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ABSTRACT 

This paper proposes a reformulation of count models as a special case of generalized ordered-

response models in which a single latent continuous variable is partitioned into mutually 

exclusive intervals. Using this equivalent latent variable-based generalized ordered response 

framework for count data models, we are then able to gainfully and efficiently introduce 

temporal and spatial dependencies through the latent continuous variables. Our formulation also 

allows handling excess zeros in correlated count data, a phenomenon that is commonly found in 

practice. A composite marginal likelihood inference approach is used to estimate model 

parameters. The modeling framework is applied to predict crash frequency at urban intersections 

in Arlington, Texas. The sample is drawn from the Texas Department of Transportation 

(TxDOT) crash incident files between 2003 and 2009, resulting in 1,190 intersection-year 

observations. The results reveal the presence of intersection-specific time-invariant unobserved 

components influencing crash propensity and a spatial lag structure to characterize spatial 

dependence. Roadway configuration, approach roadway functional types, traffic control type, 

total daily entering traffic volumes and the split of volumes between approaches are all important 

variables in determining crash frequency at intersections.  

 

Keywords: Count data; multivariate analysis; spatial econometrics; accident analysis; composite 

marginal likelihood; generalized ordered response. 
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1. INTRODUCTION 

Count data models rest on the assumption of a discrete probability distribution for the count 

variables, followed by the parameterization of the mean of the discrete distribution as a function 

of explanatory variables. Several types of discrete probability distributions may be considered in 

modeling count data, though the workhorse discrete distributions are the Poisson and the 

negative binomial (NB) distributions. Given that there is no a priori reason for the mean and 

variance of the count variable in any practical context to be equal, the use of a NB distribution is 

an important empirical generalization over the Poisson distribution. However, the variance of the 

NB distribution is higher than its mean, so that the NB distribution is applicable for over-

dispersed data but not under-dispersed data. A discrete distribution that allows under-dispersion 

is the binomial distribution, though the binomial distribution requires an estimate of the 

maximum possible value of the count as an input. A discrete distribution that allows both under-

dispersion and over-dispersion is the logarithmic distribution, but its mean has a relatively 

complicated form that makes it cumbersome to use when relating a count outcome as a function 

of exogenous variables. In addition to the distributions identified above, several modifications 

and generalizations of the Poisson and negative binomial distributions may also be used to 

accommodate under- and over-dispersion situations, as demanded by, and conceptually and 

theoretically appropriate to, the empirical context under consideration. These include the familiar 

zero-inflated count models (in which two separate states are identified for the count generating 

process– one that corresponds to a “zero” state in which the expected value of counts is so close 

to zero as being indistinguishable from zero, and another “normal” state in which a typical count 

model operates; see, for example, Musio et al., 2010) and hurdle-count models (in which a two-

part decision rule is postulated, in which a binary outcome process of the count being below or 

above a hurdle is combined with a truncated discrete distribution for the count process being 

above the hurdle point; see, for example, Bethell et al., 2010). 

The field has long matured in the area of univariate count models, with the approaches 

discussed above and their many variants (see, for example, Malyshkina and Mannering, 2010) 

already extensively used for univariate count data. However, this has not been the case for 

correlated count data, especially for the case of general dependency structures for more than two 

correlated counts. For instance, one may consider a simple Poisson or negative binomial discrete 

distribution, and develop multivariate versions of these discrete distributions to accommodate 
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correlated counts (see Buck et al., 2009 and Bermúdez and Karlis, 2011 for applications of these 

methods). These multivariate Poisson and negative binomial distributions have the advantage of 

a closed form, but they become cumbersome as the number of correlated counts increases and 

they also represent the undesirable property that they can only accommodate a positive 

correlation in the counts. Alternatively, one may use a mixing structure, in which one or more 

random terms are introduced in the parameterization of the mean (so that the mean is not only a 

function of exogenous variables, but also includes one or more random terms within the 

exponentiation). If the same error term enters in the means of multiple count variables, this 

generates correlation. The most common form of such a mixture is to include normally 

distributed terms within the exponentiated mean function, so that the probability of the 

multivariate counts then requires integration over these random terms. The advantage of this 

method is that it permits both positive and negative dependency between the counts. Most 

studies incorporating such mixing structures have used a one-factor approach or used a small 

number of factors if a hierarchical clustering pattern is desired (see Wang et al., 2006). However, 

such simple factor approaches to mixing impose coarse and restrictive dependency patterns on 

the count variables. Besides, it becomes difficult in the mixing approach (relative to non-mixing 

approaches) to multivariate count modeling to accommodate excess zeros through the use of 

techniques such as the zero-inflation method (see Herriges et al., 2008).  

 In the current paper, we propose a count modeling framework and inference approach 

that resolves the many challenges discussed above for correlated counts. The presentation and 

application is motivated in the multivariate context of accommodating flexible spatial and 

temporal dependency patterns for a single count outcome variable, though it is equally applicable 

to other multivariate contexts in which correlated counts may arise. Specifically, we show how 

any traditional count model can be reformulated as a special case of a generalized ordered 

response model in which a single latent continuous variable is partitioned into mutually 

exclusive intervals. This is an issue that is not well understood and recognized in the literature. 

Using our equivalent latent variable-based generalized ordered response framework for count 

data models, we are then able to gainfully introduce spatial dependencies (using a spatial 

structure on the latent continuous variables) and time-stationary and time-varying temporal 

correlation patterns (by means of an appropriate structure for the error term of the latent 

variable). The authors are not aware of any study in the past that has accommodated such a 
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spatial structure as well as a flexible temporal error correlation pattern within the framework of 

count data models or generalized ordered-response models. The spatial and temporal 

dependencies in the resulting multivariate count framework leads to an analytically intractable 

likelihood function. In the current paper, we show how a composite marginal likelihood 

inference approach may be used for estimation. The approach is easy to implement and is based 

on evaluating lower-dimensional marginal probability expressions that do not require simulation 

(see Bhat et al., 2010a, Varin et al., 2011).  

The proposed framework and inference approach is applied to study crash frequency at 

urban intersections, with the purpose of identifying the factors that contribute to intersection 

related-crashes. The crash data used in the analysis is drawn from the Texas Department of 

Transportation crash incident files for the City of Arlington and includes yearly crash frequency 

information over a 7-year period (2003 to 2009). In this context, the frequency of crashes at a 

particular intersection (say intersection A) may be inter-linked with those at other intersections 

over space because of at least two reasons (1) Spatially observed factors such as roadway 

geometry features or traffic flow characteristics at neighboring intersections may have a 

“spillover” effect on crash frequency at intersection A (even after accounting for the 

roadway/flow characteristics at intersection A) and (2) Spatially unobserved factors such as 

zonal regulations, neighborhood design features, and neighborhood driving attitudes that are not 

available to the researcher can cause a correlation between crash occurrence at proximately 

located intersections. Similarly, it is likely that intersection-specific unobserved factors (such as 

perhaps pedestrian walkway continuity characteristics or curb radius attributes or other roadway 

geometry features) cause a time-stationary and time-varying correlation in the number of crashes 

at the same intersection over time. We accommodate all these spatial and temporal effects, as 

well as spatial heterogeneity effects (which correspond to varying effects of exogenous variables 

on crash frequency across different intersections due to unobserved spatial effects).  

The rest of the paper is structured as follows. The next section presents the building 

blocks of our approach in terms of model formulation and inference. Section 3 presents the 

model structure and estimation procedure. Section 4 illustrates an application of the proposed 

model for analyzing crash counts at urban intersections. The fifth and final section offers 

concluding thoughts and directions for further research. 
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2. THE BUILDING BLOCKS 

2.1. A Unifying Latent Variable Framework for Ordered-Response and Count Models 

In this section, we will develop a latent variable framework that brings the ordered response and 

count data models together in a simple cross-sectional context (spatial and temporal 

dependencies will be added later). 

Let q (q = 1, 2, …, Q) be an index to represent the observation unit and let k (k = 0, 1, 2, 

3, …, K) be an index to represent the ordinal level k of an ordered-response variable. The 

equation system for the standard ordered response (OR) model is (see Zavoina and McKelvey, 

1975, who first proposed the OR model in its current form): 

qqqy ε+′= xβ* , kyq =  if kqk y ψψ <<−
*

1 , (1) 

where *
qy  corresponds to the latent propensity underlying the observed ordered variable. qx  is 

an (L×1)-column vector of exogenous attributes (excluding a constant). β  is a corresponding 

(L×1)-column vector of variable effects. The latent propensity *
qy  is mapped to the observed 

ordinal variable qy  by the thresholds ψ  ( −∞=−1ψ  and ∞=Kψ ) in the usual ordered-response 

fashion. It is important to note that the model structure requires the thresholds to be strictly 

ordered for the partitioning of the latent risk propensity measure into the observed ordinal 

categories (i.e., −∞ < 10 ψψ <  < 2ψ  < ….< 1−Kψ < ∞ ). qε  is an idiosyncratic random error term 

that impacts the latent propensity and it is assumed to be identically and independently standard 

normal distributed across individuals q.1  

In the standard ordered probit (SORP) model of Equation (1), the thresholds ψ  are 

assumed to be fixed across individuals, though this need not be the case (see Terza, 1985, 

Pudney and Shields, 2000, King et al., 2004, Kapteyn et al., 2007, Eluru et al., 2008, and King, 

2009; see also Greene and Hensher, 2010, Chapter 7 for a discussion). Following these earlier 

studies, consider that the thresholds are parameterized as a non-linear function of a set of 

                                                            
1 The exclusion of a constant in the vector xq of Equation (1) is an innocuous normalization as long as all the 
intermediate thresholds (ψ0 through ψK–1) are left free for estimation. Similarly, the use of the standard normal 
distribution rather than a non-standard normal distribution for the error term is also an innocuous normalization (see 
Zavoina and McKelvey, 1975; Greene and Hensher, 2010). Note also that any other proper continuous error 
distribution may be assumed for the error terms, such as the logistic distribution or the extreme value distribution. 
However, for our purpose of incorporating spatial and temporal dependencies later, the normal distribution has 
substantial benefits from an estimation standpoint. So, we will retain the normal distribution in the presentation here. 
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variables qz  (which includes a constant), )( qkqk f z=ψ  (we include the index q to subscript the 

thresholds now to indicate that they are functions of the vector qz ). The non-linear nature of the 

functional form should ensure that the thresholds satisfy the ordering condition (i.e., −∞ < 

),1,210 ∞<<<< −Kqqqq ψψψψ  and also allow identification for any variables that are common in 

qx  and qz .2 There are several plausible reasons provided in the ordered-response literature to 

motivate such varying thresholds across observation units, all of which originate in the 

realization that the set of thresholds represents a dimension to introduce additional heterogeneity 

over and beyond the heterogeneity already embedded in the latent variable *
qy . For instance, the 

threshold heterogeneity may be due to a different triggering mechanism for the translation 

(mapping) of the latent underlying *
qy  propensity variable to observed data or different 

perceptions (across respondents) of response categories in a survey. Such generalized threshold 

models are referred to by different names based on their motivating origins, but we will refer to 

them in the current paper as generalized ordered-response probit (GORP) models.  

 Now, consider a specific form of the GORP model system as follows: 

qqqy ε+′= xβ* , kyq =  if qkqkq y ψψ <<−
*

1, , (2) 

with k

k

l

l
q

qkqk l
ef q α

λ
ψ λ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ== ∑

=

−−

0

1

!
)(z , where qzγ′= eqλ , }, 2 1 0{ ∞∈ ...,,,k . 

In the above equation, 1−Φ  is the inverse function of the univariate cumulative standard normal, 

−∞=−1,qψ , and 00 =α  (the restriction 00 =α  is imposed for identification given the 

parameterization of the qkψ  terms; additional restrictions on the kα parameters will generally be 

needed for estimation, as discussed later). γ  is a coefficient vector to be estimated. The model in 

Equation (2) can exactly reproduce the traditional count data model with a Poisson discrete 

distribution with mean qλ . To see this, assume that kk ∀= 0α  and 0=β . With these 

restrictions, the GORP model of Equation (2) collapses as follows: 
                                                            
2 As indicated by Greene and Hensher (2010), the use of functional form to achieve identification is sometimes 
viewed with skepticism. On the other hand, there is nothing in the underlying theory of ordered-response models 
that requires the use of linear-in-parameters thresholds. The only requirement of the theory is the ordering of the 
thresholds, which, it so happens, requires some form of non-linear transformation to incorporate observed 
heterogeneity in the thresholds beyond the observed heterogeneity in the latent variable.  
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qqy ε=* , kyq =  if kqqkq y ,
*

1, ψψ <<− , (3a) 
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Then, the probability expression in the GORP model of Equation (2) may be written as: 
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  (3b) 

Essentially, then, by choosing the functional form for the parameterization of qkψ  as in Equation 

(2), we have shown that the Poisson count regression model is exactly equivalent to a restricted 

version of the GORP model. This is an important result that has not been well understood and 

made explicit in earlier literature. 

Several insights may be obtained from the recasting of a Poisson count model as a 

restricted version of the GORP framework. First, the reason traditional count models do not need 

any upper bound count value is that the thresholds in the equivalent latent regression framework 

of the GORP model are only functions of observation unit-specific variables (see Equation (3a)). 

On the other hand, in the SORP structure of Equation (1), the thresholds need to be estimated for 

each level k ).1..., ,2 ,1( −= Kk  This feature of the SORP model has often been invoked as a 

disadvantage of the model for analyzing count data (see Winkelmann, 2000; page 70), because it 

requires an upper bound value K to be specified (by lumping counts above the value K to the 

value K). While this is true for the SORP framework, it need not be the case for the GORP model 

of Equation (2). Specifically, one can simply impose the restriction that kk ∀= 0α  (as in 

Equation (3a)), or incorporate additional flexibility to accommodate high or low probability 

masses for specific outcomes by estimating some of the kα parameters in the threshold function 

of Equation (2). All that needs to be done is to identify a value K above which kα is held fixed at 

Kα ; that is, Kk αα =  for all Kk > .3 The analyst can empirically test different values of K and 

                                                            
3 Note that K should be such that there are observed counts available in the sample for all consecutive count values 
from 0 to K. 
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compare data fit to determine the optimal value of K to add flexibility over the traditional 

Poisson count specification (that constrains all kα parameters to zero). With such a specification 

of the threshold values, the GORP model in Equation (2) is a flexible Poisson count model and 

can predict the probability of an arbitrary count. Second, any discrete distribution-based count 

model may be used as the basis in the GORP model, even though the Poisson model has been 

used in Equation (2). The only requirement is that the thresholds be defined as: 

[ ] ,|)()(
0

1
k

k

l
qqqkqk kyPf αψ +⎟

⎠

⎞
⎜
⎝

⎛
=Φ== ∑

=

− zz  where qq kyP z|)( =  is the discrete probability 

distribution for outcome k. Third, the traditional count data approach to incorporate spatial 

dependency or temporal dependency or random coefficients involves a mixing structure in the 

threshold part of the latent framework. For instance, a general spatial dependency structure 

between the counts across the Q observation units may be introduced via a normal random error 

component qη  into the threshold parametrization as qeq
ηλ +′= qzγ . Collecting all the qη  terms into 

a single (Q×1)-vector )..., , , ,( 321 Qηηηη=η , one can specify a multivariate normal distribution 

for η ; ).,0(~ ΩQNη  The resulting unconditional distribution for the multivariate probability of 

the observed outcome vector )..., , , ,( 321 Qmmmm=m  is then obtained through the evaluation of 

the Q-dimensional integral: 

[ ] ηηm dmyPP Q

Q

q
qqq )(|)(][

1

φη
η
∫∏

=

== ,  (4) 

where Qφ  is the Q-dimensional multivariate normal density function with mean 0 and covariance 

matrix Ω . The covariance matrix may be parameterized using a distance-based or similar spatial 

dependency structure (see Ver Hoef and Jansen, 2007 and Aguero-Valverde and Jovanis, 2010), 

but the model requires a Q-dimensional integration, which is all but impractical in most contexts 

even using recent simulation advances. If general temporal correlation is also specified for the 

case of Q observations units being observed for T periods each (in general, the number of time 

observations can differ between observational units, but we maintain the same number of time 

observations for ease in presentation here), the dimensionality for the probability expression 

grows further to QT. If random coefficients are additionally specified for the γ  vector embedded 

in the threshold parameterization, the dimensionality is QT+H, where H is the number of random 
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coefficients in the γ  vector. The estimation of models with such high dimensionality is next to 

infeasible with traditional simulation methods, particularly because of the highly non-linear 

fashion in which qλ  appears in the probability expression of Equation (3a). On the other hand, 

the recasting of the count data model in the latent variable framework opens up a new way to 

generate spatial and temporal dependencies in the count outcomes based on incorporating these 

dependencies in the specification of the underlying latent variables *
qy  rather than in the 

thresholds. Doing so allows for a more “linear” introduction of the dependencies and, as we will 

show later, is the key to being able to estimate flexibly correlated count data models.  

The statistical benefits of using the GORL framework of Equation (2) for count data 

systems should be clear from the above discussion. However, the framework may also be 

motivated from an intuitive standpoint for count data in a manner similar to that for ordinal data. 

In the empirical context of crash counts at intersections, for example, one interpretation would be 

that there is a latent “long-term” (and constant over a certain time period) crash propensity *
qy  

associated with intersection q that is a linear function of a set of intersection-related attributes 

qx . On the other hand, there may be some specific intersection characteristics (embedded in qz ) 

that may dictate the likelihood of a crash occurring at any given instant of time for a given long-

term crash propensity *
qy  (there may be common elements in qx  and qz ). Thus, two 

intersections may have the same latent long-term crash propensity *
qy , but may show quite 

different observed number of crashes over a certain time period because of different *
qy - to - qy  

mappings through the cut points ( qy  is the observed count variable). From a latent variable 

framework perspective of Equation (3a), this is the view implicitly maintained by traditional 

count models. However, the traditional count models assume that the expected value of *
qy  is 

zero and constant across intersections (i.e., in the notation of Equation (2), qqy ε=* ; that is, 

traditional count models assume that, up to a standard normal random term, all intersections have 

the same “long-term” zero value for the latent crash propensity). The GORP model relaxes this 

restriction, by allowing *
qy  to be linearly related to a vector of variables qx . Further, as will be 

clear later, our implicit assumption in extending the GORP framework to accommodate spatial 

dependency in counts is that it is the “long-term” latent crash propensity *
qy  that is responsible 
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for the spatial lag (“spillover”) effects and the spatial correlation effects, not the elements that 

affect the “instantaneous” translation of the propensity to whether or not a crash occurs at any 

given time (and, therefore, not the threshold elements that affect the mapping of the latent 

propensity to the observed count outcome). Our expectation is that factors such as intersection 

traffic volumes, traffic control type and signal coordination, driveways between intersections, 

and roadway alignment are likely to affect “long-term” latent crash propensity at intersections 

and perhaps also the thresholds. These elements may also have a bearing on the “spillover” 

effects at other intersections, since they are likely to affect multiple intersections (in fact, these 

factors are important components considered in access management and roadway geometry 

strategies to improve safety at multiple intersections; see Chin and Quddus, 2003, and Huang and 

Chin, 2010). On the other hand, we postulate that there may be some specific intersection 

characteristics such as approach roadway types and curb radii at the intersection that will load 

more on the thresholds that affect the translation of the crash propensity to crash outcomes. 

Being intersection-specific, they also do not affect spatial spillover effects or spatial unobserved 

correlation effects. In terms of incorporating temporal dependency in counts from the same 

intersection, our formulation will retain the same variables (across time) in the latent propensity 
*
qy  and the thresholds. To the extent that many observed variables will either remain the same 

over time or be closely dependent on their earlier states, this will naturally generate temporal 

dependency in counts due to observed exogenous variables. We also expect that there will be 

time-invariant unobserved intersection-related factors affecting the long-term crash propensity 
*
qy , as well as time-varying dependence in the effects of these unobserved factors based on 

temporal proximity. This is accommodated through an appropriate temporal error components 

specification for the long-term propensity. But we do not accommodate such unobserved 

temporal dependency effects in the thresholds, partly to avoid the highly non-linear random error 

component formulations that arise otherwise (as discussed earlier in this section in the context of 

traditional count models) and also because the thresholds represent “instantaneous” translation 

effects that we believe may not have strong temporal dependencies. 

To summarize, the GORL framework represents a generalization of the traditional count 

data model, has the ability to retain all the desirable traits of count models and relax constraints 

imposed by count models, leads to a much simpler modeling structure when flexible spatial and 
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temporal dependencies are to be accommodated, and may also be justified from an 

intuitive/conceptual standpoint. 

 

2.2. The Composite Marginal Likelihood Approach 

The composite marginal likelihood (CML) estimation approach is a simple approach that can be 

used when the full likelihood function is near impossible or plain infeasible to evaluate due to 

underlying complex dependencies, as is the case of correlated count or ordered-response models 

of very high dimensionality discussed in the previous section. In this paper, we propose the use 

of the CML approach of estimation for count models within the GORP framework. The CML 

approach has been proposed for and applied to various forms of multivariate ordered-response 

model systems (see Varin and Czado, 2010, Bhat et al., 2010a,b), but not for the kind of spatial 

and temporal dependency structures employed in this paper. 

The CML approach, which belongs to the more general class of composite likelihood 

function approaches (see Lindsay, 1988), may be explained in a simple manner as follows. 

Assume that there are Q observation units and T time periods, and that data on each of the QT 

observation periods originates from a parametric underlying latent model based on a (QT×1) 

vector random variable *y  with density function ),( θy*f , where θ  is an unknown K~ -

dimensional parameter vector. Based on this joint density, the appropriate likelihood function of 

the observed count outcomes m (i.e., my = , where m is a vector of dimension QT×1) may be 

written as ).,( mθL  Suppose that this likelihood function is difficult or even infeasible to 

evaluate, but that evaluating the likelihood functions of subsets of the data characterized by the 

observable events ( E~21  ..., , , AAA ) are feasible and/or computationally expedient (for example, in 

the intersection accident count empirical application of the current paper, the observable events 

could correspond to the observations of accident count outcomes at a pair of intersections during 

the same year, or to the observations of a pair of accident count outcomes at the same 

intersection for two years). Let each event eA  be associated with a likelihood object 

),( eeL Amθ ∈ , which is based on a lower-dimensional marginal joint density function 

corresponding to the original high-dimensional joint density of *y . Then, the general form of the 

composite marginal likelihood function is as follows: 
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=
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~

1

),(),( Amθmθ   (5) 

The CML estimator is the one that maximizes the above function (or equivalently, its logarithmic 

transformation). 

Almost all earlier research efforts employing the CML technique have used the pairwise 

approach in which the observed events eA  correspond to a pair of observations from the (QT×1) 

vector m. These earlier studies include Apanasovich et al., (2008), Varin and Vidoni (2009), 

Engle et al. (2007), Bhat et al. (2010a), and Bhat and Sener (2009). Alternatively, the analyst can 

also consider larger subsets of observations, such as triplets or quadruplets or even higher 

dimensional subsets (see Engler et al., 2006 and Caragea and Smith, 2007). However, it is 

generally agreed that the pairwise approach is a good balance between statistical and 

computational efficiency. The properties of the general CML estimator may be derived using the 

theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, under 

usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and Reid, 2011), 

the CML estimator of θ  is consistent and asymptotically normal distributed with asymptotic 

mean θ  and covariance matrix given by the inverse of Godambe’s (1960) sandwich information 

matrix (see Zhao and Joe, 2005): 

111 )]()[()]([)]([)ˆ( −−− == θHθJθHθGθVCML ,  (6) 
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∂
∂
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θ
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3. THE MODEL 

In the current section, we introduce spatial dependence through the latent crash propensity 

variable, using the GORP framework established in Section 2.1 for count data modeling. We 

consider the spatial lag error structure in the paper, which allows spatial dependence through 

both spatial “spillover” effects caused by observed exogenous variables at one location 

impacting the dependent variable of interest at another location as well as spatial error 

correlation effects caused by unobserved attributes at one location impacting the dependent 

variable at another location. 
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Several studies in the past decade have considered the spatial lag error structure for 

binary choice models (for example, see Fleming, 2004, Franzese and Hays, 2008, Franzese et al., 

2010, and LeSage and Pace, 2009 for good reviews). The two dominant techniques, both based 

on simulation methods, for the estimation of the spatial lag model are the frequentist recursive 

importance sampling (RIS) estimator (which is a generalization of the more familiar Geweke-

Hajivassiliou-Keane or GHK simulator; see Beron et al., 2003 and Beron and Vijverberg, 2004) 

and the Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see LeSage and Pace, 

2009). However, both of these methods are confronted with multi-dimensional normal 

integration. The RIS and MCMC estimators are cumbersome and sometimes even infeasible to 

implement in typical empirical contexts, because of the high dimensional integration needed 

(1190 dimensions in the current empirical context).4 

The next section presents the model formulation for both the spatial lag and spatial error 

structures, while Section 3.2 discusses model estimation.  

 

3.1. The Spatial Lag Count Model with Temporal Dependence 

As earlier, let q be an index for observation units (q = 1, 2, …, Q). We now add an index t for 

time period (t = 1, 2, …, T).5 Let the observed count for unit q at the tht  period be qtm  ( qtm  may 

take any non-negative integer value). Consider the following structure for the latent underlying 

and continuous variable *
qty   in the GORP representation for count models: 

,
1'

**
qt

Q

q
tqqqqt ywy εδ ++= ∑

=
′′ qt

'
q xβ  qtqt my =  if ,,,

*
,1, tmqqttmq qtqt

y ψψ <<−   (7) 

where qqw ′  is the usual distance-based spatial weight corresponding to units q and q′  (with 

0=qqw  and 1=∑
′

′
q

qqw ) for each (and all) q, and ( )10 << δδ  is the spatial autoregressive 

                                                            
4 Many studies attempt to side-step the high dimensional problem by clustering observation units into “regions”, and 
then considering a spatial error dependency over the regions rather than the observational units (see Smith and 
LeSage, 2004 and Phaneuf and Palmquist, 2003).  

5 We assume here that the number of periods of observation is the same across individual units, as is the case in the 
empirical analysis of the current paper. Extension to the case of different numbers of panel observations across units 
does not pose any substantial challenges in formulation or estimation. The only minor difference is that a weight 
needs to be placed for each unit in the CML estimation approach (see Kuk and Nott, 2000, Joe and Lee, 2009, and 
Bhat, 2011).  
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parameter, qtx  is a (L×1)-vector of exogenous variables (including a constant now to 

accommodate time-stationary random effects through a random coefficient on this constant) and 

qβ  is an observation unit-specific (L×1)-vector of coefficients assumed to be a realization from a 

multivariate normal distribution with mean vector b and covariance LL ′=Ω . It is not necessary 

that all elements of qβ  be random; that is, the analyst may specify fixed coefficients on some 

exogenous variables in the model, though it will be convenient in presentation to assume that all 

elements of qβ  are random. Also, note that the element of b corresponding to the constant is 

fixed to zero for identification. This is similar to Equation (1), where we did not include a 

constant in the vector qx  given the parameterization of the thresholds; however, here we will 

find it convenient for presentation to absorb the constant in the qtx  vector and fix its mean 

coefficient to zero. The variance of the coefficient on the constant captures time-invariant 

dependence in the outcomes measured on the same decision unit q. For later use, we will write 

,~
qβbβq +=  where ),0(~~ ΩLq MVNβ  ( LMVN  represents the multivariate normal distribution of 

dimension L). qtε  in Equation (7) is a standard normal error term uncorrelated with qβ
~  and 

uncorrelated across observation units q, but with a first-order autoregressive temporal 

dependence structure for the error terms of the same observation unit q 

))10(),(corr( <<= − ρρεε st
qsqt . The thresholds in Equation (7) take the form discussed earlier: 

,if,0, ,
! 0

0

1
,, Kme

l
e qtKmqtm

m

l

l
qt

tmq qtqt

qt
qt

qt
>===+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ= ′

=

−− ∑ αααλα
λ

ψ λ qtzγ   (8) 

where qtz  is a vector of exogenous variables (including a constant) associated with observation 

unit q at the tht  time period, γ  is a corresponding coefficient vector to be estimated, and K is a 

pre-defined count level as discussed in Section 2.1. Equations (7) and (8) represent a count 

framework that accommodates a spatial lag structure, time-invariant and time-varying 

dependencies, as well as random coefficients. 

To write the equation system in (7) compactly, we next define several vectors and 

matrices. Let ) ..., , , ,( **
3

*
2

*
1

* ′= Qttttt yyyyy  and ) ..., , , ,( 321 ′= Qttttt εεεεε  be (Q×1) vectors, and let 

) ..., , , ,( 321 ′= Qttttt xxxxx  be a (Q×L) matrix of exogenous variables for all Q units for the tht  
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time period. Next, let ])(,...,)(,)(,)[( **
3

*
2

*
1

* ′′′′′= Tyyyyy  (QT×1 vector), ), ..., , , ,( 321 ′′′′′= Tεεεεε   

(QT×1 vector), ) ..., , , ,( 321 ′′′′′= Txxxxx  (QT×L matrix), and )~ ..., ,~ ,~ ,~(~
321 ′′′′′= Qβββββ  (QL×1 

vector). Define y as the outcome corresponding to the latent vector *y . Define tx~  as a Q×(L×Q) 

block-diagonal matrix with each block-diagonal of size (1×L) being occupied by the vector qtx′  

(q = 1, 2, …, Q), and let )~ ..., ,~ ,~ ,~(~
321 ′′′′′= Txxxxx  (QT×QL matrix). Collect all the weights qqw ′  

into a spatial weight matrix W. With these definitions, the latent regression part of Equation (7) 

may be re-written as: 

εβxxbyWIy +++⊗=
~~)( **

Tδ ,  (9) 

where TI  is an identity matrix of size T. After further matrix manipulation to write *y  in reduced 

form, we obtain: 

,~~* SεβxSSxby ++=  where ( )[ ] ( )[ ] .11 −− −⊗=⊗−= WIIWIIS δδ QTTQT   (10) 

The expected value and variance of *y  may be obtained from the above equation after 

developing the covariance matrix for the error vector ε . To do so, note that the error vector ε  is 

distributed multivariate normal with a mean vector of zero and a temporal autoregressive 

covariance matrix QI⊗Λ  (of size QT×QT), where Λ  is given by: 

⎥
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Λ   (11) 

Then, we obtain ),(~* ΣBy QTMVN , where 

SxbB =  and ( )[ ] SIxIS ′⊗+′⊗= QQ ΛΩΣ ~~x   (12) 

The structure of the covariance matrix above generates a dependency across all QT count 

outcomes. Specifically, the S matrix is responsible for the spatial dependence across 

observational units for each time period, while the sandwich matrix in Equation (12) generates 

the temporal dependence for each observation unit across the T time periods (due to the time-
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invariant temporal dependence effects of the random coefficients, and the time-varying 

autoregressive temporal dependence effect). At the same time, the random coefficients allow 

unobserved heterogeneity (across observational units) in the effects of exogenous variables on 

the latent crash propensity. 

 

3.2. Model Estimation 

The parameter vector to be estimated in the spatial lag model is ,),,,,,( ′′′′′= αγb δρΩθ where 

Ω  is a column vector obtained by vertically stacking the upper triangle elements of the matrix 

Ω  and α  is another column vector obtained by vertically stacking the kα  parameters. Several 

restrictive models are obtained from the model developed here. If ,0=ρ  this indicates lack of 

time-varying temporal correlation in the counts. If ,0=δ  the result is a non-spatial model. If the 

elements of Ω  are zero, the indication is the lack of time-invariant temporal effects as well as 

unobserved heterogeneity across observational units. If the elements of Ω  corresponding to the 

non-diagonal elements of Ω  are zero, but not the diagonal elements, it represents the case of the 

presence of time-invariant and unobserved heterogeneity effects, but without correlation between 

these effects. If ,0=ρ ,0=δ and all elements of Ω  are zero, this corresponds to a flexible count 

model (recast in the GORP framework) with no spatial, temporal, and unobserved heterogeneity 

effects. Further, if all elements of γ are zero (except the one on the constant) and the analyst 

specifies an upper bound K for the counts (both in the estimation sample and for prediction 

purposes), the result is a standard ordered-response model. Finally, if ,0=ρ  ,0=δ  and all 

elements of Ω , b and α  are simultaneously zero, the result is a traditional count model. 

 The likelihood function for the model is: 

( ) ,),|()( **

*

ybymyθ dPL QT
D

y

Σφ∫===   (13) 

where }  2 1, ... 2 1 , :{ ,,
*

),1,(
*

* T...,,,tQ,,,qyD tmqqttmqy qtqt
==∀<<= − ψψy  and (.)QTφ  is the 

multivariate normal density function of dimension QT. m is a QT×1-vector of observed count 

outcomes as follows: ),...,,,,...,,...,,,,,...,,,( 32123222121312111 ′= QTTTTQQ mmmmmmmmmmmmm . The 

integration domain *yD  is simply the multivariate region of the elements of the *y  vector 
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determined by the observed vector of count outcomes. The dimensionality of the rectangular 

integral in the likelihood function is QT. The numerical evaluation of this integral can become 

problematic, even for moderately sized Q and T. The use of numerical simulation techniques 

based on a maximum simulated likelihood (MSL) (see Greene, 2005) or a Bayesian inference 

approach, even if feasible, can lead to convergence problems during estimation (Bhat et al., 

2010a; Müller and Czado, 2005). The alternative is to use the composite marginal likelihood 

(CML) approach, as discussed in Section 2.2.  In the current study, we use the pairwise 

composite marginal likelihood method based on the product of the likelihood contributions from 

pairs of observation units across time periods. To write this function, define two threshold 

vectors of size QT×1 as follows: 

,),...,,,...,...,,,,...,,( ,1,,1,2,1,12,1,2,1,22,1,11,1,1,1,21,1,1 212221212111
′= −−−−−−−−− TmQTmTmmQmmmQmm QTTTQQ

ψψψψψψψψψτ

.),...,,,...,...,,,,...,,( ,,,,2,,12,,2,,22,,11,,1,,21,,1 212221212111
′= TmQTmTmmQmmmQmm QTTTQQ

ψψψψψψψψψϑ  

Let g be an index that can takes the values from 1 to QT. Then, 
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where 
[ ] [ ]

[ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] . ,
τ

 ,
gggg

gg
gg

gg

gg
g

gg

gg
g
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′
′ =

−
=

−
=

ΣΣ
Σ

ΣΣ
ν

B
μ

Bϑ
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In the above expression, [ ]gϑ  represents the thg  element of the column vector ,ϑ  and similarly 

for other vectors. [ ] gg ′Σ  represents the thgg  element of the matrix Σ . The CML estimator is 

obtained by maximizing the logarithm of the function in Equation (14). Note that, unlike other 

simulation-based estimators, the CML estimator entails only the computation of bivariate 

cumulative normal distribution functions, which are extremely quick to evaluate. 

 The pairwise marginal likelihood function of Equation (14) comprises 2/)1( −QTQT  

pairs of bivariate probability computations, which can itself become quite time consuming. 

Fortunately, in a spatial-temporal case where spatial dependency drops quickly with inter-

observation distance, the pairs formed from the closest spatial observation units provide much 

more information than pairs from spatial units that are far away. In fact, as demonstrated by 
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Varin and Vidoni (2009), Bhat et al. (2010a), and Varin and Czado (2010) in different empirical 

contexts, retaining all pairs not only increases computational costs, but may also reduce 

estimator efficiency. We examine this issue by creating different distance bands and, for each 

specific distance band, considering only those count pairings in the CML function that are within 

the distance band. To do so, construct a Q×Q matrix R~  with its thq  column filled with a Q×1 

vector of zeros and ones as follows: if the observational unit q′  is not within the specified 

threshold distance of unit q, the thq′  row has a value of zero; otherwise, the thq′  row has a value 

of one.  By construction, the thq  row of the thq  column has a value of one. Also, let 

,~RR ⊗= ×TT1  where TT ×1  is a T×T-matrix of ones. Then, the CML function gets modified as 

follows: 
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We develop the asymptotic variance matrix )ˆ(θVCML  of Equation (6) (as discussed next) for each 

distance band and select the distance band that minimizes the total variance across all parameters 

as given by )]ˆ([ θVCMLtr , where ][Atr  denotes the trace of the matrix A.  

The asymptotic variance expression is given by the sandwich estimator (see Section 2.2). 

The “bread” matrix )(θH  of Equation (6) can be estimated in a straightforward manner using 

the Hessian of the negative of )(log θCMLL , evaluated at the CML estimate θ̂ :  

,
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where ( )[ ] θmymyθ R |][][,][][)(,
gg

ggggggCML PL ′
′′′ === . 

However, the estimation of the “vegetable” matrix )(θJ  is not straightforward because of 

the underlying spatial and temporal dependence among counts. But, because the spatial 

dependence pattern implied by the spatial lag structure fades with distance, one can use the 
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windows re-sampling procedure of Heagerty and Lumley (2000) to estimate )(θJ . This 

procedure entails the construction of suitable overlapping subgroups of the count data that may 

be viewed as independent replicated observations. While there are several methods to do so, we 

use the method proposed by Bhat (2011). His approach is to overlay the spatial region under 

consideration with a square grid providing a total of D internal and external nodes. Then, select 

the observational unit closest to each of the D grid nodes to obtain D observational units from the 

original Q observational units (d = 1, 2, 3, …, D). Let C~  be a Q×D matrix with its thd  column 

filled with a Q×1 vector of zeros and ones, with a zero value in the thq′  row ( q′ = 1, 2, …, Q) if 

the observational unit q′  is not within the specified threshold distance of unit d, and a one 

otherwise (by construction, ).'if1~
' dqC dq ==  Also, let ,~CC ⊗= T1  where T1  is a T×1-matrix 

of ones. Then, the columns of C  provide pseudo-independent sets of observational units.6 Let 

the score matrix corresponding to the pairings in column d of matrix C be )(, θs dCML . Also, let 

dN  be the sum of the thd  column of C, and let [ ]∑ ∑
−

= +=

=
1

1 1'
'

~ QT

g

QT

gg
ggW R . Then, the )(θJ  matrix may be 

empirically estimated as: 
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One final important issue that we have not discussed thus far is how to ensure the positive 

definiteness of the matrix Ω . Once this is ensured, the positive definiteness of Σ  is ensured as 

long as 10and10 <<<< ρδ . In our estimation, the positive-definiteness of Ω  is guaranteed 

by writing the logarithm of the pairwise-likelihood in terms of the Cholesky-decomposed 

elements of Ω  and maximizing with respect to these elements of the Cholesky factor. 

Essentially, this procedure entails passing the Cholesky elements as parameters to the 

optimization routine, constructing the Ω  matrix internal to the optimization routine, then 

computing Σ , and finally picking off the appropriate elements of the matrix for the pairwise 

                                                            
6 As indicated by Bhat (2011), there needs to be a balance here between the number of sets of pairings D and the 
proximity of points. The smaller the value of D, the less proximal are the sets of observation units and more likely 
that the sets of observational pairings will be independent. However, at the same time, the value of D needs to be 
reasonable to obtain a good empirical estimate of J, since this empirical estimate is based on averaging the cross-
product of the score functions (computed at the convergent parameter values) across the D sets of observations. 
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likelihood components. To ensure the constraints on the autoregressive terms ,ρδ and  we 

parameterize these terms as )]~exp(1/[1 δδ +=  and )],~exp(1/[1 ρρ +=  respectively. Once 

estimated, the ρδ ~ and  ~ estimates can be translated back to estimates of ρδ and . 

 

3.3. Model Selection 

Procedures similar to those available with the maximum likelihood approach are also available 

for model selection with the CML approach (see Varin and Vidoni, 2009, Pace et al., 2011 and 

Bhat, 2011). The statistical test for a single parameter may be pursued using the usual t-statistic. 

When the statistical test involves multiple parameters between two nested models, an appealing 

statistic, which is also similar to the likelihood ratio test in ordinary maximum likelihood 

estimation, is the adjusted composite likelihood ratio test (ADCLRT) statistic. Consider the null 

hypothesis 0ττ:0 =H  against 0ττ ≠:1H , where τ  is a subvector of θ  of dimension p. Let θ̂  be 

the CML estimator of the unrestricted model (without the restriction imposed by the null 

hypothesis), and let 0θ̂  be the CML estimator under the null hypothesis. Define 1)]([ −θGτ  and 

1)]([ −θHτ  as the pp ×  submatrices of 1)]([ −θG  and 1)]([ −θH , respectively, which correspond 

to the vector  τ .  The following adjusted CLRT statistic, ADCLRT, may be considered to be 

asymptotically chi-squared distributed with p degrees of freedom: 

,
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where )],ˆ(log)ˆ([log2 0θθ CMLCML LLCLRT −=  )(θsτ  is the p×1 sub-vector of  
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θ

θθs )(log)( CMLL  corresponding to the vector τ , and all the matrices above are computed 

at 0θ̂ . 

 

4. APPLICATION TO INTERSECTION ACCIDENT COUNTS 

4.1. Background 

Motorized vehicle travel is the principal means of personal transportation in the United States. 

Although providing mobility and accessibility to activities, motorized vehicle travel also carries 



 

20 

with it the risk of being involved in a roadway crash, leading to deaths, injuries and property 

damage. According to the National Highway Traffic Safety Administration (NHTSA), in 2009 

alone, 33,808 people were killed and 2.2 million people injured in roadway crashes (NHTSA, 

2010a). This translates to an average of 93 fatalities per day in motor vehicle crashes in 2009; 

that is, one fatality every 16 minutes on US roadways. In fact, motor vehicle crashes continue to 

be the leading cause of death for people aged 11 through 33 years of age (NHTSA, 2010a). Even 

if a roadway accident does not involve a fatality, accidents represent an enormous cost to society, 

including property and motor vehicle damage, productivity losses, medical and administrative 

expenses, mental trauma, pain, and increased insurance premiums. The U.S. National Safety 

Council (2009) has quantified the average cost to society per death as $1,290,000 and per 

nonfatal disabling injury as $68,100. The overall economic cost of roadway-related crashes is 

estimated to be over $190 billion per year. 

 Among all traffic accidents, intersection and intersection-related crashes make up about 

40% of total crashes (NHTSA, 2010b). This is not surprising, because intersections generate 

conflicts of movement, are locations of stop-and-go traffic, and correspond to roadway locations 

with dense traffic. In the pool of serious intersection crashes (those involving one or more 

fatalities), 60% occur at urban intersections. Thus, understanding the causes of intersection 

related crashes in general, and in urban areas in particular, should be a priority for transportation 

and safety professionals in developing crash countermeasures. 

 Indeed, the study of crashes at intersection locations has received increasing attention in 

recent years. Several studies (see, for example, Haque et al., 2010, Huang and Chin, 2010, Mitra, 

2009, Wang and Abdel-Aty, 2006, Chin and Quddus, 2003, and Griebe, 2003), have examined 

the number of crashes occurring at an intersection as a function of intersection control 

characteristics, roadway design features, and traffic volumes. However, many of these studies 

assume that intersections are completely isolated entities, with no spatial dependence in the 

frequency of crashes between proximally located intersections. Some other studies consider 

spatial dependency, but in a rather coarse and restrictive form by assuming that the crashes at 

intersections within a certain geographic region or location type (such as primarily business, 

primary residential, primarily retail, and open county) or other spatial clusterings are correlated 

due to unobserved locational factors. But this approach assumes a constant level of correlation in 

crash risk across intersections within a spatial cluster, and no correlation between intersections in 



 

21 

different spatial clusters. Mitra (2009) considers a global spatial dependence configuration where 

the crashes at one intersection are related to all other intersections based on unobserved spatial 

proximity effects.7 However, Mitra’s approach does not accommodate a spatial lag structure, 

includes a single covariate (traffic flow), does not consider time-varying temporal effects or 

heterogeneity effects in the impact of variables, and uses a traditional Poisson count model with 

no accommodation of excess zero counts. The model in Mitra’s study is estimated using 

Bayesian MCMC methods, which have their limitations as discussed earlier. More generally, the 

fundamental problem with past approaches is that the mixing of error terms in the log-risk 

formulation (to generate the needed spatial dependence covariance over a Poisson or negative 

binomial or related versions of these kernel count models) leads to a very cumbersome likelihood 

function. Simulation techniques (both MSL and Bayesian) are not suited to handle the estimation 

of such models unless restrictive assumptions are imposed on the nature of spatial dependence. 

 

4.2. Data 

The crash data used in the analysis is drawn from the Texas Department of Transportation 

(TxDOT) Crash Records Information System (CRIS) between 2003 and 2009. The CRIS 

compiles police and driver reports of crashes into multiple text files, including complete crash, 

vehicle, person, and weather-related details for each crash.8 TxDOT overlays the crash locations 

from the crash files to a Geographic Information System (GIS)-based street network, identifies 

crash locations on the street network, and subsequently extracts information on road design and 

road geometry variables for each crash. As a result, for each year, the CRIS contains the 

characteristics of crashes occurring at intersection as well as non-intersection locations in Texas, 

along with supplementary information on road design and geometric variables. 

 For the current study, crashes at intersection locations were extracted out from the CRIS 

data base.9 Further, we confined the analysis to intersections from the city of Arlington. This is 

                                                            
7 In the broader crash study literature, a similar approach to Mitra has been adopted by Aguero-Valverde and Jovanis 
(2006, 2010), Miaou et al. (2003) and Song et al. (2006). 

8 The Texas law enforcement agency officially maintains the records of those crashes reported by police and drivers 
that involve property damage of more than $1,000 and/or the injury of one or more individuals (of course, records of 
crashes that involve fatalities on the spot are also maintained). Thus, the CRIS does not include minor crashes that 
involve only property damage of less than $1,000. However, in the rest of this paper, we will not belabor over this 
distinction, and will use the CRIS crashes as the measure for all crashes. 

9 TxDOT defines a crash as being intersection-related if it occurs within the curb-line limits of the intersection or on 
one of the approaches/exits to the intersection within 200 feet from the intersection center point. 
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because the CRIS does not include traffic flow information on intersection approach movements, 

one of the most relevant variables to explain intersection crash risk propensity (see Mountain et 

al., 1998, Noland and Quddus, 2004, Quddus, 2008). So, we had to locate areas in the State that 

had good roadway segment traffic count data for the period from 2003-2009. Fortunately, the 

Arlington City Department of Public Works and Transportation maintains such traffic count data 

on Arlington streets. These traffic counts are two-way counts over a 24-hour period (excluding 

weekends). From this traffic count data, we extracted out the flows on the approach streets for 

each intersection in the Arlington traffic database. The sum of the flows on all approach streets 

to an intersection was computed to obtain an estimate of the total daily entering traffic at the 

intersection. Finally, the intersections from the Arlington data base were matched with the 

TxDOT crash files, incorporating the traffic volumes to the final database.  

The count of all traffic crashes per year at each Arlington intersection in the TxDOT 

CRIS database constitutes the dependent variable of analysis. The final estimation sample 

includes 170 intersections, with crash counts available at each of these intersections for each year 

from 2003 to 2009 (a period of 7 years).10 The sample of intersections produces 1190 (=170×7) 

intersection-year observations. The total number of crashes in the sample is 3,503, corresponding 

to an average of 2.94 crashes per year per intersection. The number of crashes per year at an 

intersection varies from a minimum of 0 to a maximum of 20. Figure 1 presents the distribution 

of crashes per year across all intersection-year combinations (this is the dependent variable in our 

spatial-temporal crash analysis). Not surprisingly, the most frequent count of number of crashes 

per year is zero, with 306 of the 1190 intersection-year observations (25.7% of the sample) 

having no crashes. This excess of zeros cannot be handled by a standard Poisson model, but is 

not a problem in our proposed framework because of the flexible specification of the thresholds. 

At the same time, the frequency distribution indicates a long right tail, which is also easily 

                                                            
10 Note that our sample formation procedure includes only those Arlington intersections for which traffic count data 
is available from the Arlington database and at which at least one crash occurred over the 7-year period. While there 
are some intersections in the Arlington traffic count data base at which no crashes occurred during the 7-year period 
(as reflected in their absence in the CRIS database), we do not have readily available information on roadway design 
and control attributes for these intersections (precisely because they do not appear in the CRIS data base). Thus, we 
did not include such zero-crash (over the 7-year period) intersection locations. However, because of the 7-year 
length period of the CRIS data base, there were less than 30 intersections at which no crashes occurred at all out of 
the 200 intersections in the Arlington traffic count data base. Thus, the bias of our sample toward crash-prone 
intersections is not substantial. In any case, given that the dependent variable used in our analysis is crash count per 
year, there are several intersection-year combinations for which zero crashes are present in the sample, as we discuss 
later in this section. Thus zero crashes per year is well represented in the sample.  
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accommodated in the proposed count framework by setting Kk αα = for all Kk > (see Section 

2.1). In the current empirical analysis, we set K=9 based on extensive testing with alternative 

values. 

Table 1 presents the sample characteristics of the 170 intersections, including the (a) 

number of entering roads, (b) roadway alignment-- whether all approach streets are straight with 

no vertical grades, or whether one or more approach streets have a horizontal curvature or a 

vertical grade close to the intersection (this determination was made by TxDOT when compiling 

the roadway geometry information), (c) approach roadway type combination -- whether all 

approach roadways are city streets or at least one approach road is a non-city street, (d) type of 

traffic control, (e) total daily entering traffic, and (f) flow split imbalance in traffic volumes 

between the approaches (discussed in detail later). Table 1 indicates that, for a majority of 

intersections (about 72% of intersections), the number of entering roads is four. In addition, there 

are a sizeable number of intersections with three entering roads, both in a T-shape form as well 

as a Y-shape form. In terms of roadway alignment, more than 95% of intersections had straight 

approach streets with no vertical grade, while the remaining intersections had at least one 

approach with a horizontal curvature and/or a vertical grade. The approach roadways to a vast 

majority of the intersections are city streets, with less than 6% of intersections having one or 

more approach roads that are not city streets (of these intersections, 90% are intersections on US 

or State highway frontage roads). The traffic control type statistics in Table 1 indicate that nearly 

80% of the intersections have one of the following three types of traffic control: regular signal 

light, yield sign control (a yield sign on one more approaches, but no other form of control), and 

stop sign control (a stop sign on one or more approaches). Intersections with flashing light (one 

or more approaches having a flashing red or yellow light) are also represented in the sample, as 

are intersections with no control but a center stripe/divider on one or more approaches. About 

7.6% of the intersections do not have any traffic control (such as residential street intersections) 

or some minimal form of traffic control (such as turn marks and marked lanes). For ease, we will 

refer to such intersections as having no traffic control. 

The statistics for the total daily entering traffic volume at intersections in Table 1 shows a 

large variation with a minimum of 2,866 vehicles and a maximum value of 193,178 vehicles. 

Indeed, the standard deviation of this attribute across intersections is almost equal to the mean. 

For each intersection, we also defined a major road as the one carrying the higher traffic volume, 
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and a minor road as the one carrying the lower traffic volume. For three-legged T-shaped 

intersections and four-legged intersections, the definitions of the major and minor roads are 

straightforward. For three-legged Y-shaped intersections, it so happened in our sample that each 

of these intersections had two of the three approaches with the same road name. This allowed the 

identification of a major road and a minor road just as in the earlier cases. For the small 

percentage of intersections with “more than four approaches”, we manually determined a major 

road orientation and a minor road orientation based on intersection geometry. Next, a flow split 

imbalance (or FSIMB) factor between the volumes on the major and minor roadways was 

computed as follows: 

,
21

21

VV
VVFSIMB

+
−

=  

where 1V  and 2V  correspond to the daily traffic volumes on the major and minor roadways, 

respectively ( 21 VV ≥ ). Note that the FSIMB factor takes a value between zero (when there is no 

imbalance in flows on the approach roads) and one (when there is complete imbalance in the 

flows, theoretically obtained when there is zero flow on the minor road). The mean FSIMB 

statistic is 0.43, with a minimum value of zero and a maximum value of 0.97. The mean value of 

0.43 indicates that, on average, the major road volume is 2.5 times the minor road volume at the 

sampled intersections. 

The final row of Table 1 provides information on the distance between intersections. This 

is a key variable used to generate spatial dependency effects through the spatial weight matrix. 

To obtain the distance between intersections, the latitude and longitude coordinates (in degrees) 

of the center point of each intersection (as coded by TxDOT in the CRIS database) were first 

translated into x-y coordinates. Based on these coordinates, the Euclidean distance was computed 

for each pair of intersections. As can be observed from Table 1, the average distance between 

intersections in the city is 4.42 miles, with a minimum distance of 0.05 miles and a maximum 

distance of 11.81 miles (this maximum distance corresponds roughly to the length of the line that 

runs across the entire city of Arlington in the north-south direction). The distance between 

intersections was used as a measure of spatial proximity, and formed the basis to develop the 

spatial weight matrix. Several functional forms of distance were considered in the construction of 

the weight matrix including inverse distance and its higher orders, inverse of exponential 

distance, and an indicator for distance less than a threshold value. 
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4.3. Variable Specification and Model Formulation 

Many different variable specifications, functional forms, and variable interactions were 

considered from the list of variables in Table 1 to determine the final model specification. The 

effects of the number of entering roads, roadway alignment, approach road type combination, 

and type of traffic control were introduced as categorical variables, while the total daily entering 

traffic volume and the FSIMB factor were introduced as continuous variables. For the categorical 

variables, the base category used was as follows: (a) four entering roads for the “number of 

entering roads”, (b) straight approach streets with no vertical grade for “roadway alignment”, (c) 

all approach roads are city streets for “approach road type combination”, and (d) no traffic 

control for “type of traffic control”. In addition to the categorical variables just discussed, we 

also included year-specific dummy variables to capture the generally reducing trend in accidents 

over time. To do so, we used the year 2003 as the base, and introduced dummy variables for each 

of the other years. For continuous variables (total daily entering traffic volume and FSIMB 

factor), we tested alternative functional forms that included linear and non-linear forms, and also 

dummy variables for different ranges. All these variables were considered both in the latent 

variable (with random coefficients) and threshold specification based on the findings of previous 

research and intuition. Further, various interactions of the continuous and the categorical 

variables were also considered whenever adequate observations were available to test such 

interaction effects, such as between traffic volume and type of traffic control, traffic volume and 

roadway alignment, and number of entering roads and type of traffic volume. But none of these 

interaction terms came out to be statistically significant. The final model was obtained based on 

statistical fit, intuitiveness, and parsimony considerations. Our final specification includes all the 

variables described before but “roadway alignment”, which was not statistically significant. 

Several different model formulations were estimated, but we present only three specific 

model formulations in the current paper to keep the discussion focused (for ease in presentation, 

we will use the terms “models” to refer to “model formulations” in the remainder of this section). 

The first model is the flexible count model cast in the generalized ordered-response probit 

(GORP) framework. In the notation of Section 3.2, this model corresponds to ,0=ρ  ,0=δ  and 

all elements of Ω  being simultaneously zero. As discussed in Section 3.2, this model is more 

general than the traditional Poisson count model (by allowing exogenous variable effects in the 
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latent propensity variable as well as the thresholds, and having flexible thresholds), but ignores 

spatial, temporal, and unobserved heterogeneity effects. We will refer to this first model as the 

flexible count model (the flexible count model provided a far superior data fit, relative to a 

standard Poisson count model, in terms of the adjusted composite likelihood ratio index 

(ADCLRT) test of Section 3.3). The second model is the flexible count model with temporal 

effects. This model relaxes the constraint that 0=ρ  and all elements of Ω  are zero. That is, it 

allows time-varying and time-invariant effects, as well as unobserved heterogeneity effects. 

However, it maintains the restriction that there are no spatial effects ( ).0=δ Further empirical 

investigation with this temporal dependency specification indicated that ρ , the term that 

generates time-varying correlation effects, was not statistically significantly different from zero 

in our empirical context. This implies that all the temporal dependency is caused by time-

invariant (intersection-specific) generic crash propensity effects and time-invariant (intersection-

specific) effects of exogenous variables. The final model is the flexible count model with spatial 

and temporal effects. This is the most general model, which we discuss in a little more detail 

below.  

The spatial weights in the flexible count model with spatial and temporal effects may be 

generated in one of several ways, including inverse distance and its higher orders, inverse of 

exponential distance, and an indicator for distance less than a threshold value. In the case that the 

weight matrix is based on a continuous (and decaying) representation of distance, the analyst 

may also explore alternative distance bands to select the pairs of observations for inclusion in the 

composite marginal likelihood (CML) estimation. The optimal distance band may be set based 

on minimizing the trace of the variance-covariance matrix given by )]ˆ([ θVCMLtr . In the current 

effort, we computed )]ˆ([ θVCMLtr  for seven distance bands (2, 3, 4, 5, 6, 7, and 11.81 miles), the 

last one representing the case of including all the 2/)1( −QTQT possible intersection-year pairs 

in the CML function. Our results did not show substantial variations in the trace value for 

different distance bands (regardless of the specific continuous functional form used to represent 

the distance separation), though the best estimator efficiency was obtained at about 2 miles for 

all continuous distance representations. Further, we also constructed a spatial weight matrix 

based on a discrete distance indicator, which essentially allows spatial dependence among 

intersections located within “x” miles of each other. For this spatial weight matrix construction, 
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we included all pairings in the CML function within the “x” miles threshold, because selecting 

only a subset of intersection-year pairings (as used for the continuous distance representation for 

the weight matrix) is not valid in the discrete distance representation (there is no decaying effect 

of distance within the discrete distance threshold). At the end, the spatial weight matrix 

constructed based on the continuous distance representation in the form of the inverse of 

exponential distance provided the best results in terms of data fit (based on the CLIC statistic 

presented in Section 3.3), and all CML estimations were pursued with a distance band of 2 miles. 

The next section discusses the results of the following three models in more detail: (1) the 

flexible count or the FC model, (2) the flexible count model with temporal effects or the FCT 

model (as characterized by time-invariant effects), and (3) the flexible count model with 

temporal and spatial effects or the FCTS model. 

 

4.4. Model Estimation Results 

Table 2 presents the estimation results. We first discuss the effects of variables on the long-term 

crash propensity (Section 4.4.1), then the variable effects on the thresholds that affect the 

“instantaneous” translation of the propensity to whether or not a crash occurs at any given time 

(and, therefore, the count of crashes over a certain time period) (Section 4.4.2), next the temporal 

and spatial effects (Section 4.4.3), and finally the model fit comparisons (Section 4.4.4). Note 

that, for dummy exogenous variables, the category that does not appear in the table is the base 

category, as defined in Section 4.3. 

 A quick note here before proceeding further. The results of the three models in Table 2 

are not directly comparable, since the scales of the error terms are different. Also, the second 

model accommodates spatial heteroscedasticity through the time-invariant random coefficient 

effects, while the third model accommodates spatial heteroscedasticity through both the random 

coefficients as well as the spatial lag formulation. 

 

4.4.1. Long Term Crash Propensity 

The constant term in the long term crash propensity is normalized to zero, as discussed in 

Section 3.1.1. However, the FCT and FCTS models accommodate intersection-specific 

unobserved heterogeneity effects due to unobserved factors (such as perhaps pedestrian walkway 

continuity characteristics or curb radius attributes or other roadway geometry features). The 
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standard deviations on the constant clearly identify the presence of time-stationary intersection-

specific unobserved factors. 

The other variables that significantly affect the long term crash propensity include 

number of entering roads, type of traffic control, traffic volume, the flow split imbalance 

(FSIMB) factor and the year-specific dummy variables. Prima facie, the mean values of 

parameter estimates are similar in sign in all the three models. The results indicate that 

intersections with three entering roads are less prone to crashes than four-legged intersections, 

probably because the former type of intersections presents “fewer vehicle conflict points” than 

the latter (Abdel-Aty and Wang, 2006). Intersections with more than four entering roads present 

the lowest crash propensity. This is reasonable because drivers are likely to be intrinsically 

cautious as they approach intersections that do not have the usual “four-entering roads” 

configuration and perhaps also because of conflict-reducing design safeguards at such atypical 

intersections. 

The results on the traffic control type variables indicate a lower mean crash propensity 

when there is some kind of control (except flashing light control) relative to no control at all 

(notice the negative signs on the coefficients of the control variables except on the flashing light 

control). Intersections with regular signal lights present less long term crash propensity, on 

average, compared to other control types. The random coefficients on the yield sign control in 

the FCT (flexible count model with temporal effects) and FCTS (flexible count model with 

temporal and spatial effects) models are interesting. In both these models, the mean and standard 

deviation coefficients on the yield sign control variable suggest that, other things being 

controlled for, 88-89% of the intersections with a yield control are safer than intersections 

without any control, though a small percentage (11-12%) of intersections with a yield control can 

be more crash risk-prone than intersections without any control. But the results from the FCT 

and FCTS models are very different when the effects of the yield and regular signal light controls 

are compared. The FCT model suggests that about 45% of intersections with a yield control are 

safer from a long term crash risk propensity than observationally equivalent regular signal light-

controlled intersections, while the FCTS model indicates that yield controls are pretty much 

always not as effective as signal-controlled intersections in reducing long term crash propensity 

(however, as we will see later, signal control also has an effect on the instantaneous translation of 

propensity into crash outcomes). Both the FCT and FCTS models indicate that 76 out of 100 
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yield-controlled intersections are safer than observationally equivalent stop-controlled 

intersections, perhaps because yield signs define the right-of-way at intersections quite clearly, 

and are characterized by lower traffic volumes and better sight distance than intersections 

controlled by stop signs. The results from all models also consistently suggest that intersections 

controlled by flashing lights (red or yellow) on one or more approaches are the most crash-prone, 

an observation also made by Poškienė and Sokolovskij (2008). This may be a reflection of 

confusion on the part of drivers regarding how to respond on seeing a flashing light and/or 

because flashing lights are usually installed at intersection locations that may have poor line of 

sight on approaches. Finally, intersections with center stripes or dividers help reduce long term 

risk propensity relative to intersections with no control, because such visual or physical barriers 

help in clearly delineating (and separating) the paths of conflicting traffic flow movements. 

The total daily entering traffic volume variable, as defined in Section 4.2, was introduced 

in several ways, but the best data fit was obtained using a simple logarithmic transformation of 

the daily entering volume. The results show, on average, the expected positive relationship 

between total entering volume and long-term crash propensity. This is a direct consequence of 

higher volumes being related to tighter vehicle spacing and more conflict points on a per time 

unit basis (see, for example, Chin and Quddus, 2003, Mitra, 2009, Oh et al., 2009, and Abdel-

Aty and Wang, 2006). The logarithmic functional form shows the marginally reducing effect of 

traffic volume on count frequency. However, unlike most other studies, we also are able to 

consider random coefficients in a way that is simpler and different from the usual mixing 

approach used in traditional count models (see Anastasopoulos and Mannering, 2009 and the 

discussion in Section 2.1). Our results show the clear heterogeneity in the influence of entering 

volume on long term crash propensity. In particular, the mean and standard deviation on the 

logarithm of the total daily entering volume variable in Table 2 reveal that an increase in the total 

daily entering traffic volume leads to a lower crash propensity at about a third of the 

intersections, but leads to a higher crash propensity at two-thirds of the intersections (this is for 

both the FCT and the FCTS models). Such variations may result from the complex interactions 

between unobserved intersection characteristics and motorist learning/adaptation behavior in 

response to different levels of traffic volume. 

In this study, we introduce the concept of the Flow Split Imbalance (or FSIMB) factor to 

capture the difference in traffic volumes between the major and minor roadways. Such volume 
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differences have been considered in earlier safety studies too (see, for example, Wang et al., 

2006, Haque et al., 2010, Huang and Chin, 2010), but not in the specific form we propose. The 

negative parameter in Table 2 associated with this FSIMB variable suggests a lower crash 

propensity associated with higher flow imbalance. That is, intersections where the volumes on 

the minor and major roadways are relatively unbalanced are less crash-prone than intersections 

where the minor and major roadways have about the same traffic volume. This perhaps reflects 

the caution that drivers exercise when approaching an intersection on a minor roadway when 

aware of the much higher traffic volume on the other roadway. Besides, the dominant flow on 

one of the roadways should reduce the number of conflict points. 

Finally, the year-specific dummy variables show the lower crash propensity in recent 

years relative to earlier years, which is consistent with the reduction in crashes in recent years 

(see, for example, Aguero-Valverde and Jovanis, 2006 and Quddus, 2008). 

 

4.4.2 Threshold Parameters 

The threshold parameters include the threshold specific constants ( kα  values), as well as a 

constant and variables associated with approach roadway type combination and type of traffic 

control as part of γ  vector (see Equation (8)). The thresholds are responsible for the 

“instantaneous” translation of the long-term crash propensity to whether or not a crash occurs at 

any given time (that is, they determine the mapping of the latent propensity to the observed count 

outcome). 

The threshold specific constants )( kα  do not have any substantive interpretations. 

However, their presence provides flexibility in the count model to accommodate high or low 

probability masses for specific outcomes. As indicated in Section 2.1, identification is achieved 

by specifying 00 =α  and KkKk ≥∀= αα . In the present specification, we initially set K = 20 

and progressively reduced K based on statistical significance considerations and general data fit. 

The final specifications in Table 2 are based on setting K = 9. 

The elements in the γ  vector are presented next in Table 2. The constant does not have 

any particular interpretation. For the other variables, a positive coefficient shifts all the 

thresholds toward the left of the crash propensity scale, which has the effect of reducing the 

probability of zero crashes. The effect of the approach roadway type combination variable 
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suggests that, given two intersections with the same long term crash propensity, the intersection 

where at least one approach roadway is a non-city street (such as a highway or interstate frontage 

road) is more likely to have a non-zero crash outcome compared to the intersection where all 

approaching roads are city streets. This is a result that certainly warrants in-depth analysis, but 

may be suggestive of motorists not reducing speed enough after exiting off a highway as they 

approach an intersection on a frontage road. The other effect of regular signal light as the traffic 

control is interesting, and indicates an increase in non-zero crash outcomes at intersections with 

regular signal lights relative to other types of control (for a given long-term crash propensity). 

That is, the translation of risk into the occurrence of a crash is elevated for regular signal light 

controlled intersections, perhaps because of less of an “out” option at signal controlled 

intersection as a crash is developing (for example, motorists may not be able to get into a 

different lane or maneuver in a different direction at the intersection because of other 

simultaneous movements taking place and because of the clearly delineated and channeled traffic 

movements). The suggestion is that movement delineation and separation can be a double-edged 

sword – while it reduces conflict points and risks of a crash, it also provides fewer options to 

motorists to avoid a crash situation as it starts to develop. 

 

4.4.3. Temporal and Spatial Effects 

As discussed earlier, the unique feature of our formulation is that it enables the accommodation 

of temporal and spatial effects through the long-term propensity variable in the generalized 

ordered-response characterization of a count model. The statistically significant estimates of the 

random coefficients on the constant, on the indicator variable for yield control, and on the 

logarithm of daily traffic counts reflect the presence of time-invariant intersection-specific 

temporal dependence effects on the long term crash propensity. However, the first order auto-

regressive temporal dependency parameter ρ  did not turn out to be statistically significant.   

The spatial dependency parameter δ  in the final spatial lag model is positive, moderate 

in magnitude (about 0.422), and statistically significant, supporting the hypothesis that factors 

such as intersection geometric configuration, traffic control type, and traffic volumes will have 

“spillover” effects at other intersections. Also, the spatial lag model reinforces the notion of the 

presence of unobserved factors (such as zonal regulations, neighborhood design features, and 
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neighborhood driving attitudes) that generate correlation in crash occurrence at proximately 

located intersections.  

 

4.4.4. Model Selection and Statistical Fit 

The flexible count model with temporal effects (FCT) is superior to the flexible count (FC) 

model, as should be clear from the presence of statistically significant random coefficients. 

Further, the FCTS model shows a statistically significant spatial lag effect. Another way to 

demonstrate these improvements is by undertaking the adjusted composite likelihood ratio test 

(ADCLRT) test. The composite log-likelihood value for the FC model is -468,491.1 (27 

parameters estimated), for the FCT model is -455,532.0 (30 parameters estimated), and for the 

FCTS model (31 parameters estimated) is -455,195.2. The ADCLRT statistic for the test between 

the FCTS and FC models is 1646, which is larger than the table chi-squared value with 4 degrees 

of freedom at any reasonable level of significance. Similarly, the ADCLRT statistic for testing 

the FCTS model with the FCT model turned out to be 356, which is again higher than the chi-

squared table value with one degree of freedom at any reasonable level of significance.  

 

4.5. Elasticity Effects 

In the previous section we concluded that the FCTS model is statistically superior to the other 

models presented in Table 2. However, and very importantly, the difference between these 

models is not simply a matter of data fit. We expect that the impact of variables on crash 

frequency will be different among the models. The parameters of the exogenous factors in Table 

2, however, do not directly provide the magnitude of the impact of variables on crash frequency. 

To do so, we compute the aggregate-level “elasticity effects” of variables to discern the 

magnitude and direction of variable impacts. Specifically, we examine the effects of variables on 

the expected number of crashes at any intersection for the year 2009, given the intersection 

characteristics and those of other intersections. The expected number of crashes at intersection q 

is computed as: 
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where )( 2009, kyP q =  is the probability of k crashes occurring at intersection q for the year 2009. 

Although the summation in the equation above extends until infinity, we consider counts only up 

to k = 20, which is the maximum crash frequency observed in the dataset. This should not affect 

the elasticity computations because the probabilities associated with higher crash outcomes are 

very close to zero. Also, using the notation in Section 3.1, the expected value of crashes at 

intersection q is a function of variables in the (Q×L) matrix of exogenous variables for all Q 

units ),...,,,( 2009,2009,32009,22009,12009 ′= Qxxxxx  as well as a function of variables in the 2009,qz  

vector embedded in the thresholds: 
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If there are common variables in 2009,qx  and 2009,qz  (such as the “regular signal light” variable in 

the current application), these variables will impact the expected value of the crash frequency at 

intersection q both through the long-term propensity and the thresholds. 

 The estimate of )( 2009, kyP q =  in Equation (19) for the FC model may be obtained in a 

straightforward manner from Equation (2). For the FCT model, random coefficients need to be 

accommodated and, for the FCTS model, spatial effects also need to be recognized. For ease, we 

will focus on the FCTS model, since the procedure to estimate )( kyP q =  for the FCT model is 

simpler. For the FCTS model, using the same notations as in Section 3.1, we may write the 

following counterpart of Equation (10) for the year 2009: 

,~~~~~
200920092009

*
2009 εSβxSbxSy ++=  where ( )[ ] .~ 1−−= WIS δQ   (21) 

To estimate )( 2009, kyP q =  in the FCTS model, we simulate the above Q×1-vector *
2009y  thousand 

times using the estimated values of δ , b, and draw randomly 1000 times from the appropriate 

normal distributions for β~  and the Q×1-vector .2009ε  Next, we compare each of the 1000 draws 

of the thq  element of *
2009y  with the corresponding thresholds for the thq  element from Equation 

(20), assign the count value for each of the 1000 draws based on this comparison, and then take 

the share of each count prediction across the 1000 draws to estimate )( 2009, kyP q = . We also 



 

34 

compute the standard errors of the elasticity effects by using 200 bootstrap draws from the 

sampling distributions of the estimated parameters.11 

 The elasticity computed is a measure of the aggregate percentage change in the crash 

frequency due to a change in an exogenous variable. For dummy variables, the value of the 

variable is changed to one for the subsample of intersections for which the variable takes a value 

of zero, and to zero for the subsample of observations for which the variable takes a value of one. 

We then add the shifts in expected aggregate shares in the two subsamples after reversing the 

sign of the shifts in the second subsample, and compute the effective percentage change in the 

expected total number of crashes per year across all intersections in the sample due to a change 

in the dummy variable from 0 to 1. For continuous variables, we increase the value of the 

variable by 10% for each intersection and compute the percentage change in the expected total 

number of crashes per year across all intersections. For the FSIMB factor that is contained 

between 0 and 1, we increase the factor by 0.1 at each intersection. 

The elasticity effects and their standard errors are computed for the FC model and the 

FCTS model, and are presented in Table 3 (we focus only on the FC and FCTS models in this 

section to keep the presentation concise). The first entry in the table indicates that the number of 

crashes at three-legged intersections is, on average, about 51% less than the number of crashes at 

four-legged intersections. Other entries may be similarly interpreted. The elasticity effects of 

both the FC and FCTS models are in the same direction, and are consistent with the discussions 

in the previous section. As should be clear from the table, the magnitude of effects is, in general, 

higher in the FCTS model than in the FC model. This is because of the “spillover” effects in the 

FCTS model, which causes a spatial multiplier effect. A change in a variable at an intersection A 

affects the frequency of crashes at other intersections that then comes back and has an impact on 

the crashes at intersection A. The FC model does not capture such spatial multiplier effects 

because it considers crashes at one intersection to be independent of crashes at other 

intersections. The only exception to the spatial multiplier effect relates to the variable “at least 

one approach roadway is a non-city street”. The magnitude of effect for this variable is higher in 

the FC model relative to the FCTS model, but this is because the variable affects crash frequency 

only through the thresholds and not through the long-term crash propensity variable involved in 

                                                            
11 For ease in computation, we fix the spatial lag parameter δ in the bootstrapping, so that we do not have to compute 
the matrix S~  for each bootstrap draw (the matrix S~  entails a high-dimensional matrix inversion). 
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the spillover effects. The elasticity results of the other variables in Table 3 indicate a lower 

reduction in crash frequency as implied by the FC model for intersections with more than four 

entering roads (relative to four entering roads) and a much lower impact of the logarithm of daily 

entering volume on crash occurrence at intersections (these differences in predictions between 

the models are statistically significant at the 0.02 level of significance). At the same time, 

relative to the FCTS model, the FC model predicts a much higher crash frequency rate at 

intersections where at least one approach roadway is a non-city street (mostly intersections on 

US or State highway frontage roads) compared to usual urban intersections (this difference in 

predictions is statistically significant at the 0.06 level of significance). The FC model also under-

estimates the reduction in crashes at intersections with higher flow-split imbalance (i.e., more 

flow disparity in approaches) relative to the FCTS model (statistically significant difference at 

the 0.12 level of significance), and predicts a lower crash rate at intersections with flashing lights 

compared to the FCTS model (statistically significant at about the 0.2 level of significance). 

Overall, there are statistically significant differences in elasticity predictions between the models, 

highlighting the potentially misinformed investments in crash countermeasures if temporal and 

spatial effects are ignored.  

Across both the FC and FCTS models, the two most important determinants of high crash 

frequency are flashing light control and non-city street approaches. The flashing light control 

effect may simply be proxying for various elements of the intersection location that warrant a 

flashing light installation in the first place (such as the installation of flashing lights to catch the 

attention of motorists on approaches with poor line of sight, or regions of fast moving traffic 

conflicting with rural side streets). But it may also indicate confusion in the minds of motorists 

regarding the purpose and intent of flashing lights. If not clear, motorists can become insensitive 

to such installations and ignore them, or may not know how to respond on seeing such lights. 

The high magnitude of effect of non-city street approaches suggests, as already indicated earlier, 

that motorists may not be reducing speed enough after exiting off a highway as they approach an 

intersection on a frontage road. Further investigation of these effects will be helpful to 

understand the precise reasons for this result, which can in turn lead to improved intersection 

designs as well as appropriate outreach and dissemination campaigns to inform the driving 

public. 
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5. CONCLUSIONS 

In the current paper, we propose a count modeling framework and inference approach that 

resolves many challenges in extant models for correlated counts. Specifically, we show how any 

traditional count model can be reformulated as a special case of a generalized ordered response 

model in which a single latent continuous variable is partitioned into mutually exclusive 

intervals. Using this equivalent latent variable-based generalized ordered response framework for 

count data models, we are then able to gainfully introduce spatial dependencies using a spatial 

structure on the latent continuous variables, and time-stationary and time-varying temporal 

correlation patterns by means of an appropriate structure for the error term of the latent variable. 

Our formulation also allows handling excess zeros in correlated count data, a phenomenon that is 

commonly found in practice. A composite marginal likelihood inference approach for ordered-

response models is used to estimate model parameters. This approach reduces the inference 

problem dimension to pairs of bivariate probability computations, obtaining consistent and 

asymptotically normally distributed estimates. The approach is easy to implement using available 

discrete choice software programs or matrix programming languages. 

The modeling framework is applied to predict crash frequency at urban intersections in 

Arlington, Texas. There have been several efforts devoted to investigating crash occurrence; 

however, most of these studies ignore the presence of temporal correlation across repeated data 

from the same intersection and spatial dependence across intersections. Temporal correlations 

can manifest themselves in the form of random intersection-specific coefficients on variables 

impacting crash propensity at the intersection, as well as in the form of time-varying correlation 

effects. Spatial correlation can emerge when observed factors have a “spillover” effect on crash 

frequency, or when spatially unobserved factors generate spatial correlations in crash frequencies 

at closely located intersections. Ignoring such temporal and spatial correlations will, in general, 

lead to inconsistent and inefficient parameter estimates. 

The empirical results reveal the presence of intersection-specific time-invariant 

unobserved components influencing crash propensity and a spatial lag structure to characterize 

spatial dependence. Roadway configuration, approach roadway functional types, traffic control 

type, total flows and the split of flows between approaches are all important variables in 

determining crash frequency at intersections. The results highlight the potentially misinformed 

effects of these variables on crash frequency that can result if temporal dependencies and spatial 
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dynamics are ignored. Future crash analysis using the method proposed here may be undertaken 

with data sets that provide additional geometric design characteristics of intersections (such as 

number of lanes on approaches, presence of separate left-turning lanes, speed limits, and 

permitted movements) and land use attributes at the intersection location. 

The method proposed here is quite general, and may be used to analyze any number of 

correlated count outcomes with relative ease. For instance, the empirical analysis in the current 

paper may be extended to model crash counts by severity level, while accommodating global and 

flexible spatial and temporal interactions. 
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Figure 1. Yearly Crash Frequency Distribution Across Intersections 
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Table 1. Sample Characteristics (1190 observations) 
Variables Sample share 

Number of Entering Roads  

 Three 24.6 

 Four 71.6 

 More than four 3.8 

Roadway Alignment  
All approaches are straight with no vertical grade 95.7 
At least one approach has horizontal curvature or vertical grade 4.3 

Approach Roadway Type Combination  

 All approach roadways are city streets 94.4 

 At least one approach roadway is a non-city street 5.6 

Type of Traffic Control  

 Regular signal light 52.8 

 Yield sign 15.3 

 Stop sign 12.4 

 Flashing light 7.3 

 Center stripe / divider 4.6 

 No traffic control or minimal traffic control 7.6 

Descriptive Statistics 

  Minimum Maximum Mean Std. Dev.
Total daily entering volume (vehicles/day) 2,866 193,178 35,222 33,784 
Flow split imbalance (FSIMB) factor 0.00 0.97 0.43 0.25 
Distance between intersections (miles) 0.05 11.81 4.42 2.29 
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Table 2. Model Estimation Results 

(Weight Matrix: inverse of exponential distance, Distance Band: 2 miles) 
 

      

Flexible Count 
(FC) Model 

Flexible Count 
with Temporal 
Effects (FCT) 

Model 

Flexible Count with 
Temporal and 
Spatial Effects 
(FCTS) Model 

Variables Estimate t-stat Estimate t-stat Estimate t-stat 
Long-term Propensity Variables            
Constant  0.000 -  0.000 -  0.000 - 
     Standard Deviation ‐ ‐  0.889  10.33  0.640    7.02 
Number of Entering Roads             
   Three -0.660 -15.07 -1.048 -12.95 -0.950 -13.20 
   More than four -0.921 -13.64 -1.397 -14.61 -1.276 -13.20 
Type of Traffic Control             
   Regular signal light -1.906   -7.35 -1.709  -3.78 -3.003   -7.53 
   Yield sign -0.912 -10.40 -1.536  -8.32 -1.352   -8.55 
     Standard Deviation ‐ ‐  1.279   6.04  1.168    6.32 
   Stop sign -0.454   -7.80 -0.630  -6.93 -0.540   -7.01 
   Flashing light  0.696    8.69  1.002   8.99  0.948    9.08 
   Center stripe / divider -0.659   -8.83 -0.965  -7.64 -0.786   -6.96 
Logarithm of daily entering volume 
  (veh/day/10,000)  0.210    6.76  0.437   8.42  0.374   7.98 
     Standard Deviation ‐ ‐  0.966 16.66  0.831 15.60 
Flow split imbalance (FSIMB) factor -0.817   -9.86 -1.146 -9.39 -1.042  -9.49 
Year-specific Dummy Variables             
  Year 2004 -0.210   -2.23 -0.267  -1.46 -0.103  -1.09 
  Year 2005 -0.440   -4.67 -0.652  -3.63 -0.291  -2.90 
  Year 2006 -0.438   -4.69 -0.682   -3.74 -0.218  -1.94 
  Year 2007 -0.441   -4.67 -0.690  -3.76 -0.182  -1.52 
  Year 2008 -0.470   -5.03 -0.748  -4.10 -0.250  -2.10 
  Year 2009 -0.539   -5.85 -0.835 -4.62 -0.378  -3.30 
Threshold Variables             
Threshold Specific Constants             
   α1 -0.026   -1.06  0.519  9.04  0.492 10.30 
   α2 -0.166   -5.02  0.740  8.76  0.708 10.16 
   α3 -0.377   -8.81  0.787  7.37  0.769   8.77 
   α4 -0.563 -11.25  0.856  6.69  0.842   7.93 
   α5 -0.745 -13.02  0.913  6.12  0.901   7.23 
   α6 -0.968 -15.18  0.885  5.29  0.882   6.20 
   α7 -1.264 -17.25  0.698  3.79  0.722   4.65 
   α8 -1.430 -18.88  0.792  3.82  0.809   4.65 
   α9 -1.698 -20.81  0.648  2.93  0.689   3.70 
γ  Vector             
   Constant  1.223  40.40  1.741 19.56  2.309 16.09 
   Approach Roadway Type Combination             

    
At least one approach roadway is a  
non-city street  0.449  11.39  0.418  9.37  0.313  9.00 

   Type of Traffic Control             
      Regular signal light  0.837   7.49  0.622  3.89  0.888  10.82 
δ (spatial correlation parameter) - - - -  0.422 9.25 
Number of observations 1190 1190 1190 
Number of parameters estimated 27 30 31 
Log-composite likelihood at convergence -468,491.1 -455,532.0 -455,195.2 
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Table 3. Elasticity Effects of Variables on Expected Number of Crashes 

   

Flexible Count (FC) 
Model 

Flexible Count with 
Spatial and Temporal 
Effects (FCTS) Model 

Variable Estimate 
Standard 

error Estimate 
Standard 

error 

Number of Entering Roads     

  
Three -51.07 4.31 -54.44 5.63 

  
More than four -60.95 4.07 -75.08 4.39 

Approach Roadway Type Combination     

  
At least one approach roadway is a 
non-city street 

133.44 20.20 85.22 15.63 

Type of Traffic Control     

  
Regular signal light -2.85 33.24 -7.87 36.31 

  
Yield sign -59.45 5.04 -69.50 6.78 

  
Stop sign -34.79 4.78 -37.50 5.83 

  
Flashing light 69.45 11.94 99.40 21.43 

  
Center stripe / divider -47.36 5.53 -53.71 7.42 

Logarithm of daily entering volume 
(veh/day/10,000) – 10% increase 

1.75 0.31 5.06 1.09 

Flow split imbalance (FSIMB) factor – 
0.1 increase 

-6.88 0.98 -9.74 1.65 

 


