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ABSTRACT 
Many multivariate model systems involve the estimation of a covariance matrix that must be 
positive-definite. A common strategy to ensure positive definiteness of the covariance matrix is 
through the use of a Cholesky parameterization of the covariance matrix. However, several model 
systems require imposing restrictions on the elements of the covariance elements. For instance, 
modelling systems may require fixing some (or all) of the diagonal elements in the covariance 
matrix to unity due to identification considerations. However, imposing such restrictions using the 
traditional Cholesky decomposition approach is not feasible and requires the additional 
parameterization of the Cholesky elements. 
 In this paper, we explore a separation-based strategy with spherical parameterization of the 
Cholesky matrix to impose restrictions on the covariance matrix. Importantly, using this 
separation-based parameterization strategy, we also explore the possibility of restricting some 
covariance (or correlation) terms to zero. The effectiveness of the proposed strategy is assessed 
through extensive simulation experiments. The results from the simulation experiments highlight 
better performance of the separation-based strategy in terms of recovery of model parameters – 
particularly those in the covariance matrix, than the traditional Cholesky parameterization 
approach. Finally, the proposed strategy is implemented in a joint multivariate binary probit 
ordered probit model system to analyze the usage (and the extent of use) of non-private modes of 
transportation in Bengaluru, India. In doing so, the proposed strategy is implemented to restrict 
several correlations to zero, thus avoiding the estimation of a profligate correlation matrix and 
substantially easing the estimation process. 
 
Keywords: Covariance matrix, Cholesky decomposition, separation-based strategy, spherical 
parametrization, restrictions on the correlation matrix. 
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1 INTRODUCTION 
The estimation of statistical and econometric models that include multiple outcome variables (that 
is, a multivariate dependent variable model) has increased over the years, thanks to the ability to 
generate multivariate distributions through the use of relatively flexible copula-based methods 
and/or the use of effective factorization techniques for the parsimonious estimation of covariance 
matrices (see, for example, Rana et al., 2010, Bhat, 2015, Müller and Czado, 2018, Jiryaie and 
Khodadadi, 2019, and Ong et al., 2018). Besides, the alternative of simply ignoring the dependence 
and estimating separate models, while computationally appealing, is inefficient in estimating 
covariate effects for each outcome because it fails to borrow information on other outcomes, and 
is limiting in its ability to answer intrinsically multivariate questions such as the effect of a 
covariate on a multidimensional outcome (Teixeira-Pinto and Harezlak, 2013). Perhaps, more 
importantly, when the intention is to consider the potential effect of one outcome (say outcome A) 
on another outcome (say outcome B), the simple introduction of outcome A as an independent 
exogenous variable in the modeling of outcome B immediately triggers possible endogeneity bias 
effects because of the inter-relationship between the two outcomes due to common unobserved 
effects. On the other hand, the explicit consideration of the possibility that the outcomes may be 
co-determined controls for this possible endogeneity bias. 

An important consideration in multivariate models (or even in univariate models with 
multiple random coefficients on exogenous variables with correlations across the coefficients) is 
the estimation of a covariance matrix (sometimes also referred to as a variance-covariance matrix, 
though we will use the shorter label “covariance matrix” that includes both the diagonal and non-
diagonal elements). This covariance matrix, along with other model parameters, is estimated using 
Bayesian or frequentist methods and will generally involve optimization methods that extensively 
search over a large parameter space.1 In these estimation methods, a challenge is to maintain 
positive definiteness of the covariance matrix all through the search process (equivalently, to 
ensure that the covariance matrix does not become nonpositive definite).2 This can be achieved in 
one of two ways. The first method is to impose restrictions on the covariance elements to ensure 
positive definiteness, which will generally lead to constrained optimization methods. 
Unfortunately, such constrained optimization methods collapse to multiple unconstrained problem 
estimations with some trial-and-error or to solving a complex non-linear equation system that is 
itself difficult to formulate (Dennis and Schanbel, 1989; Pinheiro and Bates, 1996). In particular, 
each unconstrained estimation typically tends to be undertaken using a simple one-level Cholesky 
decomposition schemes that write the Cholesky elements in a form conforming to the unit diagonal 

                                                 
1 When the covariance matrix to be estimated pertains to observed quantities, one can ensure positive semi-definiteness 
using a sample covariance matrix estimator. However, such an estimator is not possible in most model situations, 
because the covariance matrix pertains to conditional unobserved error quantities.   
2 A covariance matrix is said to be semi-positive definite if none of its diagonal elements are negative (so, the diagonal 
elements can be zero or positive), while it is said to be positive definite if none of its diagonal elements are zero or 
negative (so, the diagonal elements are all strictly positive). In an estimation context, a semi-positive, but not positive 
definite, covariance matrix would imply that the variance of one or more components is zero, which is a degenerate 
case and implies lack of stochasticity for that component. Thus, we will restrict our attention to positive definite 
covariance matrices here.  
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vector in the correlation matrix. The problem with such an approach (see Srinivasan and Bhat, 
2005) is that the estimation can break down, unless the code imposes a steep penalty if any of the 
diagonal Cholesky elements turn out to be complex (imaginary) during the search process. While 
a reasonable strategy, such estimations also typically entail the construction of a “nearest” valid 
correlation matrix when positive definiteness fails (for example, by replacing the negative 
eigenvalue components in the correlation matrix with a small positive value, or by adding a 
sufficiently high positive value to the diagonals of a matrix and normalizing to obtain a correlation 
matrix; see Rebonato and Jäckel, 2000, Higham, 2009, and Schöttle and Werner, 2004 for detailed 
discussions of these and other adjusting schemes; a review of these techniques is beyond the scope 
of this paper). And even then, there is no guarantee that the correlation matrix at “convergence” 
will be positive definite. Thus, it is almost always the case that a second method that involves a 
reparameterization of the covariance matrix in a way that renders the resulting estimation process 
completely unconstrained (while also enforcing the positive definiteness condition) is the preferred 
method.  
 Many different reparameterization approaches for the unconstrained estimation of 
covariance matrices have been proposed in the literature, including a spectral decomposition 
method, a matrix logarithm method, the typically used Cholesky decomposition approach for the 
covariance matrix (which only guarantees semi-positive definiteness rather than positive 
definiteness), modified Cholesky decomposition methods for the covariance matrix (such as the 
so-called LDLT decomposition and the log-Cholesky decomposition), the Cholesky 
decomposition of the inverse of the covariance matrix, factor-analytic approaches for the 
covariance matrix, and a spherical parameterization approach for the covariance matrix that 
combines the Cholesky decomposition with a specific spherical parameterization of the Cholesky 
matrix (see Lindstrom and Bates, 1988, Pinheiro and Bates, 1996, Pourahmadi, 2000, Leonard and 
Hsu, 1992, and McNeish and Bauer, 2022 for details and reviews of these methods). However, 
these decompositions, except for the spherical parameterization, are not immediately suitable for 
estimation when correlation matrices are the focus rather than covariance matrices (this is because 
these decompositions do not adhere to the additional restriction of unit diagonals of a correlation 
matrix). For instance, correlation matrices are the focus in a multivariate binary choice model 
system or a multivariate ordered response system (see Bhat et al., 2010, Dias et al., 2020, and Bhat 
and Mondal, 2021), where the scale of the latent variables underlying the limited dependent 
outcomes have to be normalized.3  

Even in cases where a covariance matrix is to be estimated, there may be substantial value 
in breaking down the covariance matrix into a scale (standard deviation) matrix and a correlation 

                                                 
3 As indicated by Bhat and Mondal (2021), the scale normalization itself may be achieved in one of two ways. The 
first is to normalize the error term scale (leading to the case of correlation matrices being estimated rather than 
covariance matrices), and the second is to set a coefficient affecting the latent variable to a fixed constant, while 
estimating a covariance matrix. The second approach may seem more attractive, but the first approach leads to far 
fewer cases of numerical estimation instability than the latter, because it fixes the overall scale of the conditional 
unobserved error terms to be congruent across the dependent outcomes (see also Kohli et al., 2019 and McNeish and 
Bauer, 2022 for a related discussion). 
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matrix and estimating these separately. Barnard et al. (2000) refer to such an approach as a 
“separation strategy”, while we also see this as a “divide and conquer” strategy. Doing so has both 
specifications as well as estimation advantages. On the specification side, it is more natural for 
analysts to think about standard deviations (which are scale-related) and correlations (which are 
scale-free) in expressing (and imposing) a priori judgements about the relationship among a set of 
variables, whether in a Frequentist setting or a Bayesian setting. For example, consider a set of 
random coefficients in an inter-city travel mode choice model on such level-of-service (LOS) 
explanatory variables as in-vehicle travel time, out-of-vehicle travel time, travel cost, and service 
frequency. If there is a belief that income and gender play a role in trade-offs, one can specify 
different mean coefficients on the LOS variables for each of the four segments. But rather than 
specify the same covariance matrix for these random parameters across the four segments (which 
could be very restrictive), or allow a separate covariance matrix for each of the segments (which 
would lead to a profligate model in parameters, potentially not estimable with the sample size for 
estimation), one could settle for an intermediate specification that specifies the scale (the standard 
deviation matrix, or spread of values) of the random coefficients to be different across the 
segments, but maintains the same dependence structure (correlation matrix, or multivariate 
dependency shape) for the random coefficients across the segments. Similarly, in the case of a 
multivariate mixed dependent outcome model, the analyst may reasonably assume (in terms of the 
best balance between parsimony and behavioral realism) that, in a mixed model system of 
residential choice (say in 3-4 broad categories of downtown, urban, suburban, and rural living), 
bicycle ownership, car ownership, commute mode choice, and the number of leisure trips per time 
period, the correlations across the underlying latent variables for the latter four dimensions are the 
same across residential locations, but the scales are different. Similar specification structures of 
identical correlation patterns, but different scales, are commonly used for model coefficients or for 
the relationship across multiple outcomes when a single model is estimated from different sources 
of data (such as revealed and stated preference data). At the same time, a logical consideration in 
such model systems can be to restrict correlations across certain specific dimensions. For instance, 
in a multiple discrete-continuous model system, a behaviorally consistent consideration would be 
to restrict correlations between the discrete preference of a good i and the continuous preference 
of a good j (j i) to zero.  

On the estimation side, separating out the scale from correlations is helpful in multivariate 
mixed outcome models (these models have a mix of different types of outcomes, such as 
continuous, ordinal, grouped, count, and unordered-response outcomes). In such models, the scale 
of the latent variables underlying the non-continuous and non-grouped outcomes will be fixed to 
one for identification purposes, while those for the continuous and grouped outcomes will be left 
free for estimation. Directly estimating a covariance matrix to adhere to these constraints (of some 
diagonal elements constrained to one and others left free), while also using decomposition 
techniques to preserve positive-definiteness, leads to a complex and unwieldy situation. In such 
situations, it is much easier (if not the only way) to use the partitioning strategy into a separate 
scale matrix and a separate correlation matrix with uniform entries of one on the matrix diagonal. 
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This issue becomes particularly obvious when coding software for the estimation of such models. 
Besides, de-scaling before estimating interdependencies generally leads to much faster and more 
stable convergence (see Kohli et al., 2019), and, in a Bayesian inference context, leads to a simple 
computational strategy for obtaining the posterior distributions of the scale and the correlation 
matrices (Barnard et al., 2000).  
 The importance of the separation strategy, while invoked as a potentially effective strategy 
for Bayesian estimation in Barnard et al. (2000) in many model applications, has particularly 
started seeing much application in the estimation context of mixed multivariate outcome modeling 
(see, for example, Jiryaie and Khodadadi, 2019), skew-normal copula models (which are one form 
of mixed outcome modeling, because the skew can be generated through a latent variable censoring 
mechanism with the scale of the latent variable set to one; see, for example, Sidharthan and Bhat, 
2012), and multinomial probit modeling (see, for example, Bhat and Lavieri, 2018). The precise 
unconstrained parameterization adopted to ensure that the correlation matrix is positive definite in 
such applications (as well as in other applications where a correlation matrix is of interest, such as 
in multivariate ordinal response systems or latent construct-based factorization models; see Bhat, 
2015) has varied from simple one-level Cholesky decomposition schemes that write the diagonal 
Cholesky elements in a form conforming to unit diagonal in the correlation matrix (see, for 
example, Srinivasan and Bhat, 2005 and Bhat and Lavieri, 2018) to specific multi-level Cholesky 
parameterization schemes. The problem with the first one-level decomposition scheme is that the 
estimation can break down unless the code imposes a steep penalty for the diagonal elements of 
the Cholesky if any of these elements turn out to be zero or negative during the search process. 
While a reasonable strategy, such estimations can require a good bit of handholding during 
estimation. In the second set of multi-level decomposition schemes, three methods are available, 
all of which have a common second-level parameterization for the Cholesky elements but differ 
in the third-level of parameterization (see Bhat and Mondal, 2021 for a detailed discussion): (1) 
the partial correlations method (Joe, 2006), (2) the spherical parameterization method (Pinheiro 
and Bates, 1996 and Rebonato and Jäckel, 2000), and (3) the radial parametrization method (van 
Oest, 2021). Of these, the first partial correlations method tends to be relatively complicated in 
application, and the latter two parameterizations have been shown to be essentially equivalent but 
for a scaling difference (Bhat and Mondal, 2021).  

In this paper, we first examine the value of the separation or “divide and conquer” strategy 
as it relates to convergence during estimation and the recovery of “true” parameters, and compare 
this approach with the more traditional Cholesky decomposition approach for covariance matrices. 
In addition, we also exploit the separation-based strategy to explore the possibility of imposing 
restrictions on the covariance matrix. Specifically, we explore the possibility of restricting some 
correlation elements to zero.  

Surprisingly, there has been very little exploration of these issues, with most applications 
using the traditional Cholesky decomposition approach. Of course, as already discussed, the 
traditional Cholesky decomposition approach is not appropriate for mixed models with some 
diagonal entries of the covariance matrix normalized to one for the identification or restricting 
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some correlation values to zero. Thus, in the simulation experiments used in the comparison of the 
two alternative covariance decomposition methods to maintain semi-positive definiteness, we 
consider a mixed model with unrestricted diagonal entries, except for a top diagonal restriction 
that can be easily accommodated in both the decomposition approaches. However, we still restrict 
some correlation values to zero to highlight the efficacy of the proposed strategy. Specifically, we 
consider the case of a multivariate mixed model with one multinomial unordered-response 
outcome (with four alternatives), a grouped outcome, and a continuous outcome (leading to a five-
dimensional covariance matrix in estimation). Issues of convergence, computation time, as well as 
accuracy and precision in recovering parameters are examined using both the separation method 
and the traditional Cholesky method. Further, in the separation method, Bhat and Mondal (2021) 
indicate that the scale embedded in the logistic function of the spherical (or equivalently, radial)4 
parameterization (for the correlation matrix) can impact convergence rates and computational 
times. Thus, we explore such scale impacts too within the context of the separation approach. 
Second, we consider a motivating example for the case of a multivariate dependent variable model 
where some diagonal entries of the covariance matrix are normalized to one for identification. In 
this case, unless external boundary constraints are placed through a restricted maximum likelihood 
approach (which, as discussed earlier, is to be avoided because it can lead to very substantial 
estimation difficulties), one has to employ the separation approach. In this context, we demonstrate 
the application of the separation strategy through an empirical analysis. In doing so, we also 
present and demonstrate the use of an approach to estimate model specifications with restricted 
correlation matrices (that is, some correlation elements are restricted to zero). This is an issue that 
has received surprisingly no attention (as far as we are aware) in the literature but is important 
because restrictions on the correlation matrix do not immediately translate to convenient 
restrictions that can be imposed on the Cholesky elements of the correlation matrix. We develop 
an algorithm to impose such restrictions, along with an algorithm for the gradient of the correlation 
elements with respect to active Cholesky elements. The algorithm is implemented in Gauss 
software and is made available for its use. 
 The rest of the paper is structured as follows: Section 2 discusses different parameterization 
approaches to facilitate the estimation of the covariance matrix. Next, building on the separation-
based strategy with spherical parametrization, we discuss (and derive) conditions to restrict some 
correlation parameters to zero. In Section 3, we present simulation experiments to exemplify the 
benefits of the proposed strategy over the traditional Cholesky parametrization approach. In 
Section 4, we illustrate the use of the proposed separation-based strategy as well as the procedure 
developed for restricting specific correlations to zero for an empirical application to analyze the 
usage and extent of use of non-private modes in Bengaluru, India. Finally, Section 5 concludes the 
paper with a quick summary. 
   

                                                 
4 In rest of the paper, we use the phrase “spherical parameterization” to represent both spherical and radial 
parameterization strategies, since both strategies are essentially equivalent (Bhat and Mondal, 2021).  
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2 ALTERNATIVE DECOMPOSITION PROCEDURES FOR A COVARIANCE 
MATRIX 

2.1 The Traditional Cholesky Decomposition 
The traditional econometric approach to ensure positive semi-definiteness of the covariance 
matrix, without requiring constraints on the parameters, is to reparametrize the covariance matrix 
Ω  in terms of its Cholesky decomposition. The basic idea is to write the covariance matrix in 
terms of its “square root” matrix so that Ω G G , where G  is an upper triangular Cholesky 
matrix. This is a very effective approach, though it can run into convergence problems unless the 
diagonal elements are specified to be positive. Specifically, the estimated Cholesky parameters are 
not necessarily unique, since multiplying a subset of rows of G  by –1 results in the same 
covariance matrix Ω  (see Pinheiro and Bates, 1996). However, this issue can be quite easily 
addressed by further parameterizing the diagonal Cholesky elements in logarithmic form, so that 
the actual diagonal elements are strictly positive. This variant of the Cholesky decomposition is 
the one used in the current paper. However, even in this case, there can be convergence problems 
if the variances of specific elements of the matrix Ω  are of quite different magnitudes. The 
Cholesky decomposition has been widely discussed in standard econometric texts (see, for 
example, Train, 2009) and so is not presented in detail in this paper. 
  
2.2 The Separation-Based Spherical Parameterization 
In the separation-based approach, the covariance matrix is first separated out into a diagonal 
standard deviation matrix ω  and a correlation matrix R, so that Ω ωRω . Next a Cholesky 
decomposition is applied to the correlation matrix R, such that R L L  (note that the Cholesky is 
with respect to the correlation matrix here, so the matrix L is different from the matrix G  earlier, 
and Ω ωL Lω ). Thus, consider an M M  correlation matrix R as follows, with 

, , ,and 1 1 .i j j i i jr r r i j      : 

1,2 1,3 1, 1 1,

2,1 2,3 2, 1 2,

3,1 3,2 3, 1 3,

1,1 1,2 1,3 1,

,1 ,2 ,2 , 1

1

1

1

1

1

M M

M M

M M

M M M M M

M M M M M

r r r r

r r r r

r r r r
R

r r r r

r r r r







   



 
 
 
 

 
 
 
  
 





     



      (1) 

The Cholesky decomposition of the above matrix L such that R L L is given by: 
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    (2) 

Estimating the elements above for L directly may work, but an issue with the above Cholesky 
decomposition for the correlation matrix R is that the diagonal will frequently get into imaginary 
space when the quantity within the square root goes to a value of zero or less. Thus, it is common 

place to further parameterize the Cholesky elements ,i jl  in additional levels to adhere to a positive 

value for the diagonal quantities throughout the iterative estimation process. Multiple 
parameterizations are possible, as discussed in Bhat and Mondal (2021), including (1) the partial 
correlations method (Joe, 2006), (2) the spherical parameterization method (Pinheiro and Bates, 
1996 and Rebonato and Jäckel, 2000), and (3) the radial parametrization method (van Oest, 2021). 
Of these three methods, the first partial correlation method tends to be relatively complicated in 
application. And Bhat and Mondal (2021) show that the spherical and radial parameterization 
essentially are the same in the context of estimation, based on appropriate scaling of the embedded 
logistic function embedded in both these parameterizations. Further, the spherical parameterization 
is typically faster in large problems. So, here we will use the spherical parameterization, but will 
test for the scale that provides the best combination of speed and convergence. The spherical 
parameterization method has also seen the most used because of its ease and interpretability of the 
parameters (see Madar, 2015, Pourahmadi and Wang, 2015, and Tsay and Pourahmadi, 2017).  

For the spherical parameterization, first consider the parameterization of each element 

 
1

2
, , ,

1

1
i

i j i j k j
k

l h h




  , , ,1 1 ( ) , 1 ,i j i ih i j h i       and 1, 1,j jl h j  (because the Cholesky 

refers to the upper diagonal matrix, the entries correspond to ,i jl  such that i j , a point we will 

not belabor over in all following notations). The values for each row i for the ,i jh  values are built 

up successively from the corresponding column values for the previous i–1 columns. Thus, the 
parameterization looks like what follows below: 
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It is easy to see that the parameterization above satisfies the condition in Equation (2) that the 

diagonal terms must be 
,

1
2

,
1

1
k i

i

i i
k

l l




  . For example,  

1,3 2,3 1,3 2,3 1,3 1,3 2,3

2 2 2 2 2 2 2
3,3 (1 )(1 ) 1 (1 ) 1l h h h h h l l          , which is as required. The additional 

condition that all diagonal terms , 0i il   is also satisfied as long as the condition  ,1 1 ( )i jh i j   

holds. For this, in a third-level spherical parameterization, we write  , ,cos ,i j i jh F i j     , 

where ,
,

1
( )

1 exp
i j

i j

F 




 

  
 

  is a logistic function with   as the scale parameter. Note that the 

suitability of different levels of the scale parameter (  = 0.8, 1.0, and 1.2) is explored in this study. 
 
2.3 Restricted Covariance Structures 
The elements of the correlation matrix R corresponding to the covariance matrix Ω  may be written 
as a function of the Cholesky matrix elements of R:  

1 1
2

1 1

1
i i

ij si sj ij si
s s

R L L L L
 

 

    
 
  .        (4) 

With the convention that  
1

2
,

1

1 1,
M

k j
k

h




   and after some tedious but straightforward algebraic 

manipulations exploiting the structure of the ij ijl h  parameterization, the elements above can be 

written as a function of the elements ijh  as: 

     
1 11

2 2 2 2

1 1 1

1 1 1 1
s ii

ij si sj ki kj ij ki kj
s k k

R h h h h h h h
 

  

  
           
        (5) 

Thus, if any element ijR  of the correlation matrix is zero, it must be true that: 
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       (6) 

The important point to note is that any restriction in any column j of the ith row only requires that 
the corresponding ijh  element be developed as a function of elements in the (i–1)th row and earlier. 

Thus, based on the specification provided for the restrictions to be imposed, it is possible to 

construct the appropriate restricted ijh  values row by row until the last row.  

In our estimations, for efficiency in implementation, we develop values for a given row all 
at once, if there is a restriction in a correlation element in that row (there is no need to compute 
restricted values for rows of the correlation matrix without any constraints). That is, if a particular 

element of the row is specified to have zero correlation, the corresponding element ijh  should be 

as given in Equation (6). Once this is computed, the implied ,i j  value is calculated using the 

following inverse transformation: ,
,

,

arccos( )
ln , ,

arccos( )
i j

i j
i j

h
i j

h



 

    
 and used for the computation 

of the spherically parameterized Cholesky elements in subsequent rows. 
The coding of the restricted estimation procedure is tricky, which is probably why we could 

not find any reference in the literature to econometric model estimations with a restricted 
correlation matrix. The basic issue is to develop an appropriate spherically-parameterized 
Cholesky decomposition of the correlation matrix R that adheres to the zero-correlation constraints 
specified in the matrix R. Additionally, for use in estimation, the gradient of all elements of the 
correlation matrix needs to be written as a function of the active correlation parameters, after 
imposing restrictions on the correlation elements based on Equation (6). An important note here is 
that some zero-restricted values may not be consistent with a positive definite correlation matrix, 
because the restrictions may be such that the implied value for one or more ijh  values do not adhere 

to the –1 to +1 range (this issue, of course, does not arise in an unrestricted estimation, because 

each correlation element is appropriately parameterized to ensure that each and every ijh  element 

is bounded by –1 and +1). In such instances, the code adjusts to produce a positive-definite 
correlation matrix, though it will then not strictly adhere to the constraints of zero correlations for 
specific elements. The code also identifies which specific element had to be released to ensure a 
positive-definite matrix. This information can be used by the analyst to inform the restricted 
correlation specification. 

  
3 SIMULATION STUDY 
We undertook simulations to investigate the performance of the proposed algorithm that allows 
restricting specific correlation values to zero. In the simulation experiments, we consider a 
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multivariate mixed model with one multinomial unordered-response outcome (with four 
alternatives), a grouped outcome, and a continuous outcome (leading to a five-dimensional 
covariance matrix in estimation). Further, to showcase the effectiveness of the proposed strategy, 
we restricted two correlation parameters to zero (more on this in the subsequent discussion). The 
model structure for the above setup is discussed next. 
 
3.1 Model Structure 
Consider the nominal (unordered-response) outcome for an individual, and let i be the 
corresponding index for alternatives ( 1, 2,3,..., ;  4i I I   in the current simulation setting). Let 

the individual under consideration choose the alternative m. Also, assume the usual random utility 
structure for each alternative i.  

,i i iU  β x                             (7) 

where x  is an (H×1) fixed column vector of exogenous variables, iβ  is another (H×1) column 

vector of corresponding coefficients, and i  is a normal random error term. To move forward, let 

1 2( , ,..., )I   ε  ( 1I  vector), and ~ ( , )I IMVNε 0 Λ , where ( , )I IMVN 0 Λ  stands for a 

multivariate normal distribution of dimension I with a mean I ×1 vector of zeros and a covariance 
matrix Λ . Taking the difference with respect to the first alternative, only the elements of the 

covariance matrix Λ


of the error differences, 2 3( , ..., )I   ε     (where 1i i    , 1i ), is 

estimable. In addition, the usual identification restriction is imposed such that one of the 
alternatives serves as the base when introducing alternative-specific constants and variables that 
do not vary across alternatives (that is, whenever an element of x  is individual-specific and not 

alternative-specific, the corresponding element of iβ  is set to zero for at least one alternative ).i  

Next, define 1 2( , ,..., )IU U U U  1( I  vector), and 1 2( , ,..., )I β β β β  (I H  matrix). Then, in 

matrix form, we may write: 

 U βx ε .           (8) 

 Next, for later use, note that, under the utility maximization paradigm, miim UUu   must 

be less than zero for all i m , since the individual chose alternative m. Stack the latent utility 

differentials into a vector   



 


 miuuu Immm ;,...,, 21u  and the corresponding error differentials 

(taken with respect to the alternative m) as , 2 3( , ,..., )I   ε
  

 (where , ).i i m i m    


   

Further, consider the structure for a grouped model with say J groups. Let *
ny  be the 

underlying latent variable whose horizontal partitioning leads to the observed outcome for the 
grouped variable. An example of a grouped variable may be annual household income, which is 
typically collected in grouped windows such as <50,000, 50,000-100,000, etc. or annual vehicle 
miles of travel, which may be in groups such as <5,000, 5,000-7,500, 7,500-10,000, etc.; the 
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difference between an ordinal variable and a grouped variable is that the thresholds demarcating 
different groups are known in advance in a grouped model, while these thresholds have to be 
estimated in the ordinal model. But because the thresholds are observed in the grouped case, the 
scale of the underlying variable is estimable. So, assume that the individual under consideration 

chooses the tha  grouped category. Then, in the usual latent variable representation for the grouped 

variable, we may write the following for this individual: 

* *
1, and ,a ay y     zγ  (9) 

where z  is an A×1 vector of exogenous variables (including a constant), γ  is a corresponding 

vector of coefficients to be estimated, the   terms represent the observed thresholds 

corresponding to the grouping in which the individual is observed, and   is a normal random error 

 4~ (0, ) .N    

For the continuous variable, let y  δ w
 
in the usual linear regression fashion, where 

w is an ( 1)C   vector of exogenous variables (including a constant). δ  is a corresponding 

compatible coefficient vector, and  5~ (0, ) .N    

To consider jointness, we assume the following upper diagonal error structure for the five-
error vector ( , , ) 'η ε ξ : 

12 13 14 15

22 23 24 25

33 34 35

44 45

55

1    
   

  
 



 
 
 
 
 
 
  

Σ         (10) 

The first three rows and three columns of the matrix above correspond to the utility differences 
(taken with respect to the first alternative’s error term) for the unordered-response variable, the 
third row/column corresponds to the binary choice outcome, the fourth row/column to the ordered-
response outcome, and the last column/row to the continuous outcome. In the scale matrix, the 
scales associated with 2 2 1     and 3 3 1     are identified (as discussed earlier), as are the 

scales for the grouped and continuous outcome errors. The correlation matrix is, of course, 
symmetric and must be positive-definite. 
  
3.2 Model Estimation 
For model estimation, the first step is to obtain the implied covariance matrix corresponding to 

( , , ) 'μ ε ξ  from that of ( , , ) 'η ε ξ . To do so, define a (6×5) matrix D as follows: 
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0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

D

 
 
 
 

  
 
 
 
 

         (11) 

Then, the covariance matrix of μ  may be developed as Ω DΣD . All parameters in this matrix 

are identifiable by virtue of the way this matrix is constructed based on utility differences. At the 
same time, it provides a consistent means to obtain the covariance matrix Ξ  of ( , , ) 'τ ε ξ


, where 

ε


 is the vector of error differences with respect to the chosen alternative. To write this utility 
differential-based vector compactly in terms of the original utilities, define a matrix M of size 
5 6  with all zero entries. Insert an identity matrix of size 3  after supplementing it with a column 
of ‘–1’ values in the column corresponding to the chosen alternative (the identity matrix would 
then become a 3 4  matrix), and insert an identity matrix of size 2 into the last two rows and two 
columns of the matrix M. For our simulation setting, assuming the individual under consideration 
selects the second alternative, the matrix M takes the following form: 

1 1 0 0 0 0

0 1 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
  
 
 
  

M          (12) 

With the matrix M as defined, the covariance matrix Ξ  is given by    Ξ MΩM MDΣD M . To 

proceed, define [( ) , ( ) , ( ) )] [6 1] vector      B βx γ z δ w , B = MB  [5×1] vector, and 

, ,y y    
*g u . Then, 5~ ( , ).MVNg B Ξ  Then, partition g as ( , ),yg u where , y    

*u u  and, 

correspondingly partition B and Ξ  as ( , ) 'yB uB B   and      

    

.
Ξ

y

y y

 
    

u u

u

Ξ Ξ
Ξ

Ξ
 



 By the conditioning 

property of the multivariate normal distribution, we then have 

 1 1
4         | ~ ( , ) , where Ξ , Ξy y y y y yy MVN y B      u u u u u u u u uu B Ξ Ξ Ξ Ξ Ξ Ξ        

   
 B B . Next, define 

observed threshold vectors for the individual as follows:  1 -1,low I aψ

    
ψ


 ([ 1]I  vector) and 

 1 ,up I aψ

    
ψ 0


([ 1]I 

 

vector), where 1I   is a ( 1) 1I   -column vector of negative infinities 

and 1I 0  is another ( 1) 1I   -column vector of zeros (I=4 in our simulations). Also, let u  ω


be a 
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diagonal matrix containing the square root of the variance elements of uΞ


, and let 

   1 1
( ) , ( ) , andlow low up up

    u u u uτ ω ψ B τ ω ψ B   

        1 1
.

 *
u  u u  uΞ ω Ξ ω   

  
 

Let   be the collection of parameters to be estimated: [ , , ,Vech( )] ,   β γ δ Σ where the 

operator )"(Vech" .  vectorizes all the non-zero elements of the matrix/vector on which it operates. 

Then the likelihood function for the individual may be written as: 

  ( ) ( , ) Pr  .y low upL f y B      ψ ψ
 y| < u <                                                                    

The expression above can be re-written as follows: 

 * *
4 4

1
( ( ; ) ( ; )y

up low

y y

y B
L 

 
     
   

u uτ Ξ τ Ξ 

 
 , 

where 4 (.,.) is the standard four-variate normal cumulative distribution (MVNCD) function. 

  
3.3 Experimental Design 
To compare and evaluate the performance of the traditional Cholesky decomposition and the 
separation-based spherical parameterization approaches, as well as compare the performance of 
the latter approach with different values for the scale parameter ( ) in the embedded logistic 
function, we undertake a simulation exercise for the mixed system described in the previous 
sections. To do so, we first generate 500 independent data sets, each with 3000 observations. A 
pre-specified value for the parameter vector   is used to generate the samples, as discussed below.  

In the setup, to focus on the covariance matrix estimation, we use a simple specification 
for the exogenous variable vectors x , z , and w . Specifically, we use a constant and three 
continuous exogenous variables in the x  vector for the nominal variable. The values for the 
continuous variables are drawn from univariate normal distributions as follows: 

2 3 4~ (0,0.75), ~ (0.25,1.0), and ~ (0.5,1.5)x N x N x N . Thus, 2 3 4(1, , , )x x xx , and the 

systematic utility βx  for the nominal variable is specified as: 

2 5 1 1

3 5 2 2

4 5 3 3

0 0 0 0 1 10 0 0 0

0 0 0.25 1.00 0 0
.

0 0 0.50 0 1.00 0

0 0 0.50 0 0 1.00

c

c

c

x x

x x

x x

 
 
 

      
             
      
            

βx     (13) 

The exogenous variables in the z  and w  vectors are specified to include a constant and a dummy 

variable. For the dummy variable 1d  in the z vector (for the grouped dependent variable), for each 

of the 500 datasets, we draw 3000 independent values from the standard uniform distribution. If 
the value drawn is less than 0.5, the value of ‘0’ is assigned for the dummy variable. Otherwise, 

the value of ‘1’ is assigned. For the dummy variable 2d  in the w vector (for the continuous 

dependent variable), for each of the 500 datasets, we again draw 3000 independent values from 
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the standard uniform distribution. If the value drawn is less than 0.7, the value of ‘0’ is assigned 
for the dummy variable (to create an asymmetry with more values of the dummy variable toward 
the value of zero than the value of one). The coefficient on the constant in the z vector is specified 
to be +0.5, while the coefficient on the dummy variable is specified to be +0.75. The constant in 
the w vector is specified to be +1.0, while the coefficient on the dummy variable is specified to be 
–1.5. Thus, we have the following: 

       1 2 1 2
1 1 2 2

1 1 1 1
0.5 0.75 and 1.0 1.5

d d d d
   

                   
       

γ z δ w  (14) 

Once generated, the exogenous variables are held fixed for the rest of the simulation exercise (that 
is, across all the 500 data samples, the same exogenous variable values are used).  

Next, we generate, for each of the 3000 observations in each of the 500 data samples, a 
five-variate realization of the error term vector ( , , ) 'η ε ξ  with a predefined positive-definite 

covariance structure (Σ ) such that both positive and negative covariances are represented. 
Importantly, restrictions are imposed on the covariance matrix, with elements 13  and 24  fixed 

to zero. In addition, we use a design covariance matrix that embeds both variance heterogeneity 
(across the diagonal elements) as well as relatively high correlations (because it is well known that 
estimation of mixed models becomes more challenging with high correlations). The design matrix 
is as below: 

12 13 14 15

22 23 24 25

33 34 35

44 45

55

1 1 0.90 0 1.00 1.00

2.25 1.35 0 1.50

2.25 1.80 0.60

4.00 2.40

4.00

   
   

  
 



    
      
    
   
   
     

Σ     (15) 

Separating the above matrix into a correlation matrix and a diagonal scale matrix as: 

 Σ Ω ωRω  

where, 

1 0 0 0 0 1 0.60 0 0.50 0.50

1.5 0 0 0 1 0.60 0 0.50

, and1.5 0 0 1 0.60 0.20

2.0 0 1 0.60

2.0 1

    
      
    
   
   
      

ω R   (16) 

Note that the restrictions imposed on the covariance parameters translate to the correlation 

parameters, where elements 1,3r  and 2,4r  are restricted to be zero. With these restrictions in place, 

a total of 8 parameters shall be estimated in the correlation matrix, along with the 4 scale 
parameters, thus resulting in a total of 12 parameters to be estimated for the covariance matrix.  
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 To simulate the multivariate outcome data, the five-variate error term realization for each 
observation and each variable is added to the appropriate systematic components (with no error 
term added to the utility of the first alternative in the nominal variable). For the nominal variable, 
the alternative with the highest resulting utility is declared as the chosen alternative for each of the 
3000 observations. For the grouped variable, we use a set of four threshold values (resulting in 
five grouped categories) as follows: 1  0.25, 2 3 40.5,  0.75, and 1.0     . Based on the 

value of *y  corresponding to the error realization, relative to the thresholds, the grouped category 

for each observation is determined. As discussed previously, 500 such datasets are generated. The 
estimations are undertaken both with the proposed approach that ensures the imposed restrictions 
(for three different   values), and the traditional Cholesky decomposition approach, thus resulting 
in 2000 multivariate joint model estimations. 
  
3.4 Performance Evaluation 
Using the generated data, we evaluate the performance of the separation-based spherical 
parameterization that ensures the imposed restrictions on the covariance matrix as discussed above. 
In addition, we also evaluate the performance of the separation-based strategy of estimating the 
covariance matrix with different levels of scales ( ) in the spherical parameterization. 
Specifically, we consider three scale levels: 0.8, 1.0, and 1.2. Thus, for each of the 500 data sets 
generated, we estimate a total of 3 models with different parameterizations/scales. The 
performance of the models is evaluated using multiple metrics for recovering model parameters as 
well as for the actual predictions. The procedure is as follows: 

(1) Estimate the parameters for each of the 500 datasets, for each of the traditional Cholesky 
parameterization and the separation-based parameterization with three different scale values. 
This will result in four estimations for each dataset. Estimate the standard errors. For each of 
the four sets of estimations, do the following: 

(2) Compute the percentage of non-convergence estimations among the 500 datasets (for each 
of the traditional Cholesky parameterization and the separation-based parameterization). 
Next, undertake the following: 

(3) Compute the mean estimate for each model parameter across each of the 500 datasets. 
Compute the absolute percentage (finite sample) bias (APB) as: 

100
 valuetrue

 valuetrue-estimatemean 
APB  

(4) Compute the standard deviation of each parameter estimate across the 500 datasets, and label 
this as the finite sample standard deviation or FSSD (essentially, this is the empirical 
standard error).  

(5) Compute the mean of standard errors for each model parameter across the 500 datasets, and 
label this as the asymptotic standard error or ASE (essentially, this is the standard error 
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of the distribution of the estimator as the sample size gets large, and is a theoretical 
approximation to the FSSD).  

(6) Next, to evaluate the accuracy of the asymptotic standard error formula for the finite sample 
size used, compute the relative efficiency (RE) for each parameter relative to the 
corresponding finite sample standard deviation as: 

ASE

FSSD
RE            (17) 

(7) Examine the data fit at a disaggregate level by comparing the log-likelihood values at the 
convergence of the models. The model with the higher log-likelihood value is to be preferred 
because all the models have the same number of estimated parameters. Based on the log-
likelihood values for each of the 500 runs (corresponding to the 500 datasets), compute a 
mean log-likelihood value. 

 
3.5 Simulation Results 
The overall summary of the simulation results is presented in Table 1. The three set of rows in 
Table 1 correspond to the sample statistics discussed above for the three scaling factors of 0.8, 1.0 
and 1.2, respectively. Further, while we undertook estimations with the traditional Cholesky 
factorization approach, those results are not presented here (to conserve space). However, some of 
the discernible differences and advantages of the separation strategy that allows the imposition of 
restrictions on the correlation matrix are discussed in the subsequent sections. Also, the 
convergence rates across the 500 datasets are not reported simply because we did not encounter 
any situation where the model estimation did not converge (across the 2000 model estimation 
runs). 

3.6 Summary of the Findings 
The experimental setup involved the estimation of 10 mean parameters (i.e., [ , , ]  β γ δ  vector) and 

12 covariance parameters. Thus, a total of 22 parameters were estimated. The estimated parameters 
are reported for the three scale levels in Table 1. Note that columns 2 through 11 contain the details 
of estimates of the mean parameters, whereas columns 12 through 21 correspond to the 10 
covariance parameters (out of which two correlations were fixed to zero). Finally, the last four 
columns report the estimated scales (i.e., the square root of the diagonal elements of the covariance 
matrix).  

As is evident from Table 1, the parameters are retrieved with reasonable accuracy for all 
three scale levels, with average APB values being 4.75%, 4.21%, and 2.78% (not shown in the 
table) for the scale levels of 0.8, 1, and 1.2, respectively. Across the 10 mean parameters, the APB 
values lie in the range of 0.03% to 19.84%, with the highest APB value of 19.84% corresponding 
to the constant for the third nominal alternative (that is, 3 )c for the scale level of 0.8. However, 

with higher scale levels, the bias in this parameter reduces to less than 1.1% (for the scale level of 
1.2).  
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Further, the constant corresponding to the second nominal alternative is associated with a 
slightly higher percentage bias (in the range of 16.23% to 17.46% for the three scale levels), which 
could be due to the relatively small magnitude of the parameter value (parameter’s true value is    
–0.25 and the corresponding estimated value is –0.29). The correlation matrix and the scale 
parameters are also retrieved with good accuracy, despite them entering in a complex, non-linear 
fashion in the likelihood function. In contrast, parameter estimates from the traditional Cholesky 
factorization approach are associated with significantly higher bias, especially in the estimated 
Cholesky factors, with APB values as high as 27.6% (and an average APB of 7.7% as compared 
to APB values in the range of 2.7% to 4.3% for the separation based spherical parameterization 
approach), thus highlighting the usefulness of the proposed approach. Besides, the traditional 
Cholesky factorization approach is not even applicable when specific correlation values are to be 
restricted to zero, which highlights the importance of the proposed separation-based strategy in the 
first place. However, similar to the separation-based spherical parameterization approach, we did 
not come across any convergence-related issues with the Cholesky parameterization approach. 

From the standpoint of precision in the estimated parameters, the ASE and the FSSD values 
of the estimated parameters are not unreasonably large, thus indicating that the parameter estimates 
are precise. The ASE values indicate the efficiency of the estimates in large samples, whereas the 
FSSD indicates the level of precision across different samples. When the number of samples and 
the sample sizes are sufficiently large, the ASE values tend to the FSSD values since ASE values 
are essentially the approximations of the FSSD values. As expected, the ASE and FSSD values 
reported in Table 1 are reasonably close to each other, suggesting that the ASE is a good estimator 
of FSSD across the three scale levels of the spherical parameterization. 
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Table 1. Simulation Results 
 Number of datasets: 500; Sample size: 3000 

Parameters 2c  3c  4c  5  6  7  1  2  1  2  12r  13r  
14r  15r  23r  24r  25r  34r  35r  45r  22  33  44  55  

True value -0.25 -0.50 0.50 1.00 1.00 1.00 0.50 0.75 1.00 -1.50 0.6 0 -0.50 -0.50 0.60 0 -0.50 0.60 0.20 0.60 1.50 1.50 2.00 2.00 

 Scale for the spherical parametrization = 0.8 
Estimated 
value 

-0.29 -0.40 0.46 0.97 0.88 0.91 0.49 0.74 1.00 -1.51 0.58 
0 

(fixed) 
-0.49 -0.49 0.59 

0 
(fixed) 

-0.51 0.61 0.20 0.60 1.30 1.35 2.01 2.00 

APB 17.46 19.84 8.82 2.52 11.95 9.32 2.17 1.51 0.03 0.80 3.45 -- 2.20 2.20 2.38 -- 2.71 0.92 1.45 0.07 13.55 10.31 0.27 0.03 
ASE 0.06 0.10 0.06 0.06 0.10 0.11 0.06 0.08 0.04 0.06 0.05 -- 0.03 0.03 0.03 -- 0.02 0.02 0.03 0.01 0.16 0.16 0.09 0.03 
FSSD 0.05 0.11 0.05 0.06 0.10 0.07 0.05 0.07 0.04 0.06 0.04 -- 0.03 0.03 0.04 -- 0.02 0.02 0.03 0.01 0.16 0.12 0.09 0.03 
RE 1.21 0.92 1.05 1.05 1.07 1.42 1.02 1.04 1.00 1.03 1.38 -- 1.18 1.35 0.93 -- 1.05 1.01 1.00 1.02 0.99 1.40 1.03 0.99 
Avg. LL. -11220.636 
 Scale for the spherical parametrization = 1.0 
Estimated 
value 

-0.29 -0.44 0.46 0.99 0.91 0.94 0.48 0.74 1.00 -1.52 0.57 
0 

(fixed) 
-0.49 -0.49 0.58 

0 
(fixed) 

-0.51 0.61 0.20 0.60 1.33 1.38 1.98 2.00 

APB 17.35 12.83 8.83 0.53 8.59 6.48 4.63 1.04 0.06 1.07 5.43 -- 2.81 2.81 2.73 -- 2.41 1.11 1.89 0.27 11.09 7.76 1.24 0.05 
ASE 0.06 0.11 0.06 0.06 0.11 0.11 0.06 0.08 0.04 0.06 0.06 -- 0.03 0.04 0.03 -- 0.02 0.02 0.03 0.01 0.16 0.17 0.09 0.03 
FSSD 0.05 0.07 0.05 0.05 0.12 0.12 0.06 0.08 0.04 0.06 0.04 -- 0.03 0.03 0.03 -- 0.02 0.02 0.03 0.01 0.18 0.19 0.09 0.03 
RE 1.30 1.47 1.20 1.17 0.87 0.94 0.98 1.00 0.98 1.02 1.56 -- 1.22 1.40 1.09 -- 1.14 1.12 1.08 1.04 0.88 0.91 1.00 0.99 
Avg. LL -11220.068 
 Scale for the spherical parametrization = 1.2 
Estimated 
value 

-0.29 -0.49 0.47 1.02 0.98 0.98 0.49 0.73 1.00 -1.50 0.56 
0 

(fixed) 
-0.49 -0.49 0.58 

0 
(fixed) 

-0.52 0.61 0.20 0.60 1.41 1.44 1.97 2.00 

APB 16.23 1.09 5.90 2.20 2.49 1.95 1.79 2.13 0.16 0.04 7.23 -- 2.59 2.59 2.71 -- 3.44 0.93 1.45 0.41 6.24 3.67 1.53 0.05 
ASE 0.06 0.12 0.06 0.06 0.12 0.12 0.05 0.08 0.04 0.06 0.06 -- 0.03 0.04 0.03 -- 0.02 0.02 0.03 0.01 0.17 0.18 0.09 0.03 
FSSD 0.05 0.08 0.05 0.06 0.13 0.16 0.06 0.08 0.04 0.06 0.04 -- 0.02 0.02 0.03 -- 0.02 0.02 0.03 0.01 0.19 0.14 0.09 0.03 
RE 1.23 1.45 1.16 1.11 0.88 0.73 0.96 0.99 0.95 1.02 1.57 -- 1.25 1.43 1.09 -- 1.10 1.09 1.07 1.06 0.88 1.24 0.99 1.00 
Avg. LL -11219.812 

--: Not applicable. APB: Absolute percentage bias. ASE: Asymptotic standard error. FSSD: Finite sample standard deviation.  
  RE: Relative efficiency. Avg. LL: Average log-likelihood across the 500 datasets. 
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Lastly, the goodness-of-fit values were not significantly different across the three scale 
levels in the case of the spherical parameterization approach, with the likelihood value being the 
highest for the case with the scale level of 1.2. However, despite higher number of parameters in 
the traditional Cholesky factorization approach, the average log-likelihood value was lower than 
that in the spherical parametrization approach (an average log-likelihood value of –11222.59 with 
24 parameters for the Cholesky decomposition as compared to an average log-likelihood of               
–11219.81 with 22 parameters for the separation-based spherical parameterization approach)5.  

Overall, the simulation results highlight the effectiveness of the separation-based strategy 
with spherical parameterizations of the Cholesky matrix in estimating the correlation matrix, 
especially when restrictions are imposed on specific correlation values. Even in situations when 
no restrictions are imposed on the covariance matrix, the proposed strategy can serve as an 
alternative to the traditional Cholesky factorization-based approach for estimating covariance 
matrices in multivariate models. 

 
4 EMPIRICAL ANALYSIS 

4.1 The Empirical Context: Analyzing the Usage (and the Extent of Use) of Non-Private 
Modes of Transport in Bengaluru, India 

In this section, we illustrate the use of the separation strategy as well as the procedure developed 
for restricting specific correlation values to zero for an empirical application to analyzing usage 
(i.e., usage and the extent of use) of different non-private6 modes of transportation in Bengaluru, 
a metropolis in the southern region of India.  

Bengaluru, like most major cities around the globe, has a variety of non-private transport 
modes. These include public transport options such as buses and metro trains, intermediate public 
transit (IPT) options such as auto-rickshaws, ride-hailing services such as Ola and Uber, and shared 
ride modes such as shared taxis and other informal carpool options. This section presents a 
multivariate analysis of the socio-demographic determinants of individuals’ choice and extent of 
usage of these non-private modes of transportation. The primary purpose of this analysis is to 
demonstrate the benefits of the separation strategy vis-à-vis the traditional Cholesky factorization 
approach for estimating correlation matrices with a priori structure imposed in such multivariate 
dependent variable models. We also briefly discuss substantive findings related to the influence of 
sociodemographic attributes on the usage of various non-private modes in Bengaluru, India. 
 
4.2 Data 
The empirical data for the analysis is drawn from the Ease of Moving Index survey conducted by 
the Ola Mobility Institute in India in 2018. The survey collected information on individuals’ usual 
modes of travel and the frequency of usage of those modes. In addition, the survey collected 

                                                 
5 Note that one cannot compare the log-likelihood values directly. However, since the number of parameters are higher 
for the Cholesky based approach, the AIC and BIC values will reflect the same trend as the log-likelihood values. 
6 We use the term “non-private modes” throughout this article to represent modes that are not personally owned and 
used. In the subsequent sections, we use the same term to represent the modes considered in the analysis. 
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individuals’ socio-demographic information as well as their attitudes and perceptions of transit 
service.  
 
Table 2. Descriptive Statistics of the Sample 

Dependent outcomes 
 Transit Ride-hailing Shared ride IPT 
Percentage of those who used the mode 23.1% 11.1% 22.2% 12.9% 
Extent of usage (for those who used)     

Monthly (1-2 times in a month) 9.1% 25.0% 21.3% 44.8% 
Weekly (1-2 times a week) 29.5 % 52.3 % 46.2% 44.5% 
Daily (more than 3 times a week) 61.4 % 22.7% 32.5% 10.7% 

Descriptive statistics of the exogenous variables 
Sample shares 

Gender  
Males 57.9% 
Females 42.1% 

Age  

Age less than 20 years 21.7% 
Age between 20 and 40 years 47.8% 
Age more than 40 years 30.5% 

Educational qualification  
Less than 10th grade 1.7% 
Between 10th and 12th grade 19.1% 
Graduate 41.2% 
Post-graduate and above 38.0% 

Employment status  
Student 29.9% 
Employed 34.0% 
Unemployed 23.9% 
Homemaker 12.1% 

Household two-wheeler ownership  
Zero two-wheeler 36.1% 
One two-wheeler 12.8% 
Two or more two-wheelers 51.1% 

Household car ownership  
Zero car 51.1% 
One car 34.7% 
Two or more cars 14.1% 

Individual monthly income (in INR; across those who are employed)  
Less than 15K 5.8% 
Between 15K and 30K 36.4% 
Between 30K and 50K 40.3% 
More than 50K 17.5% 

Sample size (N) 2337 

 
For this empirical context, we focused on individuals’ usage and the extent of usage of non-private 
modes, including transit, ride-hailing services (such as Ola, Uber, etc.), shared ride (i.e., carpool, 
shared taxi, etc.), and intermediate public transport modes (i.e., IPT modes such as auto-rickshaws 
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and e-rickshaws)7. The final sample used in the analysis comprises 2337 respondents. The details 
of the descriptive analysis of the sample are presented in Table 2. As can be observed from the 
percentages of individuals using different modes in Table 2, transit is the most used non-private 
mode considered in the analysis (i.e., more than 90% of the individuals who used transit used it at 
least 1-2 times a week, and more than 60% used transit on a daily basis). This is not surprising 
since Bengaluru has an extensive bus transit system, with more than 6000 buses plying daily with 
a daily ridership of more than 3 million (at the time of the survey). Also to be noted is that the 
percentages of adoption of each mode (first line of Table 2) do not sum to 100% across the four 
modes, because adoption is represented as a binary choice of whether that mode is part of the 
“usual” repertoire of modes chosen by individuals for their travel. These are not for a specific trip 
(such as the commute trip), but for overall usage (and hence the appearance of the frequency 
dimension for each mode too, conditional on adoption).  
 Ride-hailing services have a share of around 11%, with 45% of these users opting to use 
ride-hailing services only once or twice a month. While this appears to be a low usage, the ride-
hailing services started in Indian cities around 2013. Some literature suggests that the rapid 
increase in the mode share of these services is leading to a decline in the public transit mode share 
(Ngo et al., 2021; Babar and Burtch, 2020). 

As can be seen from Table 2, the estimation sample has a larger proportion of men than 
women, a larger representation of employed individuals and students (than unemployed and 
homemakers) and a higher proportion of individuals with at least a graduate degree. This could be 
one reason for a significant proportion of individuals (around 49%) not using these non-private 
modes of transport and possibly using personal modes such as cars and two-wheelers. 

 
4.3 Analytical Framework Used for the Empirical Analysis 
The analysis in this study is carried out using a joint, multivariate binary and ordinal response 
probit model. That is, we develop binary probit models to represent the discrete decision of 
whether a mode is used or not and an ordinal response probit model to represent the frequency of 
usage of each mode – as monthly, weekly, or daily – if the mode is used. As a result, the model 
framework involves four binary outcomes that correspond to the discrete choice of each of the four 
modes and four ordinal outcomes for the frequency of usage of each of the four modes. All these 
outcomes are modelled in a joint multivariate framework. Such a model structure involves the 
estimation of an eight-by-eight correlation matrix8 (i.e., four dimensions corresponding to the 
discrete outcomes and the next four dimensions corresponding to the propensity of usage of each 
of the four modes in the analysis), with 28 correlation parameters. 
 There are several reasons why the traditional Cholesky decomposition approach may be 
difficult to implement while estimating such a correlation matrix. First, estimating a correlation 

                                                 
7 While Bengaluru currently has an operational metro transit system, at the time of the data collection, the metro lines 
were still not fully in operation. As a result, the share of metro users in the data was very small (less than 2%), and 
hence, metro was not considered in our analysis. 
8 The model structure involves a correlation matrix, as opposed to a covariance matrix, as in Section 3. This is because 
the scale parameters are not identified (hence normalized to 1) for all the binary and ordinal outcomes.   
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matrix using the traditional Cholesky decomposition is infeasible since restricting the diagonal 
elements to one is not possible with the traditional Cholesky decomposition, unless the separation-
based strategy is implemented. Moreover, as discussed in the introduction section, even the 
separation-based strategy runs into estimation issues unless spherical parameterization is also 
implemented. Second, estimating such a large dimensional correlation matrix (with 28 correlation 
parameters) may not be easy. Moreover, there are no behavioral/logical reasons why certain 
specific dimensions must be correlated. For instance, the propensity of choosing a specific mode 
is likely to be correlated with the corresponding propensity that represents its frequency of use. 
However, there are no substantive reasons why the discrete preference of a mode must be 
correlated with the propensity representing the frequency of use of another mode. Alternatively, 
restricting such correlations to zero, while practical both from the standpoint of ease of estimation 
and behavioral interpretation, is not possible with the traditional Cholesky decomposition 
approach. In such a situation, the separation-based strategy not only allows estimation of the 
correlation matrix by fixing the diagonal terms to one but also allows restricting certain specific 
correlation terms to zero. Such restrictions, in addition to being behaviorally consistent, also ease 
the estimation procedure by reducing the number of parameters to be estimated. Third, the ability 
to restrict specific correlation values to zero also allows one to drop statistically insignificant 
parameter estimates in the correlation matrix.  
 
4.4 Empirical Estimation Results 
The parameter estimates of the joint model are presented in Table 3. The final specification was 
carefully developed, supported by, as is inevitable in specification testing, insights from previous 
literature, parsimony in specification, and statistical fit/significance considerations. In particular, 
we began our specification analysis by examining the variables impacting each mode separately 
within a bivariate modeling system of mode adoption (a binary variable) and frequency of use of 
the mode (an ordered-response variable). In this mode-specific bivariate specification, we included 
all explanatory variables, considering alternative functional forms. We also estimated the 
correlation between the binary adoption and ordered frequency dimensions specific to that mode. 
Based on this bivariate model estimation, we retained all variable effects that had a t-statistic higher 
than 1. In our estimation trials, the correlation between the binary adoption of transit and its ordered 
frequency was insignificant (with t-statistic less than 1), possibly because of the relatively lower 
magnitude of the estimated correlation value. However, we decided to retain this correlation in the 
preliminary specification.  Next, we took these results into the estimation of the multivariate eight-
dimensional model across all the four modes.9 As discussed earlier, in estimating this multivariate 
model, we made some correlation restrictions and eliminated variables that had a t-statistic of less 

                                                 
9 In the experience of the authors, the effects and statistical significance of variables in marginal models for a subset 
of dependent outcomes will generally be carried over to more comprehensive multivariate models. That is, the 
introduction of additional correlation effects in unobserved factors, generally, will not change the magnitude and 
significance of the effect of a variable observed to be statistically insignificant in a marginal model. In fact, 
econometrically speaking, this result is the basis of the composite marginal likelihood inference approach for model 
estimation of large multivariate model systems (see Bhat, 2015).   
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than 1. Notably, the correlation between the binary adoption of transit and the ordered frequency 
turned out to be marginally significant and therefore, was retained in the final specification. The 
final multivariate model specification includes some variables that are not highly statistically 
significant, but which are included because of their intuitive effects and potential to guide future 
research and survey efforts in the field.  This is particularly so because of the multi-dimensional 
nature of the model system and the rather skewed statistics toward non-use of each of the non-
private modes. Also, due to identification considerations, no constants are estimated in the binary 
and ordered-response equations (because a full set of thresholds mapping the latent variables 
underlying the categorical outcomes to the outcomes themselves are estimated). 
 One additional point of note about our empirical specification. In the context of factors 
influencing mode choice decisions and frequency of use, besides the socio-demographic attributes, 
individuals’ subjective perceptions can also play an important role (Hensher et al., 2003; Carrel 
and Walker, 2017; Johansson et al., 2006). While it is convenient to use these indicators directly 
as attributes in the model specification, they are often riddled with measurement errors, which are 
important to recognize (see Bhat and Dubey, 2014 and Deepa et al., 2022). However, in this study, 
since the focus is primarily on showcasing the ability of the proposed approach to restrict specific 
correlations to zero, we use the direct measures of these subjective perceptions (particularly, the 
perception toward reliability of transit) as attributes without recognizing that these measures could 
be prone to errors. Of course, recognizing these attitudes and perceptions as latent variables in the 
model to account for measurement errors, while also incorporating our strategy to restrict specific 
covariances to zero, is a worthwhile research direction to pursue in the future.  
 
4.4.1 Influence of Exogenous Variables 
In the context of the influence of gender, men are more likely to use shared rides and use it more 
frequently than women, possibly because of the safety and comfort issues that women might have 
when sharing rides with strangers. Interestingly, however, there were no significant differences 
between men and women in preferences toward other modes. In the context of age-related 
variables, while there were no significant differences in the likelihood of usage of transit across 
different age groups, younger individuals (age < 40 years) are more frequent users of transit than 
older (age >40) individuals. Also, individuals of age less than 20 years have a higher preference 
for shared ride modes than those in other age groups. 

Individuals with higher education (i.e., at least a graduate degree) are less likely to use 
transit. Surprisingly, however, such individuals are also less likely to use ride-hailing services, 
possibly because such individuals own private vehicles and therefore do not prefer to use non-
private modes of transportation. In the context of employment status, employed individuals do not 
show significant differences from unemployed people or homemakers in their usage of transit or 
shared-ride modes. But employed individuals show a lower preference for ride-hailing services 
and a higher preference for IPT modes, possibly because IPT modes such as auto-rickshaws were 
easily accessible and associated with shorter wait times as compared to ride-hailing options at the 
time of the survey (2018). Students are more likely to rely on non-private modes of transportation, 
with a higher preference for (and a higher frequency of usage of) transit and shared-ride modes. 
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Students also show a higher frequency of usage of IPT modes (if they use the IPT modes) than that 
of unemployed people or homemakers.   

Individuals’ perception of the reliability of transit also plays an important role, as 
individuals with positive perceptions of the reliability of transit services are more likely to use it 
whereas those with negative perceptions are less likely to use transit (Deepa et al., 2022). In the 
context of vehicle ownership, not owning a personal vehicle (either a two-wheeler or a four-
wheeler) increases reliance on the non-private modes. While the influence of not-owning a two-
wheeler is significant only on the likelihood of using transit and ride-hailing services (that too, the 
effects are marginally significant), owning cars significantly reduces the usage (and the extent of 
use of) of most non-private modes. Further, individuals from households with multiple cars are 
much less likely to use any of the non-private modes. These results are in line with other findings 
in the literature that increased car ownership levels reduce the usage of non-private modes of 
transportation (Thompson et al., 2002). 

The information on income was available for only those individuals who were employed. 
Therefore, the effects of income on preferences of these modes were captured only for employed 
individuals. In this regard, as expected, individuals with a monthly income of less than ₹30,000 
are more likely to use non-private modes than those with a higher monthly income. Further, 
interactions between gender and work status indicate that female students tend to rely more on  
non-private modes of transportation, particularly transit and ride-hailing. Also, female students 
who chose IPT modes are likely to use them more frequently than their male counterparts.
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Table 3. Empirical Estimation Results 
 Transit Ride-hailing Shared ride IPT 

Explanatory variables 
Discrete 

preference 
Propensity of 

usage 
Discrete 

preference 
Propensity of 

usage 
Discrete 

preference 
Propensity of 

usage 
Discrete 

preference 
Propensity of 

usage 
Constants -0.90 (-4.72) -- -1.04 (-8.12) -- -1.06 (-13.24) -- -1.19 (-25.64) -- 
Socio-demographic variables  
Gender (Base: Female)  

Male ** ** ** ** 0.21 (3.26) 0.29 (1.64) ** ** 
Age (Base: Age more than 60 years)  

Age less than 20 years ** 0.19 (1.08) ** ** 0.80 (2.73) ** ** ** 
Age between 20 and 40 years ** 0.44 (1.50) ** ** ** ** ** ** 

Edu. qualification (Base case: High school 
and below) 

        

Graduate and above -0.74 (-8.90) ** -0.19 (-2.00) ** ** ** ** ** 
Employment status (Base: Unemployed 
and homemakers) 

 

Student 0.29 (2.17) 0.93 (3.84) ** ** 0.18 (3.34) 0.78 (3.42) ** 0.87 (3.61) 
Employed ** ** -0.37 (-2.55) ** ** ** 0.11 (1.44) ** 

Vehicle ownership  
Zero two-wheeler ownership  0.09 (1.12) ** 0.10 (1.26) ** ** ** ** ** 
Zero car ownership    0.99 (11.80) 0.43 (1.88) 0.19 (1.80) 0.51 (2.48) 0.24 (2.83) ** ** -0.18 (-1.30) 
Owning 2 or more cars -0.53 (-3.10) ** -0.52 (-3.21) ** -0.16 (-1.62) ** -0.21 (-2.05) ** 

Perception of reliability in transit (Base: 
Transit services are somewhat reliable) 

 

Transit services are not reliable -0.29 (-3.63) ** -- -- -- -- -- -- 
Transit services are very reliable 0.47 (4.24) ** -- -- -- -- -- -- 

Interaction effects  
Employed × Income less than ₹15K 
(Base: Income > ₹30K ) 

0.91 (3.81) ** 0.85 (3.14) 0.36 (1.13) 0.21 (1.00) 0.85 (1.60) ** ** 

Employed × Income between ₹15K -
₹30K (Base: Income > ₹30K) 

0.87 (7.03) 0.65 (2.42) 0.66 (4.46) ** 0.50 (4.10) 0.35 (2.16) 0.28 (2.41) ** 

Male × Student -0.33 (-2.41) -0.51 (-1.61) -0.43 (-3.91) ** ** ** ** -0.69 (-1.82) 
Male × Employed ** -0.49 (-1.70)  ** ** ** ** ** 
Employed × Zero car ownership ** 0.77 (3.50) 0.32 (1.50) ** -0.71 (-5.23) ** ** ** 

Thresholds         
Monthly | Weekly -- -0.09 (-0.14) -- 0.08 (0.15) -- 0.34 (0.73) -- -0.36 (-1.83) 
Weekly | Daily -- 1.15 (1.81) -- 1.52 (3.86) -- 1.59 (5.12) -- 1.04 (2.66) 

**: Statistically insignificant. --: Not applicable.
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4.4.2 Correlation Matrix 
The parameter estimates of the correlation matrix are reported in Table 4. We should report here 
that when we implemented the separation-based strategy without spherical parameterization, the 
diagonal elements went into imaginary space, breaking down the estimation routine. This result is 
not surprising. since without the additional levels of parameterization (as in Equation (3), with 

further parameterization of the ,i jh  elements), the diagonal elements of the decomposed matrix L  

can venture into imaginary spaces, thus breaking down the estimation procedure. Therefore, we 
employed the separation-based strategy with spherical parameterization to estimate the correlation 
matrix. 
 
Table 4. Estimated Correlation Matrix with Restrictions 

  Discrete preference Propensity of usage 

  Transit 
Ride 

hailing 
Shared 

ride 
IPT Transit 

Ride 
hailing 

Shared 
ride 

IPT 

D
iscrete p

referen
ce 

Transit 1 
0.34 

(6.54) ** 
0.18 

(3.03) 
0.07 

(1.25) 
0.00# 0.00# 0.00# 

Ride 
hailing 

 1 ** 
0.27 

(4.00) 
0.00# 

0.20 
(2.17) 

0.00# 0.00# 

Shared 
ride 

  1 
0.21 

(4.26) 
0.00# 0.00# 

0.40 
(1.33) 

0.00# 

IPT    1 0.00# 0.00# 0.00# ** 

P
rop

en
sity of u

sage 

Transit     1 
0.26 

(1.83) 
** ** 

Ride 
hailing 

     1 
0.15 

(1.14) 
0.13 

(1.03) 

Shared 
ride 

      1 
0.53 

(5.30) 

IPT        1 

 **: The estimated correlation was statistically insignificant. Hence dropped. #Restricted to be zero 

 
However, estimating such a large correlation matrix with 28 correlation parameters is 

anyway not easy, particularly with datasets that are not very large. Also, as already discussed, there 
are no behavioral reasons as to why the discrete preference of a mode i should be correlated with 
the propensity of usage of another mode j (j i). Therefore, we restricted such correlations to zero, 
thus reducing the number of parameters from 28 to 16. Furthermore, five of the estimated 
correlation parameters were estimated to be statistically insignificant and were restricted to zero 
in the final specification, which would not have been possible with the traditional Cholesky 
decomposition approach. In sum, we estimated 11 correlation parameters in the final model, thus 
substantially reducing the estimation burden. 
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From the estimated correlation matrix in Table 4, several observations can be made. First, 
the correlations between the discrete preferences of all the modes were positive, except that the 
correlations between transit and shared ride and ride-hailing and shared ride modes were 
insignificant. Intuitively, it is reasonable that the preferences of these modes are positively 
correlated, since several unobserved factors such as perception towards safety, cleanliness, etc. are 
likely to influence the preference of these modes in a similar manner. Similar trends are also 
observed in the propensity of usage of these modes, with a positive correlation between all pairs, 
except between transit and shared ride and transit and IPT, where the correlations were 
insignificant. Second, while correlations between the discrete preference of a mode i and the 
propensity of usage of another mode j (j i) were restricted to be zero, such correlations between 
the discrete preference and the propensity of usage for a mode i were freely estimated. As expected, 
these correlations were estimated to be positive across all modes, except IPT, where the 
correlations were statistically insignificant. In essence, the correlation parameter estimates are all 
interpretable. 
 
4.4.3 Goodness-of-Fit Measures 
The log-likelihood of the final model was –5188.56 relative to a model with only constants in the 
binary mode adoption models and thresholds in the mode use frequency models being –5788.632. 
A likelihood ratio test indicates that our model outperforms the simple naïve constants-only model 
at any reasonable level of significance, indicating the explanatory value of our model as well as 
the importance of recognizing correlations due to unobserved factors. 
  
5 CONCLUSIONS 
Estimation of most multivariate model systems involves the estimation of covariance matrices. 
While most model systems rely on the traditional Cholesky decomposition approach to ensure 
positive definiteness of the covariance matrix, there are situations where in addition to the positive 
definiteness requirement of the covariance matrix, other restrictions (such as fixing the diagonal 
elements of the covariance matrix to specific values or restricting specific covariance elements to 
zero) on the elements of the covariance matrix are also needed. In such model systems, the usual 
Cholesky decomposition approach may not work. In this regard, a common strategy is to separate 
the covariance matrix into a diagonal scale matrix and a correlation matrix. However, applying 
Cholesky decomposition of the correlation matrix while ensuring the unit diagonal requirement 
can lead to situations where the diagonal elements of the correlation matrix do not always conform 
to the real line. To this end, a spherical parameterization of the Cholesky matrix is undertaken. The 
spherical parameterization ensures that the off-diagonal elements of the correlation matrix always 
lie between –1 to 1, which automatically ensures that the diagonal elements are always positive 
and lie on the real line. However, strategies to impose restrictions on the correlation elements have 
not been explored in any of the above parameterization approaches.  
 In this paper, we build on the above-discussed parameterization strategies to explore the 
possibilities of restricting elements of the correlation matrix to zero. To do so, we revisit the 
separation-based strategy with spherical parameterization of the covariance matrix and derive 
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conditions to restrict the specific correlation values to zero. The proposed approach is then 
validated using extensive simulation runs. The effectiveness of the developed algorithm is 
highlighted in terms of accurate and precise recovery of parameters while ensuring that the specific 
correlation values are restricted to zero. In comparison with the traditional Cholesky 
decomposition approach, the simulation results indicate that the proposed strategy allows a more 
accurate recovery of the covariance parameters. Therefore, the proposed strategy can serve as an 
alternative to the traditional Cholesky decomposition approach. 
 Finally, the developed strategy is implemented in a joint, multivariate binary and ordinal 
response probit model system to analyze the usage of (and the extent of usage of) non-private 
modes of transportation in Bengaluru, India. The empirical results indicate that socio-demographic 
variables, such as gender, age, employment status, income, and ownership of personal vehicles, 
significantly influence the discrete preference as well as the extent of usage of these modes. 
Further, the estimation results reveal that the factors that influence the preference for a mode might 
be different than those that influence its extent of usage. Importantly, the estimation of the resulting 
correlation matrix is facilitated by the proposed separation-based strategy with spherical 
parameterization that allows imposing zero-correlation restrictions. The importance of the 
proposed strategy is highlighted in the ability to restrict specific correlation parameters that do not 
offer behaviorally explainable interpretations. Besides, restricting the correlation parameters 
reduced the number of parameters to be estimated, thus substantially reducing the estimation 
burden. Of course, further investigations into estimation approaches that are able to strictly adhere 
to the desired correlation restrictions is a fruitful avenue for additional research, as is an 
investigation of alternative normalization methods for identification.  
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