are restricted versions of our proposed model), and underscore the potential pitfalls in terms 
of data fit as well as policy misinformation when non-normality of the latent construct error terms 
and/or the correlation between the latent constructs and the main outcomes are ignored. 
 
4.2. Data and Sample Used 
Our empirical application employs a sample drawn from the 2019 wave of the Puget Sound 
Regional Council Household Travel Study.  The survey elicited, from a representative sample of 
the regional population, information on general lifestyle and travel-specific attitudes/preferences, 
residential location, and current travel patterns. For the current analysis, individuals below 18 years 
of age and whose survey responses were recorded through proxy-reporting were excluded. The 
final sample used in our study comprised 3645 individuals. 

The residential locations of respondents was obtained in the survey in terms of the 
household Census tract of living. Each household’s residential location was assigned to either a 
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low/medium density tract (≤10,000 individuals per square mile) or a high density tract (>10,000 
individuals per square mile). Those residing in a high density tract are designated as living in a 
high-density neighborhood (HDN), which forms the binary outcome of interest (“HDN living” 
versus not). The use of such a binary residential density metric for residential choice provides a 
convenient way to capture land-use/BE effects on activity-travel behaviors, particularly because 
of the strong association between density and other BE elements. Indeed, there is a long and strong 
precedent for using such a binary residential density variable as a proxy for land-use/BE elements 
in the transportation literature (see, for example, Chen et al., 2008, Kim and Brownstone, 2013, 
Paleti et al., 2013, Cao and Fan, 2012, Bhat et al., 2016a,  Falk and Katz-Gerro, 2017, and Gallo, 
2020). 

The second outcome of interest in our analysis corresponds to the bicycling use frequency, 
elicited from respondents through the following question: “In the past 30 days, how often have 
you ridden a bicycle (for 15 minutes or more)?”. The responses were recorded in six ordinal 
categories, which were collapsed in the current analysis into four categories because two of the six 
ordinal categories had very few responses. The four ordinal categories are as follows:  

-Never: “I never do this” 

-Rarely: “I do this but not in the past 30 days” or “1-3 times in the past 30 days” 

-Regularly: “A few days a week, but less than four days a week” 

-Habitually: “5 days a week or 6-7 days a week” 

 Table 1 provides the descriptive statistics of the two outcome variables in terms of the 
shares of each combination of the outcome variables. The sample is skewed toward the low use of 
bicycling as a travel mode, with about 70% of the individuals reporting that they have never 
bicycled (see last column of the first numeric row of the table) and only 12.4% reporting regular 
or habitual use of bicycling (the sum of the percentage entries in the third and fourth numeric rows 
of the last column of the table). However, among those living in an HDN, only 67.2% report never 
having bicycled relative to 71.9% not living in an HDN. Also, while only 9.9% of individuals not 
living in an HDN bicycle regularly/habitually, this percentage rises to 15.7% among those living 
in an HDN. These statistics suggest a balanced sample in terms of HDN (versus non-HDN) living, 
a sample skewed toward the low end of bicycling use, and a packaged or bundled choice of 
residential living and bicycle use.  
 
4.2.1. Latent Constructs 
For our empirical demonstration in the context of high density-living and bicycle use, we consider 
a single latent construct: Environmental consciousness or EC. Environmental consciousness 
(sometimes, also termed as green-lifestyle propensity) refers to the general concern in individuals 
regarding their own footprint effect on environmental quality, thereby predisposing these 
individuals (who have higher levels of EC) to adopt a more sustainable “pro-environmental” 
lifestyle (such as the frequent use of walking or bicycling as a means of transportation) to reduce 
negative anthropogenic impacts on the surrounding environment. Indeed, EC is very often used in 
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transportation or land-use studies in the study of the use and frequency of non-motorized modes 
of transportation (see for example, Sener et al., 2009, Heinen and Handy, 2012, Verma et al., 2016, 
Zhu et al., 2020, and Blazanin et al., 2022). But, because EC itself is not directly observed, it is 
considered as a latent stochastic construct, based on three ordinal indicators from the survey (all 
collected on a five-point Likert scale from “very unimportant” to “very important”): (a) Importance 
of being within a reasonably short commute to work, (b) Importance of a walkable neighborhood 
and being close to local activities when choosing residence location, and (c) Importance of being 
close to public transit when choosing residence location. 
 
4.3. Model Results 
4.3.1. Latent Construct Results  
Table 2 provides the latent construct indicator loading results. All the indicator variables are found 
to be significant with expected directions of loadings (signs) on the latent construct. This forms 
one component of the measurement equation in the GHDM framework (note that all the 
components of the GHDM framework are jointly estimated, but are presented in separate sections 
for presentation ease). Table 3 presents the structural equation results that relate the environmental 
consciousness (EC) latent construct to observed demographic variables. Our results indicate that 
there is a significant gender difference in “pro-environmental” attitude; in particular, women are 
found to be generally more environmentally conscious compared to men. Social-psychological 
studies attribute this gender difference to the generally more cooperative and interdependent nature 
of socialization of women (relative to the typically competitive and independent nature of 
socialization of men), as well as to a more archetypically caring/altruistic behavior exhibited by 
women relative to men, which then manifests itself in the notion that the environment is a shared 
asset whose quality has to be preserved for the benefit of all through cooperative efforts and 
responsibility (see Gifford and Nilsson, 2014 and Desrochers et al., 2019).  

Age is another key determinant of EC attitude. In particular, older individuals have lower 
levels of EC than their younger peers, a result that is again corroborated by earlier studies in 
environmental sociology (see, for example, Liu et al., 2014 and Clements, 2012). The younger 
generation has grown up in an era of rapid information technology development, through which to 
absorb and reflect upon environmental issues and sustainability challenges. This encourages them 
to adopt environmentally friendly lifestyles (Hassim, 2021). Similarly, the finding from the table 
that highly educated and employed individuals tend to be more concerned about the environment 
compared to individuals with lower levels of education and not-employed individuals, 
respectively, has been found in earlier literature (see, for example, Fisher et al., 2012; Franzen and 
Vogl, 2013, and Blazanin et al., 2022).  
 Our results also suggest that individuals with children in their household have a lower EC 
than other individuals. This finding has support in a recent study by Thomas et al. (2018), who 
find that, while the legacy hypothesis would suggest a higher EC because parents would be 
concerned about the legacy they leave for their offspring in regard to environmental quality, the 
time poverty parents face appears to discourage them from time-consuming sustainable practices. 
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This then gets manifested in the form of playing down the effects of sustainable practices in the 
parents’ minds as a way of managing dissonance. Further, the child’s immediate well-being 
appears to dominate over concerns over future environmental threats. On the other hand, the results 
also indicate that individuals from high income households (annual income greater than $100,000) 
have higher EC levels than those from lower income households. The latter result may be explained 
based on Maslow’s theory of the hierarchy of human needs, which  states that humans first focus 
on the survival-based instinct of meeting their immediate and basic material needs, and consider 
“higher level” needs such as the need for environmental quality only after the basic needs are 
satisfied. As income increases, so is the ability to consider the “higher level” needs, consistent 
with the findings of earlier studies (see for example, Awan and Abbasi, 2013, Sun and Wang, 2020 
and Bülbül et al., 2020).  
 Finally, our results indicate a significant departure from normality for the distribution of 
the latent construct conditional on the exogenous sociodemographic variable (the transformation 

parameter in the last row of Table 3 is estimated to be  =0.466, with a t-statistic of 3.68 for the 

with respect to the value of 1). This implies a statistically significant right-skew for the EC latent 
construct error term, suggesting that, conditional on observed characteristics, a higher fraction of 
individuals are closer to the low end of the EC spectrum; only a small fraction of the respondents 
are at the high EC range. 
 
4.3.2. Main Outcome Results  
Table 4 provides the main outcome results. We discuss, in turn, the latent construct effects, the 
individual characteristics effects, the household characteristics impacts, and the estimated 
correlation results. The coefficients in Table 4 represent the impacts of variables on the HDN living 
propensity latent variable and the bicycling latent propensity variable. The threshold effects toward 
the bottom of Table 4 do not have any substantive interpretations and simply provide the 
mechanism to translate the underlying latent propensities to the observed binary/ordinal categories. 
 
Latent Construct Effects 
As expected, EC positively impacts the propensity of high-density neighborhood (HDN) living as 
well as bicycling propensity. Environmentally concerned individuals generally have a higher 
preference for urban, high-density living because of, among other reasons, the increased 
opportunities for the use of pollution-free modes of transportation. In addition, the results reveal 
that the effect of EC on bicycling frequency is particularly elevated for workers relative to non-
workers. This may simply be the result of habitual behavior (wherein the elevated bicycling 
frequency of a worker relative to a non-worker with a comparable EC is because of the regular 
commute rhythm), and/or may be the result of a conscious choice (wherein the worker realizes that 
taking up bicycling during the commute is a particularly impactful way of lowering one’s travel 
carbon footprint). In any case, the net result is unobserved non-normal heterogeneity of the worker 
effect, through the stochasticity of the EC latent construct. 
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Individual Characteristics Effects 
The individual effects in Table 4 represent direct effects after accommodating the moderating 
effects through the environmental consciousness (EC) latent construct effect. The results suggest 
that women are less likely to use the bicycle mode, a result that has consistently been reported in 
earlier studies (Ferdous et al., 2011, Sallis et al., 2013, Ma et al., 2014, Bhat et. al, 2017) and 
attributed, among other reasons, to the intrinsically heightened safety consciousness among 
women and the relative difficulty of riding a bicycle with the types of clothing sometimes worn by 
women. This negative direct effect (-0.295) dominates over the moderating EC effect 
(0.148×0.142=+0.021 for non-working women, and (0.148+0.114)×0.142=+0.037 for working 
women). Age is another key determinant of an individual’s residential living choices and bicycling 
propensity. Older adults tend to have a lower inclination to reside in HDN relative to their younger 
peers, with the youngest of adults (less than 35 years of age) most predisposed toward HDN living, 
possibly a reflection of the desire for an urban, fast-paced, entertainment-accessible, and physically 
active lifestyle (De Vos and Alemi, 2020). The results also reveal a generally lower bicycling 
propensity among senior adults (age 65 years of greater), presumably due to their lower physical 
dexterity compared to those in the young or middle-aged categories. These direct age effects 
reinforce the moderating age effects through the EC latent construct. A similar reasoning as for 
young age may explain the general result that those with a higher education level and students 
have a higher HDN living propensity, while the higher bicycling propensity among those highly 
educated (even after conditioning for EC effects) may be associated with higher health 
consciousness in these population segments (see Jaafar et al., 2017). 
     
Household Characteristics Effects  
Among the household effects, individuals from households with three or more adults and with 
children (of any age) have a lower preference for HDN living relative to individuals from 
households with fewer than three adults and without children, respectively. These lower HDN 
living preferences may be attributed to the desire among those with many household members and 
with children for large living spaces (De Vos and Alemi, 2020), which are typically not in ample 
supply in HDN neighborhoods. Interestingly, individuals having small children (of age below 5 
years) in the household tend to have a lower propensity to bicycle, though the effect gets reversed 
for individuals with older children in the household. While small children may constrain parents 
and other adults in the household from partaking in the use of active travel modes (due to time 
constraints that encourage the use of faster travel modes, as well as the difficulty taking a small 
child along in a bicycle), older children may promote active modes of travel through joint 
participation in recreational outdoor activities (see Ferdous et al., 2011 for a similar result). 
 Finally, household income is also found to influence an individual’s residential and 
bicycling choices. Individuals from lower income households have a generally higher preference 
for HDN living relative to their higher household income peers, and those from the lowest income 
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group have a higher propensity to bicycle. These are consistent with earlier studies in the literature 
(see, for example, Kroesen and Handy, 2014).6   
 
Endogenous Outcome Effect 
The direct endogenous outcome effect (that is, the “true” causal effect of HDN living on bicycling 
propensity, as labeled by   in Table 4) suggests that the built environment in high density 
neighborhoods has a positive causal effect on the propensity to use the bicycle mode. This is quite 
intuitive as HDNs are often characterized by exclusive bicycle lanes, protected lanes, as well as 
bicycle parking docks (see Zahabi et al., 2016, Bhat et al., 2017, and Arellana et al., 2020). 
  
Correlations between Main Outcomes and Latent Construct 
One of the salient features of the proposed flexible GHDM model (or FLEX-GHDM for short) is 
that it allows the error terms of the latent constructs to be correlated with the main outcome error 
terms (that is, the HDN living propensity error term and the bicycling propensity error term). In 
our model results, the correlation between the EC latent construct error term (in grade form or after 
transformation to a normally distributed error term) and the underlying HDN living propensity 
function normal error term is 0.149, while the correlation between the EC latent construct error 
term (again in grade form) and the bicycling propensity error term is 0.354. These correlations 
refer to the Spearman correlation in the copula literature (see Bhat and Eluru, 2009). In other 
words, there are common unobserved factors that simultaneously increase the EC level in 
individuals and their propensity to reside in an HDN or to bicycle. As discussed in Section 1.2, 
ignoring this positive EC endogeneity effect will overestimate the EC latent construct effect on the 
two main outcomes (that is, overestimate the self-selection effect of high-density living based on 
bicycling propensity), thereby underestimating the “true” HDN effect on bicycling frequency, as 
further discussed in the next section. 
  
4.4. Estimating “True” Effects of Residential Densification on Bicycling Propensity 
The FLEX-GHDM model provides estimates of the joint probability of an individual living in an 
HDN versus a non-HDN, and monthly bicycling use frequency. For presentation ease, we simplify 
the notation of Equation (12) and partition it into a component specific to HDN living propensity 
and another specific to bicycling propensity (underlying the ordinal bicycling frequency variable) 

as follows (we replace *z  by the single environmental consciousness latent construct ec* , and 
introduce the index q for individuals): 
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6 Higher levels of car-ownership have also been consistently negatively associated with HDN living in the transportation and land-
use literature (for example, see Shen et al., 2016, Ding et al., 2017, Zhang et al., 2014, De Vos and Alemi, 2020). However, we do 
not use household vehicle ownership as an exogenous variable in the model, because it is likely to be endogenous to HDN living 
and bicycle ownership decisions (see, for example, Pinjari et al. 2011).   
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For compatibility with earlier notation after introducing the index q for individuals, *
qg

μ


=

* *, ,
( , )

q qHDN BF
  

g g

 
and , , 2( , ) ~ ( , ),q HDN q BF BVN  0 Θ

 
where BVN is the bivariate normal 

distribution, 20  is a zero vector of length 2, and Θ is a covariance matrix as defined earlier. ,q HDNx  
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With the notations above, we may write the equation system in (19) as:  
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There are three effects associated with HDN living propensity on bicycling propensity in the above 
equation system: (1) the “true” causal effect of HDN living on bicycling propensity, as captured 
by the   shifter term for bicycling propensity based on HDN living versus non-HDN living, (2)  
a sample selection effect due to the unobserved correlation engendered between the HDN living 
and the bicycling frequency equations because of the conditioning of both these equations on the 

common *
qg  variable reflecting the transformed version of the EC stochastic latent construct 

(which then has to be unconditioned out in estimation as discussed in Section 3.4) and (3) the EC 

endogeneity effect that, based on Equation (11), leads to * ,
0,

q HDN
 

g


 * ,

0,
q BF

 
g


 and a covariation 

between the ,q HDN  and ,q BF  error terms , , 2( , ) ~ ( , )q HDN q BF BVN  0 Θ
 

 (all generated by the non-

zero correlation matrix *G 
Ω   that contains the correlations between (a) the HDN living error and 

the EC construct error, and (b) the bicycling propensity error with the EC construct error). In the 
independent heteroscedastic data model (IHDM), which does not consider any jointness between 
the HDN living and bicycling frequency propensities due to unobserved factors (that is, the 
stochastic EC latent construct is not considered at all), the second and third effects above are 
completely ignored, and effectively get added on to the “true” causal effect. The net effect is an 
overestimation in the IHDM of the “true” causal effect of HDN living on bicycling propensity. In 
effect, then, the   estimate from the IHDM model may be used as the overall cumulative of all 
three of the “true causal”, the “sample selection”, and the “EC endogeneity effect” of HDN living 
on bicycling propensity. In the traditional GHDM, the first and second effects above are 
considered, but the third “EC endogeneity effect” is ignored, which then gets added on to the self-
selection effect and reduces the “true” HDN living effect on bicycling frequency, as discussed in 
Section 1.2 and Figure 1. We also estimate two additional models for comparison purposes. The 
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first, which we label as the not-dependent GHDM (or ND-GHDM), ignores the EC endogeneity 
effect, while retaining a non-normal distribution for the EC construct (that is, *G 

Ω   is assumed to 

be a zero matrix). The second additional model, which we label as the normal GHDM (or N-
GHDM), considers the EC endogeneity effect, but considers a symmetric normal distribution for 
the EC construct. This is the same as  our FLEX-GHDM, and considers all the three effects of 
“true causal”, “sample selection”, and “EC endogeneity” effects, but holds the EC construct to 
have a normal distribution.  

To associate actual statistics to the three HDN effects on bicycling frequency, from 
equation system (19), and following the same approach as in Section 3.4, one can estimate, for 
each individual, the following four bivariate probabilities: 
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One can also readily compute the following univariate probabilities for bicycling frequency level: 

, , 0 , , 1( ) and ( ).
HDN HDNq BF y q BF yP y j P y j    For easy interpretability and presentation, we convert 

the ordinal bicycle use frequency categories into cardinal values jc  as follows: j=1 (never use = 0 

instances per month); j=2 (rarely use = 2 instances per month), j=3 (regularly use = 12 instances 
per month), and j=4 (habitually use = 24 instances per month). With these assignments, one may 
compute two quantities as discussed in Bhat and Eluru (2009). The first is the average treatment 
effect (ATE) of residential living on bicycling frequency, which refers to the average (expected) 
increase in bicycling frequency for a random household from the population if it were to reside in 
an HDN as opposed to a non-HDN. This ATE constitutes the “true” effect of residential 
densification, and is given by: 
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The second is the “Effect of Treatment on the Treated and Non-treated (TTNT)”, which is 
the total of all the three effects of HDN living on bicycling frequency. This TTNT effect represents 
the average impact of treatment on the (currently) treated (that is, individuals currently residing in 
HDNs) and (currently) non-treated (TTNT) (that is, individuals currently residing in non-HDNs). 
In the current empirical context, it is the expected bicycling frequency change for a randomly 
picked individual who is relocated from the current residential neighborhood type of living to the 
other neighborhood type, measured in the common direction of change from a non-HDN to a HDN. 
The TTNT measure, in effect, provides the average expected change in bicycling frequency if all 
households were relocated to a HDN assuming that all households currently choose to locate in a 
non-HDN. It is given by: 
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The closer TTNT is to ATE, the lesser are the self-selection and EC endogeneity effects. 
Of course, in the limit that there is no self-selection and no EC endogeneity, TTNT collapses to 
the ATE, as the bivariate probabilities in the TNTT equation collapse to the product of univariate 
probabilities. This is the case for the IHDM model, and so the ATE for the IHDM is used as the 
common base as the TNTT for all the models for comparison of the substantive results across the 
many different models. The ATE as a percentage of TTNT provides the percentage “true” HDN 
densification effect. In the traditional GHDM, the difference between the ATE from the IHDM 
(=TNTT from the IHDM) and the ATE from the traditional GHDM provides the consolidated 
effect of self-selection and EC endogeneity (with the assumption of zero EC endogeneity effects). 
A similar situation holds for the ND-GHDM. For the FLEX-GHDM, the ATE is computed again 
as in Equation (22) based on the FLEX-GHDM estimates. To partition the remainder HDN (say, 
the RHDN) effect into a sample selection effect and an EC endogeneity effect, we compute the 
TNTT of the FLEX-GHDM and of the ND-GHDM. The difference of the TNTT between the ND-
GHDM and the FLEX-GHDM (the subtraction applied in that order) as a proportion of the ND-
GHDM TNTT provides the sample selection proportion of HDN in the Flex-GHDM model. 
Finally, to obtain a similar partitioning for the N-GHDM model, we take the difference between 
the TNTT values of the traditional GHDM and the N-GHDM, and designate this amount as a 
proportion of the traditional GHDM as the sample selection effect.  

Table 5 presents the estimated “true effect” (ATE), the sample selection effect, and the EC 
endogeneity effect, both in absolute terms as well as a percentage. In doing so, for the IHDM 
model, we introduce the exogenous variables (sociodemographic variables) used to explain the 
latent constructs as exogenous variables in the choice dimension equations. This way, the 
contribution to the observed part of the utility due to sociodemographic variables is still 
maintained. The first row under the “IHDM model” heading indicates that a random individual 
shifted from a non-HDN to an HDN is, on an average, likely to increase monthly bicycling 
frequency by 0.321 instances (this represents about a 14% increase relative to the current sample 
average of 2.33 monthly bicycling frequency). Equivalently, if 100 random individuals are 
relocated from a non-HDN to an HDN, the point estimate from the IHDM indicates an increase in 
monthly bicycling frequency by about 32 instances. Because the IHDM completely ignores any 
self-selection effects, the ATE is the same as the TTNT, as mentioned earlier. However, the ATE 
for all the four GHDM versions are lower than the ATE for the IHDM, because all these GHDM 
models do acknowledge that some of the HDN effect as manifested in the ATE of the IHDM is 
not causal, but due to spurious self-selection and/or EC endogeneity effects. Across the four 
GHDM models, the estimated “true” HDN effect is lowest (and the self-selection effect is highest) 
in the case of the traditional-GHDM (TR-GHDM), while the estimated “true” HDN effect is 
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highest (and the self-selection effect is lowest) for the proposed flexible-GHDM (FLEX-GHDM). 
As explained in Section 1.2, the traditional GHDM ignores EC endogeneity, which then 
overestimates the EC effect on the two main outcomes and therefore the self-selection effect. This 
leads to an underestimation (quite substantially in our empirical context) of the “true” HDN living 
effect on the bicycling frequency (as evident from the first two numeric rows of Table 5). In fact, 
the “true” causal effect, as estimated by our proposed FLEX-GHDM model is almost twice that 
estimated by the TR-GHDM model, with the self-selection effect contribution dropping from 
59.2% in the TR-GHDM model to 6.5% in our proposed model). Our results from Table 5 also 
suggest that, in our empirical context, the difference between the TR-GHDM and ND-GHDM, and 
between the N-GHDM and FLEX-GHDM, is rather marginal, suggesting that non-normality or 
normality of the EC construct does not play much of a role in estimating “true” HDN effects on 
bicycling frequency. Of course, this is specific to our empirical context, and can vary in other 
contexts. Besides, the predictions from a data fit stand point are still better for the non-normal EC 
models than the normal EC models, as discussed in the next section. Finally, it should be noted 
that the only way to test whether normal distributions suffice in an empirical context is by 
estimating a GHDM model allowing for non-normal latent constructs, and then testing with 
normally distributed latent constructs.  

Overall, our results strongly emphasize the importance of allowing an unobserved 
dependency structure between attitudinal constructs and dependent outcomes in cross-sectional 
analyses of residential living and travel behavior, and demonstrate the pitfalls of using the 
traditional GHDM for such multivariate data analysis. In fact, as should be clear from the results, 
our analysis suggests that earlier cross-sectional studies that may have attempted to control for 
residential self-selection effects without considering attitude and lifestyle endogeneity may be 
even worse than simpler models that completely ignore self-selection effects (note that the IHDM 
ATE is closer to the FLEX-GHDM than is the TR-GHDM ATE in Table 5). Importantly, ignoring 
the package nature of the attitude-built environment-travel behavior (A-BE-TB) connection when 
investigating built environment effects on travel behavior can lead to mis-informed policies and 
mis-directed infrastructure investment decisions. In our case, the results suggest an 
underestimation of the “true” HDN living effect on bicycling propensity if EC endogeneity is 
ignored (such as in the traditional GHDM model). This may erroneously lead policy-makers to 
refrain from implementing neo-urbanist investments, or considering unnecessarily high 
investments in bicycle-friendly infrastructure to achieve a set goal of bicycle use. On the other 
hand, our results also suggest an overestimation of the “true” HDN living effect on bicycling 
propensity if both sample selection and EC endogeneity is ignored (as in the IHDM model), which 
can erroneously provide a much more “rosier” picture of the benefits accruing from densification 
to promote bicycling. Additionally, our results suggest an overestimation of EC effects on both 
HDN living and bicycling propensity if the package nature of the A-BE-TB connection is ignored. 
For example, in the case of bicycling frequency, the TR-GHDM indicates that the lower 
environmental consciousness of older adults (>65 years) contributes about 31% to the lower 
bicycling propensity of such individuals, while the proposed FLEX-GHDM indicates that this 
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lower environmental consciousness in older adults contributes only 20%. That is, our results 
suggest that campaigns to increase bicycling frequency among older adults through raising 
environmental consciousness is likely to have a much more limited effect than would be estimated 
by traditional models. 
 
4.5. Data Fit Comparison 
As discussed in the previous section, the substantive implications from the IHDM and the many 
GHDM models are quite different in regard to the effect of HDN living. While not presented here 
to conserve on space, the magnitude of the effects of other exogenous variables also vary across 
the models. In this section, to determine which of the models provides the best data fit, we present 
a comparative analysis of the five models; the IHDM, the TR-GHDM, the ND-GHDM, the N-
GHDM, and the FLEX-GHDM. This analysis is undertaken using both likelihood and non-
likelihood based measures. The likelihood-based measures are based on predictive likelihood at 
convergence for the two main outcome variables (since our primary goal is to understand the 
bicycling frequency and residential choice decisions, we focus on the predictive capability of our 
models for only these two main outcomes). The models may then be compared using a predictive 

Bayesian Information Criterion (BIC) statistic [= – ˆ( )Z + 0.5 (# of model parameters) log (sample 

size)] ( ˆ( )Z  is the predictive log-likelihood at convergence). The model with a lower BIC statistic 

is the preferred model. In addition, the adjusted likelihood ratio index of each of the four models 
is computed as follows with respect to the log-likelihood with only the constants in the two 
outcomes: 


2 ( )

1
( )

θL M

L c
 

   (24) 

where ( )θL  and ( )L c  are the predictive log-likelihood functions at convergence and at constants, 

respectively, and M is the number of parameters (excluding the constants) estimated in the model.  
We also evaluate the data fit of the models intuitively and informally at both the 

disaggregate and aggregate levels. At the disaggregate level, we first compute the multivariate 
predictions for each of the two outcomes (this entails a total of 4 2 = 8 combinations). Then, we 
compute an average (across individuals) probability of correct prediction at this full combination 
level. The model with the highest average probability of correct prediction is preferred. At the 
aggregate level, we design a heuristic diagnostic check of model fit by computing the predicted 
aggregate number of individuals in each of the 8 combinations for all the GHDM frameworks. 
These are then compared with the actual shares and the absolute percentage error (APE) statistic 
is computed. 

The results of the disaggregate data fit evaluations are provided in Table 6. The predictive 
log-likelihood at convergence, the BIC values, predictive adjusted likelihood ratio indices, and the 
average probability of correct prediction from the models indicate the better fit of the proposed 
FLEX-GHDM relative to all the other models. In terms of aggregate data fit too (see Table 7), the 
APE from the FLEX-GHDM framework is lower for almost all the combinations than those from 
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the restricted GHDM versions. As importantly, even though the “true” causal effect does not vary 
much between the N-GHDM and FLEX-GHDM models, the FLEX-GHDM model shows better 
data fit relative to the N-GHDM model, with just the addition of a single parameter. Overall, the 
weighted average (weighted by the share of each outcome combination) of the absolute percentage 
error (weighted MAPE) is the lowest for the FLEX-GHDM model and the highest for the IHDM 
model.  

 
5. CONCLUSION 
There is growing interest in multivariate dependent outcome models that include a mixture of 
different kinds of discrete and continuous variables. This may be attributed to at least two reasons. 
The first is the ability to generate multivariate distributions through the use of relatively flexible 
copula-based methods and/or the use of effective factorization techniques for the covariance 
matrices that reduce the number of covariance parameters to be estimated. The second is the 
development of computationally efficient ways to estimate models based on variational methods 
for Bayesian inference or maximum approximate composite marginal likelihood methods for 
frequentist inference However, there are two important assumptions in most earlier mixed data 
models, including the GHDM framework proposed by Bhat (2015): (i) marginal normality of 
unobserved factors that generate jointness, and (ii) independence between the unobserved factors 
and the propensity equations underlying the main outcomes of interest. 

In the current paper, we simultaneously relax both these assumptions of earlier mixed data 
modeling efforts and develop a flexible GHDM model for mixed data modeling. We then propose 
a hybrid MSL-MACML inference approach for estimation. To our knowledge, this is the first 
study to propose such a flexible methodological structure for multiple mixed outcomes modeling. 
We demonstrate an application of our proposed model in the context of individuals’ high-density 
residential neighborhood living choice and monthly bicycling frequency. The sample used is 
derived from the 2019 Puget Sound Regional Council Household Travel Study that collected 
socio-demographic, residential, and activity-travel data, as well as elicited information on 
attitudes/preferences through Likert scale indicator questions. Environmental consciousness is 
used as a non-normally distributed latent construct (that is, an unobserved stochastic factor), and 
is considered endogenous to the main ordinal outcomes of individuals’ residential neighborhood 
living choice and bicycling frequency.  

Overall, our study proposes a new methodological approach to introduce non-normality in 
mixed data models, while also recognizing factor endogeneity effects. Our empirical results 
demonstrate the importance of considering both these methodological issues, with normality being 
strongly rejected (based on the  parameter being statistically significantly different from one), 

and clear evidence of statistically significant endogeneity effects of the latent constructs. Ignoring 
these effects, in our specific empirical context, leads to an underestimation of the true impact of 
high-density neighborhood living on bicycling frequency.  
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          Figure 1a: True case                              Figure 1b: Incorrect/biased case 

 

 

 

 

Figure 2: Density of transformed variable for different lambda values 
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Table 1: Dependent outcomes description  

  
High-Density Neighborhood (HDN) Living Total 

No Yes  

Bicycling 
Frequency  

Never 

1483 

(58.2%)* 

(71.9%)+ 

1064 

(41.8%) 

(67.2%) 

2547 

(69.8%) 

Rarely 

376 

(58.1%) 

(18.2%) 

271 

(41.9%) 

(17.1%) 

647 

(17.8%) 

Regularly 

142 

(47.0%) 

(6.9%) 

160 

(53.0.%) 

(10.1%) 

302 

(8.3%) 

Habitually 

             61 

(40.9%) 

  (3.0%) 

88 

(59.1%) 

  (5.6%)  

149 

(4.1%) 

Total 2062 (56.6%) 1583 (43.4%) 
3645 

(100%) 
* Top percentage in parenthesis refers to row percentage. Thus, 58.2% of individuals who never bicycle do not live 
in HDNs, while 41.8% of individuals who never bicycle do live in HDNs. 

+ Bottom percentage in parenthesis refers to column percentage. Thus, 71.9% of individuals who do not live in 
HDNs never bicycle, compared to 67.2% of individuals living in HDNs who never bicycle.  
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Table 2: Latent construct indicator loadings 

 
Environmental Consciousness (EC) 

Coeff. t-stat 

Importance of being within a reasonably short commute 
to work. 

0.611 33.13 

Importance of having a walkable neighborhood and 
being near local activities when choosing residence 
location. 

1.208 25.45 

Importance of being close to public transit when 
choosing residence location. 

1.107 27.23 

 

 

Table 3: Latent construct SEM component 

Variables (base category) 
Environmental Consciousness (EC) 

Coeff. t-stat 

Individual-Level Characteristics   

Female (base: male) 0.142 2.77 

Age (base: below 35 years)   

    35 to 44 - - 

    45 to 64 -0.390 -8.77 

    65+ -0.658 -9.12 

Education level (base: less than Bachelor’s)   

    Bachelor’s degree or higher 0.529 5.17 

Employed (base: not employed) 0.166 2.56 

Household-Level Characteristics   

Presence of child below 18 years (base: not present) -0.527 -9.17 

Annual household income (base: less than $25,000)   

    $25,000 - $49,999 - - 
    $50,000 - $99,999 - - 
    Greater $100,000 0.103 2.28 

Transformation parameter (λ) 0.466 3.68* 
*The standard error of λ is 0.145, and the t-statistic entry here is for the test of λ =1 (that is, for the test of normality of 
the EC latent construct) 
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Table 4: Main outcome results (coefficients represent effects on underlying latent propensity) 

Variables 

High-Density 
Neighborhood 

Living 

Bicycling 
Frequency 

Coeff. t-stat Coeff. t-stat 

Latent Construct Effects     

Environmental consciousness (EC) 0.351 2.55 0.148 2.55 

EC * Worker - - 0.114 2.05 
     
Individual Characteristics     

Female (base: Male) - - -0.295 -5.22 

Age (base: below 35 years)     

  35 to 44 -0.295 -4.02 - - 

  45 to 64 -0.507 -2.99 - - 

  65+ -0.678 -4.67 -0.275 -3.88 

Education level (base: less than Bachelor’s)     

    Bachelor’s degree 0.547 3.78 - - 

    Graduate or higher degree 0.678 5.05 0.154 2.98 

Student (base: non-student) 0.157 2.44 - - 
     
Household Characteristics      

Number of adults is 3 or more (base: 2 or less) -0.725 -6.06 - - 

Child(ren) below 5 years of age present (base: not present) -0.762 -5.13 -0.143 -3.11 

Child(ren) 5-17 years of age present (base: not present) -0.762 -5.13 0.248 3.51 

Annual household income (base: less than $25,000)     

  $25,000 - $49,999 -0.317 -3.12 -0.112 -2.45 

  $50,000 - $99,999 -0.582 -4.05 -0.112 -2.45 

  Greater $100,000 -0.428 -3.03 -0.112 -2.45 
     

Endogenous Outcome Effect (  parameter)      

High-density neighborhood (HDN) living NA NA 0.111 3.66 

Thresholds     

Threshold 1 -0.023 -1.29 0.549 9.12 

Threshold 2 NA NA 1.212 12.56 

Threshold 3 NA NA 1.827 17.77 

Correlations with Environmental Consciousness 0.149 2.08 0.354 2.77 
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Table 5: HDN living effect on monthly bicycling frequency 

Metric IHDM TR-GHDM ND-GHDM N-GHDM FLEX-GHDM 

“True” causal HDN 
Effect (ATE) 0.321 (100.0%)* 0.131 (40.8%) 0.133 (41.4%) 0.261 (81.3%) 0.263 (81.9%) 

Estimated self-
selection effect 

0.000       (0.0%) 0.190 (59.2%) 0.188 (58.6%) 0.023   (7.1%) 0.021   (6.5%) 

Estimated EC 
endogeneity effect 

0.000       (0.0%) 0.000   (0.0%) 0.000   (0.0%) 0.037 (11.6%) 0.037 (11.6%) 

*Values in parenthesis provide the contribution of each effect as a percentage of the total HDN effect from the IHDM model 

(=0.321) 

 
 
Table 6: Data fit measures summary 

Summary Statistics 
Model 

IHDM TR-GHDM ND-GHDM  N-GHDM 
FLEX-
GHDM 

Predictive log-likelihood at 
convergence 

-5322.04 -5215.707 -5207.126 -5196.409 -5183.269 

Number of parameters 36 51 52 53 54 
Bayesian Information 
Criterion (BIC) 

5469.66 5424.835 5420.355 5413.738 5404.699 

Constants-only predictive 
log-likelihood 

-5754.98 

Predictive adjusted 
likelihood ratio index 

0.081 0.085 0.086 0.088 0.090 

Average probability of 
correct prediction 

0.289 0.310 0.317 0.323 0.334 

 
 
Table 7: Aggregate shares prediction 

Bicycling 
frequency 
(monthly) 

HDN 
living? 

Observed 
shares 

Predicted shares 

IHDM TR-GHDM ND-GHDM N-GHDM 
FLEX-
GHDM 

Never No 40.69% 41.21% 41.10% 40.85% 40.91% 40.80% 

Rarely No 10.32% 9.49% 9.66% 9.71% 9.74% 9.85% 

Regularly No 3.90% 4.39% 4.25% 4.36% 4.31% 4.25% 

Habitually No 1.67% 2.00% 2.00% 2.00% 2.00% 1.95% 

Never Yes 29.19% 28.53% 28.75% 29.03% 29.00% 29.11% 

Rarely Yes 7.43% 8.20% 8.18% 8.09% 8.07% 8.01% 

Regularly Yes 4.39% 4.09% 4.01% 3.98% 3.95% 3.98% 

Habitually Yes 2.41% 2.09% 2.05% 1.98% 2.02% 2.05% 
Weighted MAPE  4.22% 3.68% 3.24% 3.18% 2.63% 

 


