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ABSTRACT 

This paper formulates and applies a unified mixed-logit framework for joint analysis of revealed 

and stated preference data that accommodates a flexible competition pattern across alternatives, 

scale difference in the revealed and stated choice contexts, heterogeneity across individuals in 

the intrinsic preferences for alternatives, heterogeneity across individuals in the responsiveness 

to level-of-service factors, state dependence of the stated choices on the revealed choice, and 

heterogeneity across individuals in the state dependence effect.  The estimation of the mixed 

logit formulation is achieved using simulation techniques that employ quasi-random Monte 

Carlo draws.  The formulation is applied to examine the travel behavior responses of San 

Francisco Bay Bridge users to changes in travel conditions.  The data for the study are drawn 

from surveys conducted as part of the 1996 San Francisco Bay Area Travel Study. The results of 

the mixed logit formulation are compared with those of more restrictive structures on the basis of 

parameter estimates, implied trade-offs among level-of-service attributes, heterogeneity and state 

dependence effects, data fit, and substantive implications of congestion pricing policy 

simulations.  

Keywords: Revealed preference, stated preference, mixed logit, quasi-Monte Carlo simulation, 

state dependence, unobserved heterogeneity, congestion pricing.
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1.  INTRODUCTION 

Stated preference data (self-stated preferences for market products or services) have been widely 

used in the marketing and travel demand fields, separately or in conjunction with revealed 

preference data (observed choices of product purchase or service use), to analyze consumers' 

evaluation of multi-attributed products and services.  Stated preference (SP) and revealed 

preference (RP) data each have their own advantages and limitations with respect to estimation 

of behavioral parameters of interest (Ben Akiva et al., 1992; Hensher et al., 1999). This 

realization has led to the now long history of using both kinds of data simultaneously to analyze 

consumer behavior (e.g., Gunn et al. 1992, Ben-Akiva and Morikawa 1990; Koppelman et al., 

1993,Swait and Louviere, 1993; Hensher et al., 1999).  

 Four important issues need to be recognized in joint RP-SP estimation: (a) inter-

alternative error structure, (b) scale difference between the RP and SP data generating processes, 

(c) unobserved heterogeneity effects, and (d) state dependence effects and heterogeneity in the 

state dependence.  Each of these is discussed in turn in the subsequent four sections.  Section 1.5 

presents the need to consider all of the issues simultaneously within a unified RP-SP modeling 

framework. 

 

1.1  Inter-Alternative Error Structure 

The revealed choice and stated choice observations represent the decisions of individuals to 

choose one alternative from among a set of alternatives.  Within a random utility maximization 

framework, the mathematical expression for the choice probability of an alternative at any choice 

occasion depends on the covariance structure assumed for the random error terms across 

alternatives.  A common assumption is that the error terms are identically and independently 
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(IID) distributed across alternatives with a type I extreme value distribution.  This leads to the 

simple and elegant closed-form multinomial logit (MNL) model.  However, the IID error 

structure assumption also leaves the MNL model saddled with the “independence of irrelevant 

alternatives” (IIA) property at each choice situation (Luce and Suppes, 1965; see also Ben-Akiva 

and Lerman, 1985 for a detailed discussion of this property).  

 The literature on joint RP-SP methods has, with few exceptions, assumed a MNL 

structure for the RP and SP choice processes.  However, with recent methodological advances, 

RP-SP methods can be quite easily extended to accommodate flexible competitive patterns by 

relaxing the IID error structure across alternatives, using closed-form model formulations such as 

the Generalized Extreme Value (GEV) family of models (see Koppelman and Sethi, 2000) or 

more general open-form model formulations such as the mixed-multinomial logit family of 

models (see Bhat, 2000).  

 Recent studies in the joint RP-SP literature that accommodate non-IID inter-alternative 

error structures include Hensher et al. (1999) and Brownstone et al. (2000).  The former study 

accommodates heteroscedasticity across alternatives within the framework of Generalized 

Extreme Value (GEV) models, while the latter accommodates both heteroscedasticity and 

correlation across alternatives within the framework of a mixed multinomial logit model.  

 

1.2  Scale Difference 

The RP and SP choices are made under different circumstances; RP choices are revealed choices 

in the real world, while SP choices are stated choices made in an experimental and hypothetical 

setting.  In both the real world and experimental settings, the analyst does not have information 

on all the factors that influence an individual’s choice.  These unobserved (to the analyst) factors 
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are usually subsumed within the random error term of the utility function.  Thus, the unobserved 

factors in an RP setting can include individual decision-maker factors, unmeasured alternative 

attributes, and measurement error in variables.  The unobserved factors in an SP setting can 

include unobserved individual factors, omission of relevant variables affecting the choice context 

under examination, and characteristics of the experimental design.  Since the RP and SP choice 

settings are quite different, there is no reason to believe that the variance of the unobserved 

factors in the RP setting will be identical to that of the variance of unobserved factors in the SP 

setting (see Ben-Akiva and Morikawa, 1990).  There is also no a priori theoretical basis to 

suggest whether the RP error term or the SP error term will have the larger variance; this may be 

closely tied to the empirical context under examination.  

 The scale difference between the RP and SP choice contexts has been recognized and 

accommodated in almost all previous joint RP-SP analyses.  

 

1.3  Unobserved Heterogeneity Effects 

Unobserved heterogeneity effects refer to unobserved (to the analyst) differences across 

decision-makers in the intrinsic preference for a choice alternative (preference heterogeneity) 

and/or in the sensitivity to characteristics of the choice alternatives (response heterogeneity).  

Stated preference methods usually involve experimental settings in which each of a sample of 

individuals is exposed to different stimuli corresponding to different combinations of values for 

the set of explanatory variables under study.  It is at least possible (if not very likely) that the 

responses from the same individual to the different stimuli will be affected by common 

unobserved attributes of the individual.  Ignoring these attributes is tantamount to assuming away 

the presence of individual-specific unobserved effects, which can result in inconsistent SP model 
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parameter estimates and even more severe inconsistent choice probability estimates (see 

Chamberlain, 1980; the reader is also referred to Hsiao, 1986 and Diggle et al., 1994 for a 

detailed discussion of heterogeneity bias in discrete-choice models).  

 Of course, unobserved heterogeneity effects are not confined to the SP choice responses.  

The same unobserved individual-specific attributes influencing the SP choices made by an 

individual will also affect the RP choice of the individual.  These unobserved attributes generate 

a correlation in utility for an alternative across all choice occasions (RP and SP choices) of the 

individual.  The unobserved heterogeneity effects also lead (indirectly) to non-IID error 

structures across alternatives at each choice occasion, so that the IIA property does not hold at 

any choice occasion.  

   Most RP-SP studies in the literature disregard unobserved heterogeneity.  However, 

Morikawa (1994) accommodates unobserved preference heterogeneity in his analysis by 

considering an error-components structure for the RP and SP error terms.  But Morikawa’s study 

does not accommodate unobserved response heterogeneity (i.e., differences in sensitivity to 

characteristics of the choice alternatives).  Hensher and Greene (2000) have recently 

accommodated unobserved response heterogeneity, along with inter-alternative correlation, in a 

study on vehicle type choice decisions. 

 

1.4  State Dependence and Heterogeneity in State Dependence 

State dependence, in the context of joint RP-SP estimation, refers to the influence of the actual 

(revealed) choice on the stated choices of the individual (the term “state dependence” is used 

more broadly here than its typical use in the econometrics field, where the term is reserved 

specifically for the effect of actual past choices on actual current choices).  State dependence 
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could manifest itself as a positive or negative effect of the choice of an alternative on the utility 

associated with that alternative in the stated responses.  A positive effect may be the result of 

habit persistence, inertia to explore another alternative, or learning combined with risk aversion 

(i.e., the individual is familiar with the attributes of the chosen alternative and feels “safe” 

choosing it in subsequent choice situations).  It could also be the result of justification for the RP 

choice.  A negative effect could be the result of variety seeking or the result of latent frustration 

with the inconvenience associated with the currently used alternative (for example, a captive 

transit user may prefer a proposed rail alternative over the current bus alternative).  Further, in 

most choice situations, it is possible that the effect of state dependence is positive for some 

individuals and negative for others (see Ailawadi et al., 1999).  Besides, even within the group of 

individuals for which the effect is positive (or negative), the extent of the inertial (or variety-

seeking) impact on stated choices may vary. Thus, joint RP-SP estimations should not only 

recognize state dependence, but also accommodate heterogeneity in the state dependence effect. 

 Most RP-SP studies in transportation disregard state dependence.  No study in the 

literature, to the authors’ knowledge, recognizes and accommodates unobserved heterogeneity in 

the state dependence effect of the RP choice on SP choices (Brownstone et al., 1996 

accommodate observed heterogeneity in the state dependence effect by interacting the RP choice 

dummy variable with sociodemographic attributes of the individual and SP choice attributes). 

 

1.5  A Unified RP-SP Modeling Framework 

The earlier four sections have discussed the need to consider a flexible inter-alternative error 

structure, RP-SP scale difference, unobserved heterogeneity, and state dependence.  In this 
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section, we supplement the discussion in the previous sections by highlighting the need to 

consider all these four issues jointly within a unified RP-SP modeling framework. 

 The fundamental reason for considering all the four modeling issues simultaneously is 

that there is likely to be interactions among them.  Thus, accommodating restrictive inter-

alternative error structures rather than flexible error structures can lead to misleading behavioral 

conclusions about taste effects and scaling effects in joint RP-SP models (see Hensher et al., 

1999; Louviere et al., 1999). Similarly, adopting restrictive inter-alternative structures can 

overstate unobserved heterogeneity in a model, and ignoring unobserved heterogeneity can 

overstate inter-alternative error correlations.  It is also imperative that unobserved heterogeneity 

be incorporated in a model with state dependence (see Heckman, 1981; Keane, 1997).  In the 

context of joint RP-SP estimation, if unobserved heterogeneity exists and the analyst ignores it, 

the unobserved heterogeneity can manifest itself in the form of spurious state dependence; that 

is, the effect of the RP choice on SP choices may be artificially overstated.1  Similarly, if the RP 

choice affects SP choices and the analyst ignores this state dependence, the state dependence will 

manifest itself in the form of unobserved heterogeneity and overstate the level of unobserved 

heterogeneity.  In addition, ignoring state dependence or unobserved heterogeneity can, and 

generally will, lead to a bias in the effect of other coefficients in the model (Heckman, 1981; 

Hsiao, 1986). 

 In this paper, we propose a unified RP-SP framework that adopts a mixed multinomial 

logit formulation to accommodate all of the four modeling considerations discussed above.  The 

                                                 
1 Econometrically speaking, the RP choice variable is correlated with the error term in the SP choice 

equation in the presence of unobserved heterogeneity.  This issue is similar to the initial conditions 

problem in the panel data literature (Chamberlain, 1980; Degeratu, 1999). 
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paper is structured as follows.  The next section presents the model formulation.  Section 3 

discusses model estimation.  Section 4 describes the data sources and the sample used in 

empirical analysis.  Section 5 presents the results of the empirical analysis.  Section 6 applies the 

estimated models to examine the potential effects of congestion-pricing policies.  The final 

section concludes the paper by highlighting important findings from the analysis. 

 

2.  MODEL FORMULATION 

The utility qitU  that an individual q associates with an alternative i on choice occasion t may be 

written in the following form (t may represent the RP choice occasion or an SP choice occasion): 

( ) ,)1
1

,, qit

T

s
qisRPqsRPqtqqitqqit

q

YxU ε+














 δ×δ−θ+α′= ∑
=

                   (1) 

where qitx  is a vector of observed variables (including variables characterizing the RP and SP 

alternative specific constants), qα  is a corresponding coefficient vector which may vary over 

individuals but does not vary across alternatives or time, RPqt ,δ  is a dummy variable taking the 

value 1 if the tth choice occasion of individual q corresponds to her/his revealed preference 

choice and 0 otherwise, qitY  is another binary variable that takes a value of 1 if the individual q 

chooses alternative i at the tth choice occasion and 0 otherwise, Tq  is the total number of 

observed choice occasions for individual q, qθ  is the individual-specific state dependence effect 

that maps the effect of the RP choice of an alternative into the utility evaluation of that 

alternative in the SP choice occasions, and qitε  is an unobserved random term that captures the 

idiosyncratic effect of omitted variables during each choice occasion. qitε  is assumed to be 

independent of qα  and qitx . The reader will note that the second term in equation (1), 
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representing the state dependence effect, reduces to zero in the utility evaluation for the RP 

choice occasion. 

 The error term qitε  may be partitioned into two components, qitζ  and qitzµ′ . The first 

component, qitζ , is assumed to be independently and identically Gumbel distributed across 

alternatives and individuals for each choice occasion, and also independently (but not 

identically) distributed across choice occasions. Its scale parameter is specified as: 

RPqtRPqtqt ,, ])1[( δ+λ×δ−=λ . Such a specification accommodates the scale difference between 

the RP and the SP choice occasions.  Specifically the RP scale is normalized to one for 

identification, and the SP scale, λ , is estimated.  The second component in the error term, qitzµ′ , 

induces heteroscedasticity and correlation across unobserved utility components of the 

alternatives at any choice occasion t. qitz  is a vector of observed data, some of whose elements 

might also appear in the vector qitx .  µ  is a random multivariate normal vector with zero mean.  

For example, qitz  may be specified to be a row vector of dimension M with each row 

representing a group m (m =1,2,...,M) of alternatives sharing common unobserved components.  

The row(s) corresponding to the group(s) of which i is a member take(s) a value of one and other 

rows take a value of zero.  The vector µ  (of dimension M) may be specified to have independent 

elements, each element having a variance component 2
mσ .  The result of this specification is a 

covariance of 2
mσ  among alternatives in group m and heteroscedasticity across the groups of 

alternatives.  This structure is less restrictive than the nested logit structure in that an alternative 

can belong to more than one group (or nest).  Also, by structure, the variance of the alternatives 

is different.  More general structures for qitzµ′  in equation (1) are presented by Ben-Akiva and 

Bolduc (1996), and Brownstone and Train (1999). 
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 Several special structures can be obtained by imposing appropriate restrictions on 

equation (1).  For instance, assuming that α=α q  and 0=θq  for each individual q, and 

assuming that 0=µ , implies a multinomial logit structure for the RP-SP choices with a scaling 

effect, but without state dependence and unobserved heterogeneity effects.  If the assumption 

that 0=µ  is relaxed in the above structure, the IID specification across alternatives is relaxed.  

In addition, if qα  is not constrained to be the same, but allowed to vary across individuals, 

unobserved heterogeneity is added to the specification.  Next, if the assumption that 0=θq  is 

relaxed and it is assumed that θ=θq , state dependence is included in the specification.  Finally, 

if the restriction that qθ  is the same across individuals is also removed, we get the most general 

model that accommodates flexible inter-alternative error structure, allows the scale to be 

different between RP and SP responses, incorporates unobserved heterogeneity in the 

parameters, and recognizes state dependence and heterogeneity in state dependence. 

  Defining ( ) ( )
′
















 δ×δ−′=′θα′=β ∑
=

qT

s
qisRPqsRPqtqitqitqqq Yxw

1
,,1,  ,, , and using the error 

components decomposition for qitε  discussed above, equation (1) can be re-written as:  

qitqitqitqqit zwU ζ+µ′+β′=                  (2) 

The coefficient qβ  in equation (2) is individual-specific and, in general, varies across 

individuals.  Let the distribution of unobserved heterogeneity across individuals be multivariate 

normal, so that qβ  is a realization of a random multivariate normally distributed variable β~ .  Let 

ω be a vector of true parameters characterizing the mean and variance-covariance matrix of β~ . 
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Further, let σ  be a parameter vector characterizing the variance-covariance matrix of the 

multivariate normal distribution of µ .  

 Conditional on β~  and µ , the probability that individual q will choose alternative i at the 

tth choice occasion can be written in the usual multinomial logit form (see McFadden, 1978): 

.),~(|

1

)~(

)~(

∑
=
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=µβ I
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e

eP                  (3) 

The unconditional probability can be subsequently obtained as:  

),|~()|(

1

)~(

)~(

~
ωβσµ= ∫

∑
∫

+∞

−∞=µ

=

µ′+β′λ

µ′+β′λ+∞

−∞=β

dFdF
e
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J
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qit
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qitqitqt
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where F is the multivariate cumulative normal distribution.  The reader will note that the 

dimensionality in the integration above is dependent on the number of elements in the µ  and qβ  

vectors.  

 

3.  MODEL ESTIMATION 

The parameters to be estimated in the model of equation (4) are the σ  and ω vectors.  To 

develop the likelihood function for parameter estimation, we need the probability of each sample 

individual's sequence of observed RP and SP choices.  Conditional on β~ , the likelihood function 

for individual q's observed sequence of choices is: 

( ) ( ) .)|(,~,~
1 1
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=
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Y
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The unconditional likelihood function of the choice sequence is: 
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The log-likelihood function is ‹ ),(ln),( σωΣ=σω qq L .   

 The likelihood function in equation (6) is quite different from those in previous 

applications of the mixed logit model, such as Bhat (1998), Hensher (2000), and Brownstone and 

Train (1999).  In particular, there are two levels of integration rather than one.  This arises 

because, from an estimation standpoint, the error components formulation that generates inter-

alternative correlation operates at the choice level, while the random coefficients formulation 

that accommodates taste variation across individuals operates at the individual level.  Thus, in 

the context of estimating such a bi-level structure, error components and random coefficients are 

not mathematically equivalent. 

 We apply quasi-Monte Carlo simulation techniques to approximate the integrals in the 

likelihood function and maximize the logarithm of the resulting simulated likelihood function 

across all individuals with respect to ω and σ . The procedure to simulate each individual’s 

likelihood function, ),( σωqL , is as follows: (a) For a given value of the parameter vector ω, 

draw a particular realization of β~  from its distribution, (b) For a given value of the σ  vector, 

draw several sets of realizations of µ  from its distribution, each set corresponding to a choice 

occasion of the individual, (c) compute the probability of the chosen alternative for each choice 

occasion (i.e., the likelihood function of that choice occasion) at that choice occasion’s set of µ  

realizations, and for the current β~  realization, (d) Average the likelihood functions across the 

various realizations of µ  for each choice occasion, (e) Compute the individual likelihood 
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function as the product of the averaged likelihood functions across all choice occasions of the 

individual, (f) Repeat steps a through e several times with fresh realizations of β~  and new sets of 

draws of µ , and (g) Compute the average across all individual likelihood function evaluations. 

Mathematically, the individual likelihood function is approximated as: 

, )|,|~(11),(
1 1 1 1
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= =

=
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where ),( σωqSL  is the simulated likelihood function for the qth individual's sequence of choices 

given the parameter vector  ω and σ , ωβ |~ d  is the dth draw (d=1,2,...,D) from )|~( ωβf , σµ |dg  

is the  gd 
th draw (gd =1,2,...,G) from )|( σµf  at the dth draw of β~ , and other variables are as 

defined earlier. ),( σωqSL  is an unbiased estimator of the actual likelihood function ),( σωqL .  Its 

variance decreases as D and G increase.  It also has the appealing properties of being smooth 

(i.e., twice differentiable) and being strictly positive for any realization of the draws. 

The simulated log-likelihood function is constructed as: 

S‹ )].,(ln[),( σω=σω ∑
q

qSL                   (8) 

The parameter vector ω and σ  are estimated as the values that maximize the above simulated 

function.  Under rather weak regularity conditions, the maximum (log) simulated likelihood 

(MSL) estimator is consistent, asymptotically efficient, and asymptotically normal (see 

Hajivassiliou and Ruud, 1994; Lee, 1992; McFadden and Train, 1998).   

In the current paper, we use the Halton sequence to draw realizations for β  and µ  from 

their population normal distributions.  Details of the Halton sequence and the procedure to 

generate this sequence are available in Bhat, (1999).  Bhat (1999) has demonstrated that the 

Halton simulation method out-performs the traditional pseudo-Monte Carlo (PMC) methods for 
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mixed logit model estimation.  Subsequent studies by Train (1999) and Hensher (1999) have 

confirmed this result. 

 The estimations and computations in the paper were carried out using the GAUSS 

programming language on a personal computer.  Gradients of the log simulated likelihood 

function with respect to the parameters were coded.  

 

4.  DATA SOURCES AND SAMPLE FORMATION 

The data for the study are drawn from revealed preference (RP) and stated preference (SP) 

surveys conduced as part of the 1996 San Francisco Bay Area Travel Study (BATS).  The 

surveys were designed and administered by NuStats Research and Consulting for the 

Metropolitan Transportation Commission (NuStats Research and Consulting, 1996). 

The objective of the RP survey was to provide data for the continued development and 

refinement of travel demand models for the San Francisco Bay area.  This RP survey included a 

48-hour travel diary of all members of sampled households, and collected detailed individual and 

household socio-demographic information.  The objective of the SP survey was to obtain 

additional data to model the travel behavior responses of Bay Area Bridge users to changes in 

travel conditions, including changes in bridge tolls, parking costs, travel times, transit fares, and 

transit service frequency.  The main emphasis, however, of the SP survey was to provide data for 

congestion pricing models in the Bay Bridge corridors.  Individuals who were 18 years or older, 

participated in the RP survey, and who reported crossing one of the Bay Bridges at least once a 

week during the peak hours of 6-9 a.m., were eligible for participation in the SP survey.  The 

final recruitment of individuals for the SP survey from this “eligible pool” was based on the 

availability of a reported trip using one of the Bay Bridge corridors during the 48-hour diary 
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period of the RP survey.  This reported trip in the RP survey served as the reference trip for 

development of the SP scenarios.  The reference trip, along with the “current travel conditions” 

corresponding to the available travel modes for the reference trip, were then presented to each SP 

survey respondent.  Finally, hypothetical scenarios of new travel conditions for the reference trip 

were generated and the corresponding choices of respondents were recorded.  The reader is 

referred to NuStats Research and Consulting (1996) for complete details of survey sampling and 

administration procedures. 

 The experimental design for the SP survey generated 32 scenarios of “new travel 

conditions”, representing changes from the reference trip scenario.  The 32 scenarios were 

further grouped into four sets of eight questions each, and each survey respondent was randomly 

assigned one of the four sets.  The SP survey collected information from 150 respondents.  Of 

these respondents, 14 respondents had to be removed from the sample because they did not 

complete the SP survey or had missing information on travel conditions.  The final sample 

comprises 136 respondents.  Of these 136 respondents, 130 contributed 9 choice occasions (8 SP 

choice occasions + 1 RP choice occasion).  However, some of the SP choice occasions of the 

remaining 6 respondents had to be discarded because the respondents chose a transit travel mode 

that is not available to them for their reference trip.  Among these six respondents, two 

respondents contributed seven choice occasions, while one each of the remaining four 

contributed 3,4,5, and 8 choice occasions.  Thus, the final sample comprises a total of 1,204 

choice occasions (136 RP choice occasions and 1,068 SP choice occasions). 

 The universal choice set includes six alternatives: 1) Drive alone or with one other person 

during the peak period (DAP), 2) Drive alone or with one other person during the off-peak 

period (DAO), 3) Carpool (3 or more people) during the peak period (CPP), 4) carpool during 
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the off-peak, period (CPO), 5) Alameda County Transit (ACT), and 6) Bay Area Rapid Transit 

(BART).  The peak period is defined as 6 a.m. to 9 a.m. and 3 p.m. to 6 p.m.  The first four of the 

above alternatives are available at each choice occasion of each individual.  However, the ACT 

transit mode is not available for 73 respondents (= 561 choice occasions) and the BART transit 

mode is not available for 13 respondents (= 107 choice occasions).  Both these transit modes are 

unavailable for 10 respondents (= 86 choice occasions).   

 The following information was provided to respondents for the reference trip for the 

transit modes (BART and ACT): availability of the modes, headway of transit service, total 

travel time, and transit fare.  The information provided on the non-transit alternatives for the 

reference trip included total travel time and bridge tolls.  However, current total travel costs for 

the non-transit alternatives were not presented for the reference trip.  This was developed by the 

authors using several supplementary data sources.  The level-of-service values for the SP 

scenarios were constructed based on the values for the reference trip and the incremental changes 

specified in each SP scenario. 

 The choice share of alternatives in the RP sample, in the SP sample, and in the joint 

sample is provided in Table 1 (for ease in presentation, we will use the label “drive alone” for the 

“drive alone or with one other person” mode and the label “carpool” for the “carpool with 3 or 

more individuals” mode).  The RP sample indicates a higher mode share captured by the transit 

modes compared to the 10% transit market share for work trips in the Bay area.  This is because 

the destination for about 91% of the trips in the current RP sample is San Francisco.  A 

comparison of the RP and SP mode shares indicates a clear shift away from the drive alone-peak 

(DAP) mode toward the drive alone-off peak (DAO) and carpool-peak (CPP) modes.  This is, in 

part, because the SP choice scenarios involve a steep increase over the RP scenario in peak-



Bhat and Castelar 16

period bridge toll and parking costs (the increase in cost ranged from zero to $8, with a mean 

increase of $3.25).  The substantial shift may also be attributed to individuals overstating their 

likelihood to switch in their SP responses. 

 

5.  EMPIRICAL ANALYSIS 

A number of different model structures were estimated in the analysis.  In this paper, we present 

the results of seven model structures: four “cross-sectional” models that do not accommodate 

unobserved heterogeneity and state dependence, and three “panel-data” models that 

accommodate unobserved heterogeneity and/or state dependence.  In the models with state 

dependence, we included only the modal dimension effect of the RP choice on SP choices.  

Alternative specifications that included the temporal dimension of state dependence were 

estimated, but did not provide significant temporal dependence parameters.  This result is to be 

expected, since a very small fraction of the drive alone and carpool users in the RP sample travel 

in the off-peak hours (see Table 1).  Finally, mode-specific state dependence parameters were 

also tested, but we could not reject the hypothesis of a generic state dependence effect.  This is 

perhaps reflecting the dominance of the drive alone mode share in the RP sample.  

 

5.1 Cross-Sectional Models 

Table 2 provides the results of the cross-sectional models.  The first model is the “RP-Sample 

MNL” model, the second is the “SP-Sample MNL” model, the third is a “joint RP/SP-MNL” 

model, and the fourth is a “joint RP/SP error-components” model. 

 The coefficients on the alternative-specific constants show considerable differences 

between the RP and SP samples due to differences in the alternative shares in the two samples.  



Bhat and Castelar 17

In particular, the coefficients on the drive alone off-peak (DAO) and carpool peak (CPP) 

alternatives are much more positive in the SP sample relative to their counterparts in the RP 

sample.  This suggests that individuals are overstating their tendency to shift to the DAO and 

CPP alternatives from the drive alone peak (DAP) alternative in the SP experiments.  

 The signs of the coefficients on other variables in the different models are quite 

reasonable.  The effects of the socio-demographic variables indicate that individuals in 

households with a high number of vehicles relative to number of workers are likely to choose the 

drive alone modes (DAP or DAO).  Also, individuals who are male and employed tend to choose 

the drive alone mode during the peak period than other travel alternatives.  Finally, within the 

category of socio-demographic effects, the results suggest that high income earners are likely to 

choose the drive alone mode during the peak period and the ACT mode (when it is available to 

them) compared to other travel alternatives.  Among the level-of-service variables, the results 

show the expected negative effects of total travel times and costs (in all the models, the headway 

of transit service was introduced as an additional variable, but provided a counter-intuitive 

positive sign and was statistically insignificant; hence it is dropped from the model 

specifications). 

 A comparison of the “RP-Sample MNL” model with the other cross-sectional models 

shows differences in the level-of-service variable effects.  The “RP-Sample MNL” model has a 

statistically insignificant cost coefficient.  This reflects the limited variation in cost within the RP 

sample as well as multi-collinearity between time and cost.  The other cross-sectional models 

provide a statistically significant cost coefficient. 

 The “joint RP/SP-MNL” model and the “joint RP-SP error components” model show that 

there is no significant scale difference in the RP and SP choice processes (see the last but one 
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row in Table 2).  For the error components model, we considered several different inter-

alternative error structures.  However, we found that a simple specification allowing a common 

error component for the drive alone modes (DAP and DAO) and another common error 

component for the shared-ride modes (CPP and CPO) adequately captured the inter-alternative 

error structure.  Further, we could not reject the hypothesis of equal variances of the drive alone 

and shared-ride error components (see last row of Table 2).  The resulting inter-alternative error 

structure implies a higher degree of sensitivity between the drive alone modes than between a 

drive alone mode and a non-drive alone mode.  Similarly, the structure also implies a higher 

degree of sensitivity between the carpool modes than between a carpool mode and a non-carpool 

mode.  More fundamentally, these results suggest that individuals are more likely to change 

departure times than change travel modes in response to changes in travel service characteristics.  

The error structure discussed above also generates heteroscedasticity between the transit and 

non-transit alternatives; specifically, the variance of the non-transit alternatives (DAP, DAP, 

CPP, and CPO) is larger than the variance of the transit alternatives.  Such a heteroscedastic 

pattern implies a higher degree of sensitivity between the transit alternatives than between a 

transit and a non-transit alternatives.  In addition, the heteroscedasticity pattern also implies that 

the self-sensitivity of transit alternatives to transit level-of-service changes is higher than the 

self-sensitivity of non-transit alternatives to non-transit level of service changes (see Bhat, 1995 

for a detailed discussion of the competitive patterns implied by heteroscedasticity).  

 Table 3 provides the implied money values of travel time and fit statistics from the 

various models.  The implied money value of time is very high in the “RP-Sample MNL” model.  

This is because the “RP-Sample MNL” model is unable to capture the sensitivity to cost due to 

limited variation in cost within the RP sample as well as multi-collinearity between time and 



Bhat and Castelar 19

cost.  The implied money value is more reasonable in the other three models, though still on the 

high side for urban travel. 

 In addition to the four models in Table 3, we also estimated an unrestricted “joint RP/SP-

MNL” model with a completely different set of coefficients in the RP and SP choice processes, 

except for the cost coefficient, which was constrained to be the same to identify the RP-SP scale 

difference.  This model had a convergent log-likelihood value of -1614.25.  A comparison of this 

value with the log-likelihood value at convergence for the “joint RP/SP-MNL” model in Table 2 

suggests that, after accommodating for constant differences, there are no taste differences in the 

RP and SP choice processes.  The likelihood ratio value for the test is 8.8, which is smaller than 

the chi-squared value corresponding to the 6 additional parameters in the unrestricted model at a 

0.1 level of significance.  

 In summary, the results of the cross-sectional models indicate that the joint RP/SP 

approach is better able to represent trade-offs in level-of-service attributes and also provide 

efficiency benefits in estimation by recognizing the presence of a common latent preference 

structure underlying the RP and SP responses.  The joint RP/SP approach is also able to 

recognize and adjust for the overstatement in use of the drive alone off-peak and carpool peak 

alternatives in the SP responses.  Among the two cross-sectional joint RP/SP models, the error-

components formulation provides a statistically better data fit.  Thus, it is the preferred cross-

sectional model structure and is retained as the base structure for the development of the panel 

data models. 
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5.2  Panel Data Models 

Several “panel data” models were estimated in the analysis.  In the current paper, we present 

only three of these to keep the discussion focused and also due to space considerations.  The first 

model accommodates unobserved heterogeneity effects (both heterogeneity in intrinsic 

preferences and in response to level-of-service variables), but not state dependence.  The second 

model accommodates state dependence, but not unobserved heterogeneity.  The third model 

accommodates unobserved heterogeneity, state dependence, and heterogeneity in the state 

dependence effect.  For all the panel-data models, we experimented with different error-

components structures, but none of the alternative error structures tested provided a significantly 

better log-likelihood value than the simple error-components structure obtained in the cross-

sectional analysis.  In the “panel” analysis, we used 150 Halton draws per individual for 

individual-specific heterogeneity coefficients and 25 Halton draws per choice occasion for the 

inter-alternative error components (limited experimentation with higher number of draws 

indicated little change in coefficient estimates and log-likelihood function values). 

 The first model in Table 4 that incorporates unobserved heterogeneity shows that the 

estimated standard deviations characterizing the unobserved heterogeneity distributions for the 

constants are highly significant.  Thus, there appears to be considerable individual-level 

heterogeneity in intrinsic preferences for the different alternatives.  The socio-demographic 

variables continue to retain their significant impact.  The standard deviations of the parameters 

on the level-of-service variables are also highly significant, indicating the presence of response 

heterogeneity in addition to preference heterogeneity.  The estimated mean coefficient on the 

cost variable, along with the estimated standard deviation of the cost sensitivity across 

individuals, implies a negative effect of travel cost for almost all individuals.  The normal 
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distribution assumption for heterogeneity will necessarily imply a positive coefficient for some 

individuals; in the current analysis, this is estimated to be the case for less than 0.8% of 

individuals.  Similarly, the time effect is negative for about 90% of individuals, while it is 

estimated to be positive for about 10% of individuals.  The level-of-service coefficients in the 

unobserved heterogeneity model of Table 4 and the cross-sectional error-components model of 

Table 2 cannot be directly compared because of differences in the variances of the stochastic 

utility components between the two models.  However, a comparison of the relative importance 

of the cost and time coefficients between the two models indicates clearly that time sensitivity is 

overstated in the cross-sectional model.  Another important difference between the unobserved 

heterogeneity model and the cross-sectional models is the estimated scale difference in RP and 

SP responses.  The scale factor is close to, and not significantly different from, 1 in the cross-

sectional models, while it is much higher than 1 and statistically different from 1 in the 

unobserved heterogeneity model.  Thus, after accommodating unobserved heterogeneity effects, 

the error variance in the SP choice context is much lower than in the RP choice context.  This 

result is significant.  Most previous studies have estimated a larger error variance in the SP 

context than in the RP context, and have attributed this to the limited set of attributes in SP 

experiments or to experimental design effects.  Our results suggest that the larger SP variance in 

earlier studies may have simply been an artifact of ignoring error correlations across repeated SP 

choices of the same individual.  Finally, the error components generating inter-alternative error 

correlations across the drive alone alternatives and across the carpool alternatives weaken once 

unobserved heterogeneity is included (see last but one row in Table 4).  This is not surprising, 

since unobserved heterogeneity indirectly also generates inter-alternative correlation patterns. 
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 The second model in Table 4 accommodates state-dependence, but ignores unobserved 

heterogeneity.   As with the unobserved heterogeneity model, the state dependence model also 

shows a reduction in time sensitivity relative to cost sensitivity compared to the cross-sectional 

error-components model.  However, the reduction in time-sensitivity is not as large as in the 

model with unobserved heterogeneity.  Also, the scale parameter between the RP and SP choices 

is close to, and not significantly different from, 1 in this model. Thus, unobserved heterogeneity 

and state dependence have different implications regarding the sensitivity to level-of-service 

variables as well as regarding context differences in RP and SP choice situations.  Finally, the 

state dependence model suggests the presence of a very significant positive impact of the current 

RP choice of the individual on her/his SP choices (see last row of Table 4). 

 The third model in Table 4 disentangles the effects of unobserved heterogeneity and state 

dependence.  This general model includes unobserved parameter heterogeneity, state 

dependence, and unobserved heterogeneity in state dependence.  A comparison of the third 

model with the first model shows a tempering of the unobserved parameter heterogeneity effects 

(except for the preference heterogeneity for the BART alternative, which increases slightly in the 

third model; see the magnitudes of the standard deviations of the parameters in Table 4).  This 

tempering of the unobserved heterogeneity effects is intuitive, since the state dependence effect 

is incorrectly being manifested as unobserved heterogeneity in the first model.  A consequence 

of the reduced heterogeneity effects in the context of the level-of-service variables is that it is 

even more unlikely for the cost and time parameters to be positive in the third model compared 

to the first model.  In particular, the cost parameter is estimated to be positive for less than 0.2% 

of individuals and the time parameter is estimated to be positive for only about 5% of 

individuals.  Similar to the dampening of the unobserved heterogeneity effect, there is also a 
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substantial reduction in the state dependence effect in the third model relative to the second 

model.  Overall, there is a decrease in the estimated strengths of the unobserved parameter 

heterogeneity and state dependence effects when they are introduced simultaneously. 

 The estimated parameter representing unobserved heterogeneity in state dependence is 

statistically significant in the third model (see last row of Table 4); the magnitude of this 

parameter is also large relative to the estimated mean state dependence effect.  Thus, the results 

show that there is substantial variation in the magnitude of the state dependence effect.  In fact, 

while the mean state dependence effect is positive, the effect is negative for 42% of individuals.  

It appears that both a positive effect (due to factors such as habit persistence, inertia to explore 

another alternative, or learning combined with risk aversion) or a negative effect (due to, for 

instance, variety seeking or the latent frustration of the inconvenience associated with a current 

alternative) may be associated with the influence of current choice on future choices.  

 Clearly, the results above indicate important differences among the panel data models, 

and between the panel data models and the cross-sectional models in Table 2.  To examine the 

trade-offs between time and cost estimated by the panel data models, and to evaluate data fit, we 

present the implied time costs and fit statistics of the panel model in Table 5.  The implied value 

of time for the models incorporating unobserved heterogeneity are computed at the mean 

estimated values of the time and cost parameters2.  The results in Table 5 show that the estimated 

                                                 
2 We also simulated data for two normally distributed variables with the mean and variance of the 

variables corresponding to the time and cost coefficients, and subsequently computed the median values 

of time across the simulated observations.  These values are quite close to the ratio of the mean 

coefficients on the time and cost coefficients because the standard deviation of the cost coefficient is 

rather small. 
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money values of time from the panel models are much smaller than the values obtained from the 

cross-sectional models, supporting an earlier finding by Daniels and Hensher (2000) that 

ignoring unobserved heterogeneity and/or state dependence can lead to inflated money values of 

travel time.  Among the three panel-data models, the mean money value of time is overstated 

when only state-dependence is included.  Rather coincidentally, the mean estimated money value 

of time is identical up to the second decimal place in the first and third models.  However, the 

standard deviations of the cost and time coefficients are quite different across the two models 

(see Table 4).  As we illustrate in the next section, the differences across the various models in 

response sensitivities, state dependence effects, and competition patterns generated by 

unobserved heterogeneity and error components have substantial implications for transportation 

policy analysis. 

 The fit measures in Table 5 indicate a dramatic improvement due to the inclusion of 

unobserved heterogeneity; the adjusted rho-bar squared value increases from 0.066 in the cross-

sectional error-components model to 0.527 in the model with only unobserved heterogeneity.  

There is also an improvement due to the inclusion of state dependence (relative to the cross-

sectional error components model), though the improvement is considerably lesser than when 

unobserved heterogeneity is included.  Finally, the most general model that accommodates both 

unobserved heterogeneity and state dependence clearly provides the best overall fit statistic (the 

likelihood ratio test corresponding to a comparison of the pure unobserved heterogeneity model 

and the general model is 18.48, which is larger than the chi-squared statistic with two degrees of 

freedom at any reasonable level of significance).  
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6.  CONGESTION-PRICING POLICY SIMULATIONS 

Most transportation congestion management actions attempt to effect a change in mode choice 

during the peak periods or effect a change in departure time from peak to off-peak periods by 

influencing the level-of-service variables.  For example, congestion-pricing and parking-pricing 

schemes rely on the use of monetary disincentives for traveling during the peak periods by the 

drive alone mode.  In this section, we present the substantive policy implications obtained from 

the alternative model structures due to congestion-pricing policies targeted at Bay Area Bridge 

users.  Specifically, we examine the impact of a $2.00 and a $4.00 increase in drive alone-peak 

(DAP) mode travel costs (the current mean DAP cost is $4.58, so the increases above correspond 

to about a 44% and a 87% increase, respectively, at the mean current DAP travel cost).  The 

impact of these congestion-pricing schemes is evaluated by modifying the cost variable for the 

DAP travel alternative in the RP sample, computing revised disaggregate probabilities, 

calculating revised expected aggregate number of individuals using each travel alternative within 

the RP sample, and then obtaining a percentage change from the baseline estimates.  It is 

important to recognize that our policy simulations cannot reflect long-term changes in activity-

travel behavior such as household relocation, and work activity and location changes. 

 In all the simulations, we use the RP alternative-specific constants and not the SP 

alternative-specific constants.  One minor issue is that we do not have an RP constant for the 

carpool mode during off-peak hours (i.e., the CPO mode).  This is because none of the Bay Area 

users in the RP sample chose the CPO mode.  However, we do have the SP constant on the CPO 

mode.  For prediction purposes, we impute a constant for the CPO mode by applying the relative 

difference between the CPP and CPO modes estimated from the SP data component of the joint 

RP-SP analysis to the RP CPP constant.  In general, the resulting constant for the CPO mode is 
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highly negative. Because of this, and for interpretational ease of the policy simulations as well as 

computation of percentage differences from the baseline, we have combined the CPP and CPO 

mode into a single carpool (CP) mode. 

 Table 6 provides the estimated percentage change (at the aggregate level) from the 

alternative joint RP-SP model structures and for the two levels of congestion-pricing.  The five 

joint RP-SP models include the cross-sectional MNL, the cross-sectional error components, the 

panel data model with unobserved heterogeneity, the panel data model with state dependence, 

and the most general panel data model.  As expected, all the models predict a decrease in the 

DAP mode and an increase in other modes due to the congestion pricing schemes.  However, 

there are differences in the magnitude of the changes.  Among the models, the MNL model 

overestimates the decrease in DAP share relative to the general model, while the next three 

models underestimate the decrease compared to the general model.  The underestimation is most 

obvious for the state-dependence model; this may be attributed to the high inertia effect 

estimated in the model and the large fraction of individuals using the drive alone mode in the RP 

sample.  In contrast, the general model estimates a much lower mean state-dependence effect and 

also indicates substantial “variety seeking” in the effect.  Consequently, there is considerable 

dampening of the state dependence effect and, therefore, a higher shift away from the DAP 

mode.  Overall, the results suggest that the MNL model will provide an overly-optimistic 

projection of the alleviation in traffic congestion during the peak periods due to congestion-

pricing schemes, while the other restrictive models in Table 6 will under-predict the alleviation 

in peak-period traffic congestion (compared to the general model). 

 The differences among the models are even more noticeable in their predictions of the 

increases in the market share of the non-DAP alternatives.  The MNL model indicates a rather 
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even increase in all other alternative shares; this is, of course, an aggregate manifestation of the 

individual-level IIA property.  The cross-sectional error components model shows a large 

increase in the share of the drive alone off-peak alternative (DAO) because of the common error 

component corresponding to the drive alone alternatives.  As indicated in Section 5, the error 

components structure also generates a heteroscedasticity pattern so that the transit alternatives 

attract more of the displacement from the DAP mode than the carpool alternatives.  This is 

reflected in the higher percentage increases for the transit alternatives and the lower percentage 

increase for the carpool alternative in the error components model relative to the MNL model.  

The unobserved heterogeneity model shows the lowest increase in the DAO alternative of all the 

models.  The increase in the BART alternative in this model is also smaller than the 

corresponding value from the MNL and error-components models.  The state dependence model, 

on the other hand, shows the largest increase in the DAO alternative.  This is to be expected 

because the state dependence model estimates a substantial inertia effect corresponding to the 

drive alone travel mode.  The transit modes gain the least share in the state dependence model 

compared to other models.  Finally, the general model shows an increase in the DAO alternative 

that is between those of the unobserved heterogeneity and state dependence models.  The general 

model also predicts higher percentage increases for the carpool, ACT, and BART modes 

compared to the other two panel models because of the higher overall draw away from the drive 

alone peak alternative.  

 

7.  SUMMARY AND CONCLUSIONS 

This paper has formulated a mixed logit model for joint RP-SP analysis that accommodates the 

following behavioral considerations: (a) a flexible competition pattern across alternatives, (b) 
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scale difference in the RP and SP choice contexts, (c) heterogeneity across individuals in the 

intrinsic preferences for alternatives, (d) heterogeneity across individuals in the responsiveness to 

level-of-service factors, (e) state dependence of the SP choices on the RP choices, and (f) 

heterogeneity across individuals in the state dependence effect.  To the authors’ knowledge, this 

is one of the first research attempts to develop and apply a unified methodological framework 

that recognizes and accommodates all of these important behavioral considerations.  

 The mixed logit formulation is estimated using a maximum likelihood method.  The 

likelihood function in the current formulation is quite different from those in previous 

applications of the mixed logit model.  In particular, there are two levels of integration rather 

than one.  This arises because the error components formulation that generates inter-alternative 

correlation operates at the choice level, while the random coefficients formulation that 

accommodates taste variation across individuals operates at the individual level.  The 

maximization of the likelihood function is achieved using simulation techniques that employ 

quasi-random Halton draws.  The Halton method, proposed for use in the estimation of discrete 

choice models by Bhat (1999), uses “cleverly” crafted non-random and uniformly distributed 

sequences in the domain of integration.  

 The mixed logit formulation is applied to examine the travel behavior responses of San 

Francisco Bay Bridge users to changes in travel conditions, including changes in bridge tolls, 

parking costs, travel times, transit fares, and transit service headway.  Several results from the 

empirical analysis in the paper are noteworthy.  First, the results emphasize the advantage of 

combining RP and SP data in travel modeling.  Using only RP data results in a statistically 

insignificant cost coefficient, reflecting the limited variation in cost within the RP sample as well 

as multi-collinearity between time and cost.  On the other hand, using only SP data would, in 
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general, result in estimates of alternative-specific constants that are not reflective of the market 

shares of the alternatives; also using only SP data would not recognize state dependence effects.  

Joint RP-SP methods are better able to represent trade-offs in level-of-service attributes and also 

provide efficiency benefits in estimation by recognizing the presence of a common latent 

preference structure underlying the RP and SP responses.  Second, the results indicate substantial 

heterogeneity across individuals in overall preferences for alternatives.  There is also significant 

heterogeneity in response to level-of-service measures.  Between the time and cost sensitivities, 

there appears to be substantially more heterogeneity across individuals in time sensitivity than in 

cost sensitivity.  Third, the heterogeneity effects and state-dependence effects are tempered when 

both of these are included simultaneously.  This indicates that there is a confounding of true and 

spurious state dependence effects when only heterogeneity or only state dependence is 

considered.  As has already been explained earlier, disentangling these two effects is critical for 

transportation policy analysis.  Fourth, ignoring unobserved heterogeneity and/or state 

dependence effects leads to an overestimation of time sensitivity; thus, using “cross-sectional” 

methods of analysis that ignore the repeated-choice nature of SP responses and the dependence 

of SP responses on RP responses lead to biased estimates of the effects of level-of-service 

variables in the current empirical context.  Fifth, there is a dramatic improvement in data fit 

when one introduces unobserved heterogeneity.  The rho-bar squared value increases from about 

0.07 to about 0.53 when unobserved heterogeneity is introduced.  There is also a considerable 

improvement in data fit when state-dependence is introduced, but the improvement is small 

relative to the case when unobserved heterogeneity is introduced.  Further, the fit improvement 

when state dependence is introduced in a model with unobserved heterogeneity is relatively 

marginal.  This result, along with the small changes in parameter estimates and implied money 
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values of time between a model with only unobserved heterogeneity and a model with both 

unobserved heterogeneity and state dependence, suggests that unobserved heterogeneity effects 

are much stronger in the current empirical context than state-dependence effects.  This is not to 

suggest that state-dependence effects may be ignored; it is intended to characterize the relative 

strengths of the two effects.  It is possible that the unobserved heterogeneity effects will not be so 

dominating in a different empirical context or if more detailed demographic/attitudinal data 

becomes available for inclusion in the model specifications.  Sixth, the results indicate 

substantial heterogeneity across individuals in the state-dependence effect; it appears that both a 

positive effect (due to factors such as habit persistence, inertia to explore another alternative, or 

learning combined with risk aversion) or a negative effect (due to, for instance, variety seeking 

or the latent frustration of the inconvenience associated with a current alternative) may be 

associated with the influence of current choice on future choices.  Seventh, there is a dramatic 

increase in the estimated scale difference in RP and SP responses when unobserved 

heterogeneity is accommodated; that is, after accommodating unobserved heterogeneity effects, 

the error variance in the SP choice context is much lower than in the RP choice context.  This 

result is quite different from those in most earlier RP-SP studies, which have estimated a larger 

error variance in the SP context than in the RP context or have found the error variances to not 

be significantly different.  These earlier studies have attributed a higher SP error variance to the 

limited set of attributes in SP experiments or to experimental design effects.  Our results suggest 

that the larger SP variance in earlier studies may have been an artifact of ignoring error 

correlations across repeated SP choices from the same individual.  Thus, it is possible that the SP 

choice context provides a very focused setting compared to an RP context, with relatively little 

room for measurement error or imputation of variable values.  This, in combination with recent 
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studies that suggest the ability of consumers to systematically evaluate even rather complex 

hypothetical scenarios (see Louviere and Hensher, 2000), points toward using SP experiments as 

the main data source for analysis and supplementing with small samples of RP data for 

anchoring with actual market activity.  

 The substantive congestion-pricing policy implications on the shares of the various travel 

alternatives are quite different among the alternative models.  The results suggest that the cross-

sectional MNL model will provide an overly-optimistic projection of the alleviation in traffic 

congestion during the peak periods due to congestion-pricing schemes, while the other restrictive 

models (the cross-sectional error-components model, the panel-data model with unobserved 

heterogeneity only, and the panel data model with state dependence only) will under-predict the 

alleviation in peak-period traffic congestion (compared to the general model).  The differences 

between the general model and the restrictive structures are particularly noticeable in their 

predictions of the increases in the market share of the non-DAP alternatives.  These results 

highlight the need to include (or at least test for) flexible inter-alternative error structures, 

unobserved heterogeneity, state dependence, and heterogeneity in the state dependence effects 

within the context of a unified methodological framework to assist informed policy decision-

making. 
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TABLE 1 Availability and Choice Shares of Alternatives 

 

Revealed Preference Sample Stated Preference Sample Joint Sample 
Alternative 

Availability 
Shares 1 Choice Shares Availability 

Shares 1 Choice Shares Availability 
Shares 1 Choice Shares

Drive alone - peak (DAP) 1.000 0.617 1.000 0.226 1.000 0.270 

Drive alone - offpeak (DAO) 1.000 0.081 1.000 0.298 1.000 0.273 

Carpool - peak (CPP) 1.000 0.037 1.000 0.169 1.000 0.154 

Carpool - offpeak (CPO) 1.000 0.000 1.000 0.014 1.000 0.012 

Alameda County transit (ACT) 0.463 0.037 0.543 0.065 0.534 0.061 

Bay area rapid transit (BART) 0.904 0.228 0.912 0.228 0.911 0.228 

Sample Size 136 1068 1204 

 
1 The availability shares represent the share of observations in the sample for which the alternative is available. 
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TABLE 2 Cross-sectional Model Estimation Results 

 

RP-Sample MNL SP-Sample MNL Joint RP-SP MNL Joint RP-SP Error 
Components Model Variable 

Parm. t-stat. Parm. t-stat. Parm. t-stat. Parm. t-stat. 

  Constants         
  RP Sample         
      Drive alone off-peak -0.277 -0.32 - -  0.602  0.93  0.539  0.60 
      Carpool peak -1.165 -1.20 - - -0.554 -0.81 -2.040 -2.11 
      ACT  0.712  0.49 - - -0.144 -0.20 -0.303 -0.37 

      BART  2.328  2.72 - -  2.417  3.34  2.182  2.19 
  SP Sample         
      Drive alone off-peak - -  3.029  6.84  2.536  6.91  2.476  6.41 
      Carpool peak - -  1.935  4.05  2.390  4.73  3.320  3.80 
      Carpool off-peak - - -0.423 -0.79 -0.994 -1.37 -0.816 -1.21 
      ACT - -  1.310  2.25  1.367  2.53  1.850  2.96 
      BART - -  3.196  6.79  0.987  3.49  1.216  2.67 
  Socio Demographic Variables         
  Vehicles per worker in household         
      Drive alone alternatives  1.057   3.03  0.444  5.22  0.573  3.39  0.748  2.35 
  Male          
      Drive alone peak  0.681   1.67  0.647  3.73  0.771  3.23  0.666  2.43 
  Employed          
      Drive alone peak  0.900   1.60  1.789  4.48  1.638  4.42  1.730  2.86 
  Income (in U.S. dollars/year) x 10-5         
      Drive alone peak  0.454   0.71  0.660  2.69  0.761  2.47  0.711  2.10 
      ACT  1.596   1.06  2.176  5.18  2.526  3.48  2.362  2.67 

  Level of Service Variables         
  Travel Time (in mins.) x 10-2 -5.161 -3.55 -2.166 -7.37 -2.792 -3.69 -2.668 -2.58 
  Cost -0.155 -0.76 -0.121 -4.54 -0.147 -3.08 -0.157 -2.38 
  SP-to-RP scale factor1 - - - -  0.831  0.21  0.779  0.26 
  Error Components         
  Drive alone alternatives (DAP and DAO) - - - - - -  1.850  2.18 
  Carpool alternatives (CPP and CPO) - - - - - -  1.850  2.18 

 

1  The t-statistic corresponding to the scale factor is computed with respect to a value of 1; a value of 1 indicates no scale difference in the RP and SP choice 
contexts. 
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TABLE 3 Cross-sectional Models: Money Values of Time and Fit-Statistics 
 

Parameter RP-Sample MNL SP-Sample MNL Joint RP-SP MNL Joint RP-SP Error 
Component Model 

Implied money value of time ($/hr) 19.95 10.74 11.38 10.17 

Log-likelihood at zero -199.05 -1789.43 -1988.48 -1988.48 

Log-likelihood with constants only -139.41 -1596.21 -1735.62 -1735.62 

Log-likelihood at convergence -120.43 -1493.81 -1618.65 -1612.66 

Number of parameters excluding constants 7 7 8 9 

Adjusted Rho-bar squared1 0.086 0.06 0.063 0.066 

 
 1 The adjusted rho-bar squared value )( 2ρ  is computed as follows: )](/))ˆ([(12 CLKL −β−=ρ  where L )ˆ(β  is the log-likelihood value at 

convergence, L(C) is the log-likelihood value with only the constants, and K is the number of estimated parameters excluding the constants. 
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TABLE 4 Panel Data Model Estimation Results 
 

Unobserved 
Heterogeneity Model 

State Dependence 
Model 

Unobs. Heterogeneity 
 + State Dependence    

Model Variable 

Parm. t-stat. Parm. t-stat. Parm. t-stat. 

Constants       
Mean effects - RP Sample       
   Drive alone off-peak -0.773 -1.40 -0.604  0.68 -0.332 -0.52 
   Carpool peak -3.030 -3.77 -1.813 -2.24 -2.031 -2.89 
   ACT -2.423 -2.41 -0.774 -1.02 -1.673 -1.87 
   BART  0.665  1.12  1.818  2.11  0.619  0.95 
Mean effects - SP Sample       
   Drive alone off-peak  2.478  6.59  2.481  6.41  2.499  6.81 
   Carpool peak  2.610  4.30  4.150  4.25  2.787  4.90 
   Carpool off-peak -3.469 -2.29 -0.123 -0.21 -1.157 -1.40 
   ACT  1.237  1.80  2.567  3.72  1.374  2.15 
   BART  0.601  1.74  1.622  3.19  0.725  2.16 

Standard deviations       
   Drive alone off-peak  1.301  4.39 - -  1.003  4.06 
   Carpool peak  1.596  4.03 - -  0.895  3.72 
   Carpool off-peak  2.512  2.83 - -  1.374  3.13 
   ACT  1.408  3.32 - -  1.158  3.04 
   BART  1.493  4.98 - -  1.512  4.04 
Socio-demographic variables       
Vehicles per worker in household       
   Drive alone alternatives 0.233 1.72 0.360 1.94 0.072 0.77 
Male       
   Drive alone peak 0.337 2.14 0.654 2.39 0.592 3.21 
Employed       
   Drive alone peak 0.876 2.38 1.781 2.99 1.169 2.45 
Income ( in U.S. dollars/years ) x 10-5       
   Drive alone peak 0.617 2.62 0.752 2.08 0.557 2.38 
   ACT 2.118 2.16 2.404 2.73 1.672 2.46 
Level of service variables       
Mean effects       
   Travel time (in mins.) x 10-2 -1.465 -4.37 -1.919 -2.47 -1.443 -3.48 
   Travel cost (in U.S. $)  -0.167 -4.51 -0.157 -2.37 -0.165 -3.54 
Standard deviations       
   Travel time (in mins.) x 10-2  1.144  2.63 - -  0.895  2.84 
   Travel cost (in U.S. $)   0.069  3.20 - -  0.057  3.56 

SP to RP scale factor 1  4.849  3.68  0.961  0.12  5.665  3.24 

Error components       

Drive alone alternatives (DAP and DAO)  0.082  1.54  1.436  2.25  0.049  1.09 
Carpool alternatives (CPP and CPO)  0.082  1.54  1.436  2.25  0.049  1.09 
State dependence effects       
Mean  - -  1.647  2.69  0.179  2.28 
Standard deviation - - - -  0.855  2.84 

1 The t-statistic corresponding to the scale factor is computed with respect to a value of 1; a value of 1 indicates no 
scale difference in the RP and SP choice contexts.
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TABLE 5 Panel-Data Models: Money Values of Time and Fit-Statistics 
 

Parameter Unobserved Heterogeneity 
Model State Dependence Model 

Unobserved Heterogeneity 
Model + State Dependence 

Model 

Implied money value of time ($/hr) 5.26 7.33 5.26 

Log-likelihood at zero -1988.48 -1988.48 -1988.48 

Log-likelihood with constants only -1735.62 -1735.62 -1735.62 

Log-likelihood at convergence -804.06 -1500.06 -794.82 

Number of parameters excluding constants 16 10 18 

Adjusted rho-bar squared value1 0.527 0.130 0.532 

 
 
1 The adjusted rho-bar squared value )( 2ρ  is computed as follows: )](/))ˆ([(12 CLKL −β−=ρ  where L )ˆ(β  is the log-likelihood value at    

convergence, L(C) is the log-likelihood value with only the constants, and K is the number of estimated parameters excluding the constants. 
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TABLE 6 Congestion Pricing Policy Simulations 
 

Percentage change estimated by... 

Cross-sectional Models Panel Data Models 
Pricing Level Alternative 

MNL Error-components Unobserved 
Heterogeneity State Dependence

Unobserved 
Heterogeneity + 

State Dependence

Drive alone - peak -9.43 -8.77 -8.80 -7.01 -9.06 

Drive alone - off-peak 17.54 20.52 10.71 23.04 13.30 

Carpool 15.50 12.54 16.74 13.11 19.43 

ACT 15.66 18.32 16.56 14.94 18.09 

$2.00 

BART 14.24 15.82 11.80 10.22 13.92 
Drive alone - peak -19.16 -17.96 -17.87 -14.31 -18.44 

Drive alone - off-peak 36.40 43.34 21.11 49.83 26.39 

Carpool 31.82 26.48 32.16 27.18 39.98 

ACT 31.53 35.11 33.81 27.30 36.91 

$4.00 

BART 28.65 32.52 24.34 20.29 28.66 
 


