
 

 

 

 

 

Household Vehicle Type Holdings and Usage: An Application of the Multiple Discrete-

Continuous Extreme Value (MDCEV) Model  

 

 

 

Chandra R. Bhat and Sudeshna Sen 
 

The University of Texas at Austin, Department of Civil Engineering 

1 University Station C1761, Austin, Texas 78712-0278 

Tel: 512-471-4535, Fax: 512-475-8744 

E-mail: bhat@mail.utexas.edu, ssen@mail.utexas.edu 
 



 

ABSTRACT 

The increasing diversity of vehicle type holdings and the growing usage of vehicles by 

households have serious policy implications for traffic congestion and air pollution. 

Consequently, it is important to accurately predict the vehicle holdings of households as well as 

the vehicle miles of travel by vehicle type to project future traffic congestion and mobile source 

emission levels. In this paper, we apply a multiple discrete-continuous extreme value model to 

analyze the holdings and use of multiple vehicle types by households. Data for the analysis is 

drawn from a 2000 San Francisco Bay Area survey. The model results indicate the important 

effects of household demographics, residence location variables and vehicle attributes on vehicle 

type holdings and use. The model developed in the paper can be applied to predict the impact of 

demographic, land use, and operating cost changes on vehicle type holdings and usage. Such 

predictions are important at a time when the household demographic characteristics are changing 

rapidly in the United States. The predictions can also inform the design of proactive land-use, 

economic, and transportation policies to influence household vehicle holdings and usage in a 

way that reduces traffic congestion and air quality problems. 
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1. INTRODUCTION 

The subject of household vehicle type holdings and use has been the focus of extensive 

research in the fields of economics, marketing and transportation. There are at least two reasons 

for this. First, vehicle type holdings and use play a significant role in determining consumer 

demand for different types of vehicles. Thus, from the perspective of car manufacturers, the 

preferences for different vehicle types in the overall population, and in demographic subgroups 

of the population, provide information to design future vehicles, to set production levels of 

different currently existing vehicle types, and to market vehicles by adopting appropriate 

positioning and targeting strategies. Second, vehicle holdings and use have an important 

influence on almost all aspects of the activity and travel behavior of individuals and households. 

For instance, the 2001 National Household Transportation Survey (NHTS) data shows that 87% 

of the daily trips in the United States are made by personal-use motorized vehicles, of which 

almost half are contributed by single-occupant vehicles (see Pucher and Renne, 2003). The 

increasing usage of motorized personal vehicles, combined with significantly low vehicle 

occupancy rates, has serious policy implications for traffic congestion and air pollution.  

The research in the current paper is motivated from a (public) transportation policy 

perspective, rather than a car manufacturer perspective, though the results from the research 

should also serve the purpose of car manufacturers. From a transportation perspective, in 

addition to the increasing usage of motorized personal vehicles, recent studies suggest an 

increasing diversity of motorized vehicle type holdings by households. The 2001 NHTS data 

shows that only about 57% of the personal-use vehicles are cars or station wagons, while 21% 

are vans or Sports Utility Vehicles (SUV) and 19% are pickup trucks. The increased holdings of 

vans, SUVs, and pickup trucks, in turn, has led to a surge in the vehicle miles traveled using 
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these vehicles. This shift from small passenger car vehicle miles of travel to large non-passenger 

car vehicle miles of travel has implications for roadway capacity, since larger vehicles take up 

more room on roadways than smaller vehicles. The resulting reduced capacity exacerbates the 

problem of traffic congestion caused by increasing motorized personal vehicle use. Further, 

Environmental Protection Agency (EPA) statistics show that an average van, SUV, or pickup 

truck produces twice the amount of pollutants emitted by an average passenger car. The net 

result from a traffic management and air quality standpoint is higher traffic congestion levels and 

more mobile source emissions from the tailpipe of vehicles. 

Clearly, it is important to accurately predict the vehicle holdings of households as well as 

the vehicle miles of travel by vehicle type to support critical transportation infrastructure 

planning and project mobile source emission levels. The household vehicle-holdings mix and 

vehicle miles of travel varies depending upon the demographic characteristics of the household, 

vehicle attributes, fuel costs, travel costs, and the physical environment characteristics (land-use 

and urban form attributes) of the residential neighborhood. Thus, the substantial changes in the 

demographic characteristics of households and individuals projected in the next decade and 

beyond can have a significant impact on household fleet holdings and usage. Similarly, the direct 

and demographic interaction effects of vehicle attributes, fuel costs, travel costs, and 

neighborhood characteristics are also likely to impact household fleet holdings and usage. A 

clear estimate of such impacts will not only help accurate predictions, but can also inform the 

design of proactive land-use, economic, and transportation policies to influence household 

vehicle holdings and usage in a way that reduces traffic congestion and air quality problems.  

Several earlier studies have examined household vehicle holdings, either in the form of 

the number and type of vehicles owned, the most recent vehicle purchased, or the type of vehicle 
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driven most often.1 The previous studies on household vehicle holdings include the choice of the 

most recent vehicle purchased or the choice of a new vehicle planned to be purchased (Lave and 

Train, 1979; Kitamura et al., 2000; Brownstone et al., 2000; Page et al., 2000; Birkeland and 

Jorgensen, 2001), the make/model/vintage composition of the household vehicle holdings 

(Manski and Sherman, 1980; Mannering and Winston, 1985), the vehicle which is driven most 

(Choo and Mokhtarian, 2004), joint choice of vehicle make/model/vintage and vehicle 

ownership level (Berkovec, 1985, Hensher et al., 1992), joint choice of vehicle 

make/model/vintage and vehicle acquisition type (Mannering et al., 2002) and joint choice of 

vehicle type and vehicle age (Berkovec and Rust, 1985; Mohammadian et al., 2003). Choo and 

Mokhtarian (2004) have provided an excellent review of studies focusing on vehicle type 

holdings, including details of the dependent variable characterizing vehicle types, the significant 

explanatory variables used in the analysis, the type of modeling structure applied, and 

information regarding the data source. The reader will note that some of the studies reviewed in 

Choo and Mokhtarian (2004) examine aspects of vehicle holding jointly with vehicle usage 

levels.  

 The earlier studies discussed above have provided important insights into the factors 

affecting vehicle type choice and use. All of these studies, to our knowledge, use standard choice 

models (multinomial logit or nested logit) for the vehicle type dimension and a continuous linear 

regression model for the vehicle use dimension (if this second dimension is included in the 

analysis).2 These earlier studies are able to use standard choice models (where one and only one 

                                                 
1A number of earlier studies have also focused on vehicle ownership levels and use. These studies are not of 
immediate interest here since the focus of the current paper is on vehicle type holdings and use. For a 
comprehensive review of studies on vehicle ownership/use (with no vehicle type holdings analysis), the reader is 
referred to De Jong et al., 2004. 
2 Some studies, such as Train (1986), use the logarithm of vehicle use as the dependent variable. However, the basic 
functional relationship between the dependent and independent variables takes a linear regression form. 
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alternative out of several is selected) because of the way they have framed the dependent 

variable. Specifically, several studies have examined the vehicle type of the most recent vehicle 

purchased, or the most driven vehicle, or considered only single-vehicle households. These 

studies, while useful in limited ways, do not capture the portfolio of vehicle types that a single 

household may hold at any time (for example, a sedan as well as a minivan). Some other studies 

have considered multiple vehicle type holdings of a household by treating multiple vehicle 

choices as if they represented a string of independent (or sequential) single vehicle choice 

occasions, or by enumerating all the possible combinations of vehicle types as alternatives. The 

problems associated with these approaches are three-fold. First, these approaches do not 

recognize that there is intrinsic multiple discreteness in the mix of vehicle types held by 

households. That is, these studies do not consider that households own a mix of vehicle types to 

satisfy different functional or variety-seeking needs (such as being able to travel on weekend 

getaways as a family or to transport goods). Thus, there is diminishing marginal returns (i.e., 

satiation) in using a single vehicle type, which is the fundamental driving force for households 

holding multiple vehicle types. Standard discrete choice models are not equipped to handle such 

diminishing marginal returns or satiation effects.3 Second, the approach of enumerating all 

possible combinations of vehicle types can lead to an explosion in the number of alternatives in 

the choice set. If there are J vehicle types, the number of alternatives would be . As an 

example, if there are five distinct vehicle types, one would have to define 35 alternatives in the 

standard discrete choice approach. This has the result of leading to a model with several 

alternative specific variables. Third, modeling the continuous dimension of vehicle use becomes 

very cumbersome in the above approaches. 

2 1J −

                                                 
3Standard discrete choice models assume no satiation effects because they use a linear utility specification. That is, 
the marginal utility of any vehicle type is independent of vehicle usage. The reader is referred to Bhat, 2005 for 
further details. 
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 In this paper, we apply a multiple discrete-continuous extreme value (MDCEV) model 

derived from the primitives of utility theory. This model addresses the issue of households 

potentially holding a mix of different vehicle types, jointly with modeling the annual miles of use 

of each vehicle type. The MDCEV model was developed recently by Bhat (2005) and is ideally 

suited for vehicle type and use modeling because it is based on the concept that households hold 

multiple vehicle types due to diminishing marginal returns from the usage of each vehicle type. 

From a practical standpoint, the MDCEV model represents a parsimonious model structure. In 

the current application, we extend the MDCEV model to accommodate unobserved 

heteroscedasticity and error correlation across the vehicle type utility functions by using a 

mixing structure, resulting in the mixed MDCEV (or MMDCEV) model.4  

The rest of this paper is structured as follows. The next section discusses the model 

structure of the MDCEV and MMDCEV models. Section 3 identifies the data sources, describes 

the preparation of the data for model estimation, and presents relevant sample characteristics. 

Section 4 discusses the variables considered in model estimation and the empirical results. 

Section 5 presents an application of the model. The final section summarizes the major findings 

of this study and discusses future extensions.  

 

                                                 
4 The MMDCEV model used here is a static vehicle type holdings and use model, similar to the studies listed earlier 
in this section. Such static models predict holdings at any particular period without regard to the vehicle holdings in 
the earlier period. The application of such static models at different and closely-spaced time points can lead to the 
unrealistic situation of a household holding very different vehicle portfolios between the two time points. However, 
such static models may be reasonable over longer time periods, as indicated by De Jong et al. (2004). Another 
formulation that seeks to more consistently reflect the actual household vehicle holdings decision process is the 
dynamic vehicle transaction approach, in which households decide on disposing, adding, replacing, or maintaining 
the status quo of their current vehicles over time as well as the attributes of any new vehicles entering their 
household vehicle fleet (see, for example, Hocherman et al., 1983; Gilbert, 1992; HCG, 1995; De Jong, 1996; 
Bunch et al., 1996). The dynamic approach is particularly appealing for short-to-medium term forecasts. However, 
such transaction models require a “significant ongoing commitment to collecting panel data” (see Bunch, 2000) and 
can be relatively cumbersome to apply. Besides, the theoretical linkage between usage and vehicle type holdings is 
rather tenuous in most dynamic models to date.  
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2. METHODOLOGY 

2.1 The Multiple Discrete-Continuous Extreme Value (MDCEV) Model 

Let there be K different vehicle types that a household can potentially own.  Let  be 

the annual mileage of use for vehicle type j (j = 1, 2,…, K).  The utility accrued to a household is 

specified as the sum of the utilities obtained from using each type of vehicle.  Specifically, the 

utility over the K vehicle types is defined as: 

jm

,))((
1

j
jjj

K

j

mxU αγψ += ∑
=

                                          (1) 

where )( jxψ  is the baseline utility for vehicle type j, and jγ  and jα  are parameters (note that ψ  

is a function of observed characteristics, , associated with vehicle type j). jx

As discussed by Kim et al. (2002), the utility form in Equation (1) belongs to the family 

of translated utility functions, with jγ  determining the translation and jα  influencing the rate of 

diminishing marginal utility from using a particular vehicle type j.  The function in Equation (1) 

is a valid utility function if )( jxψ > 0 and 0 < jα  ≤ 1 for all j.  Further, the term jγ  determines if 

corner solutions are allowed (i.e., a household does not own one or more vehicle types) or if only 

interior solutions are allowed (i.e., a household is constrained by formulation to own all vehicle 

types). The latter situation is, of course, of little practical value, since very rarely (if at all) will 

any household own all different types of vehicles. 

The utility form of Equation (1) is flexible enough to accommodate both interior and 

corner solutions (Kim et al., 2002; Bhat, 2005).  In addition, the utility form is also able to 

accommodate a wide variety of situations characterizing vehicle type preferences based on the 

values of )( jxψ  and jα  (j = 1, 2,…, J).  A high value of )( jxψ  for one vehicle type (relative to 
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all other vehicle types), combined with a value of jα  close to 1, implies a high baseline 

preference and a very low rate of satiation for vehicle type j.  This represents the situation when 

a household primarily uses only one vehicle type for all its travel needs (i.e., a “homogeneity-

seeking” household).  On the other hand, about equal values of )( jxψ  and small values of jα  

across the various vehicle types j represents the situation where the household uses multiple 

vehicle types to satisfy its travel needs (i.e., a “variety-seeking” household).  More generally, the 

utility form allows a variety of situations characterizing a household’s underlying behavioral 

preferences for different vehicle types. 

A statistical model can be developed from the utility structure in Equation (1) by 

adopting a random utility specification.  Specifically, a multiplicative random element is 

introduced to the baseline utility as follows: 

jexx jjj
εψεψ ⋅= )(),( ,                        (2) 

where jε  captures idiosyncratic (unobserved) characteristics that impact the baseline utility for 

vehicle type j.  The exponential form for the introduction of random utility guarantees the 

positivity of the baseline utility as long as )( jxψ  > 0.  To ensure this latter condition, )( jxψ  is 

parameterized further as )exp( jxβ ′ , which then leads to the following form for the baseline 

random utility: 

)exp(),( jjjj xx εβεψ +′= .                       (3) 

The  vector in the above equation includes a constant term reflecting the generic preference in 

the population toward vehicle type j.  The overall random utility function then takes the 

following form: 

jx
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'[exp( )].( ) j
j j j j

j

U x m αβ ε γ= + +∑                       (4) 

The satiation parameter, jα , in the above equation needs to be bounded between 0 and 1, 

as discussed earlier.  To enforce this condition, jα  is parameterized as )]exp(1/[1 jδ−+ .  Further, 

to allow the satiation parameters to vary across households, jδ  is specified as jjj yθδ ′= , where 

 is a vector of household characteristics impacting satiation for the jth alternative, and jy jθ  is a 

corresponding vector of parameters.   

 In the current implementation of the model, we assume that the total household annual 

mileage, M, accrued across all personal motorized vehicles is known a priori5. From the 

analyst’s perspective, the individual is then maximizing random utility ( ) in Equation (4) 

subject to the constraint that , where M is the total household motorized annual 

mileage. This constraint implies that the optimal annual miles on only K-1 vehicle types need to 

be determined, since the annual miles of use for any one vehicle type can be automatically 

determined from the annual miles of other vehicle types. The implication is that one of the K 

vehicle types will have to be considered as the base when introducing a constant or household-

specific variables in the utility functions of the K vehicle types. 

U

Mm j

K

j

=∑
=1

The analyst can solve for the optimal usage (say )  of different vehicle types by 

forming the Lagrangian for Equation (4) with respect to the total miles of travel constraint and 

applying the Kuhn-Tucker conditions. Assuming that the 

*
jm

jε  terms are independently and 

                                                 
5 This is only because we do not have adequate information from the survey to construct a mileage value for use of 
non-motorized modes of travel. If this information were available, we can add another “vehicle type” category 
corresponding to non-motorized modes. This category can be considered as an “outside good” which is always 
“consumed”, since households will use non-motorized modes for some amount of their travel (if at least for walking 
to the personal vehicle). In this instance, M would correspond to the total annual motorized and non-motorized travel 
mileage, and the annual motorized mileage would be endogenous to the model. The total annual motorized and non-
motorized travel mileage would need to be modeled in an earlier step in this case. 
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identically distributed across alternatives, and are distributed standard Gumbel, the model 

simplifies to a remarkably elegant and compact closed form MDCEV structure (see Bhat, 2005 

for a derivation). The probability that the household owns I of the K vehicle types (I ≥ 1) is: 

( )
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1  where  and ' *ln ( 1) ln( )j j j j jV x m jβ α α γ= + + − + . 

In the case when I = 1 for a particular household (i.e., only one vehicle type is chosen by 

the household), the model in Equation (5) collapses to the standard MNL structure. Intuitively, 

there is no continuous component to be estimated if only one vehicle type is chosen, because the 

vehicle type chosen will be used for all the travel miles M of the household, and M is given as 

input (all households own at least one vehicle type, since M > 0). Thus, the continuous 

component falls out, and the multiple discrete-continuous model collapses to the MNL structure 

of single discrete choice with a non linear-in-parameters utility form for jV  for the household. 

Note, however, that if each and every household in the sample chooses only one vehicle type, 

there is no continuous component to estimate and so the 'j sα  have to be constrained to 1, which 

is what is implicitly done in standard discrete choice models. In this instance, the MDCEV 

model is identical to the linear-in-parameters MNL model.6 

                                                 
6 The MDCEV model formulation also represents a multiple discrete-continuous extension of the single discrete-
continuous model formulations of Hausman (1980), Dubin and McFadden (1984), Hanemann (1984), Mannering 
and Winston (1985), Train (1986), Chiang (1991), Chintagunta (1993), and Arora et al. (1998). In the single 
discrete-continuous models, the discrete alternatives are assumed to be perfect substitutes so that, in the context of 
the current application, only a single vehicle type is chosen. This may be viewed as a special two alternative case 
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2.2 The Mixed MDCEV (or MMDCEV) Model 

 The previous section assumed that the jε  terms are independently and identically 

distributed across vehicle types. However, these assumptions are needlessly restrictive (for 

example, households who have a predisposition toward an SUV may also be predisposed toward 

pickup trucks and minivans, since these vehicles allow more passengers to be carried and/or 

provide more luggage room). Incorporating a more general error structure in the MDCEV model 

is straightforward through the use of a mixing distribution, which leads to the Mixed MDCEV 

(or MMDCEV) model. The approach we use in the current paper for the mixing is more 

straightforward and parsimonious than the one proposed in Bhat (2005). Specifically, the error 

term, jε , may be partitioned into two components, jζ and jη . The first component, jζ , is 

assumed to be independently and identically standard Gumbel distributed across alternatives. 

The second component, jη , is allowed to be correlated across alternatives and to have a 

heteroscedastic scale. Let 1 2
'( , ...... )Jη η η η= , and assume that η  is distributed multivariate 

normal, ~ (0, )Nη Ω . Then, for given values of the vector η , one can follow the discussion of 

the earlier section and obtain the usual MDCEV probability that the household holds and uses I 

of the J vehicle types ( 1 : )

                                                                                                                                                            

I ≥

 
within the multiple discrete-continuous formulation, with one alternative (say the first) always being consumed. This 
first alternative may be labeled as “non-motorized travel mode”, an “outside good” which is always “consumed”, 
since households will use non-motorized modes for some amount of their travel (if at least for walking to the 
personal vehicle). The second alternative would be a composite of all motorized vehicle types, the baseline utility 
for which corresponds to the maximum utility across all motorized vehicle types j. This maximum utility is 
essentially a log-sum parameter from the standard discrete choice model for vehicle type. With this simplification, 
the MDCEV model is applicable to the single discrete-continuous case of a single vehicle type choice and 
corresponding usage. Of course, if the problem at hand is truly a single discrete-continuous one, the customized 
formulations of Hausman, Dubin and McFadden, Hanemann, and others listed above have the advantage of elegance 
and simplicity originating from the application of Roy’s identity to an indirect utility function that links the discrete 
and continuous choices.  
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The unconditional probability can then be computed as: 
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where F is the multivariate cumulative normal distribution. The dimensionality of the integration 

in Equation (7), in the general case, is equal to the number of vehicle types K. 

 

2.3 Estimation of the Mixed MDCEV Model 

The parameters to be estimated in the MMDCEV model of Equation (7) include the β  

vector, the jθ  vectors, and the jγ  scalars for each alternative j (these are embedded in the  

values), and the  variance covariance matrix characterizing the multivariate distribution of the 

jV

Ω

η  vector.  Let θ  be a column vector that stacks all the jθ  vectors vertically, and let γ  be 

another column vector of the jγ  elements stacked vertically. 

 We use the maximum likelihood inference approach to estimate the parameters of the 

MMDCEV model.  Introducing the index q for individuals, we can write the likelihood function 

as: 
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We apply Quasi-Monte Carlo simulation techniques to approximate the integrals in the 

likelihood function and maximize the logarithm of the resulting simulated likelihood function 

across all individuals with respect to β , θ , γ  and Ω . In particular, we evaluate the integrand in 

Equation (8) at different realizations of the 
q

η  draws (for each individual q) from a multivariate 

normal distribution, and compute the average over the different values of the integrand.  

In the current paper, we use a Quasi-Monte Carlo (QMC) method to draw realizations for 

q
η  from the multivariate normal distribution. Specifically, we use 200 draws of the Halton 

sequence (details of the Halton sequence are available in Bhat, 2001; 2003). 

One additional issue needs discussion at this point. The Halton draws do not reflect the 

desired correlation matrix  of the multivariate distribution of Ω qη . They are rather univariate 

draws for each dimension. To translate the univariate Halton draws to the multivariate Halton 

draws, we apply the Cholesky decomposition of the variance-covariance matrix Ω  to the 

univariate draws (see Train, 2003, page 211). In addition, to ensure the positive-definitiveness of 

the correlation matrix Ω , we parameterize the likelihood function in terms of the elements of the 

Cholesky decomposed matrix of  rather than using the elements of Ω Ω  directly. After obtaining 

the convergent parameter values in terms of Cholesky decomposed-matrix of , we obtain the 

equivalent convergent of values of the elements of the matrix 

Ω

Ω . 



Bhat and Sen 13

 All estimations were undertaken using the GAUSS programming language. The gradients 

of the likelihood function (with respect to the parameters to be estimated) were analytically 

coded for use in the maximum simulated likelihood procedure. 

 

3. DATA SOURCES AND SAMPLE FORMULATION 

The primary data source used for this analysis is the 2000 San Francisco Bay Area Travel 

Survey (BATS). The BATS survey was designed and administered by MORPACE International 

Inc. for the Bay Area Metropolitan Transportation Commission.  The survey collected 

information on the vehicle ownership of 14529 households in the Bay Area, including the 

number of vehicles owned by the household, their make and model, year of possession and 

vehicle usage. The dataset also included information on the sociodemographic, employment and 

residential location characteristics of these households.  

The BATS survey, however, does not include information on fuel economy, fuel use, and 

fuel cost by vehicle make and model, which are important attributes needed to examine the 

economic and environmental considerations associated with household vehicle fleet holdings and 

usage. These fuel-related data were obtained from a secondary data source; the Fuel Economy 

guide; which is jointly published by the U.S. Environmental Protection Agency and the U.S. 

Department of Energy (EPA and DOE, 2004). 

The sample used in the current analysis included households from the BATS survey with 

non-zero vehicle ownership. After selecting these non-zero vehicle households, the vehicles 

owned by each household were categorized into one of five vehicle types based on their make, 

model and year. The five vehicle types are (1) Passenger car, (2) Sports Utility Vehicle (SUV), 
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(3) Pickup truck, (4) Minivan, and (5) Van.7 Some households in the BATS survey did not 

provide information on vehicle make and model for their vehicle fleet, and these households 

were removed. From the remaining sample of households, we randomly selected 3500 

households for estimation. Of these 3500 households, 1797 (51%) households owned a single 

vehicle, 1305 (37%) owned two vehicles and the remaining 398 (11%) households owned three 

or more vehicles.8  

Table 1 provides information on the distribution of vehicle types in one-vehicle 

households. This table indicates that most of the one-vehicle households own passenger cars, 

which include coupes, sedans, hatchbacks and stationwagons. The percentage of one-vehicle 

households owning SUVs and Pickup trucks is about 11% each. The average annual mileage 

values (see last column of Table 1) indicate that households owning minivans, SUVs and vans 

use their vehicles more than households owning passengers cars and pickup trucks. 

Table 2 presents information on the distribution of vehicle types within the group of two-

vehicle households.  The table shows that only 43.1% of the two-vehicle households own both 

vehicles of the same type. Thus, more than half of the two-vehicle households own vehicles of 

two different types. The most dominant combination of different vehicle types is the passenger 

car and pickup truck combination (about 20% of the households), the passenger car and SUV 

combination (about 16% of the households), and the passenger car and minivan combination 

(about 12% of the households). Also, the average annual mileage statistics (see the last two 

columns) shows that households have different usages of different vehicle types. For example, 

                                                 
7 The vehicle type classification used here is oriented toward transportation infrastructure planning and emissions 
modeling, and hence the detailed make/model of vehicles is not considered. Some earlier studies have used a finer 
definition of vehicle types to include vehicle makes and models (see Bunch, 2000 for a review). 
8 The sample size of 3500 was based on run-time considerations as well as the judgment that 3500 observations were 
adequate for accurate and reliable model estimation. 
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households which own a passenger car and an SUV use their SUV more than the passenger car 

(see the third row of the Table). 

Of the 3500 households in the sample, 326 households (9%) own three vehicles. Within 

the group of these 326 households, only 18% own vehicles of the same type. About 50% of the 

households own two passenger cars and a third vehicle of a different type, while 27% own one 

passenger car and two vehicles of another type.  

 

4. EMPIRICAL ANALYSIS 

4.1 Variable Specification 

Several different types of variables were considered in the vehicle type and usage model. 

These included household sociodemographics, residential location variables, and vehicle 

attributes. The household sociodemographic variables considered in the specifications included 

household income, presence and number of children, number of employed individuals, presence 

of disabled individuals and presence of senior adults in the household. The residential location 

variables included population density of the residential area of the household and the residential 

area classified into one of four categories: (1) central business district (CBD), (2) urban, (3) 

suburban and (4) rural area.  The only vehicle type attribute we were able to include is the 

vehicle operating cost per mile, which is defined as the price of a gallon of gas divided by the 

average vehicle miles per gallon.9  

 

                                                 
9 As per the fuel economy statistics, passenger cars are considered the most fuel efficient vehicles, while pickup 
trucks and vans are considered the least fuel efficient.  
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4.2 Empirical Results 

Table 3 presents the final specification of the model. The final specification was obtained 

by a systematic process of eliminating insignificant variables and combining the effect of 

variables, when their impacts were not significantly different. The specification process was also 

guided by previous literature in the field, and parsimony and intuitive considerations. 

 

4.2.1 Effect of Household Sociodemographics 

Among the set of household sociodemographic variables, the effect of annual household 

income in Table 3 indicates that high income households are unlikely to own and use pickup 

trucks and vans. Such households have a higher baseline preference for passenger cars, SUVs 

and minivans (alternate functional forms for capturing the effect of income were also attempted, 

but the dummy variable form turned out to be the best in terms of data fit; note, however, that the 

continuous value of household income appears as a normalization variable to represent the effect 

of operating costs in section 4.2.3) 

The presence of children in the household has a substantial effect on vehicle type choice 

and use. The results show that households with very small children (less than 4 years of age) 

have a strong baseline preference for SUVs and minivans, presumably because these vehicles are 

more spacious, safe, and comfortable for travel with small children. A similar result is found for 

households with children between 5-15 years of age, except that such households prefer the 

minivan more and SUV less than households with infants. This result is intuitive, since 

households with older children have greater space needs and may carpool with other households 

to transport children. The preference for minivans is strongest among households with young 

adults.  
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In addition to the effect of children on the preference for minivans, the results also 

indicate that households with more individuals prefer minivans to other vehicle types. The 

preference for minivans, and especially vans, is particularly high for households with one or 

more mobility challenged individuals, possibly because vans provide ample leg room and are 

easier to get in and out of. 

Finally, the effect of the last two variables under household sociodemographics indicate 

that households with several employed individuals are not inclined to own and use minivans, 

while households with many males have a stronger baseline preference for pickup trucks.  

 

4.2.2 Effect of Household Location Variables 

Several household location variables were considered in our specifications, but the only 

variable that was statistically significant was population density. The results indicate a strong 

disinclination toward pickup trucks and SUVs among households residing in highly dense 

neighborhoods. This result deserves further exploration in the future to better understand the 

nature of this effect. However, one plausible explanation for this effect is that pickup trucks and 

SUVs are “rugged-terrain” vehicles. Thus, households residing in low density rural areas (which 

are more likely to be associated with rugged terrains than high density urban areas) are more 

likely to own and use pickup trucks and SUVs. 

 

4.2.3 Effect of Vehicle Operating Cost 

The only vehicle-type attribute in our analysis is the operating cost for each vehicle type. 

Our specification tests indicated that it is most appropriate to include this variable relative to the 

income earnings of the household. As expected, Table 3 indicates that, all other things being 
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equal, households prefer vehicle types that are less expensive to operate. This effect is 

particularly pronounced for households with low income. 

 

4.2.4 Baseline Preference Constants   

The baseline preference constants do not have any substantive interpretations because of 

the presence of continuous exogenous variables in the specification. However, since almost all 

exogenous variables are dummy variables, the constants may be loosely viewed as the generic 

preference for each vehicle type relative to the base category (i.e., passenger cars). The negative 

signs on all the constants indicate a general baseline preference for passenger cars relative to 

other vehicle types. 

 

4.2.5 Satiation Parameters 

The satiation parameter, jα , for each vehicle type j is parameterized as 1/[1+exp(- jδ )], 

where jjj yθδ ′= . This parameterization allows jα  to vary based on household 

sociodemographic and location characteristics, and still be bounded between 0 and 1.  In our 

empirical analysis, no statistically significant variation was found in the jα  parameters based on 

household sociodemographics and location.  

Table 4a provides the estimated values of jα  and the t-statistics with respect to the null 

hypothesis of jα  = 1 (note that standard discrete choice models assume jα  = 1).  Several 

important observations may be drawn from the table.  First, all the satiation parameters are 

significantly different from 1, thereby rejecting the linear utility structure employed in standard 

discrete choice models.  That is, there are clear satiation effects in vehicle type usage decisions.  

Second, satiation effects are low for SUVs and minivans. This perhaps reflects the functionally 



Bhat and Sen 19

versatile nature of these two vehicle types, since they provide comfortable transportation as well 

as adequate room to carry several people and/or cargo. Hence, households prefer to use these 

vehicles if they are available to the household. Third, the highest satiation occurs for passenger 

cars.  Of course, passenger cars also have the highest baseline preference compared to other 

vehicle types. The implication is that households are very likely to own passenger cars, but tend 

to put more miles on non-passenger car vehicles if such vehicles are available to the household. 

 

4.2.6 Variance-Covariance Parameters 

 The error components, qjη , introduced in the baseline preference function generate 

heteroscedasticity and covariance in unobserved factors across the preferences of vehicle types, 

which is captured by the variance-covariance matrix Ω  of qη  (See Section 2.2). As indicated in 

Section 2.2, we do not estimate this variance-covariance matrix directly. Instead, we 

parameterize the likelihood function in terms of the Cholesky decomposition (say S) of Ω . After 

obtaining the estimates of S, the matrix Ω  needs to be computed as . The relevant 

standard errors (and t-statistics) of the elements of 

'S SΩ =

Ω  are computed by re-writing the likelihood 

directly in terms of  (Ω -parameterized likelihood function), computing the estimate of Ω Ω  

from the estimate of S at convergence of the S-parameterized likelihood function, and 

maximizing the Ω -parameterized likelihood function. This “optimization” will immediately 

converge and provide the necessary standard errors for the elements of Ω .  

 The estimated variance-covariance matrix ( Ω̂ ) is shown in Table 4b. For ease of 

discussion and because of the symmetric nature of the matrix, only the upper triangle is 

presented. The reader will note that some of the variance and covariance matrix are zero because 

they did not turn out to be statistically different. The matrix shows that there is least uncertainty 
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in the valuation of the passenger car vehicle type relative to other vehicle types (the passenger 

car uncertainty is confined to the gumbel distributed error term jζ  in section 2.2). The most 

uncertainty is in the valuation of the van (see the diagonal of the matrix). Further, the results 

indicate statistically significant covariance in the utilities of the SUV and pickup truck vehicle 

types, and also the SUV and minivan vehicle types, and the minivan and pickup truck vehicle 

types. That is, unobserved factors that lead to an increased preference for the SUV also lead to an 

increased preference for the pickup truck and minivan vehicle types. Similarly, unobserved 

factors increasing the preference for pickup trucks also increase the preference for minivans. 

 

4.2.7 Overall Measures of Fit 

 The log-likelihood value at convergence of the final mixed multiple discrete-continuous 

extreme value (MMDCEV) model is -9425. The corresponding value for the MMDCEV model 

with only the constant parameters (in the baseline preference), the satiation parameters, and the 

variance-covariance terms is -9575.  The likelihood ratio test value for testing the presence of 

exogenous variable effects is 300, which is substantially larger than the critical chi-square value 

with 14 degrees of freedom at any reasonable level of significance.  This clearly indicates 

variations in the baseline preferences for the vehicle types based on household demographics, 

household location variables, and vehicle operating costs. Further, the log-likelihood value at 

convergence of the MDCEV model that does not allow unobserved heteroscedasticity and 

correlation across the baseline preferences of the different vehicle types is -9445.  The likelihood 

ratio test value for comparing the MDCEV model with the MMDCEV model is 40, which is 

larger than the critical chi-square value with 7 degrees of freedom (corresponding to the seven 

parameters estimated to characterize the variance-covariance matrix).  Thus, there is statistically 
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significant unobserved variation across individuals in their baseline preferences, and statistically 

significant correlation in the utilities of the different vehicle types.  

 In addition to the likelihood-based measures of fit, one can also obtain more intuitive 

measures of predictive utility by comparing predicted values of vehicle type ownership and use 

with the actual observed values at the household-level. The predicted values of vehicle type 

ownership and use can be obtained by solving the following constrained optimization problem 

(in the expression below, we use the index q for households): 
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where G is the standard cumulative Gumbel distribution and F is the multivariate normal 

distribution function.  The constrained optimization problem above can be solved using 

simulation techniques. 

 Summary disaggregate non-likelihood measures of fit can be computed in several ways 

based on a comparison of actual and predicted values.  Two measures of fit are presented here to 

reflect the discrete as well as continuous nature of the predictions from the MMDCEV model.  

The first measure evaluates the ability of the model to correctly predict holdings of the various 

vehicle types (this is the discrete component of the model).  This measure, which we label as the 

“hit rate” measure, indicates the percentage of correct predictions regarding vehicle holdings 

across all households and vehicle types. This “hit rate” measure is computed to be 84%, a rather 

respectable value.  The second measure evaluates the ability of the model to predict the annual 
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miles of travel conditional on a correct prediction regarding vehicle holdings (this is the 

continuous component of the model).  This measure, computed as the mean absolute percentage 

error (MAPE) ratio, is 21%. Overall, the vehicle type model estimated here appears to provide 

reasonable prediction fits.  

 

5. MODEL APPLICATION 

 The model estimated in the paper can be used to determine the change in vehicle type 

holdings and usage due to changes in independent variables over time. This is particularly 

important because of changing demographic, employment-related and operating cost trends. For 

instance, the structure of the household is changing rapidly with an increase in households with 

no children (Texas State Data Center, 2000). The number of employed individuals in the 

household is also on the rise and this trend is likely to continue despite the short-term slump due 

to the economy (U.S. Census Bureau, 1999). Such sociodemographic and other changes will 

have an effect on vehicle type choice and usage, and the model in this paper can be used to 

assess these impacts.  

 The prediction method to assess the changes in vehicle type ownership and use in 

response to changes in relevant exogenous variables, is identical to the one described in the 

earlier section to obtain the intuitive measures of fit. In this paper, we demonstrate the 

application of the model by studying the effect of an increase in vehicle operating costs due to an 

increase in gas cost. Specifically, we modify the “operating cost divided by household income” 

variable to reflect an increase from the $1.40 per gallon cost used in estimation (this corresponds 

to the fuel cost in 2000) to $2.00 per gallon (the cost in the recent past). To examine the impact 
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of this increase, we compute revised expected aggregate shares and the total miles of usage of 

each vehicle type, and then obtain a percentage change from the baseline estimates.10 

 Table 5 presents the results, which show a marginal percentage decrease in the holdings 

of passenger cars, and more significant decreases in the holdings of all the other vehicle types 

(see column labeled “percentage change in holdings of vehicle type”). It is interesting to note 

that the ownership of SUVs and minivans drop by the largest percentage. Though the operating 

costs of pickup trucks and vans are higher than SUVs and minivans, pickup trucks and vans also 

have a larger error variance (Table 4b). Consequently, the signal (cost increase) to noise (error 

variance) ratio is lower for pickup trucks and vans, which has the result of attenuating the impact 

of the signal (see Bhat, 1995). Intuitively, households who own pickup trucks and vans are more 

“committed” to these vehicle types than are SUV- and minivan-owning households. 

 The percentage change in overall usage shows a mild positive increase in the passenger 

car annual miles of travel, and a higher negative decrease in the annual miles of travel of other 

vehicle types. This effect combines the holding change effect with the usage change effect. Thus, 

the overall positive percentage increase in passenger car miles of travel is because of the 

relatively low drop in passenger car holdings combined with usage switching from non-

passenger car vehicle types to the passenger car. Additionally, the positive percentage increase in 

passenger car miles of travel may also be attributed to M (the total motorized miles of travel 

across all vehicle types) being held fixed and exogenous in the current empirical analysis.11 The 

overall reduction in usage of the non-passenger vehicle types is consistent with the fact that vans 

and pickup trucks are the most expensive to operate per mile. It appears that the high operating 

                                                 
10 An increase in vehicle operating costs would likely also impact other travel choices, such as travel mode and 
destination choice. These impacts are not modeled here.  
11 As indicated in the footnote on page 8, the exogeneity of M is maintained because of data limitations. 
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cost signal is strong enough to dominate any differential “noise” effects across the vehicle types 

when both ownership and usage are considered together.  

 

6. CONCLUSIONS 

 The increasing diversity of vehicle type holdings and the growing usage of non-passenger 

car vehicles have serious policy implications for traffic congestion and air pollution. 

Consequently, it is important to accurately predict the vehicle holdings of households as well as 

the vehicle miles of travel by vehicle type to project future traffic congestion and mobile source 

emissions levels. The current paper presents the application of a utility-based model for multiple 

discreteness that models the simultaneous holdings of multiple vehicle types (passenger car, 

SUV, pickup truck, minivan and van), as well as determines the continuous miles of usage of 

each vehicle type, in a joint modeling system. The specific model used here is the mixed multiple 

discrete-continuous extreme value (MMDCEV) model, as recently developed by Bhat (2005). 

Data for the analysis is drawn from the 2000 San Francisco Bay Survey. 

 The analysis considered several different kinds of variables to explain vehicle type 

holdings and usage, including household sociodemographics, household residential location 

variables and vehicle attributes. Important findings from the analysis are as follows: 

1. As the number of children in the household increase, there is a higher preference to own and 

use SUVs and minivans relative to passenger cars, pickup trucks and vans. 

2. Households with several individuals have a higher preference for minivans than households 

with fewer individuals. 

3. Households with one or more mobility-challenged household members are more likely to 

own and use vans and minivans than households with no mobility-challenged members. 
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4. Households with more number of employed individuals are less likely to prefer minivans 

than households with fewer employed individuals.  

5. Households with more men in the household prefer pickup trucks to other vehicle types. 

6. Households located in densely populated neighborhoods have a disinclination for pickup 

trucks. 

7. Vehicle operating cost has a negative influence on vehicle ownership and usage for all 

vehicle types except passenger cars.  

8. Households are very likely to own passenger cars but put more miles on non-passenger car 

vehicles if such vehicles are available in the household. 

 

The model estimated in this paper can be used to determine the change in vehicle type 

holding and usage due to changes in independent variables over time. This is particularly 

important because of changing demographic, employment-related, and operating cost trends. In 

the current paper, we demonstrate the value of the model by assessing the impact of an increase 

in vehicle operating costs, and examining the implications for vehicle type ownership and usage.  

To summarize, this paper uses a modeling structure (i.e., the MDCEV structure) that is 

ideally suited for vehicle type and use analysis because the structure is based on the concept that 

households hold multiple vehicle types due to diminishing marginal returns from usage of each 

vehicle type (or, equivalently, due to the need to satisfy different functional or variety-seeking 

desires of the household). The MDCEV model is a simple and parsimonious model structure, 

which can be extended to accommodate heteroscedasticity and error correlation across the 

vehicle type utility function by using an appropriate mixing distribution leading to the mixed 
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MDCEV (MMDCEV) model. In future research, we plan to embed the MMDCEV model of 

vehicle type within a larger model system of vehicle type, make, model, vintage, age and usage. 
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Table 1. Vehicle Type Distribution of One – Vehicle Households 
 

 
Vehicle Type 

 

Total number of 
households 

 
Percentage of households 

 

Mean Annual Mileage 
(in miles) 

 
Passenger Car 

 
1298 

 
72% 

 
 9299 

 
Sports Utility Vehicle (SUV) 

 
 204 

 
11% 

 
10052 

 
Pickup Truck 

 
 192 

 
11% 

  
 9981 

 
Minivan 

 
 89 

 
5% 

 
11193 

 
Van 

 
 14 

 
1% 

 
10330 
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Table 2. Vehicle Type Distribution Among Two – Vehicle Households 
 

 
Type of first vehicle 
 
 
 

Type of second 
vehicle 
 
 

Total number of 
households 
 
 

Percentage total 
number of two-
vehicle household 
 

Mean Annual 
Mileage of vehicle 
type 1 (in miles) 
 

Mean Annual 
Mileage of vehicle 
type 2 (in miles) 
 

Passenger Car Passenger Car 522 40.0%   19147*  19147* 

Passenger Car Pickup Truck      255 19.5% 10051 9591

Passenger Car SUV 213 16.3%  9590 10736 

Passenger Car Minivan 151     11.6% 9841 10171

SUV Pickup Truck  46 3.5%  9251 10502 

Pickup Truck Minivan  32 2.5% 10514 10524 

Pickup Truck Pickup Truck  21 1.6%   21587*  21587* 

SUV       Minivan 17 1.3% 10993 11390

Passenger Car Van  15 1.1%  7597  9549 

SUV SUV  13 1.0%   24481*  24481* 

Minivan Minivan  7 0.5%   25109*  25109* 

SUV Van  6 0.5%   9736 13564 

Pickup Truck Van  6 0.5% 15172  9509 

Minivan Van  1 0.1% 12014  9455 

* These numbers represents the mean total annual miles across both vehicles. Note that the annual mileage is computed for each vehicle type; in 
case both vehicles are of the same type, the entries correspond to the total miles across both vehicles. The numbers are the same across the “Mean 
annual mileage of vehicle type 1” and “Mean annual mileage of vehicle type 2” for this reason.  
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Table 3. Empirical Results 
 

 
Explanatory variables 
 

Parameter 
 

t-statistic 
 

 Household sociodemographics   

 Income greater than 115K   
     Pickup Truck -0.6135 -4.683 
     Van -0.8684 -1.517 

 Presence of children less than 4 years of age   
     SUV and Minivan 0.6010 3.926 

 Presence of children between 5 and 15 years of age   
     SUV 0.4090 3.836 
     Minivan 0.7099 4.611 

 Presence of children between 16 and 17 years of age   
     Minivan 0.8416 3.355 

 Household size   
     Minivan 0.5341 5.593 

 Presence of a mobility-challenged individual in the household   
     Minivan 0.3912 1.433 
     Van 2.1069 1.951 

 No. of employed persons in the household   
     Minivan -0.3686 -3.775 

 No. of males    
     Pickup Truck 0.3257 4.207 

 Household location variables   

 Population Density   
    Pickup Truck and SUV -0.0166 -4.143 

Vehicle Operating cost(cents/mile) divided by household income     
(in 000s) -0.0314 -2.139 

 Baseline preference constants   
    Passenger Car (base)   
    SUV -3.6514 -11.045 
    Pickup Truck -3.1273  -9.199   
    Minivan -5.5305 -10.592 
    Van   -12.5287       -4.584 



Bhat and Sen 33

Table 4a. Satiation Parameters 
 

Vehicle Type Parameter t-statistic12 

Passenger Car 0.4410 11.53 
Sports Utility Vehicle (SUV) 0.9003 4.90 
Pickup Truck 0.7293 6.55 
Minivan   0.8480 4.04
Van   0.5124 2.34
 
 

 
Table 4b. Variance-Covariance Matrix 

 

Vehicle Type Vehicle Type 
Passenger Car SUV Pickup Truck Minivan Van 

Passenger Car 
 

0 
 

0 
 

0 
 

0 
 

0 
 

Sports Utility Vehicle (SUV) 
 

  2.32
(4.07) 

2.24 
(4.48) 

1.51 
(3.18) 

0 

Pickup Truck 
 

   3.35
(3.10) 

1.46 
(3.74) 

0 

Minivan 
 

    1.95
(1.98) 

0 

Van 
 

     28.94
(2.47) 

 

                                                 
12 The t-statistic is computed for the null hypothesis that the satiation parameter is equal to 1.  Equivalently, the t-statistic is for the test that there are no satiation 
effects or that the utility structure is linear. 
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Table 5. Impact of an increase in operating (fuel) cost from $1.40 per gallon to $2.00 per gallon 
 

 
Vehicle Type 

 

 
Percentage change in holdings of 

vehicle type 
 

 
Percentage change in overall use of 

vehicle type 
 

 
Passenger Car - 0.1 + 0.5 

 
Sports Utility Vehicle (SUV) - 5.9 - 3.0 

 
Pickup Truck - 2.1 - 6.2 

 
Minivan - 4.9 - 2.3 

 
Van - 3.4 - 6.5 
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