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Abstract

This paper proposes a methodological framework to analyze the activity and travel

pattern of workers during the evening commute. The framework uses a discrete-continuous

econometric system to jointly model the decision to participate in an activity during the evening

commute and the following attributes of the participation: activity type, activity duration, and

travel time deviation to the activity location relative to the direct travel time from work to home.

The model parameters are estimated using a sample of workers from the 1991 Boston

Household Activity Survey. The paper also presents the mathematical expressions to evaluate

the effect of changes in socio-demographic variables and policy-relevant exogenous variables

on the temporal pattern of trips and cold starts due to commute stops. The application of the

model indicates that failure to accommodate the joint nature of the activity decisions during the

evening commute can lead to misdirected policy actions for traffic congestion alleviation and

for mobile-source emissions reduction.  
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Introduction

The analysis of commute trip patterns has always been of considerable interest in the

travel demand literature since the commute pattern has a decisive impact on peak period traffic

congestion on roadways. Several studies have examined commute patterns from metropolitan

areas in the United States in the past decade. A consistent finding of these studies has been that

the commute pattern is becoming more complex due to an increasing tendency to make

nonwork stops during the commute, especially in the evening. For example, Lockwood and

Demetsky (1994) noted that almost 44% of workers in the Washington D.C. metropolitan area

make stops during the morning or evening commutes, and that individuals are almost twice as

likely to make stops in the evening as in the morning. Bhat (1997a) found in another study using

the 1991 Boston Household Travel Survey that about 38% of individuals made stops during the

commute and that evening commute stop-making was about twice as prevalent as morning

commute stop-making. Davidson (1991) found similar results from her analysis of commute

behavior in a suburban setting. Other studies (such as Gordon et al., 1988 and Purvis, 1994) also

provide empirical evidence of increased stop-making during the commute periods.

The discussion above highlights the importance of studying stop-making behavior during

the work commute, especially during the evening commute. The focus of this paper is on

examining evening commute stop-making behavior. The broad objective is to model the entire

activity-travel pattern of the worker between the time s/he leaves work (the departure time from

work is assumed to be exogenously determined based on the work schedule of the worker) to

the time s/he returns home at the end of the evening commute. The attributes characterizing the

evening commute activity-travel pattern include: a) number of stops (including zero stops,

which implies that the worker heads home directly), b) sequence of stops (if the number of stops

is more than one) c) activity type of each stop, d) activity duration of each stop, e) travel time

deviation to each stop from previous stop (or from work if the stop is the first one) relative to

the direct travel time from previous stop to home (we will refer to this simply as the travel time
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deviation from previous stop), and e) location of each stop (the travel mode used to the stop is

almost always the same as the one used for the journey to work and so this dimension of the

nonwork stop is not identified).

The dimensions of evening commute behavior listed above determine the spatial and

temporal distribution of vehicular demand on roadways. In addition, the activity duration

dimension determines the type of engine start for the trip subsequent to the stop. This

information constitutes an important input to estimating mobile source emissions (an engine

start is classified as a "cold" start if the engine is "off" for more than 60 minutes; a "cold" start

leads to substantially higher mobile source emissions than a "hot" start). 

The author has been involved in the development of a broader framework to model the

entire daily activity-travel pattern of workers based on an empirical investigation of travel

behavior from several metropolitan areas in the US (see Bhat and Singh, 1999). The

investigation indicates that there is little interaction in after-work dimensions of activity-travel

choices with activity behavior at earlier times of the day. This is because of the nature of

activities pursued after work and at other times of the day. Most activities after work tend to be

social-recreational or shopping-oriented, while activities at earlier times serve more basic

functions (for example, serve-child activities during the before-work period and eating during

the mid-day), or are personal business activities (banking, post office trips, etc.) which are

unavailable for participation after work because of restricted open times of facilities. Based on

these and other observations, Bhat and Singh have developed a comprehensive daily activity-

travel pattern framework that includes a sub-model for the after-work activity pattern of

workers. The current research contributes toward estimating such a sub-model within the scope

of a larger daily activity pattern model. 

The daily activity pattern framework of Bhat and Singh (1999) considers all attributes

of an entire daily activity-travel pattern and emphasizes temporal detail by considering activity-

travel patterns in the context of a continuous time domain. This is in contrast to earlier trip-chain
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and other activity scheduling models which focus on limited number of dimensions of the

activity schedule and/or do not model the temporal dimension adequately. Bhat and Singh's

framework is also able to accommodate space-time interactions because joint modeling of stop

attributes is undertaken. The framework, at the same time, provides an overarching structure to

allow interactions across patterns/tours in the day where such interactions are important. A

potential down side to Bhat and Singh's framework is that the mathematical structures of the

model components are not commonly used in travel demand modeling and are more

sophisticated than traditional discrete choice models. But they are still rather easily estimated.

Work-related choices such as work participation and work schedule times (hours of

work, departure time of work, etc.) are relatively longer-term decisions and are not modeled in

the current paper. The view is that decisions on whether to work, where to work, and times of

work are not determined on a day-to-day basis. These dimensions may be modeled prior to the

analysis of daily activity-travel patterns, as done by Bhat and Koppelman (1993). 

The joint modeling of all the dimensions characterizing the evening commute pattern is

quite complex, if not infeasible. However, the modeling framework can be considerably

simplified by noting that most individuals either travel home directly after work or make one

stop. For example, a descriptive analysis of the 1991 Boston area household travel survey

indicated that about 88.5% of individuals either traveled home directly after work or made one

stop in the evening commute. The corresponding figure from a 1988 Washington D.C.

household travel survey was 94.7%. A reasonable modeling strategy, then, is to focus on the

presence/absence of a first stop (along with the various characteristics of this first stop), next

model the presence/absence of a second stop (and the attributes of the second stop) conditional

on the presence and characteristics of the first stop, and so on. An important point to note is that

the number and sequence of stops is modeled implicitly in this proposed framework.

An alternative strategy to modeling evening commute non-work stops might be to model

the stop with highest "priority" first (this is in contrast to our proposed approach of stop
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modeling based on temporal sequence). Unfortunately, the concept of "priority" is difficult to

define. Even if a definition is developed, priority assignment can be very subjective and may

even change for the same person from one time to another. For example, assume that activity

type is used to determine priority. Shopping activity may be of higher priority than social-

recreational activity for some individuals, but the reverse may be true for others. For the same

person, shopping activity may be of higher priority if it involves the purchase of an essential

item (say, milk) and if the corresponding social-recreational activity is a self-imposed

appointment to exercise. On the other hand, on a different day, shopping activity may be of

lower priority if it involves the purchase of a non-critical item and if the corresponding social-

recreational activity involves an appointment with a colleague to play racquetball. A more

fundamental problem with the use of activity type to determine priority is that activity type is

an endogenous variable. It is part of the activity-travel behavior decisions of individuals which

we would like to model. It cannot be used exogenously to inform the modeling process.

Similarly, while activity duration and/or travel time deviation may be used to identify activity

priority (for example, higher duration activities are assigned higher priority), this procedure

would be flawed since activity duration and travel time deviation are endogenous variables of

interest. To summarize, the alternative approach of prioritizing activities is difficult to use, is

ad hoc, and is theoretically inappropriate.  We prefer to use the simple and more straight-

forward assumption of temporal sequentiality. Besides, given that most individuals make one

commute stop (if a stop is made), the temporal sequencing structure is not likely to lead to

substantial errors in forecasting. Adopting this assumption but modeling all the attributes of

each stop jointly is, in our opinion, a better approach than purporting to capture interactions

amongst stops but really capturing interactions only along a few dimensions, adopting a very

restrictive interaction structure, modeling only a limited number of stop dimensions, and

ignoring the jointness in choice dimensions for the same stop. Our proposed structure is based

on the empirical finding in earlier studies that there are substantial interactions among choice
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dimensions for a particular stop (see Hamed and Mannering, 1993 and Bhat, 1998) and on the

empirical finding that few individuals pursue multiple stops.

At each stop level of the framework, the dimensions to be modeled include the

presence/absence of a stop, type of stop, activity duration of stop, travel time deviation from

previous stop (or from work for the first stop), and location of stop. We further simplify this

structure by focusing initially on the first four dimensions and proposing to model location of

the stop subsequently by formulating a travel time-constrained destination choice model. Such

an approach accommodates the spatial-temporal interactions in stop-making decisions. Thill and

Horowitz (1997a) have recently demonstrated the importance of considering such interactions

in determining the consideration set in a destination choice model. 

In the rest of this paper, we will confine our attention to the modeling of the

presence/absence of a first stop in the evening commute and the following attributes of the first

stop: type of stop, activity duration, and travel time deviation to stop relative to the direct travel

time from work to home. The location of the first stop may be modeled subsequently using

disaggregate spatial destination choice models (the technical details of the formulation for such

a destination choice model are available in Bhat, 1999). The same framework may then be

applied to analyze additional evening commute stops.

There have been several earlier studies examining different aspects of stop-making

behavior during the work commute. However, almost all these studies have focused on a limited

number of dimensions characterizing the commute activity-travel pattern. For example, Oster

(1979), Adiv (1983), Kondo and Kitamura (1987), Nishii et al. (1988), Strathman et al. (1994),

and Bhat (1997b) focus only on whether individuals make one or more stops during the

commute. These studies do not model the attributes characterizing the stops. Damm's (1980)

study emphasizes the choice of stop-making (whether to make no stops or at least one stop) and

the duration of time spent at the stop(s). Damm does not model activity type of the stop and the

travel time involved in participating in the stop. The studies by Bhat (1996a,b) and Niemeier
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and Morita (1997) are narrowly focused on the duration of activity stops made during the

commute. Hamed and Mannering (1993) and Murthy (1997) model all the relevant dimensions

of a stop, but use sequential estimation methods (rather than a full-information maximum

likelihood technique) to model the various dimensions. Further, both these studies (and another

recent study on post-home activity behavior by Bhat, 1998) focus only on model estimation;

they do not develop and implement procedures to examine changes in trip-making patterns and

cold starts due to changes in policy-relevant or socio-demographic variables. 

The distinguishing characteristic of the current study is that it jointly models the

dimensions of stop-making choice, activity type, activity duration and travel time deviation, and

also develops and applies appropriate techniques to examine the impact of changes in

exogenous variables on trip-making patterns and cold-starts.

The next section of the paper presents the econometric structure of the joint model.

Section 2 discusses the data source and sample used in the empirical analysis. Section 3 presents

empirical results. Section 4 examines the impact of policy actions using the model. The final

section summarizes the important findings from the research.

1.  Methodology

The decision to make a first stop, activity type choice of the stop, activity duration of the

stop and travel time deviation to the stop (relative to the direct work-to-home path) are modeled

using a discrete/continuous econometric framework (see Bhat, 1998). The decision to participate

in a first stop and the activity type choice together are represented as a discrete choice system,

while activity duration and travel time deviation are the continuous decisions.

The joint nature of the decisions regarding whether to make a stop, the type of stop, the

duration of the stop, and the travel time deviation to the stop arises because the choices are

caused or determined by certain common underlying observed and unobserved factors (see

Train, 1986; page 85). For example, a high income may lead to a) more stop-making during the
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commute, b) a higher propensity to participate in a particular out-of-home activity type (say

recreation), c) a longer activity duration, and d) a higher travel time deviation. Thus, there is a

jointness among the choices because of a common underlying observed variable. Similarly, an

individual's intrinsic (unobserved) preference to be involved in a particular out-of-home activity

type may manifest itself in the form of a high likelihood of participating in that activity type as

well as a long activity duration of participation in that activity type and a willingness to travel

farther to participate in that activity type. The association among the activity decisions in this

case arises because of a common underlying unobserved preference measure.

In the following presentation, we will use the index i (i = 1,2,...,I) to represent both the

participation choice and activity-type choice (subject to participation) with the notational

convention that i = 1 identifies the choice of going directly home from work and higher values

of i indicate participation in a stop of a particular type. The index q (q = 1,2,...,Q) is used to

represent individuals. The equation system can be written as:

(1)

is the indirect (latent) utility that the qth individual derives from either going home (i=1)

or participating in an out-of-home activity type (i=2,3,...,I). is the logarithm of the activity

duration of participation in out-of-home activity type i for the qth individual, and is the

logarithm of the travel time deviation associated with participation in out-of-home activity type

i for the qth individual. are column vectors of exogenous variables

and are corresponding column vectors of parameters to be estimated. We

assume that the are identically distributed across alternatives i and individuals q, and that

they are independently distributed across individuals. We also assume that each of them has a
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location parameter equal to zero and that their joint (cumulative) distribution function,

, results in a nested logit structure with correlation among the error terms

of the out-of-home activity types:

(2)

The term is a dissimilarity parameter that introduces correlation among the error terms of

the out-of-home activity types (i=2,3,...,I). The are assumed to be distributed

identically across individuals. We specify a bivariate cumulative normal distribution function

for in each out-of-home activity type regime

i. are the variances of the error terms respectively, and is the

correlation between the two error terms.

We considered two alternative functional forms; linear and logarithmic; for activity

duration and travel time deviation in equation (1). These are the two forms commonly used in

the literature to model time duration (for example, Steinberg et al., 1980 use a linear functional

form, while Hamed and Mannering, 1993 use a logarithmic form). We evaluated these

functional forms on the basis of statistical fit and distribution of residuals. We found that the

logarithmic form provided a superior statistical fit in both the activity duration and travel time

deviation equations. We also found that the linear form yielded highly skewed distributions for

the residuals in both equations. Therefore, we chose the logarithmic functional form for OH

activity duration and home-stay duration. An additional advantage of the logarithmic functional

form is that it guarantees the positivity of activity and travel time durations in forecasting.

The continuous variables in equation (1) are observed if and only if the ith

out-of-home activity type (i=2,3,...,I) is chosen. The alternative i (i=1,2,...,I) will be chosen by

an individual if the utility of that alternative is the maximum of the I alternatives. Let be
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a dichotomous variable with values 0 and 1; if the ith alternative is chosen by the qth

individual and otherwise. Defining

(3)

the utility maximizing condition for the choice of the ith alternative may be written as:

(4)

Thus, we now have the situation that are observed if and only if

(i = 2,3,...,I). Let represent the marginal distribution function of implied by the

assumed joint distribution function and the relationship in equation (3). The

random variable is non-normal because of the nested logit structure for the errors in the

activity participation/type choice model. Following Lee (1983), let us transform this non-normal

random variable into a standard normal random variable:

         (5)

where is the standard normal distribution function. Then, equation (4) can be written as

(6)

We can now write down the likelihood function for our model system based on equation (6) and

the fact that are observed only if (i=2,3,...,I). Let the correlation between

be and that between be . Combined with the assumed

marginal bi-variate distribution for and the standard normal marginal distribution

of , this implies a trivariate normal distribution of for each out-of-home

activity type i with a mean vector of zero and variance-covariance matrix: 
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(7)

The parameters to be estimated in the model system are the parameters in the activity

participation/type choice model and the following parameters in the activity duration and travel

time deviation equations for each out-of-home activity regime (i=2,3,...,I):

The likelihood function for estimating the parameters is quite

complicated (though straightforward to derive). Define the following quantities for each out-of-

home activity type i (i=2,3,...,I):

(8)

The likelihood function to be maximized is:

(9)
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where is the standard normal density function, and

(10)

It is easy to see that if and are zero for all out-of-home activity types i (i=2,3,...,I),

the likelihood function in equation (9) partitions into a component corresponding to the activity

participation/type discrete choice model and another component representing the likelihood

function for the seemingly unrelated regression model (see Greene, 1990; page 516) of the two

continuous duration choices. The GAUSS matrix programming language is used in estimation.

The standard error of parameters is computed from the cross-product matrix of the gradients

evaluated at the estimated parameter values.

2.  Data Source and Sample

The data source used in the present study is a household activity survey conducted by

the Central Transportation Planning Staff (CTPS) in the Boston Metropolitan region. The survey

was conducted in April of 1991 and collected data on socio-demographic characteristics of the

household and each individual in the household (see Stopher, 1992). The survey also included

a one-day (mid-week working day) activity diary to be filled out by all members of the

household above five years of age. Each activity pursued by an individual was described by: a)

start time, b) stop time, c) location of activity participation, d) travel time from previous activity,

e) travel mode to activity location, and f) activity type.
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The sample for the current analysis comprises 2285 employed adult individuals who

made a work-trip on the diary day and were older than 16 years (complete details of the

screening and data cleaning procedures employed in arriving at this sample from the overall

activity diary data is provided in Murthy, 1997). Some of the individuals made more than one

stop during the evening commute, but we focus in this paper only on the presence/absence of

a first stop and the characteristics of the first stop (as discussed earlier). The activity type of the

stop was characterized by three categories: shopping, social/recreational (including eating out),

and personal business (including banking). 

The travel time from work to home (if an individual chooses to proceed directly home

after work) is obtained from network level-of-service data provided by the Central

Transportation Planning Staff (CTPS). The network level-of-service data includes travel time

information by mode for each traffic zonal pair in the Boston metropolitan area. Since the mode

used by an individual to work and her/his home traffic zone and work traffic zone are known,

we appended the appropriate travel time from the level-of-service data to each individual's

record. Similarly, we obtained the travel time from work to activity location and from activity

location to home for those individuals who made a commute stop. From the above information,

we computed the travel time deviation for individuals making commute stops.

The number of individuals not participating in any activity during the evening commute

in the sample is 1610 (70.5%). The number participating in the three out-of-home activity types

is as follows: 242 (10.6%) in shopping activity, 185 (8.1%) in social/recreational activity, and

248 (10.9%) in personal business. The average duration of out-of-home activity participation

(across all out-of-home activity types) is 47 minutes and the average travel time deviation is 14

minutes. Among the different activity types, participation in social-recreational activity is

associated with a larger activity duration (average of 96 minutes) and a larger travel time

deviation (18 minutes).
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The percentage of individuals making stops during their evening commute is about 30%

in the sample. This is a sizeable fraction, especially when viewed from the perspective that

about one in three commuters make an evening commute stop. Given the total number of

commuters in metropolitan regions, this would imply a sizeable number of evening commute

stops. Further, the Boston data set used here was collected in 1991. Descriptive studies (for

example, Purvis, 1994 and Lockwood and Demetsky, 1994) suggest an increasing trend to make

evening commute stops. Thus, it is important to focus on this aspect of activity-travel behavior

of commuters.

3.  Empirical Analysis

This section discusses the model specification, overall data fit of the model, and the

estimation results.

3.1.  Model specification

A number of different variable specifications were attempted in our study for the different

components of the joint model system. We considered four sets of explanatory variables in the

analysis: individual socio-demographics, household socio-demographics, work-related

characteristics, and home/work location attributes. Table 1 provides a listing of these explanatory

variables and their associated descriptive statistics in the sample.

In the model specifications, we tested the nested logit structure for the activity

participation/type sub-component of the joint model (with correlation among the utilities of the

out-of-home activity type alternatives) against a multinomial logit structure. We found that the

dissimilarity parameter in the nested logit structure (see equation 2) was not significantly

different from one in all the alternative variable specifications we attempted. A further test of the

hypothesis of the absence of the independence of irrelevant alternatives (IIA) property of the MNL

against the alternative hypothesis of its presence using the Small and Hsiao test (see Ben-Akiva



14

and Lerman, 1985; page 185) also did not reject the MNL structure. Thus, we chose to model the

activity participation/type choice model using the simple MNL formulation.

We constrained the correlation parameters between the travel time deviation equation and

the activity duration equation to be the same across different out-of-home activity type regimes.

The correlation between unobserved factors affecting the propensity to participate in an out-of-

home activity type and the activity duration in that activity type was not statistically different

across the three out-of-home activity type regimes. So these three correlations were constrained

to be equal. A similar result was observed for the correlation in unobserved factors between out-of-

home activity type choice and the travel time deviation across the three activity type regimes, and

so these three correlations were also constrained to be equal.

3.2.  Overall empirical results

The log-likelihood at convergence of the joint model system is -3675.79. The likelihood

value when only alternative specific constants are included in the activity type/participation model

and when only constants (differentiated by activity type) are introduced in the activity duration and

travel time deviation models (with different variances allowed across the different activity types in

the activity duration and travel time deviation equations, but all correlation parameters set to zero)

is -3920.05. A log-likelihood ratio test clearly rejects the hypothesis that all exogenous variable

parameters and error correlations are zero. A further test of the joint model with an independent

model (where all exogenous variables are included, but the correlation terms are set to zero) rejects

the hypothesis that activity participation and type, activity duration, and travel time deviation are

independently determined (the log-likelihood value of the independent model is -3695.4; the

likelihood ratio test value is 39.22 which is larger than the chi-squared statistic with three degrees

of freedom at any reasonable significance level. 

The next four sections of the paper present the results of the multinomial activity

participation/type choice model, the activity duration model, the travel time deviation model model,
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and the error correlation parameter estimates, respectively. The exogenous variable parameters in

the different sub-models and those of the error correlations are estimated simultaneously. We discuss

them separately for ease in presentation (in the remainder of the paper, we will refer to social-

recreation activity as recreational activity). 

3.3.  Activity participation/type choice model

Table 2 presents the results of the activity participation/type choice model. Among the

individual socio-demographic variables, age has a positive effect on the choice of shopping and

personal business activities, though the marginal positive effect decreases with age as indicated by

the negative sign on the square of age (the age effect remains positive till 96 years, after which it

turns negative; this result should be interpreted cautiously since the maximum age in the estimation

sample is 88 years). The results also indicate that older individuals are less likely to participate in

recreational activity compared to participating in other out-of-home activities or going directly home.

Women are more likely to participate in shopping and personal business activities compared to men.

This is consistent with the finding of many earlier studies (see, for example, Bianco and Lawson,

1996 and Mensah, 1995), possibly reflecting the continuing trend of women to shoulder a major part

of household maintenance responsibilities.

Several variables associated with household socio-demographics affect the decision to

participate in an activity and the activity type of participation. A higher household income increases

the propensity of individuals to make shopping or recreational stops (a result also found by Goulias

and Kitamura, 1989 and Strathman et al., 1994). Individuals with small children in their household

are likely to return directly home after work rather than make an evening commute stop, while the

reverse is true for individuals who live alone. These effects may be associated with familial

responsibilities (or lack thereof). The final two variables are introduced to represent the effect of the

allocation of non-work activities among adults in a household. An interesting result is that this effect

appears to be independent of whether the additional adult is employed or not.
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The work-related characteristics affecting activity participation and type choice include work

schedule characteristics and the travel mode to work. The duration at work determines the time

available for post-work activities and, consequently, has a negative effect on evening commute stop-

making propensity. The departure time variables from work are introduced with the departure time

between 4 pm and 6 pm being the base. The results indicate that individuals who leave work before

4 pm are more likely to make personal business stops than to go home directly or to make stops for

other activities. On the other hand, individuals who leave work after 6 pm are unlikely to participate

in shopping or recreational activity. As one would expect, individuals who use the car mode to work

are less likely to proceed home directly.

 Finally, an individual whose home is located in an urban area is more likely to return home

directly after work (i.e., is less likely to make a stop during the evening commute).

3.4.  Activity duration model

The activity duration model results represent the effect of exogenous variables on the desired

duration of participation. The effect of individual socio-demographics (Table 3) indicate that older

individuals and women are more likely to need an extended duration of shopping activity

participation than younger individuals and men, respectively. Further, with increasing age,

individuals are likely to engage in recreational activity for shorter periods of time. Among the

household socio-demographics, income has the expected positive effect on duration for all out-of-

home activity types, while presence of additional unemployed adults results in shorter activity

durations. The effect of duration at work and departure time from work reflect time constraints. The

location variables, in combination, suggest a shorter desired duration of participation for individuals

residing in urban areas and working in non-urban areas. 

An important issue that we would like to point out is that the effects of work duration and

departure time were very insignificant (from a statistical standpoint) in the independent model

(which ignores the joint nature of the choice of activity participation/type and activity duration).
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Additionally, the parameters on the activity participation constants in the duration equation were

much higher in magnitude and significance in the independent model compared to the constants in

the joint model. These differences are associated with the different structures of the independent and

joint models. Let's consider the effect of work duration. The independent model assumes that the

activity participation/type choice decision is made prior to the activity duration decision. Since the

choice of participating in an activity is generally associated with a lower work duration (Table 2),

any negative effect of work duration on activity duration (i.e., a higher activity duration because of

a lower work duration) is implicitly captured in the positive activity participation constants in the

duration equation. This leads to the (incorrect) exaggerated positive parameters on the activity

participation constants and an insignificant parameter on work duration in the activity duration

equation. In contrast, the joint model recognizes the endogenous nature of activity participation

choice; that is, it recognizes that the decision to participate in an out-of-home activity and the

duration of participation constitute a joint "package" choice. Therefore, it correctly captures the

negative effect of work duration on activity duration. A similar explanation can be provided for the

(incorrect) insignificant effect of an early departure from work on activity duration estimated by the

independent model. More generally, if a variable appears in both the activity participation/type

model and the duration equation, its effect on duration tends to be underestimated in magnitude by

the independent model because the effect is partially or completely absorbed in the activity

participation constants.

3.5.  Travel time deviation model

Table 3 also presents the results of the travel time deviation model. None of the individual

socio-demographic variables have a significant effect on travel time deviation. Three variables

associated with household socio-demographics have a marginally significant impact, while departure

from work after 6 pm, car mode to work and the home/work location variables have a highly

significant effect. 
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The parameters on variables common to the activity participation/type model and the travel

time deviation model are generally underestimated in the travel time deviation equation by the

independent model (for the same reasons discussed in the earlier section).

3.6.  Standard error and correlation parameters

There are five distinct elements, and , in the error variance-

covariance matrix for each out-of-home activity type regime (see equation 7). As indicated earlier,

we maintained the same correlation parameters across the three out-of-home activity regimes. There

are two standard error parameters (corresponding to the activity duration and travel time deviation

equations) in each regime (for a total of six standard error parameters) and three correlation

parameters to be estimated.

The standard errors in the activity duration equation are 0.9288 (12.55), 0.9638 (12.32), and

1.1374 (11.81) for shopping activity, recreational activity and personal business activity, respectively

(values in parenthesis are t-statistics). These values suggest a larger dispersion in activity duration

(among individuals with "identical" observed exogenous characteristics) for the personal business

activity relative to the shopping and recreational activities. This may be a result of lesser

homogeneity in the sub-types of activities characterizing personal business compared to the other

two activity types or because the variables in the specification are better explaining the variability

in shopping/recreational activity than the personal business activity (or a combination of the two).

The standard errors in the travel time deviation equation are 0.7907 (13.56), 0.9589 (12.20), and

0.8988 (13.64) for the shopping, recreational, and personal business activity, respectively.

The joint modeling of activity participation/type choice, activity duration, and travel time

deviation is necessitated by the potential presence of correlation in unobserved elements affecting

the three decisions. We obtained the following correlation parameter estimates (t-statistics): =-

0.4121 (-2.66), =-0.4778 (-3.79), and =0.3315 (4.716). is the correlation

between is the correlation between is the correlation

between (see equation 7). The correlation estimates are statistically significant,



19

emphasizing the need to model the activity participation/type, activity duration, and travel time

deviation choices jointly. To interpret the correlation terms, we write equation (6) as a binary probit

model:

(11)

where is the latent unobserved propensity of individual q to participate in activity i. The error

term enters with a negative sign in the propensity equation. Therefore, our correlation estimates

indicate that unobserved factors (say, intrinsic preference for a particular activity type) that increase

the propensity of participating in any out-of-home activity type also increase the desired duration of

participation in that activity type and the travel time deviation to participate in that activity type. That

is, individuals who would like to participate in a particular out-of-home activity type for a long

duration, and individuals who are willing to invest time in travel to participate in a particular activity

type, are most likely to participate in that activity type (all observed characteristics being equal). The

positive sign for suggests that individuals desirous of spending a long duration in an activity

are also more willing to accept a larger travel time deviation to that activity.

4.  Application of the Model

The model formulated in this paper can be applied in several ways. The model can be applied

to obtain the probability distribution of travel time deviation for each individual. This information

can be used as an input to estimate a destination choice model for nonwork stops with probabilistic

choice set generation based on travel time deviation (see Bhat, 1999). Our proposed procedure is

different from that of probabilistic choice set generation approaches in the past in which the

parameters of the choice set generation process are estimated jointly with those of the destination

choice process (see Thill and Horowitz, 1997b). In the proposed framework, the estimation process

is considerably simplified as the distribution of travel time is known a priori. In addition, since the
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travel time deviation is determined jointly with the activity participation/type and activity duration

dimensions of choice, the inter-relationship among these choice decisions and destination choice is

implicitly captured in the resulting spatial model. 

The model can also be used to determine the change in the number and temporal pattern of

nonwork trips during the evening commute due to changes in socio-demographic characteristics over

time or due to policy actions that alter the work schedule of individuals. In combination with a

subsequent destination choice model, the model can determine the changes in temporal and spatial

patterns of trip-making. Finally, the model can predict changes in the number of cold engine starts

associated with nonwork evening commute stops due to socio-demographic changes or policy

actions.

In this paper, we demonstrate the application of the model by focusing on the effect of two

work schedule-related policy measures on the temporal pattern of trips and cold starts (it will be

understood that we are referring to trips and cold starts associated with evening commute stops). We

will analyze the effect of the policy measures on a) the number of auto-trips generated in the evening

peak (peak auto trips), b) the number of cold starts in the evening peak (peak cold starts), and c) the

total number of cold starts. 

The next section presents the mathematical expressions for obtaining the number of peak

auto trips, peak cold starts and total cold starts. Section 5.2 compares the effects (of the two work

schedule policy measures) estimated by the joint model and an independent model which ignores the

jointness in the choices.

4.1.  Mathematical expressions

We will assume that 4 to 7 pm represents the peak evening period. To obtain the peak auto

trip starts and peak cold starts, we will need to obtain the travel time for individual q from the

work location to the stop location should s/he participate in out-of-home activity type i.

Let represent the travel time from the stop location to home should individual q participate in

out-of-home activity type i and let represent the direct travel time from work to home if
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individual q were to return home directly. In our model, we use the logarithm of the travel time

deviation as the dependent variable (such a deviation measure better

captures the travel time investment that would be entailed by participation in an out-of-home activity

compared to the travel time to the stop; the deviation measure is also more appropriate to capture

the interaction of the travel time investment with activity duration and the decision to participate in

an activity). Since the travel time from work to home, is exogenous (the work location and

home location are considered to be pre-determined), the model provides an estimate of the sum of

the travel times from work to the stop and from the stop to home (i.e., ) for any

individual (should s/he participate in an activity). To obtain we use a simple fractional sub-

model that apportions the estimated value of into its components. This sub-model

takes the form:

(12)

where is the fraction of total time apportioned by individual q to travel from work to the stop

location (we assume the same relationship across all out-of-home activity types), is a vector of

relevant exogenous variables (including a constant), is a parameter vector, and is a random

error term assumed to be normally distributed with zero mean and variance and are

assumed to be independent. After suitable transformations, we can write equation (12) in the

following linear regression form:

(13)

Estimating and the error standard deviation in the above regression using individuals in the

sample who actually make a commute stop may be inappropriate if such individuals are

systematically likely to apportion a larger or smaller fraction of the total time, to the leg

from work to activity location. We tested for the presence of such self-selection bias by including

a Heckman correction term (see Heckman, 1976) to the right side of equation (13). The parameter

on this correction term was statistically insignificant, suggesting the absence of self-selection bias
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in apportionment. So and  may be consistently estimated using the subset of individuals in

the sample who actually make a stop. The variables that significantly affect the apportionment

include work duration, age, use of auto mode to work, urban work location, and urban residential

location. The detailed results of this sub-model are not presented here.

The expected value of can be obtained for any individual q (should s/he decide to make

a stop) from the estimates of and :

(14)

The above integration can be achieved using numerical gauss-hermite quadrature. 

The travel time from the work location to the activity location (should individual q decide

to participate in out-of-home activity type i) is . The main model of this paper

provides the distribution of (since its logarithm is a dependent variable). is a fixed

(exogenous) variable and we will ignore the stochasticity in the estimate of (the minimum value

of is ; this occurs when the travel time deviation

Let 12:00 midnight be the start of the day and define a time scale which represents the

number of minutes past midnight. On this scale, 4 pm would be 960 minutes and 7 pm would be

1140 minutes. Let be the departure time from work for individual q on the above time scale.

Define the following:

(15)

is defined only if the individual departs from work before and is defined

only if the individual leaves work before Let be the trivariate

standard normal density function computed as follows:
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(16)

4.1.1.  Number of peak auto trips

In this section, we will consider only those individuals who use the auto mode to work and

depart from work before Individuals who depart after will not make

a peak auto trip start (even if they choose to make an evening stop) because the minimum travel time

to the stop would be . Let us classify each individual q into one of two categories: those

who depart work before and those who depart work after . 

Consider an individual q who departs work before . If s/he makes a stop of

activity type i whose duration is less than , then the conditions that need to be satisfied for

the trip start (subsequent to the stop) to begin in the evening peak are:

and . The first condition ensures that

the trip starts after 4 pm. The second condition ensures that the trip starts before 7 pm. Using the

relationship , the first condition is equivalent to and the

second condition is equivalent to The probability that individual q participates

in activity type i, and the two conditions above on travel time deviation are satisfied can

be obtained using simple (though cumbersome) transformations and algebraic manipulations. The

resulting probability is:
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(17)

Next, consider an individual q who departs work before , but whose

duration is greater than should s/he makes a stop of activity type i. Since the minimum

possible value for is  this person's trip-start subsequent to the stop will be beyond

4 pm. If this trip-start is to begin before 7 pm, the condition that needs to be satisfied

is , i.e., .  The probability that individual q

participates in activity type i, and the trip-start begins in the evening peak can be computed

as:

(18)

and other limits of integration have been defined as equation 17.

The overall probability that an individual who departs work before will have

a peak trip-start can be computed from equations (17) and (18) as where the

sum is taken over all out-of-home activity types.

The probability that an individual q who departs work after will make a stop

and a peak period trip start can be obtained by a similar analysis as: 
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(19)

The expected number of individuals who make peak auto-trip starts can finally be obtained

as . The expressions in equation (17) through (19) need to be computed using

numerical integration methods.

4.1.2.  Number of peak cold engine starts

An engine start after a nonwork stop is classified as "cold" if the duration of the stop exceeds

60 minutes. In this section, we will consider only those individuals who use the auto mode to work

and depart from work before Individuals who depart after cannot

contribute toward peak period cold engine starts (even if they choose to make an evening stop)

because the sum of the minimum travel time to the stop and an activity duration of 60 minutes would

place the trip start beyond 7 pm. Let us classify each individual q into one of two categories: those

departing work before and those departing work after .

Consider an individual q who departs work before . If s/he makes a stop of

activity type i whose duration is less than the conditions that need to be satisfied for the trip

start  (subsequent  to  the s top)  to  begin in  the evening peak are:

and .  However, the duration should

also be greater than 60 minutes. This probability can be derived to be:

(20)

Next, consider an individual q who departs work before , but whose

duration is greater than should s/he makes a stop of activity type i. By construction, this

person's duration is greater than 60 minutes and the engine start subsequent to the stop is a "cold"
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one occurring beyond 4 pm. If this cold engine start is to begin before 7 pm, the

condition needs to be satisfied. This probability is:

(21)

The overall probability that an individual who departs work before will make

a peak cold engine start is where the sum is taken over all out-of-home

activity types.

The probability that an individual q who departs work after will make a

peak cold engine start is: 

(22)

The expected number of individuals who make peak cold engine starts can finally be obtained

as

4.1.3.  Total cold engine starts (both peak and non-peak)

The probability that an individual q who uses the auto mode to work will make a cold engine

start is given by:

(23)

The expected total number of cold engine starts is obtained by summing the above probability across

all individuals who use the auto mode to work.
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4.2.  Policy analysis

We consider two work schedule-related transportation control measures (TCMs) and examine

their impact on peak auto trips, peak cold engine starts, and total cold engine starts (due to nonwork

stops in the evening commute). The two TCMs are work staggering and an increase in daily work

duration due to a compressed work week policy. In examining the impact of these TCMs, it is critical

to assess their effect on peak period trips and cold starts due to nonwork stops. This is the focus of

the current section.

The work staggering policy is "implemented" by randomly selecting 20% of individuals in

the sample who currently leave work between 4 pm and 6 pm and subtracting 120 minutes from the

departure time of these individuals. The result is that the work departure time of all these individuals

is staggered to before 4 pm. The original departure time distribution from work in the sample is as

follows: 597 (26%) leave before 4 pm, 1365 (60%) leave between 4 and 6 pm, and 323 (14%) leave

after 6 pm. After "implementing" the work staggering policy, the departure time distribution is

altered: 870 (38%) leave before 4 pm, 1092 (48%) leave work between 4 and 6 pm, and 323 (14%)

leave work after 6 pm. 

The work week compression policy is realized by increasing the daily work duration of a

subset of individuals by 25% (this results in a 4 day work week with the same number of total

weekly work duration as the original 5 day work week). The subset (for which the work duration is

increased) comprises individuals who depart work between 4 and 5 pm and work less than 8 hours.

We assume that the increase in work duration is equally split between an earlier arrival to work in

the morning and a later departure from work in the evening. Thus, after the increase in work

duration, the latest work departure for individuals in the subset is still before 6 pm.

The impact of the policy actions is evaluated by modifying exogenous variables to reflect a

change, computing revised expected aggregate values for number of peak auto trips, peak cold

engine starts, and total cold engine starts (using the formulae presented in the previous section), and

then obtaining a percentage change from the baseline estimates.  Table 4 provides the results

estimated by the joint model of this paper and an independent model which ignores the jointness in
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choices among activity type/participation, activity duration, and travel time deviation (i.e., a model

that constrains all unobserved correlations to zero). We discuss the results in the subsequent two

sections.

4.2.1.  Work staggering policy

Both the independent and joint models indicate a decrease in peak auto trips and an increase

in peak and total colds starts due to the work staggering policy.  The decrease in peak auto trips is

because the distribution of travel time to the stop and activity duration is such that the time

difference between leaving work and the trip-start subsequent to a commute stop is rather small.

Thus, though the total number of commute stops increases due to the policy (note that departure

before 4 pm increases the probability of making personal business stops, see table 2), many

individuals who earlier were contributing to a peak trip start (subsequent to a commute stop) now

have a trip start before 4 pm. The joint model predicts, however, a smaller reduction in peak auto

trip starts than the independent model. This is because of the positive correlation in unobserved

factors affecting the activity participation decision in an out-of-home activity and the corresponding

duration and travel time deviation associated with such a participation. The joint model predicts a

larger activity duration and travel time deviation associated with the additional commute stops than

does the independent model. This extends the time difference between departure time from work and

the trip start after a commute stop and places more trip starts in the peak period. 

The increase in peak cold starts and total cold starts is a result of more stop-making due to

work staggering. The joint model predicts substantially more peak and total cold starts than does the

independent model because it associates larger activity durations with the increased propensity to

make stops.

In summary, the independent model overestimates the percentage reduction in peak auto trips

by more than 25% compared to the joint model. It also underestimates the percentage increase in

peak cold starts (total cold starts) by 23% (67%). Overall, the independent model projects an overly

optimistic view of the impact of a work staggering policy. 
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It is interesting to note that while a work staggering policy reduces peak trip starts due to

commute stops, it also increases cold starts. There is a conflict between reducing peak period traffic

congestion and increasing air pollution. The model formulated in this paper allows policy makers

to evaluate the positive benefits due to traffic congestion reduction against the detrimental impact

on air pollution, and make an informed policy decision.

4.2.2.  Work week compression policy

The work week compression policy results in a larger daily work duration. Table 4 shows that

both the independent and joint models predict a reduction in peak auto trips, peak cold starts and

total cold starts due to the work week compression policy. 

The reduction in peak auto trips is a result of two reinforcing effects. First, a longer work

duration has a negative effect on commute stop-making (Table 2), reducing total auto trips (the

percentage reduction in total auto trips was about 1.27% in both the joint and independent models).

Second, the longer work duration results in a later departure from work, leading to a shift in the trip

start distribution (subsequent to a commute stop) beyond the peak evening period. Between the joint

and independent models, the joint model predicts a lower percentage reduction in peak auto trips.

The joint model estimates smaller activity durations and travel time deviations associated with the

lower likelihood of participation in an activity (because of unobserved correlation effects). The net

result is that there is less of a shift in the trip start distribution beyond the peak period in the joint

model relative to the independent model. 

The decrease in peak and cold starts in the independent and joint models is due to a reduction

in stop-making due to an expanded work duration. The joint model estimates a greater percentage

reduction in total cold starts because it associates lower activity durations with a lower likelihood

of making a stop. Interestingly, however, the lower activity duration predictions from the joint model

also keeps a larger fraction of the cold starts within the peak period, resulting in a lower reduction

in peak cold starts.



30

In summary, the independent model overestimates the percentage reduction in peak auto trips

and peak cold starts by 52% and 7%, respectively. It also underestimates the percentage reduction

in total cold starts by about 32%.

The work week compression policy leads to a reduction in peak auto trips, peak cold starts,

and total cold starts (unlike the work staggering policy). However, it appears to be substantially less

effective than a work staggering policy in terms of alleviating peak period traffic congestion.

An important point to note here. A work week compression policy will probably lead to

increased stop-making and longer activity durations on the additional day the individual does not

work. Thus, some of the traffic congestion and air pollution impacts may be shifted to the additional

non-work day. The current model does not account for this, since it focuses only on the work day.

A more comprehensive analysis of traffic congestion and air pollution impacts will use an entire

week as the unit of analysis, so it can address substitution effects in stop-making among days of the

week (including work and non-work days). Of course, doing so makes the modeling framework more

complex.

5.  Conclusions

This paper develops a methodological framework to analyze the activity-travel pattern of

individuals during the evening commute. The framework involves modeling the presence/absence

and attributes of the first commute stop, followed by the presence/absence and attributes of the

second commute stop conditional on the presence and characteristics of the first stop, and so on. The

focus of the current paper is on modeling the presence/absence of a first stop and the following

attributes associated with the stop: activity type, activity duration, and travel time deviation to stop

relative to the direct travel time from work.

The paper uses a joint discrete/continuous choice system in estimation. The discrete choices

include the participation and activity type decisions and the continuous choices include the activity

duration and travel time deviation decisions. The joint model system is estimated using a full-

information maximum likelihood (FIML) procedure.
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The empirical analysis uses a data set from the Boston Metropolitan area. The results indicate

the strong effects of individual and household socio-demographics, work schedule characteristics,

and residential/workplace location characteristics on the activity participation decision and

associated dimensions of the activity participation. The analysis also shows strong correlations in

unobserved components among activity participation/type choice, activity duration, and travel time

deviation to the stop. Ignoring these correlations leads to inappropriate estimates of the effect of

work-schedule characteristics and other variables on activity duration and travel time deviation. The

joint model that accommodates the correlation among the activity and travel dimensions outperforms

(in terms of data fit) an independent model that ignores the jointness among the choices.

The paper derives the necessary expressions for application of the model to determine the

change in number and temporal pattern of trip-making and cold starts due to changes in policy-

relevant exogenous variables or socio-demographic variables. Using these expressions, the paper

applies the model to evaluate the effect of a work staggering policy and a work week compression

policy. The author is not aware of any other study which develops and applies such formulae in the

context of a continuous-discrete choice system. 

The application of the model indicates that failure to accommodate the joint nature of the

activity participation, activity type, activity duration, and travel time deviation decisions leads to

incorrect conclusions regarding the effects of the work staggering and work week compression

policies. Such mis-informed results can lead to misdirected policy actions for traffic congestion

alleviation and for mobile-source emissions reduction.  
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Table 1: List of Exogenous Variables in the Model 

Variable Definition
Sample Stats.

mean std.dev

Individual socio-demographics

Age Age of individual in years (x10-1) 4.11 1.22

Female 1 if individual is female 0.46 0.50

Household socio-demographics

Income Annual Household income in $0000's of dollars 6.16 2.83

Presence of young children 1 if there are children less than or equal to 11 years in individual's household 0.15 0.36

Single individual household 1 if individual lives alone 0.11 0.31

Number of additional employed adults Number of additional employed adults in the individual's household 1.02 0.84

Number of additional unemployed adults Number of additional unemployed adults in the individual's household 0.33 0.58

Work-related characteristics

Work duration Work duration (in 100's of minutes) 5.00 1.21

Departure from work before 4 pm 1 if individual departs work in the evening before 4 pm 0.26 0.44

Departure from work after 6 pm 1 if individual departs work in the evening after 6 pm 0.14 0.35

Car mode 1 if individual uses the car mode to work 0.88 0.33

Home/Work location variables

Urban residence 1 if individual's household is located in an urban area 0.40 0.49

Urban work location 1 if individual's workplace is in an urban area 0.50 0.50



Table 2. Activity-Type Choice Model Estimates 

Variable Coef. t-stat

Activity Type constants (proceeding directly home is base)

Shopping -4.605 -6.50

Recreation -0.866 -1.69

Personal Business -4.351 -6.29

Individual socio-demographics
Age (shopping/personal business)  1.125  3.87

Age (recreation) -0.213 -3.32

Square of age (shopping/personal business) -0.118 -3.64

Female (shopping)  0.766  4.93

Female (recreation) -0.030 -0.18

Female (personal business)  0.507  3.60

Household socio-demographics
Income (shopping)  0.075  3.05

Income (recreation)  0.108  3.94

Presence of young children (proceeding directly home)  0.674  4.43

Single individual household (proceeding directly home) -0.341 -1.99

Number of additional employed adults (proceeding directly home)  0.247  3.38

Number of additional unemployed adults (proceeding directly home)  0.282  2.89

Work-related characteristics

Work duration (shopping/personal business) -0.177 -3.40

Work duration (recreation) -0.266 -4.04

Departure from work before 4 pm (personal business)  0.887  6.02

Departure from work after 6 pm (shopping) -0.618 -2.35

Departure from work after 6 pm (recreation) -1.074 -3.08

Car mode to work (proceeding directly home) -0.645 -4.66

Home/Work location variables

Urban residence (proceeding directly home)  0.259  2.45



Table 3. Activity Duration Model and Travel Time Deviation Model Estimates

Variable Activity duration model Travel time deviation model

Coefficient t-stat. Coefficient t-stat.

Constants
Shopping  1.187  2.60  2.049  8.63

Recreation  4.121 10.39  2.138  7.04

Personal Business  2.099  5.36  2.022  7.72

Individual socio-demographics
Age (shopping)  0.201  3.81 - -

Age (recreation) -0.119 -2.21 - -

Female (shopping)  0.555  4.20 - -

Household socio-demographics
Income  0.019  1.35  0.017  1.56

Presence of young children - - -0.159 -1.48

Number of additional unemployed adults -0.131 -1.82 -0.141 -1.92

Work-related characteristics
Work duration -0.064 -1.66 - -

Departure from work before 4 pm  0.156  1.60 - -

Departure from work after 6 pm - - -0.482 -3.38

Car mode to work - - -0.647 -6.83

Home/work location variables
Urban residence -0.151 -1.62 -0.276 -3.58

Urban work location  0.127  1.44 0.356  4.59

Note: Variable that are not listed as specific to an out-of-home activity type are generic across all out-of-home activity types.



Table 4.  Effect of Work Schedule Policy Measures

Policy Model
Percentage change in

Peak trip starts Peak cold starts Total cold starts

Work
staggering

Independent -15.77 11.79  1.14

Joint -12.57 15.36  3.49

Work week
compression

Independent  -5.01 -9.17 -1.39

Joint  -3.29 -8.60 -2.03


