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ABSTRACT 

This paper proposes a comprehensive continuous-time framework for representation and 

analysis of the activity-travel choices of non-workers. The paper also presents econometric 

formulations for components of the comprehensive framework that focus on the overall 

organization of activities (including number and type of activities, and activity sequencing) in the 

non-worker’s daily activity-travel pattern. The paper concludes with an empirical analysis using 

activity-travel data from the 1990 San Francisco Bay Area travel diary survey. A companion 

paper being prepared by the authors discusses the econometric formulations and associated 

empirical results for components of the overall framework that address the temporal and spatial 

attributes of the daily activity-travel pattern.  
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1. Introduction 

The activity-based approach to travel demand analysis views travel as a derived demand; 

derived from the need to pursue activities distributed over space and time. The conceptual appeal 

of this approach originates from the realization that the need and desire to participate in activities 

is more basic than the travel that some of these participations may entail. By placing primary 

emphasis on activity participation and focusing on sequences or patterns of activity behavior 

(using the whole day or longer periods of time as the unit of analysis), such an approach can 

address congestion-management issues through an examination of how people modify their 

activity participations (see Jones et al., 1990). The activity-based approach is also better suited to 

respond to the increased information demands placed on travel models by the 1990 Clean Air 

Act Amendments (CAAAs) (the reader is referred to Bhat and Koppelman, 1999a for a detailed 

review of the activity approach to travel analysis). 

In the activity-based research literature, there has been extensive examination and 

analysis of worker activity travel patterns (for example, see Bhat and Singh, 2000; Hamed and 

Mannering, 1993; Damm, 1980; Strathman et al., 1994). The primary motivation for the focus on 

worker activity choices is the significant effect of commute travel behavior on peak traffic 

congestion and mobile source emissions. In contrast to the substantial literature on worker 

activity analysis, relatively little research has focused on studying the activity-travel behavior of 

non-workers. On the other hand, analysis of the activity-travel behavior of non-workers provides 

important input for transportation planning. A large proportion of non-workers include children 

or retired individuals who may have special mobility and accessibility requirements. Another 

important non-working group comprises homemakers who, while exhibiting high levels of 

mobility like workers, have rather flexible schedules due to the absence of temporal fixities 

(unlike commute trips for workers). The underlying factors influencing the travel-related 
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decisions of these non-workers are likely to be quite different from those of workers (see Bianco 

and Lawson, 1996).  

 Some previous studies in the literature have developed analysis frameworks that may be 

applied to non-worker activity-travel analysis. These studies have made important contributions 

by recognizing complex inter-linkages among activity decisions. But most of these studies do not 

model the temporal dimension (except possibly for departure time categorized broadly into a.m. 

peak, p.m. peak, mid-day, and other), and/or require the a priori designation of activities as 

"primary" and "secondary" or “fixed” and “flexible” (see Ben-Akiva and Bowman, 1995 or 

Kitamura and Fujii, 1998). Some other studies of activity scheduling consider the generation of 

activity episodes and their attributes (such as number of activities, type of activities, duration of 

activities, location of activities, etc.) as exogenous inputs and emphasize the temporal 

sequencing of activity participations. Thus, these studies limit their attention only to certain 

aspects of the entire activity-travel pattern of individuals. Examples of scheduling models in the 

literature include CARLA (Clarke 1986), STARCHILD (Recker et al., 1986a, 1986b), 

SCHEDULER (Garling et al., 1989), SMASH (Ettema et al., 1993) and AMOS (Kitamura et al., 

1996). The reader is referred to Bhat and Koppelman (1999b) for a detailed review of these and 

other studies. 

 The purpose of this paper is to propose a comprehensive framework for the analysis of 

non-worker daily activity-travel patterns that a) considers all relevant activity-travel attributes of 

the non-worker pattern, b) models both the generation as well as scheduling of activity episodes, 

c) considers time as an all-encompassing continuous entity in analysis, and d) does not require 

the a priori designation of activity episodes as fixed or flexible, or primary or secondary.  

The rest of this paper is structured as follows. The next section develops a representation 

and analysis framework of the daily activity-travel pattern of non-workers, which comprises 
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seven model components. Section 3 provides econometric details of the first three of the seven 

model components that focus on the overall organization of activities (including number and 

type of activities, and activity sequencing) in the daily activity-travel pattern. The econometric 

structure of the remaining four model components, corresponding to the temporal and spatial 

attributes of the activity-travel pattern, is the focus of another paper being prepared by the 

authors. Section 4 presents empirical results using activity-travel diary data obtained from the 

San Francisco Bay area. The final section concludes the paper.  

2. REPRESENTATION AND ANALYSIS FRAMEWORK 

 
2.1.  Activity-Travel Pattern Representation 
 
 We consider household and individual socio-demographics as exogenous determinants of 

the activity-travel pattern behavior of non-workers. The activity-travel environment is also 

considered as an exogenous input. The activity-travel environment comprises both the 

transportation system (i.e., the network configuration of roads and the transit system) and the 

land-use environment (the location of opportunities for activity participation). Conditional on 

socio-demographics and the activity-travel environment, individuals make medium-term 

decisions (in combination with other individuals in their household) regarding their employment 

status, residence (type of residence, location, etc.), and car ownership. We consider these 

medium-term decisions as being exogenous to the determination of the daily activity-travel 

pattern (the medium-term activity-travel decisions may be modeled separately prior to the 

modeling of the daily activity-travel pattern, see Bhat and Koppelman, 1993). Finally, we 

assume 3 a.m. to be the start of the day and will assume that all individuals are at home during 

the start of the day. 
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A non-worker's activity-travel pattern comprises several out-of-home activity episodes 

(or “stops”) of different types interspersed with in-home activity stays (we will use the term 

“stops” to refer to out-of-home activity episodes in the rest of this paper). The chain of stops 

between two in-home activity episodes will be referred to as a tour. 

 The characterization of a non-worker's daily activity-travel pattern is accomplished by 

identifying a number of different attributes within the pattern. The attributes may be classified 

based on the level of representation they are associated with: that is, whether they are associated 

with the entire daily pattern, a tour in the day, or an episode. Pattern level attributes include 

whether or not the individual makes any stops during the day, the number of stops of each 

activity type if the individual leaves home during the day, and the sequencing of all episodes 

(both stops and in-home episodes). The only tour-level attribute is the travel mode for the tour. 

Episode-level attributes include the episode duration, travel time to episode from previous 

episode (except for the first home-stay episode), and the location of out-of-home episodes (i.e., 

stops).  

 

2.2.  Analysis Framework 

 The analysis of the activity travel pattern of non-workers entails the modeling of each of 

the attributes identified in the activity-travel representation. The joint modeling of all the 

attributes is infeasible because of the large number of attributes and the large number of possible 

choice alternatives for each attribute. There is a need to develop an analytic framework to model 

the representation that is feasible to implement from a practical standpoint. 

 Our analysis approach is based on modeling the pattern-level attributes first, followed by 

the tour-level attribute of mode choice, and finally the episode-level attributes. We adopt such an 

analysis framework because the decisions regarding pattern-level attributes are driven by the 
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basic activity needs of the individual (and the household of which the individual is a part). 

Consequently, and consistent with the derived demand philosophy of the activity-based 

approach, we consider the pattern-level decisions to be at the highest level of the analysis 

hierarchy. On the other hand, decisions regarding the episode-level attributes tend to be driven 

primarily by scheduling convenience, short-term temporal constraints, and travel conditions. 

Consequently, these attributes are relegated to the lowest level of the analysis hierarchy. The 

tour-level attribute of travel mode choice is positioned at the intermediate level of the analysis 

hierarchy since it affects the attributes of all out of-home episodes within the tour. 

 The Pattern level attributes are modeled using a system of three model components 

(Figure 1). The first model component, which takes the form of a bivariate binary-ordered 

response probit formulation, jointly models the decision to make at least one stop (versus staying 

at home for the entire day) and the decision of the number of stops if the individual leaves home 

during the day. The second model component, which uses a multinomial logit formulation for 

stop type, partitions the total number of stops (determined in the first model component) into 

number of stops by each out-of-home activity type. The final model component, which has a 

multinomial logit form with a pattern string as the unit of analysis, models the number of in-

home episodes in an individual’s activity travel pattern along with the entire sequence of all 

episodes (in-home and out-of-home) in the individual’s activity pattern, given the number of 

stops by type in the pattern. 

Figure 2 presents an overview of the four remaining model components used to analyze 

the tour- and episode-level attributes. The tour travel mode is modeled using a discrete choice 

formulation. The episode-level attributes include the activity duration of the episode, the travel 

time to the episode from previous episode, and the location of each out-of-home episode. Since 

the duration of the first home-stay episode is likely to be different from other subsequent home-
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stay episodes because of life-style and sleeping habits, this first home-stay duration is modeled 

separately using a hazard model. The reader will also note that travel time to this first home-stay 

episode is undefined since the individual is at home at the beginning of the day. Next, the travel 

time to the episode from previous episode and activity duration of the episode for all episodes 

other than the first home-stay episode are modeled jointly. Finally, the spatial location of each 

out-of-home episode (stop) is modeled using a disaggregate spatial destination choice model. 

In this paper, we focus on the first three components associated with the pattern-level 

attributes (Figure 1). The remaining four components in Figure 2, associated with the tour and 

episode-level attributes, are the focus of another paper being prepared by the authors. 

3. MATHEMATICAL FORMULATION 
 
This section presents the model structure of each of the three pattern-level model 

components in Figure 1. All model estimations are undertaken using a full-information 

maximum likelihood procedure with the GAUSS matrix programming language.  

 

 3.1. Stop Occurrence/Number of Stops (SOC-NOS) Sub-Model 

This model component analyzes individuals’ participation in at least one stop (i.e., out-

of-home activity episode) during the day and the total number of stops undertaken (if non-zero). 

In the following presentation, we will use the index i to represent the ith individual (i=1,2,...,I), 

and the index k to represent the number of stops (k=1,2,...,K). The equation system is then as 

follows: 

 
yi

* = β'xi - εi, εi ~ N(0,1), yi  = 1 if  yi
*>0 and yi  = 0 if  yi

* ≤0                                  (1) 

si
* = γ'zi + νi, νi ~ N(0,1), si = k if ψk-1 ≤ si

* < ψk, si observed only if yi  = 1, ψ0 = −∞, ψK = +∞, 

 



 

 

7

where yi
* is the latent propensity of the ith individual to participate in one or more stops during 

the day, yi represents the actual observed choice of whether or not the individual leaves home 

during the day (yi=1 if individual leaves home and yi=0 if the individual stays at home all day), εi 

is an error term assumed to be normal with a location parameter of zero and variance of one (the 

latter is an innocuous normalization), si
* is the latent propensity of the ith individual to make 

stops should she or he leave home, si is the actual number of stops made by the individual if s/he 

leaves home (si=1,2,…,K) and νi is a normally distributed error term parameter with a location 

parameter of zero and variance of one (the latter is again an innocuous normalization). si is 

characterized by the stop-making propensity si
* and the threshold bounds (the ψ’s) in the usual 

ordered-response fashion. xi and zi are column vectors of exogenous variables affecting the 

decision to leave home and the decision of the number of stops, respectively. As structured, xi  

includes a constant, while zi does not include a constant. β and γ  are corresponding column 

vectors of parameters to be estimated, along with the (K-1) threshold parameters in the ordered-

response equation.  

The decision of whether or not to leave home is separated from the number of stops if the 

person chooses to leave home because the behavioral underpinnings influencing the two 

decisions may be quite different; an individual may have a high propensity to leave home to shop 

because of her/his household characteristics, but those same household characteristics may not 

necessarily imply a high propensity to pursue several stops thereafter. Using a single ordered-

response model to model both the decision of whether or not to leave home and the number of 

stops would tie the two decisions very tightly and restrictively.  

If the two unobserved error components εi and νi are assumed to be independent of each 

other, the estimation of the first equation may be undertaken using a binary choice model and the 

estimation of the second using the standard ordered-response structure. However, just as tying 
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these two decisions tightly may not be realistic, considering these two decisions to be 

independent of each other (after controlling for the effect of observed exogenous determinants) 

may not be appropriate either. Thus, a dynamic, out-going person maybe more likely to leave 

home during the day and may also undertake a high number of stops. Since the dynamic, 

outgoing, nature of the individual is likely to be unobserved, this would imply a negative 

correlation between the error terms εi and νi in the context of the equation structure in (1). 

Similarly, there may be unobserved factors that might cause a positive correlation between the 

error terms. Such a positive covariance term implies that individuals who are more likely to stay 

at home make more number of stops if they go out on the survey day.  This observation may just 

indicate significant day-to-day variation in the number of stops performed by individuals, i.e., 

individuals who make more stops tend to organize their activity-travel patterns such that they 

perform a large number of out-of-home activities on some days and focus on the in-home tasks 

on other days. In either case, ignoring the correlation and estimating the two equations separately 

will result in inconsistent parameter estimates due to classic econometric sample selection bias 

(see Maddala, 1983). To incorporate the effect of such sample selection, we introduce a 

correlation ρ between the standard normal stochastic error terms in the binary and ordered 

response models. The relevant probabilities may then be written as:  

 
P(yi = 0) = 1 - Φ(β'xi) 

P(yi = 1, si = k) = Φ2(β'xi, -γ'zi+ψk, ρ) - Φ2(β'xi, -γ'zi+ψk-1, ρ) for k = (1,2,3,...,Κ), 

   
where Φ2(.) represents the bivariate standard normal distribution function. Defining a set of 

dummy variables Mik (i=1,2,…,I; k=1,2,…,K) such that Mik =1 if individual i makes k stops and 

Mik =0 otherwise, the log likelihood function for the estimation of the parameters in the model 

takes the form shown below: 

(2)
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3.2. Stop Type (STYPE) Model 

This second model component determines the number of stops of each activity type 

undertaken by a non-worker given the total number of daily stops. The model is relevant only for 

individuals who leave home and make one or more stops during the day.  

Let sit represent the total number of stops of activity type t made by non-worker i 

(t=1,2,…,T; ). Also, let the probability that activity type t will be pursued in any 

given stop be Rit for individual i. We assume a multinomial logit structure that associates this 

probability to a relevant column vector wi of exogenous variables for non-worker i:    

 
 
 
 
 

The estimation of the parameter vector ηt requires a relationship between the probability 

of stops being pursued for each activity type t (Rit) and the observed combination of the 

individual's allocation of stops among the activity type categories. To develop such a 

relationship, we assume that each individual follows a zero-order process in assigning stops to 

activity type categories. That is, we assume that in the generation of stops by activity type, 

participation level in one activity type is independent of participation level in other activity types 

(after controlling for exogenous variable effects included in the vector wi). Then, the probability 

of non-worker i making k1 stops of activity type 1, k2 stops of activity type 2,....,kT stops of 

activity type T, given that the individual makes k total stops (k =1,2,…,K), can be expressed as: 

 
 
 
 

.  

1
∑
=

′

′

= T

j

w

w

it
jj

it

e

eR
η

η

(4)

( ) ∏∏
==>====

t

k
it

t
t

kkkiiTiTii
t

T
R

k
kGkksksksksP

!
!0,,,,

21,2211 l

l (5)

∑
=

=
T

t
iit ss

1



 

 

10

Next, define a set of dummy variables: otherwise 0 ,,,  , if 1 2211, 21 TiTiikkki ksksks
T

==== l

l

δ  

)....( kkkk T21 =+++  Then the log-likelihood function for estimating the ηt parameter vectors  

(t =1,2,…,T) can be written as (see Bhat et al., 1999): 

 
 

 

 
3.3. Activity-Sequencing (ASEQ) Model 

This model determines the sequence of activity episodes pursued by an individual, given 

the number of stops by activity type pursued by the individual. Consider an individual who 

makes a total of k stops, of which k1 stops are of activity type 1, k2 stops are of activity type        

2, …, and kT stops are of activity type T (we are suppressing the notation i for individuals in the 

following presentation). The individual's daily activity-travel pattern can be represented by a 

pattern string of these out-of-home activity episodes, interspersed with in-home episodes.  

Let the set of all feasible pattern-strings for the individual be denoted by ϑ. This feasible 

pattern-string choice set comprises all the valid permutations (i.e., all permutations that do not 

contain two consecutive in-home episodes) of k1 stops of activity type 1, k2 stops of activity type 

2,…,kT stops of activity type T, and each possible value r of intermediate in-home episodes (r = 

0, 1, 2,…,R, where R = k-1). The first and last episodes of each (and all) possible pattern-strings 

correspond to an in-home activity episode (by definition) and are not labeled as intermediate in-

home episodes. 

There are three dimensions that, when taken together, characterize any pattern string: a) 

the number of intermediate in-home episodes r (that immediately determines the number of tours 

made by the individual), b) the number of stops between two consecutive in-home episodes (that 

is, the number of stops made in each tour), and c) the sequencing of episodes by activity type. 
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Our proposed activity-sequencing (ASEQ) model analyzes all of these three dimensions jointly. 

However, for presentation simplicity, we focus on each of these three dimensions individually in 

the next three sections. In Section 3.3.4, we discuss the overall estimation of the model. 

 

3.3.1  Number of Intermediate In-Home Episodes 

Consider a single member of the feasible choice set of pattern strings and label this as g 

(g = 1, 2,…,G, where G represents the number of members in ϑ). Define a binary variable Ag
r = 

1 if the pattern g has r intermediate in-home episodes and Ag
r = 0 otherwise (r = 0, 1, 2,…,k-1). 

Next, let the deterministic utility assigned to making r intermediate in-home episodes be 

frr
'ηα = , where f is a column vector of relevant individual exogenous variables affecting the 

number of intermediate in-home episodes and ηr is a column vector of the corresponding 

parameters to be estimated (η0 = 0 for identification). The deterministic utility attributable to 

pattern g due only to the number of intermediate in-home episodes in g is then given as: 

∑
−

=

=
1

0

s

r
r

r
gg A αϑ .                  (7) 

 
 
3.3.2  Distribution of Stops among Tours 

The number of tours h in the activity-travel pattern of the non-worker is related to the 

number of intermediate in-home episodes r by h = r+1. We now examine the distribution of the 

total number of stops (irrespective of activity type) among tours. To do so, consider the number 

of stops in the last tour as the base category (the reader will note that the number of stops in the 

last tour is immediately determined from the stops in each of the previous tours for a given 

number of total stops). 

We first consider a simple case where the individual performs three stops, all of the same 

type J. Let H represent an in-home episode. The number of intermediate in-home episodes r can 
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take the values 0, 1, or 2. The corresponding set of feasible activity-travel pattern-strings has four 

members as follows: 

 
H – J – J – J – H   (for r = 0) 

H – J – H – J – J – H   (for r = 1) 

H – J – J – H – J – H      (for r = 1) 

H – J – H – J – H – J – H  (for r = 2) 

 
We observe in this example that for the cases r = 0 and r = 2, the number of intermediate 

in-home episodes directly yields a unique activity-travel pattern-string. However, if the number 

of intermediate in-home episodes is 1, there are two feasible pattern-strings that differ only in the 

number of stops assigned to each tour. The first pattern-string (H – J – H – J – J – H) has one 

stop in the first tour and two stops in the second tour. The second pattern-string (H – J – J – H – 

J – H) has a reverse structure with two stops in the first tour and one stop in the second tour. We 

may distinguish between these patterns by assigning a utility value for making two stops in the 

first tour relative to one stop in the first tour (by definition, a tour has to have at least one stop). 

More specifically, we can consider the second tour (i.e., the last tour in this example) as the base 

and model the number of stops in the first tour. This may be achieved by normalizing the utility 

of one and two stops in the last tour (in the current example, the second tour) to zero, and 

normalizing the utility of one stop in the first tour also to zero (these are innocuous 

normalizations necessary for identification).  

More generally, define dummy variables q
hD = 1 if there are q stops in tour h, and 0 

otherwise. Also, let the utility of assigning q stops to the hth tour be q
hγ  ( q

r 1+γ = 0 for all q and 

1
hγ =0 for all h for identification). Then the deterministic utility component associated with the 

distribution of stops among tours for pattern-string g is given as ,∑∑
∈

=
q

q
h

q
h

Bh
g D

g

γω  where Bg is 

(8)
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the set of all tours in pattern-string g. Of course, q
hγ can be specified to be a function of 

individual-related attributes. 

 

3.3.3  Activity Type of Each Out-of-Home Episode 

The final aspect of sequencing is the activity type of each stop in the pattern string. To 

model the activity type sequence, we consider the activity pattern-string as a first-order Markov 

chain. Since the first episode of the activity pattern-string is pre-determined (i.e., an in-home 

episode), all the subsequent episodes can be modeled if the transition probabilities between 

activity pairs are known. Although the assumption of first-order Markov state-dependence 

implies that each activity episode in the pattern-string depends only on the episode immediately 

preceding it, due to the propagation of conditional probabilities in a Markov chain, the effects of 

all activity episodes are also taken into account (see Kitamura and Kermanshah, 1984 a & b for a 

more detailed discussion on this).  

We again begin with a simple case where the individual performs only two stops, 

represented by J1 and J2 corresponding to activity types 1 and 2, respectively. In this particular 

simple case, the number of intermediate in-home stops immediately determines the allocation of 

stops to tours. The feasible activity-travel pattern-strings may be written as follows: 

 
H – J1  – J2 – H  (for r = 0) 

H – J2 – J1 – H  (for r = 0)  

H – J1 – H – J2 – H  (for r = 1) 

H – J2 – H – J1 – H  (for r = 1) 
 

Let λmn be the deterministic utility derived from performing episode of activity type n 

immediately after an episode of activity type m. If we represent the in-home activity type as 0, 

the Markov utilities (π ′s) for the four activity pattern-strings above are given as: 

(9)
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The transition matrix (containing the Markov parameters as its elements) is not 

symmetric. Hence, for example, λ12 is different from λ21. We also observe that the Markov 

utilities for the last two pattern-strings are exactly the same. This is because the two pattern-

strings contain the same activity pairs and the only difference is in terms of the temporal 

occurrence of the activities in the two pattern-strings. These temporal effects can be taken into 

account by providing additional utility components if the activity occurs at a particular time in 

the activity-travel pattern. Hence, if ∆1 is the additional utility derived by performing activity 

type 1 as the first stop of the day (relative to performing activity type 2 as the first stop), the third 

pattern string would have this additional term making it possible to distinguish between the last 

two pattern-strings.  

Consider now the Markovian utility component in general form for a pattern-string g 

from the feasible choice set ϑ of a non-worker. Let the activity pattern-string g be represented by 

(a1,a2,....,ae,....aE), where ae represents the activity type of episode e (ae can take one of the 

following values; 1,2,…,T,T+1; where the first T values correspond to the activity type of out-of-

home episodes and the last one corresponds to in-home activity). Let δn(ae) be a binary variable 

that takes value 1 if the activity type of episode e is n (n = 1,…,T+1), and 0 otherwise. The 

Markov utility derived from the pattern-string can be written as: 
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The first term extracts the appropriate utilities for each activity pairing in the pattern 

string. The second term adds an additional utility term specific to the choice of the activity type 

of the second episode. This second component accommodates a differential Markov effect for 

the first home to stop type pairings compared to corresponding pairings that occur later on in the 

sequence. We adopt such a structure because descriptive analysis by Kitamura and Kermanshah 

(1994b) and by Misra and Bhat (2000) suggest that the transition probabilities for the first home-

to-stop pairings are different from those for corresponding pairings occurring later on, but that 

there is no substantial differences in transitions beyond the first set of pairings (note that n cannot 

be equal to T+1 in the second component since the second episode needs to be an out-of-home 

stop; also the last out-of-home stop type T is considered as the base in the utility formulation of 

this component, 0=∆T ). 

 

3.3.4  Overall Model Estimation 

The total deterministic utility derived by choosing a particular pattern-string g is the sum 

of the three utility components (presented in sections 3.3.1, 3.3.2, and 3.3.3) and is given by 

gggg πωνθ ++=~ . We next add a random Gumbel error component that is assumed to be 

independent and identically distributed across all pattern strings for an individual. The 

assumption of an IID error term across pattern strings implies that there are no unobserved 

correlations across strings, and leads to the Independence from Irrelevant Alternatives (IIA) 

property. This assumption is useful in the estimation procedure. Empirical tests discussed in the 

next section do not reject this assumption. 

  The probability of choice of pattern-string g by a non-worker from her/his feasible choice 

set is then given by: 
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The usual maximum likelihood function procedure can be used to estimate the relevant 

parameters in the discrete choice model of equation (12). However, the use of a pattern-string as 

the unit of analysis poses problems in the generation of all the possible pattern strings for a given 

number of stops by activity type. For example, if an individual pursues 2 stops of each of four 

possible activity types, the total number of stops undertaken is 8. These 8 stops can be 

undertaken in a minimum of 1 tour (the case where all the stops are undertaken in the same tour) 

and a maximum of 8 tours (the case where each stop is undertaken in a separate tour). The total 

number of feasible pattern-strings (i.e., all the pattern strings without two consecutive in-home 

episodes) for the case of 8 stops can be shown to be 12,249,720 (a generic formula for 

calculating this number, given total number of out-of-home stops, is available from the authors). 

It is clear that the number of alternatives in an individual’s feasible choice set can be very high. 

To resolve this situation, we utilize the independence from irrelevant alternatives (IIA) property 

of the multinomial logit formulation (on which the ASEQ model is based). The IIA property 

implies that elimination of irrelevant alternatives from the choice set does not have any effect on 

the probability of choice of a given alternative in the choice set. We can hence devise a choice 

set generation process (CSGP) that is based on a random sampling of the alternative pattern-

strings.  

The CSGP randomly selects a fixed pre-specified number of alternative feasible pattern-

strings corresponding to each possible value of number of intermediate in-home episodes (which 

is based on the total number of out-of-home activities performed) for an individual. Adequate 

care is taken to ensure that the pattern-string actually chosen by the individual forms a part of the 

feasible set. Pattern-strings are chosen for each value of the number of intermediate in-home 
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episodes to ensure adequate representation of alternatives in the computation of the utility 

associated with the number of intermediate in-home episodes. Details of this generation process 

are available in Misra (1999). 

 

4. EMPIRICAL RESULTS 
 
We now present the results of estimation of the three models formulated in the previous 

section using the 1990 activity-travel data obtained from the San Francisco Bay Area. This 

activity-travel survey was conducted for the Metropolitan Transportation Commission (MTC) by 

E.H. White and Company, Nelson/Nygaard and Phase III Research of Northern California. The 

survey collected one-weekday activity-travel data for 21,278 individuals in 9,359 sampled 

households. Of the 21,278 individuals for whom the activity-travel data was collected, 8,112 

were not employed. Among these non-workers, approximately half were students. Since the 

activity-travel behavior of students is usually built around their school schedule, students’ 

activity-travel behavior may be analyzed in a manner similar to that for workers. Hence, in this 

paper, we focus on the activity-travel behavior of non-workers who are not students. Dropping 

the full and part time students from the 8,112 non-workers left 4,328 non-student non-workers in 

the data set (for the sake of presentation simplicity, we will refer to these non-student non-

workers simply as non-workers). 

Among the 4,328 non-workers, 2,864 individuals pursued at least one out-of-home 

activity while the remaining 1,464 individuals stayed at home all day. After detailed consistency 

checks to screen out invalid non-worker activity-travel patterns and missing socio-demographic 

information, 2,048 individual records remained from the original 2,864 (81.25%) individuals 

who pursued at least one out-of-home activity (see Misra, 1999 for details of the 

consistency/screening checks). A random sample of 1,047 individuals was then drawn from the 
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1,464 individuals who stayed at home all day and these individuals were added to the 2,048 

screened individual records with at least one out-of-home activity. This procedure ensures that 

the ratio of individuals with no activity and individuals with one or more out-of-home activities 

in the raw data is maintained in the final sample. The final sample, thus, comprises 3,095 

individuals.  

 

4.1. Stop Occurrence and Number of Stops (SOC-NOS) Model 

Table 1 presents the model estimation results for the propensity to make one or more 

stops during the day (stop occurrence) and the propensity to make stops should a person leave 

home (number of stops). Three sets of variables are included: household socio-demographics, 

household race, and individual socio-demographics. Household location variables were also 

introduced in our specifications to proxy the effect of locational differences in accessibility to 

activity opportunities (household location was classified into one of six area types; Central 

Business District (CBD) core, CBD area, urban business, urban, suburban, and rural; based on 

the population and employment densities of the traffic zone of residence of the household). 

However, these variables were not statistically significant. 

Among household socio-demographics, the results indicate that non-workers in 

households with a large number of employed individuals are likely to stay at home the whole 

day, suggesting a higher degree of responsibility for household tasks for such individuals. On the 

other hand, individuals in couple and single member households, and individuals in high-income 

households, are likely to pursue stops away from home. Interestingly, however, these variables 

do not impact the propensity to make stops once a person decides to leave home. The 

determinants of the propensity to make stops once a person leaves home include the number of 

young children (between 5 and 11 years old) and the number of individuals over 65 years. The 
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effects of these two variables are intuitive. The presence of young children is likely to lead to 

increased participation in maintenance and serve child activities, while non-workers in 

households with many old individuals are likely to make fewer stops due to in-home care for, 

and mobility challenges of, the elderly. 

The household race variables do not have an impact on the propensity to leave home 

during the day, though Caucasians tend to make more stops than other races conditional on the 

decision to leave home. 

Within the category of individual socio-demographics, the results show that a) 

individuals with a driver license have a higher probability to undertake an out-of-home activity 

episode and to pursue many stops due to their higher mobility, b) physically challenged 

individuals are unlikely to venture out-of-home, and c) women are observed to have a higher 

propensity to pursue stops, though they are no more likely than men to leave home during the 

day. These results are similar to those obtained in a number of earlier studies (see Bianco and 

Lawson, 1996 and Bhat, 1997).  

The joint modeling of the decision to go out of home and the number of stops is 

necessitated by the potential presence of correlation in unobserved elements affecting the two 

decisions. The last row of Table 1 shows a highly statistically significant correlation between the 

error components εi and νi in equation (1). As indicated earlier, the positive correlation parameter 

implies that unobserved factors that increase the propensity to leave home to participate in 

activities also act to decrease stop-making propensity.  

The threshold parameters (see note 1 under Table 1) represent the points on the 

continuous propensity scale that identify the bounds for each discrete number of total stops, and 

do not have any behavioral significance.  
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4.2. Stop Type (STYPE) Model 

Table 2 presents estimation results corresponding to the four out-of-home activity types 

modeled in this study: serve-passenger, personal-business, shopping, and recreation. The three 

columns in Table 2 with parameters represent estimates of the relative propensity of the non-

worker to allocate a stop (from a pre-determined total number of stops) to a particular activity 

type compared to the serve-passenger activity type (which is considered as the base activity 

type). 

Within the class of household socio-demographic variables, the highly significant 

negative parameters on the nuclear family household variable and the “number of children” 

variables, along with their relative magnitudes across activity types, suggest that non-workers in 

nuclear households with young children are primarily involved in serving the needs of the 

children (i.e., in serve-passenger activities).  

Household race has a significant effect on the type of activity performed, with non-

Caucasians more likely to participate in a serve-passenger activity and less likely to participate in 

the other activity types.  

Among the variables associated with individual socio-demographics, the results show 

that a) individuals with a driving license have a higher probability to undertake serve-passenger 

stops (this is simply a manifestation of the fact that a driving license is a requirement for serve 

passenger activity), b) women have a higher propensity to participate in shopping and serve 

passenger activity compared to recreational and personal business activity (presumably a 

reflection of the continuing trend of women to be primarily responsible for household 

maintenance activities and for dropping off/picking up children from day-care (see Mensah, 

1995), and c) older individuals are less likely to participate in a serve-passenger activity. 
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As in the case of the number of stops model in the previous section, we introduced 

location variables to proxy the effect of locational differences in accessibility to different activity 

types.  But these variables were not statistically significant for any of the purposes.  

 

4.3. Activity-Sequencing Model 

The estimation results of the ASEQ model are presented in four sub-sections 

corresponding to the number of intermediate in-home episodes (which gives the number of tours 

in the pattern-string), number of stops in each tour, Markov state dependence parameters, and the 

differential Markov effects corresponding to the first stop of the day. The fifth sub-section 

discusses data fit measures of the activity sequencing model and presents a test for the IIA 

assumption among activity pattern strings. 

 

4.3.1.  Number of Intermediate In-home Episodes 

For ease in interpretation, Table 3 presents the estimated parameters for this part of the 

model in terms of the number of tours (which is one more than the number of intermediate in-

home episodes) undertaken by the non-worker.  

The number of tours made by an individual is likely to be influenced by both the overall 

participation levels (i.e., number of stops) in each activity type, as well as the attributes of the 

individual and the household of which s/he is a part. Thus, we use both these kinds of exogenous 

variables in the model. 

The effect of the activity participation variables indicates that the tendency to chain 

activities is strongly related to the number of serve-passenger stops and personal business stops 

undertaken by the individual during the day; individuals making many such stops are likely to 

have fewer tours. This is perhaps because individuals participating in many activities are likely 
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to have a more purposeful organization pattern for their activities (see Strathman et al., 1994 for 

a similar result in the context of worker activity patterns).  

The effects of the household socio-demographic variables suggest a decrease in activity 

chaining propensity (i.e., more # of tours) for individuals in nuclear family households and 

households with several vehicles. The latter effect may reflect the lower prevalence of car 

allocation arrangements in households with many cars; thus, individuals in these households may 

not require the level of efficiency in the organization of their out-of-home activity episodes as do 

non-workers in households with few cars. 

Household race does not impact activity-chaining propensity. The only individual socio-

demographic variable that has a statistically significant impact on activity chaining is the female 

dummy variable; the effect of this variable suggests that women have a greater tendency to link 

activities (see Lockwood and Demetsky, 1994 for a similar result).  

To summarize, both activity participation by type and household/individual factors affect 

activity-chaining propensity.  

 

4.3.2. Number of Stops in each Tour 

Table 4 presents the estimates of the parameters for the number of stops in each tour. The 

last tour undertaken by an individual is taken as the base. We neglect the differential allocation 

of number of stops in the second or higher intermediate tours and also combine the effect of five 

or more stops in a tour because of small sample sizes. 

The results in Table 4 show positive and statistically significant parameters on the 

constants for each number of stops and for non-last tours. As explained in section 3.2, this 

implies that individuals are likely to participate in a higher number of stops in earlier tours 

compared to the last tour of the day. We also observe, in general, that the parameter estimates for 
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each number of stops is higher for the second and subsequent intermediate tours than for the first 

suggesting that individuals make more stops in intermediate tours than in the first or last tours of 

the day. Interestingly, neither overall daily activity participation levels nor socio-demographic 

variables appear to influence the assignment of stops among tours. 

 

4.3.3 Markov State Dependence Parameter Estimates 

Table 5 presents the estimation results of the Markov state-dependence parameters, which 

represent the propensity of the individual to perform a particular activity type in the next episode, 

if he/she performs a particular activity type in the current episode. We considered the effect of 

individual socio-demographics on sequencing behavior by parameterizing the state-dependence 

parameters as a function of individual attributes. However, these effects were not statistically 

significant. This finding suggests that there is little systematic variation across individuals in the 

sequencing of activities. 

The results in Table 5 indicate that if the non-worker is currently at home, he/she is most 

likely to perform a serve-passenger activity as the first out-of-home activity. The next most 

likely activity at the beginning of a tour is a recreation or personal business activity, with 

shopping being the least likely to occur first in a tour. This is intuitive since shopping stops are 

usually pursued toward the end of a tour, and followed by a return home (especially if the 

shopping is for the purchase of perishable/frozen grocery items).  

If the non-worker is currently engaged in a serve-passenger activity, he/she is equally 

likely to either participate in another activity or return home immediately after completing the 

current activity. A personal-business activity, on the other hand, is most likely to be followed by 

either a serve-passenger activity or a shopping activity episode. If the current activity is 

shopping, then the individual is likely to pursue a serve-passenger activity or another shopping 
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activity next, and unlikely to pursue a personal business activity. The individual is equally likely 

to either return home or participate in a recreation activity after completing the shopping activity. 

Finally, an examination of the state-dependence parameters corresponding to recreation 

activity indicates that a recreation activity is likely to be followed by another recreation activity 

or a serve-passenger activity. Personal-business, shopping, and return home are all equally likely 

to follow a recreation activity episode. 

 

4.3.4.  Differential Markov Effects for First Stop of the Day 

We observe that the Markov differential parameters (Table 6) corresponding to both 

serve-passenger and personal-business activities are statistically significant and have similar 

magnitudes. Interpreting these parameters in conjunction with the state-dependence parameters 

corresponding to the current activity being “at-home” (see Table 5) indicates that a serve-

passenger activity is most likely to be the first activity in a non-worker’s daily activity-travel 

pattern, as well as the first stop in any subsequent tour in the pattern. Furthermore, the positive 

differential parameter for the personal-business activity indicates that a personal-business 

activity is more likely to be the first stop of the day compared to shopping or recreation; 

however, it is not more likely than recreation to be the first stop of subsequent tours. 

An estimate of the transition probabilities from one activity type to the other may be 

computed from the state dependence parameters in Tables 5 and 6, if it is assumed that only the 

state dependence parameters affect the utility of the overall activity sequence. The resulting 

transition probability estimates are provided in Table 7, and reflect the discussion above. 

However, this table more clearly indicates the asymmetry in transitions. For example, it is very 

likely that the first stop from home in a tour is a serve-passenger activity, as can be observed by 

the relatively high transition rates from home to serve-passenger activity; however, the next stop 
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after a serve-passenger activity is equally likely to be any activity, as can be noted from the equal 

transition probabilities after a serve-passenger activity. Such asymmetry in transitions provide 

valuable information regarding the sequencing of activity types in a tour. In particular, the 

pattern of asymmetries in transition probabilities in the table suggest that if a passenger serve or 

personal business activity is pursued by the individual, they are likely to be pursued as the first 

stops in a chain. In addition, if other shopping and recreational stops are pursued, these are 

pursued later on in the tour (see Kitamura and Kermanshah, 1984a, for similar results). 

  

4.3.5.  Overall Measure of Fit and Test of the IIA Assumption 

The bottom of Table 7 shows the log-likelihood at convergence for the ASEQ model, and 

the log-likelihood with only the constants in the number of tours and assignment of stops to tours 

sub-components of the ASEQ model (this latter log-likelihood corresponds to a market share 

model for tours and assignment of stops to tours, with no state-dependence in sequencing of 

activity types). A log-likelihood ratio test clearly rejects the hypothesis that activity chaining is 

independent of number of stops made by the individual and the socio-demographic attributes of 

the individual, and that there is no state-dependence in activity sequencing.  

One of the important features of the logit structure of the ASEQ model is the 

independence from irrelevant alternatives (IIA) property. This property was used to develop a 

choice set generation process (CSGP) during the estimation of the model to achieve 

computational efficiency. We performed the Hausman and McFadden (1984) test (see Ben-

Akiva and Lerman, 1985 for a description) to determine the validity of this assumption. For this 

test, a restricted version (corresponding to a sample size of 5 for each value of number of 

intermediate in-home episodes, i.e., a maximum possible sample space of 25 elements for a 

particular individual corresponding to a maximum of 5 intermediate in-home episodes) and an 
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unrestricted version (corresponding to a sample size of 15 for each value of the number of 

intermediate in-home episodes, i.e., a maximum possible sample space of 75 elements for a 

particular individual) of the ASEQ model were tested. The analysis yielded a Hausman and 

McFadden statistic of 38.1 with 32 degrees of freedom, which is less than the critical χ2 statistic 

value of 45.91. Thus, the test does not reject the IIA assumption for the ASEQ model for this 

data set.  

 

5. CONCLUSION  
 
This paper contributes to the non-worker activity-travel pattern literature by proposing a 

comprehensive continuous-time framework for representation and analysis of the activity-travel 

choices of non-workers. The activity-travel pattern comprises a series of stops of different 

activity types interspersed with in-home episodes. The activity-travel attributes used to represent 

the activity-travel pattern of the non-worker are classified under three broad categories: pattern 

level, tour level, and episode level. The proposed analysis framework comprises a series of seven 

econometric model components. 

This paper presents the detailed mathematical description of the first three model 

components corresponding to the organization of activities in the non-worker’s activity-travel 

pattern. The mathematical description is followed by results of the estimation of the three model 

components using data obtained from the 1990 San Francisco Bay Area activity-travel diary 

survey. We discuss these results and their implications briefly in the next three sections. 

 

5.1. Stop Occurrence and Number of Stops 

The important results from the stop occurrence and number of stops analysis are as 

follows: a) Non-workers in households with several employed individuals are less likely to leave 
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home during the day, b) Individuals in single-member and couple households, and in high 

income-earning households, are more likely to venture out of home to participate in activities, c) 

Caucasians, women, individuals with a driving license, and individuals in households with small 

children are highly mobile, d) Physically challenged individuals are less likely to leave their 

home than other individuals.  

The above results suggest that the stop-making patterns of the population may see 

substantial changes in the next few decades due to changing socio-demographics. In particular, 

stop occurrence and number of stops may decrease over time, due to higher employment levels, 

and fewer Caucasian households (U.S. Bureau of Census, 1998; 1999). However, stop-making 

may increase because of fewer nuclear family households, and more single and couple families 

(see U.S. Bureau of Census, 1996). The actual impact will depend on the magnitude of changes 

in the different socio-demographic attributes of the population. The model in the current paper 

can reflect these socio-demographic changes and assess the impact on overall stop-making due to 

non-workers. An important finding for planning is that physically-challenged individuals are not 

very likely to leave home. This may reflect “unfriendly” urban design and transportation 

planning for such individuals; at the least, it suggests the need for a more systematic effort to 

examine the rhythms of such individuals, and to design facilities which may be compatible with 

the needs and challenges that such individuals face.  

 

5.2. Number of Stops by Type 

The model component for number of stops by activity type also indicates the significant 

impact of socio-demographic attributes. Important results from this analysis include the 

following: a) Nuclear family households and other types of households with children make fewer 

shopping, recreational and personal business trips than other households, though they make more 
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serve-passenger stops, b) Caucasian households make more shopping and recreational stops, and 

fewer serve-passenger stops, c) Older individuals make more personal business, shopping, and 

recreational stops, and fewer serve-passenger stops, while the reverse is true for women 

compared to men. Overall, the results imply that the demand for shopping and recreational 

facilities is likely to increase in the future due to the fewer number of households with children 

and also because of the rapidly growing age of the population. From a broader societal 

standpoint, the higher shopping/recreational demands of the growing number of older (yet 

physically active) individuals suggests a need for targeted investments to provide more 

opportunities for recreational pursuits, especially in retirement communities.  

 

5.3. Activity Sequencing 

 Several informative results are obtained from the activity sequencing analysis, including 

the following: a) Serve-passenger activity, if it is pursued, is most likely to be the first activity of 

the day and the first activity of any tour, b) Personal business activities are also more likely to be 

undertaken as the first activity of the day relative to shopping and recreational activities, c) 

Shopping and recreational activities are quite often “sandwiched” between serve-passenger 

activities for individuals who undertake paired serve-passenger trips. These tendencies in 

sequencing may reflect a strategy of pursuing spatially and temporally fixed activities (serve-

passenger and personal business) at the beginning of tours, and pursuing more flexible activities 

(shopping and recreation) toward the end of tours.  

Two additional overall results can be drawn from this paper. First, the location of the 

household does not appear to impact stop-making of non-workers. That is, spatial factors of 

accessibility to activity opportunities do not influence participation in activity stops. This 

suggests that activity generation is primarily determined by the activity needs of the individual 
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(as part of her/his household), not by the activity environment. Another perspective is that 

individuals and households locate themselves in areas that provide accessibility to activity 

opportunities that are compatible with their mobility needs, and this manifests itself in the form 

of lack of effect of accessibility on stop-making. This issue needs to be explored in much more 

depth, and reinforces the need for an integrated land use-activity based travel demand modeling 

approach to urban planning. Second, it is interesting to note that while socio-demographics play 

a very important role in influencing stop occurrence, stop-making, and activity chaining 

behavior, they do not influence the sequencing of activities. Thus, activity sequencing appears to 

be primarily determined by the type of activities in which an individual participates, and not by 

variations in individual/household characteristics. Of course, these results may be specific to the 

empirical context of the current paper. In this regard, application and analysis of non-worker 

activity-travel patterns using data from other metropolitan regions would be a useful direction for 

future research.  
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Figure 1.   Modeling Framework for Pattern Level Attributes 
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Figure 2.   Modeling Framework for Tour Level and Episode Level Attributes 

Mode choice for tour
TMOD sub-model 
[Discrete Choice] 

Home-stay duration before first tour
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Table 1.   SOC-NOS model estimation results: Parameters on explanatory variables 

Stop Occurrence Number of Stops Explanatory Variables Estimates Est./s.e. Estimates Est./s.e. 
Constant -0.045 -0.519 - - 
     
Household Socio-demographics     

Number of Employed Individuals in HH -0.133 -3.633 - - 
Couple 0.114 2.113 - - 
Single Member family 0.146 2.244 - - 
Household Income ('000 $) 0.004 4.898 - - 
Number of Children between 5 & 11 years - - 0.198 4.538 
Number of Individuals over 65 years old - - -0.069 -2.633 
     

Household Race      
Caucasian - - 0.209 3.781 

     
Individual Socio-demographics     

Driver 0.476 7.978 0.276 2.755 
Physically challenged -0.250 -2.848 - - 
Sex (Female = 1) - - 0.128 2.880 
     
Rho (Correlation Coefficient) Parameter Estim: +0.741; t-static: +7.163 

Notes: 1) The ordered-response threshold parameters (and their t-statistics) for the number of stops model are as follows 
from the first threshold to the last: -0.135 (-0.927), 0.424 (2.483), 0.842 (4.240), 1.170 (5.172), 1.535 (5.857)  
and 1.848 (6.201). 

 
2) The log-likelihood at convergence for the model is –5163.844.  The log-likelihood with only the constant in the 
     stop occurrence model and with only the thresholds in the number of stops model is –5319.841. 
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Table 2.   STYPE model estimation results: Parameters on explanatory variables 
[Base = Serve-passenger Activity] 

Variable Name Personal-business Shopping Recreation 
 Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. 

Constant  1.648  5.157  1.756  5.750  1.516  4.607 
       
Household Socio-demographics       

Nuclear family household -0.757 -6.252 -0.647 -5.436 -0.694 -5.577 
Number of Children between 5 and 11 -0.709 -7.853 -0.763 -8.640 -0.624 -6.864 
Number of Children between 12 and 16 -0.309 -2.795 -0.399 -3.597  -  - 

       
Household Race (Caucasian race is base)       

Non-Caucasians -0.249 -2.274  -  -  -  - 
       
Individual Socio-demographics       

Driver -1.183 -5.105 -1.376 -6.023 -1.245 -5.283 
Sex (Female = 1) -0.234 -3.173  -  - -0.376 -4.696 
Age  0.013  3.500  0.012  3.271  0.011  3.243 
       

Log-likelihood (preferred model)  -6503.300 
Log-likelihood (market-share model) -6773.842 
Number of cases  2048 
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Table 3.   ASEQ model estimation results: Number of tours 
[Base = No Intermediate In-Home Episode (i.e. One tour)] 

 
2 tours 3 tours > 3 tours Variable Name Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. 

Constant -0.145 -0.980 -0.127 -0.499 -0.766 -1.626 
      

Activity Participation Variables       
Number of stops for Pass. Serve and PB -0.204 -3.312 -0.366 -4.192 -0.463 -3.515 

       
Household Socio-Demographics       

Nuclear Family   0.322  2.045  0.669  2.949  1.229  3.427 
Number of Vehicles in HH  0.181  3.121  0.181  3.121  0.181  3.121 

      
Individual and Household Characteristics       

Sex (Female = 1) -0.229 -1.656 -0.289 -1.338 -0.206 -0.549 
 

 

Table 4.   ASEQ model estimation results: Number of stops in each tour 
[Bases = Last tour undertaken by the individual; and Number of stops = 1] 

Number of Stops 
2 stops 3 stops 4 stops  ≥≥≥≥ 5 stops Tour 

Number Variable Name Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e.
1 Constant 0.181 1.65 0.940 6.094 1.045 4.215 2.231 7.180 
          

≥ 2 Constant 0.553 3.35 0.979 3.265 1.926 4.378 2.893 3.232 
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Table 5.   ASEQ model estimation results: First order Markov state dependence effects 
 [Base = In-home Activity Episode] 

 
Current Activity Next Activity Estimates Est./s.e. 

At-Home Passenger-serve  1.222  7.319 
(Recreation activity is base) Personal-business  -  - 
 Shopping -0.504 -4.239 
    
Serve-passenger Non-Home  -  - 
    
Personal-business Passenger-serve  0.738  3.007 
 Personal-business  -  - 
 Shopping  0.522  3.978 
 Recreation  -  - 
    
Shopping Passenger-serve  0.634  2.677 
 Personal-business -0.446 -3.417 
 Shopping  0.568  4.156 
 Recreation  -  - 
    
Recreation Passenger-serve  1.256  5.323 

 Personal-business  -  - 
 Shopping  -  - 
 Recreation  0.582  4.182 
    

 

 

 
Table 6.   ASEQ model estimation results: Differential effects of first stop of day 

[Base = Recreation Activity] 
 

Activity Estimates Est./s.e. 
Serve-passenger 0.526 3.349 
Personal-business 0.438 4.527 
Shopping - - 
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Table 7.   ASEQ model estimation results: Transition probabilities corresponding 
to Markov state dependence parameters 

Current Activity Next Activity Probability 
At-Home Serve-passenger 0.647 
(For first tour of the day) Personal-business 0.173 
 Shopping 0.069 

Recreation 0.112 
 

At-Home Serve-passenger 0.566 
(For 2nd and subsequent tours) Personal-business 0.166 
 Shopping 0.102 

Recreation 0.166 
 

Serve-passenger Serve-passenger 0.200 
Personal-business 0.200 
Shopping 0.200 
Recreation 0.200 
At-Home 0.200 

 
Personal-business Serve-passenger 0.309 

Personal-business 0.148 
Shopping 0.248 
Recreation 0.148 
At-Home 0.148 

 
Shopping Serve-passenger 0.299 

Personal-business 0.101 
Shopping 0.280 
Recreation 0.160 
At-Home 0.160 

 
Recreation Passenger-serve 0.423 

Personal-business 0.121 
Shopping 0.121 
Recreation 0.215 
At-Home 0.121 
  

Log-likelihood (preferred model)  -2422.026 
Log-likelihood (market share model) -2643.087 
Number of cases  2048 
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