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ABSTRACT 

This study focuses on accommodating spatial dependency in data indexed by geographic location. In 

particular, the emphasis is on accommodating spatial error correlation across observational units in 

binary discrete choice models. We propose a copula-based approach to spatial dependence modeling 

based on a spatial logit structure rather than a spatial probit structure. In this approach, the 

dependence between the logistic error terms of different observational units is directly 

accommodated using a multivariate logistic distribution based on the Farlie-Gumbel-Morgenstein 

(FGM) copula. The approach represents a simple and powerful technique that results in a closed-

form analytic expression for the joint probability of choice across observational units, and is 

straightforward to apply using a standard and direct maximum likelihood inference procedure. There 

is no simulation machinery involved, leading to substantial computation gains relative to current 

methods to address spatial correlation. The approach is applied to teenagers’ physical activity 

participation levels, a subject of considerable interest in the public health, transportation, sociology, 

and adolescence development fields. The results indicate that failing to accommodate 

heteroscedasticity and spatial correlation can lead to inconsistent and inefficient parameter estimates, 

as well as incorrect conclusions regarding the elasticity effects of exogenous variables. 

 

Keywords:  Spatial analysis, copula, maximum likelihood estimation, teenager physical activity, 

public health 
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1. INTRODUCTION 

Spatial effects are quite ubiquitous in urban and economic data, whether the data is in aggregate 

form (such as crime rates, cancer rates, land cover change, and employment rates in each of several 

defined spatial units) or in disaggregate form (such as shopping activity location choice/commute 

mode choices for each of several sampled individuals, and pavement surface deterioration levels for 

each of several sampled roadway sections). The pervasive nature of spatial effects has spawned a 

vast literature on accommodating spatial effects in different fields such as earth sciences, 

epidemiology, transportation, land use analysis, geography, and ecology (see Páez and Scott, 2004 

for a relatively recent review). The studies in these fields have focused on one or more of three 

spatial analytic issues in analyzing the dependent variable of interest: spatial dependency, spatial 

heterogeneity, and spatial heteroscedasticity (see Bhat, 2000).  

Spatial dependency (also referred to as spatial autocorrelation) refers to the tendency of the 

data points to be similar when closer in space. This may occur because of diffusion effects, social 

interaction effects, or unobserved location-related effects influencing the level of the dependent 

variable (see Jones and Bullen, 1994; Miller, 1999). In general, ignoring spatial dependency can 

result in mis-estimated standard errors in linear models (Anselin and Griffith, 1988) and (in addition) 

inconsistent parameter estimation in non-linear models (Case, 1992). Spatial heterogeneity refers to 

differences in the data-generating urban process over space due to location-specific effects, as 

demonstrated by Fotheringham et al. (1996, 1997). Fotheringham and Brunsdon (1999) and Griffith 

and Layne (1999) discuss the reasons for these variations in detail, identifying two equally plausible 

but indistinguishable sources in analysis. One source is intrinsic behavioral differences in the 

process across spatial units. The other source is the lack of information (on the part of the analyst) 

regarding some process-related or spatial-unit related attributes. In either case, the result is spatial 

non-stationarity. In particular, a single global relationship in a study region may not reflect the urban 

process appropriately in any local part of the study region. Further, this potential mismatch in the 

global relationship and local relationships can lead to inconsistent estimates of the effect of variables 

at the global-level if the process at work has a non-linear form. Spatial heteroscedasticity refers to 

heterogeneity in the variance of the unobserved process across spatial units. Ignoring spatial 

heteroscedasticity when it is present leads to inconsistent parameter estimates in non-linear models 

(see McMillen, 1992; 1995).   
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As discussed in Bhat (2000), and more recently in Páez (2007), much of the spatial analysis 

literature to date has focused on accommodating spatial effects in models with continuous dependent 

variables or proportions. In contrast, and as indicated by Páez (2007), “…the explicit incorporation 

of spatial effects in discrete choice models is still in its infancy”. In this study, the focus is on 

accommodating spatial dependency in data indexed by geographic location. In particular, the 

emphasis is on accommodating spatial error autocorrelation in binary discrete choice models, while 

also controlling for heteroscedasticity across observational units. In the next section, we review the 

literature on discrete choice models with spatial autocorrelation. Then, Section 1.2 positions the 

current study within the existing literature and motivates the current research. 

 

1.1 Discrete Choice Models with Spatial Error Autocorrelation 

Spatial error autocorrelation (or simply spatial correlation in the rest of this paper) may arise because 

of error correlation across alternatives or across units of observation. Spatial correlation across 

alternatives arises naturally when the alternatives correspond to spatial units. This type of spatial 

correlation has been examined primarily in the transportation and geography literatures (see Hunt et 

al., 2004). The common model structures to accommodate such inter-alternative spatial correlation 

include the mixed logit model (see Bolduc et al., 1996 and Miyamoto et al., 2004), the multinomial 

probit model (see Garrido and Mahmassani, 2000 and Bolduc et al., 1997), and a GEV-based 

spatially correlated logit (SCL) model (see Bhat and Guo, 2004). While spatial correlation across 

alternatives is an important component of modeling choice among multinomial spatial units, there 

are several choice occasions where the alternatives themselves are not spatial units. However, the 

choice among the aspatial alternatives may be moderated by space in a way that generates spatial 

correlation across the choice decisions of observational units. It is this aspect of spatial correlation 

that is of interest in the current study, as discussed next. 

Spatial correlation across observational units has been the focus of attention in the regional 

science and political/social science literature, though much of this literature is oriented toward non-

discrete dependent variables. However, there has been increasing interest recently in accommodating 

spatial correlation across observational units in models with discrete dependent variables. A brief 

overview of the most commonly used estimation techniques is provided below.  

Case (1992) proposes a spatial probit-based maximum likelihood method that allows spatial 

dependence using a structure that generates correlation among observations within a region, but 
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assumes that there is no correlation among observations in different regions. McMillen (1992) 

proposed an Expectation Maximization (EM) algorithm to account for autocorrelation across 

observational units using a more general spatial autocorrelation structure in a probit model. The idea 

is to replace the latent dependent variable of the probit structure with an expectation based on the 

observed binary choice, and then to estimate the resulting model using standard maximum likelihood 

techniques for the case of a continuous dependent variable. The estimation results from the second 

“maximization” step provide new estimates of parameters that are used to construct updated 

expectations of the latent variable, and the procedure is iterated to convergence in the parameters.  

LeSage (2000) uses an approach similar to the EM algorithm of McMillen for a binary probit 

model, but adopts a Bayesian estimation approach for the maximization step using a Monte Carlo 

Markov Chain (MCMC) procedure (i.e., Gibbs sampling with a Metropolis-Hastings algorithm). 

This procedure entails specifying a complete conditional distribution for the model parameters and 

iteratively sampling from these conditional distributions (with the conditioning variables for each set 

of model parameters being the most recent draws of other model parameters). The sequence of the 

resulting parameter draws converge to the joint posterior distribution of the parameters after a 

sufficient number of draws (see Casella and George, 1992 or Train, 2003 for clear expositions of the 

MCMC approach). To construct values of the latent dependent variable (as in the expectation step of 

the EM technique), LeSage adds an additional conditional distribution for the posterior of this latent 

variable conditional on all other parameters, which takes the form of a truncated normal distribution. 

Both McMillen and LeSage apply their models to neighborhood crime, categorized as low crime or 

high crime based on the number of burglaries and vehicle thefts per thousand households in each 

neighborhood. The number of observational units (or neighborhoods) in their application is 49. 

Pinkse and Slade (1998) propose a two-step Generalized Method of Moments (GMM) 

estimation technique for probit models that considers the induced heteroscedasticity from spatial 

correlation effects, but does not accommodate the dependency across observations due to the spatial 

correlation effects.1 A related GMM method that is equivalent to a weighted non-linear version of 

the familiar feasible generalized least squares estimator is described in Fleming (2004), and is based 

off the work of Kelejian and Prucha (1999) for the continuous-dependent variable case.  

                                                 
1 Klier and McMillen (2007) propose a linearized logit variant of Pinkse and Slade’s estimator, but this linearization 
technique does not work in the purely spatial error model since the gradient with respect to the spatial correlation term is 
zero for all observations at the starting linearization point that corresponds to the correlation term being equal to zero.  
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Beron et al. (2003) and Beron and Vijverberg (2004) adopt, in their binary probit model with 

spatial error correlation, a recursive importance sampling (RIS) technique to directly evaluate the 

likelihood function that involves a multidimensional integral of the order of the number of 

observational units. This constitutes a maximum simulated likelihood (MSL) method using a GHK 

simulator, different from the EM or the Bayesian approaches of McMillen and LeSage.  

A problem with the approaches just discussed is that they are not feasible for moderate-to-

large samples since they require the inversion and determinant computation of a square matrix of the 

 order of the number of observational units (for McMillen’s EM method, LeSage’s MCMC method, 

and Pinkse and Slade’s heteroscedastic approach), or treat spatial dependence as a nuisance with no 

provision of an estimate of the standard error of the spatial error parameter (for the GMM method 

described in Fleming, 2004), or require the simulation of a multidimensional integral of the order of 

the number of observational units (for the RIS-based method).2 Another possible approach is to 

maintain a relatively restrictive spatial correlation structure that allows a constant correlation within 

observational units in pre-specified spatial regions, but no correlation in observational units in 

different spatial regions. Bhat (2000) and Dugundji and Walker (2005) address unordered 

multinomial discrete choices in this manner. Specifically, Bhat (2000) examines work travel mode 

choice, allowing for error correlation across decision-makers based on residential location as well as 

work location. Dugundji and Walker (2005) also examine work mode choice, but allow for spatial 

error correlation only among decision-makers in the same residential location. The result of such 

restrictive error correlation specifications is a considerable reduction in the dimensionality of 

integrals in the likelihood function, allowing relatively easy estimation within a mixed logit 

framework. However, these studies are likely to be more affected by the modifiable areal unit 

problem (MAUP) than general autocorrelation structures that are not as dependent on the definition 

of spatial regions (see Páez and Scott, 2004).3 

 

                                                 
2 See Franzese and Hays, 2007 for a detailed discussion of the drawbacks of the various methods in general, and the 
MCMC method in particular.  
3 In Anselin’s (2003) taxonomy, the work of Bhat (2000), Dugundji and Walker (2005), and Case (1992) (described 
earlier in the section) corresponds to “local” spatial effects, while more general correlation structures allow “global” 
spatial effects.  
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1.2 The Current Paper in Context and Paper Structure 

The current paper focuses on general spatial correlation structures across observational units for the 

case of a discrete dependent variable (more specifically, a binary discrete variable). While earlier 

studies discussed in Section 1.1 have addressed this problem, these methods become infeasible with 

a high number of observational units. The methods of Bhat (2000) and Dugundji and Walker (2005) 

are readily applicable to the case of binary outcomes, but they rely on restrictive local specifications 

of the spatial correlation structure across observations.  

In the current paper, we propose a new approach to accommodate spatial correlation across 

observational units. The resulting spatial logit model retains a simple closed-form expression, 

obviating the need for any kind of simulation machinery and methods. In particular, the model can 

be estimated using a standard and direct maximum likelihood technique and is computationally 

tractable even for a high number of observational units. The methodology proposed here highlights 

the power of closed-form techniques, and serves as yet another reminder that researchers would do 

well to formulate closed-form models rather than get carried away by the simulation advancements 

of the day.  

The rest of this paper is structured as follows. The next section discusses the concept of a 

copula, which is a multivariate functional form for the joint distribution of random variables derived 

purely from the marginal distribution of each random variable. Section 3 employs a particular type 

of copula to generate spatial dependence among observations in any binary discrete choice structure. 

Section 4 describes the data source and sample formation procedures for an empirical application of 

the proposed spatial logit model to teenagers’ physical activity participation. Section 5 presents the 

corresponding empirical results. The final section summarizes the important findings from the study.  

 

2. THE COPULA APPROACH 

The incorporation of dependency effects can be greatly facilitated by using a copula approach for 

modeling joint distributions, so that the resulting model can be in closed-form and can be estimated 

using direct maximum likelihood techniques (the reader is referred to Trivedi and Zimmer, 2007 or 

Nelsen, 2006 for extensive reviews of copula approaches and their benefits). A copula approach 

basically involves the generation of a multivariate joint distribution, given the marginal distributions 

of the correlated variables. The word copula itself was coined by Sklar, 1959 and is derived from the 

Latin word “copulare”, which means to tie, bond, or connect (see Schmidt, 2007). Thus, a copula is a 
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device or function that generates a stochastic dependence relationship among random variables with 

pre-specified marginal distributions. In essence, the copula approach separates the marginal 

distributions from the dependence structure, so that the dependence structure is entirely unaffected 

by the marginal distributions assumed. This provides substantial flexibility in correlating random 

variables, which may not even have the same marginal distributions. The effectiveness of a copula 

approach has been recognized in the statistics field for several decades now (see Schweizer and 

Sklar, 1983, Chapter 6), but it is only recently that Copula-based methods have been explicitly 

recognized and employed in the financial risk analysis and econometrics fields (see, for example, 

Smith, 2005, Zimmer and Trivedi, 2006, Cameron et al., 2004, Embrechts et al., 2003, Cherubini et 

al., 2004, Junker and May, 2005, Quinn, 2007, and Bhat and Eluru, 2008). 

 The precise definition of a copula is that it is a multivariate distribution function defined over 

the unit cube linking uniformly distributed marginals. Let C be a Q-dimensional copula of uniformly 

distributed random variables U1, U2, U3, …, UQ with support contained in [0,1]Q. Then,  

Cθ (u1, u2, …, uQ) = Pr(U1 < u1, U2 < u2, …, UQ < uQ), (1) 

where θ  is a parameter vector of the copula commonly referred to as the dependence parameter 

vector. A copula, once developed, allows the generation of joint multivariate distribution functions 

with given marginals. Consider Q random variables V1, V2, V3, …, VQ, each with standard univariate 

continuous marginal distribution functions Fq(vq) = Pr(Vq < vq), q =1, 2, 3, …, Q. Then, by the 

integral transform result, and using the notation (.)1−
qF  for the inverse standard univariate 

cumulative distribution function, we can write the following expression for each q (q = 1, 2, 3, …, 

Q): 

)).(Pr())(Pr()Pr()( 1
qqqqqqqqqq vFUvUFvVvF <=<=<= −  (2) 

Finally, by Sklar’s (1973) theorem, a joint Q-dimensional distribution function of the random 

variables with the continuous marginal distribution functions Fq(vq) can be generated as follows: 

F(v1, v2, …, vQ) = Pr(V1 < v1, V2 < v2, …, VQ < vQ) = Pr(U1 < F1(v1),, U2 < F2(v2), …,UQ < FQ(vQ))  

                          = Cθ (u1 = F1(v1), u2 = F2(v2),…, uQ = FQ(vQ)).  (3) 

Conversely, by Sklar’s theorem, for any multivariate distribution function with continuous marginal 

distribution functions, a unique copula can be defined that satisfies the condition in Equation (3). 
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 Copulas themselves can be generated in several different ways, including the method of 

inversion, geometric methods, and algebraic methods (see Nelsen, 2006; Chapter 3). A rich set of 

copula types have been generated using these methods, including the Farlie-Gumbel-Morgenstern 

(FGM) family, the Archimedean group (including the Clayton, Gumbel, Joe, and Frank family of 

copulas), the Gaussian copula, and the Student’s t-copula. In this paper, we consider the simplest of 

these copulas, the FGM family, which is particularly well-suited to incorporate spatial correlation. 

As we will discuss later, the FGM family also imposes certain restrictions that are not maintained by 

other copulas, but these other copulas are practically infeasible for the case of accommodating 

spatial correlation across observational units. Based on the FGM copula family, we will develop a 

particular multivariate variant of Gumbel’s (1961) Type III bivariate logistic distribution for use in 

binary choice models.  

 

2.1 The FGM Family-Based Multivariate Logistic Distributions 

The FGM family of copulas was first proposed by Morgenstern (1956), and has been well known for 

some time in statistics (see Conway, 1983, Kotz et al., 2000; Section 44.13). However, until 

Prieger’s (2002) application for sample selection, it does not seem to have been used in 

econometrics. In the bivariate case, the FGM copula takes the following form: 

)1)(1(1[) ,( 21212211 uuuuuUuUC −−+=<< θ ]. (4) 

For the copula above to be 2-increasing (that is, for any rectangle with vertices in the domain of 

[0,1] to have a positive volume based on the function), theta must be in [-1,1] (see Nelsen, 2006; pg. 

77). The presence of the theta term allows the possibility of correlation between the uniform 

marginals 1U  and 2U . Specifically, the density function for the FGM copula is: 

)21)(21(1),( 212121
uuuuc UU −−+= θ . (5) 

From above, it is clear that, when θ is positive, the density is higher if 1u  and 2u  are both high (both 

close to 1) or both low (both close to zero). On the other hand, when θ is negative, the density is 

higher if 1u  is high and 2u  is low, or if 2u  is high and 1u  is low. Thus, when θ is zero, it 

corresponds to independence. Otherwise, depending on whether θ is positive or negative, a positive 

or negative correlation, respectively, is generated between the continuous variables 1u  and 2u . Thus, 
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the FGM copula has a simple analytic form and allows for either negative or positive dependence. 

However, the correlation between 1U  and 2U  is restricted in the range of [-1/3, 1/3].  

The standard bivariate logistic distribution corresponding to the copula in Equation (4) is 

obtained using Equation (3) as follows: 

[ ], ))(1))((1(1)()(),( 221122112211 vvvvvVvV Λ−Λ−+ΛΛ=<<Λ θ  (6) 

where 
qvqq e

v
−+

=Λ
1

1)(  for q = 1, 2. 

The above distribution is Gumbel’s (1961) bivariate logistic distribution, with the Spearman’s 

correlation coefficient ),( 21 VVρ being 2
3
π
θ .  The restriction that θ  should be in the [-1, 1] range 

implies that the maximal correlation between 1V  and 2V  is restricted by 304.0),( 21 ≤VVρ .  Thus, 

the logistic distribution of Equation (6) allows only moderate dependence.  However, in a modeling 

context, the correlation refers to the association between unobserved elements after controlling for 

observed factors.  In fact, high correlations between unobserved factors suggest a model that is not 

well-specified in its exogenous variables.  Further, in the typical context of spatial structure-based 

dependence, the correlation between observational units drops off sharply with geographic distance 

(see Anselin, 2003).  Thus, the correlation range of the FGM logistic distribution may not be too 

limiting.4 At the same time, the advantages of using the FGM distribution for spatial correlation 

analysis are several. First, the method offers a simple linear copula structure that can easily be 

extended to multivariate correlation structures to accommodate spatial correlation across several 

observational units.  Second, the resulting structure provides a closed-form solution for the choice 

outcomes in the binary choice context that has been examined in the literature on spatial models. 

Thus, model estimation can proceed using standard simulation-free direct maximum likelihood 

methods.  Finally, the model easily accommodates flexible patterns of spatial correlation across 

observational units (rather than the strict space-based ordering effects that generally are imposed on 

spatial correlation in extant models).  

                                                 
4 There are other copulas that are not as limiting as the FGM copula.  However, these copulas are extremely difficult to 
apply in a spatial modeling context, as discussed later. Also, as indicated by Prieger (2002), “allowed correlation is only 
one dimension along which to judge a model”. In fact, Prieger goes on to show that the multivariate FGM distribution 
with limited correlation substantially outperforms the multivariate normal distribution with a full range of correlation in 
his empirical application.   
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The bivariate logistic distribution can be readily extended using a multivariate version of the 

FGM copula (see Nelsen, 2006; pg. 108).  A particularly appealing approach to constructing a 

multivariate logistic distribution for spatial correlation analysis is to allow pairwise correlation 

across observational units (see Karunaratne and Elston, 1998 for such a pairwise correlation 

structure): 

( )( ) , )(1)(11)(

),...,,...,,(

1

1

11

2211

⎥
⎦

⎤
⎢
⎣

⎡
Λ−Λ−⋅+×⎥

⎦

⎤
⎢
⎣

⎡
Λ

=<<<<Λ

∑∑∏
+=

−

==
kkqqqk

Q

qk

Q

q

Q

q
qq

QQqq

vvv

vVvVvVvV

θ
 (7) 

where qkθ  is the dependence parameter between qV  and kV (–1 ≤ qkθ  ≤ 1), qkθ = kqθ  for all q and 

k, and 
qvqq

e
v

−+
=Λ

1
1)( . 

It is important to note that the multivariate distribution above is legitimate only when the 

corresponding multivariate density is nonnegative, which implies the following restriction on the 

qkθ parameters: 

( )( ) .0 )(21)(211
1

1

1

≥⎥
⎦

⎤
⎢
⎣

⎡
Λ−Λ−⋅+ ∑∑

+=

−

=
kkqqqk

Q

qk

Q

q

vvθ  (8) 

Theoretically speaking, and since each )( qq vΛ  can take any value between 0 and 1, the requirement 

for a nonnegative density globally at any (and all) points of the entire Q-dimensional space of 

possible combination values of )( qq vΛ  across observational units is equivalent to the condition that 

the density is nonnegative at each of the 2Q vertices of the Q-dimensional unit cube [0,1]Q. This 

requires the very strong and limiting condition on the qkθ  values (see Cambanis, 1977 and 

Armstrong and Galli, 2002): 

,0 1
1

1

1

≥⎥
⎦

⎤
⎢
⎣

⎡
ΔΔ+ ∑∑

+=

−

=
kqqk

Q

qk

Q

q

θ  for all  }.1,1{,..., 21 +−∈ΔΔΔ Q  (9) 

However, from a practical standpoint, the range of space spanned by the )( qq vΛ  terms across 

observational units in discrete choice models is quite far away from the vertex points of the Q-

dimensional unit cube. This is so even for prediction purposes on a new set of data and observations. 
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In the spatial correlation setting in which the FGM copula-based multivariate logistic distribution is 

being applied, the qkθ  terms are also quite small for pairs of observations that are not geographically 

proximate. The net effect of all this is that the restriction in Equation (9) will seldom be violated in 

the context of spatial correlation across observations in discrete choice models, either in estimation 

or in application, as long as each qkθ  term is bounded between 0 and 1. Thus, in general, there will 

be no practical need to expressly impose the very strong restriction implied by Equation (9). We 

found this to be the case in our own estimations and application of the model developed in the 

current paper.  

 

3. THE BINARY CHOICE MODEL WITH SPATIAL CORRELATION 

Consider that the data (zq, xq) for q = 1, 2, …, Q are generated  by the following latent variable 

framework: 

qqq xz εβ +′=*  

⎪⎩

⎪
⎨
⎧

≥
<

=
0 if  1
0 if  0

*

*

q

q
q z

z
z  (10) 

where *
qz  is an unobserved propensity variable, β  is  a vector of coefficients to be estimated, and 

qε is a logistically distributed idiosyncratic error term with a scale parameter of qσ  (this allows 

spatial heteroscedasticity).5  Define ,/ qqqV σε= where qV  is standard logistic distributed. Let the qV  

terms (q = 1, 2, …, Q) follow the standard multivariate logistic distribution in Equation (7). Also, let 

dq be the actual observed value of zq in the sample. Then, the probability of the observed vector of 

choices ) ,...,,,( 321 Qdddd  can be written, after some algebraic manipulations, as: 

                                                 
5 As indicated by Franzese and Hays (2007), almost all earlier methodological and applied research on spatial discrete 
choice models have considered a normally distributed error term, leading to a spatial probit model. However, as we show 
below in the current paper, a univariate logistical error distribution for each individual εq, combined with the FGM copula 
to generate dependence among the εq terms, leads to a simple spatial logit model structure with a closed-form solution for 
the joint choice probabilities.  
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 (11) 

The above probability function considers the spatial correlation across observation units through the 

qkθ  terms (see previous section). When all the qkθ  terms are zero, the expression above collapses to 

a heteroscedastic binary choice model with no spatial correlation.6 

In the probability expression of Equation (11), it is not possible to estimate a separate qkθ  

term for each pair of observational units from the data. So, we propose that these terms be 

parameterized by writing: 

, 
)(1

)(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′+

′
±=

qk

qk
qk se

se
δ

δ

θ  (12) 

where qks  is a vector of variables that influence the level of spatial correlation between 

observational units q and k, and δ is a parameter vector whose elements are associated with the 

elements of qks . By functional form, the expression in parenthesis in the above equation is bounded 

by 0 and 1, ensuring that the qkθ  terms are between –1 and 1. The form also ensures the symmetry of 

the qkθ  terms (i.e., qkθ = kqθ ). In the current empirical context, we expect observational units in close 

proximity to have similar preferences. For this reason, we impose the ‘+’ sign in front of the 

expression in Equation (12), which generates positive correlation between pairs of observational 

units.  

                                                 
6 The simple structure for the spatially correlated binary logit model in Equation (11) is the reason for using the FGM-
based multivariate logistic distribution. While more flexible multivariate distributions that do not restrict the magnitude 
of correlation to be 0.31 or less can be developed using the Archimedean family of copulas (such as Frank’s copula or 
Gumbel’s copulas) or other copulas, the problem with these is that the equivalent probability expression to Equation (11) 
can have up to 2Q terms on the right side. Even for medium-sized Q values (sample sizes), computation of the probability 
expression becomes prohibitive. In the case of the FGM copula, the expressions simplify, so we get the simple and 
elegant expression in Equation (11). 
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The functional form of Equation (12) can accommodate multiple variables in the qks  vector 

that may influence spatial correlation across observational units, including whether or not two 

observational units are in the same spatial unit, whether or not two observational units are 

contiguous, boundary length of shared border between spatial units, and inverse of time or distance.  

The parameterization in Equation (12) can also be used to test for “thresholds” of distance or time or 

cost beyond which there is effectively no spatial correlation between observation units (through the 

appropriate specification of independent variables in the qks  vector).  Finally, the specification in 

Equation (12) nests the typical spatial correlation patterns used in the literature as special restrictive 

cases. For instance, the case of observational units correlated only if they are in the same spatial unit 

corresponds to only one variable in the qks  vector, which takes a value of 1 if q and k are in the same 

spatial unit and 0 otherwise. If there is only one observation per spatial unit (as in McMillen, 1992 

and LeSage 2000), then first-order adjacency-based correlation can be obtained by restricting the 

specification so that there is one element in qks  which takes a value of 1 if q and k are in adjacent 

spatial units and zero otherwise.  The case of a distance-based decay effect corresponds to a 

restricted version of Equation (12) with an inverse function of distance as the only element in the 

qks  vector. 

 The parameter qσ  in Equation (11) is next parameterized as: 

, )exp()( qqq g ϖλϖλσ ′=′=  (13) 

where qϖ  includes variables specific to pre-defined “neighborhoods” (or other groupings) of 

observational units and individual-related factors (see Páez, 2006 and Bhat and Zhao, 2002). 

Finally, the likelihood function of Equation (11) can be directly maximized to estimate theβ , 

δ , and λ vectors. The starting parameters may be obtained by constraining 0=qkθ  for all q and k, 

and estimating β  and λ  (this corresponds to a heteroscedastic binary logit model with 

independence across observation units).  The resulting values of  β  and λ  can be used to start the 

iterations for the likelihood maximization. In the current study, the GAUSS matrix programming 

language was employed to undertake the maximum likelihood estimation.  
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 A unique feature of our spatial model is that we directly capture heteroscedasticity and 

correlation in the error terms qε  across observational units, rather than using a pre-specified 

spatially autoregressive structure to generate dependence - ,uW += ερε  where ε is a Q-

dimensional vector of all the qε terms stacked vertically, ρ is the spatial autoregressive parameter, 

W is a row-standardized spatial weights matrix that represents an average of values from 

neighboring spatial units,  and u is a Q-vector of independently distributed error terms. This 

autoregressive structure also indirectly generates heteroscedasticity, though this heteroscedasticity is 

artificial and not directly associated with inherent variations across spatial units (see McMillen, 

1992). In our copula approach, the spatial correlation effect is completely delineated from 

heteroscedasticity effects, allowing a clear capture and testing of each of the heteroscedasticity and 

correlation effects distinctly. At the same time, our approach enables the accommodation of flexible 

patterns of spatial correlation, is simple to implement using traditional maximum likelihood 

methods, and does not require any simulation machinery whatsoever.  

 

4. EMPIRICAL CONTEXT AND DATA  
In this paper, the copula-based binary choice model with spatial correlation is applied to examine the 

factors that influence whether or not a teenager participates in physical activity during the course of 

a day. Physical activity is an inherent part of a healthy lifestyle with the potential to increase the 

quality and years of life in the U.S. (see U.S. Department of Health and Human Services, USDHHS, 

2000). Epidemiological research studies have emphasized a strong association between the lack of 

physical activity and the increasing rates of morbidity and mortality due to obesity, coronary heart 

disease, stroke, diabetes, high blood pressure, colon cancer, depression, and anxiety (see, for 

instance, Feldman et al., 2003, Dong et al., 2004, Nelson and Gordon-Larsen, 2006, and Ornelas et 

al., 2007). Other studies have established that regular physical activity helps increase cardiovascular 

fitness, enhances agility and strength, reduces the need for medical help, and improves mental health 

(USDHHS, 1996; Center for Disease Control, CDC, 2006).  

While the physical, emotional, and social benefits of physical activity are well established, 

physical inactivity is quite prevalent in today’s developed world, particularly among adolescents 

(Dong et al.; 2004, Warburton et al., 2006). According to the results of the National Health and Life 

Style Surveys (2003), only about two-thirds of teenage boys and one-third of teenage girls reported 
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participating in some form of vigorous physical activity during the day.7 A report by the Center for 

Disease Control (CDC, 2002) also indicates that about a third of teenagers do not engage in adequate 

physical activity for health, and that the high school physical education class participation rate has 

been steadily declining over the past decade. In addition, studies have shown that physical activity 

participation decreases with age during the adolescence period (USDHHS, 1996; Mhuircheartaigh, 

1999).  

The low physical activity participation, as well as the decrease in physical activity rates with 

age among adolescents, constitutes a national health concern, since inactive lifestyles may be 

transferred from adolescence to adulthood. Aaron et al. (2002) indicate that “[t]he adolescent years 

are thought to be the period during which adult health behavior, such as dietary and physical activity 

patterns, begin to develop”.  Therefore, public health professionals strongly emphasize the 

importance of developing effective strategies to motivate and increase physical activity participation 

as an individual moves through the adolescence stage of life. 

At the same time that public health professionals are focusing on ways to promote physical 

activity participation among adolescents, urban transportation planners are becoming more 

interested in expanding their focus from studying only adults’ activity-travel patterns to also 

explicitly examining children’s activity-travel patterns, including children’s participation in physical 

activity pursuits. This is because young teenagers depend, to a large extent, on household adults or 

other adults to drive them to physically active and non-physically active events, which in turn can 

influence adults’ activity-travel patterns in important ways (Reisner, 2003). For instance, the need to 

drop a teenager off at soccer practice at a certain time and location would influence the temporal and 

spatial dimensions of a parent’s activity-travel pattern. In addition to serve-passenger activities, 

children’s desires and needs can also influence adults’ activity-travel patterns through joint activity 

participation in such activities as going to the park, walking together, or playing tennis. Of course, 

the consideration of children’s activity-travel patterns is also important in its own right since these 

patterns contribute directly to travel demand. Due to the above reasons, the transportation field has 

witnessed an increasing interest in children’s activity-travel patterns, including participation in 

                                                 
7 Vigorous physical activity is one that requires an energy expenditure that is more than 6 times the energy expended 
when sitting quietly, or equivalently, an energy expenditure of more than 7 kilo-calories per minute. Sample vigorous 
physical activities include jogging or running, mountain climbing, and bicycling more than 10 mph or bicycling uphill 
(see USDHHS, 2000). 
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physical activity (see Transportation Research Board and Institute of Medicine, 2005; Goulias and 

Kim, 2005; Copperman and Bhat 2007a, 2007b; and Sener et al., 2008). 

 In the current application, we model teenagers’ participation in physical activity using a 

comprehensive set of socio-demographic and physical environment variables, while also 

accommodating spatial effects based on residence patterns. In the physical activity literature, the 

factors affecting the physical activity behavior of an individual have been broadly classified into 

three categories (see GAO, 2006): (1) Demographic factors (including individual and household 

demographics), (2) physical environment factors (including community design/built environment 

factors such as land-use and transportation system attributes and urban form factors, and other 

environment factors such as perceived safety, weather, and season of the year), and (3) Cognitive 

and behavioral factors (including individual-level attitudes, beliefs, and perceptions, and family and 

social influences). While there is an extensive literature focusing on the effects of the first and third 

category of factors on children’s/teenagers’ physical activity (see Feldman et al., 2003, Kelly et al., 

2006, and Salmon, 2007 for some recent examples), there has been limited research on the physical 

environment determinants of physical activity.  Further, the few research studies that have 

accommodated physical environment factors in the analysis of children’s/teenagers’ physical activity 

have predominantly considered variables relating to highway network measures and the presence of, 

or access to, recreational facilities and programs (see, for example, Sallis et al., 2000, and Gordon-

Larsen et al., 2005). In this paper, we consider a more extensive set of physical environment 

variables associated with teenagers’ residential neighborhoods, including (a) land-use attributes, (b) 

size and density measures, (c) accessibility to shopping, employment, and recreational activities, (d) 

ethnic composition, (e) demographics and housing cost attributes, (f) the intensity and density of 

activity opportunities, and (g) transportation network measures. But the current study also has its 

limitations.  Specifically, we do not accommodate cognitive and behavioral determinants of physical 

activity participation. Further, as in earlier studies, the current research study is based on cross-

sectional outcome data from which one can, strictly speaking, only infer correlations and not causal 

effects. This caveat should be kept in mind as we interpret the effects of variables on physical 

activity. The reader will note that cross-sectional data still remains the main basis for modeling and 

interpreting physical activity behavior, since collecting panel data or process data has its own set of 

problems and limitations.  
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4.1 Data Sources  

The primary source of data is the 2000 San Francisco Bay Area Travel Survey (BATS), which was 

designed and administered by MORPACE International, Inc. for the Bay Area Metropolitan 

Transportation Commission. The survey collected detailed information on individual and household 

socio-demographic and employment-related characteristics from over 15,000 households in the Bay 

Area. The survey also included data on all activity-travel episodes for a two-day period of time (see 

MORPACE International Inc., 2002 for details on survey, sampling, and administration procedures).  

 In addition to the 2000 BATS survey data set, several other secondary data sets were used to 

obtain spatial variables that may influence spatial correlation across observational units as well as 

physical environment variables that may characterize the choice behavior of individuals. These 

secondary data sets include: 1) Land-use and demographic coverage data, 2) Zone-to-zone travel 

level-of-service (LOS) data, 3) The 2000 Census of population and household summary files (SF1), 

4) GIS layers of highways (including interstate, toll, national, state and county highways), 5) GIS 

layers of local roadways (including local, neighborhood, and rural roads), 6) GIS layers of bicycle 

facilities, and 7) GIS layers of businesses (shopping and grocery stores, medical facilities and 

personal services, automotive businesses, food stores, sports and fitness centers, parks and gardens, 

restaurants, recreational businesses, and schools).  

 Among the secondary data sets indicated above, the land-use/demographic coverage data, 

LOS data, and the GIS layer of bicycle facilities were obtained from the Metropolitan Transportation 

Commission (MTC). The GIS layers of highways and local roadways were obtained from the 2000 

Census Tiger Files. The GIS layers of businesses were obtained from the InfoUSA business 

directory. The details of the variables extracted from these data sets are discussed in the next section. 

 
4.2. Sample Formation  

4.2.1 Sample Extraction  

The final sample used for the analysis is confined to teenagers residing in nine Counties (Alameda, 

Contra Costa, San Francisco, San Mateo, Santa Clara, Solano, Napa, Sonoma and Marin) of the San 

Francisco Bay Area. Several steps were pursued in extracting the final sample for the analysis, 

which includes 722 teenagers. First, since the focus is on the physical activity participation of 

teenagers, only individuals aged between 13 and 19 years in the BATS survey data were considered 
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in the analysis. Second, each episode was classified as being physically active or physically passive.8 

Third, a binary flag variable was created for each teenager-day combination taking the value of ‘1’ if 

the individual participated in one or more physically active episodes during the course of the day, 

and ‘0’ otherwise. This binary flag serves as the dependent variable in the current empirical 

application. Fourth, only weekday data were selected, since the focus of the current analysis is on 

weekdays. Fifth, only one randomly chosen day was selected among the two-day activity diary data 

for each teenager, and only one randomly chosen teenager was picked from each household, to keep 

the sample size manageable and prevent problems that may occur due to repeated data measurement 

from the same individual and/or household.  

 Of the 722 teenagers, 186 (26%) participate in physical activity during the course of their 

sampled weekday and 536 (74%) do not participate in physical activity. These results are similar to 

those found by the Center for Disease Control, CDC, 2006. 

  

4.2.2 Physical Environment Measures 

The six secondary data sources identified in Section 2 provide a rich set of physical environment 

variables for each TAZ.9 These physical environment variables include:  

1) Zonal land-use structure variables, including housing type measures (fractions of single family, 

multiple family, duplex and other dwelling units), land-use composition measures (fractions of 

zonal area in residential, commercial, and other land-uses), and a land-use mix diversity index 

computed as a fraction based on the land-use composition measures with values between 0 and 1 

(zones with a value closer to one have a richer land-use mix than zones with a value closer to 

zero; see Bhat and Guo, 2007 for detailed explanation on the formulation of this index). 

2)  Zonal size and density measures, including total population, number of housing units, 

population density, household density, and employment density by several employment 

                                                 
8 A physically active episode requires regular bodily movement during the episode, while a physically passive episode 
involves maintaining a sedentary and stable position for the duration of the episode. For example, playing basketball or 
walking around the neighborhood would be a physically active episode, while watching television constitutes a 
physically passive episode. The designation of an episode as physically active or physically passive was based on the 
nature of the episode and the location type at which it is pursued, as reported in the survey. Thus, an episode designated 
as “recreation” by a respondent and pursued at a health club is labeled as physically active. Due to space constraints, we 
are unable to provide a detailed description of the activity episode classification procedure. Interested readers may obtain 
the procedure from the authors. 
9 The use of a TAZ as a spatial unit of resolution for computing physical environment variables is admittedly rather 
coarse. Future studies should consider more micro-scale measures to represent physical environment variable effects.  



18 

categories, as well as dummy variables indicating whether the area corresponds to a central 

business district (CBD), urban area, suburban area, or rural area. 

3) Regional accessibility measures, which include Hansen-type employment, shopping, and 

recreational accessibility indices that are computed separately for the drive and transit modes. 

4)  Zonal ethnic composition measures, constructed as fractions of Caucasian, African-American, 

Hispanic, Asian and other ethnic populations for each zone.  

5)  Zonal demographics and housing cost variables, including average household size, median 

household income, and median housing cost in each zone. 

6) Zonal activity opportunity variables, characterizing the composition of zones in terms of the 

intensity or the density of various types of activity centers. The typology used for activity centers 

includes five categories: (a) maintenance centers, such as grocery stores, gas stations, food 

stores, car wash, automotive businesses, banks, medical facilities, (b) physically active 

recreation centers, such as fitness centers, sports centers, dance and yoga studios, (c) physically 

passive recreational centers, such as theatres, amusement centers, and arcades, (d) natural 

recreational centers such as parks, gardens, and e) restaurants and eat-out places. 

7) Zonal transportation network measures, including highway density (miles of highway facilities 

per square mile), local roadway density (miles of roadway density per square mile), bikeway 

density (miles of bikeway facilities per square mile), street block density (number of blocks per 

square mile), non-motorized distance between zones (i.e., the distance in miles along walk and 

bicycle paths between zones), and transit availability. The non-motorized distance between 

zones was used in the empirical analysis to develop an accessibility measure by non-motorized 

modes, computed as the number of zones (a proxy for activity opportunities) within “x” non-

motorized mode miles of the teenager’s residence zone. Several variables with different 

thresholds for “x” were formulated and tested. 

 

4.2.3 Spatial Correlation Variables 

Among the secondary data sets, the land use coverage data were used to obtain variables to 

characterize spatial correlation patterns across observational units (these are the elements of the sqk 

vector in Section 3). Specifically, Geographic Information System (GIS) procedures were 

implemented to compute measures that may contribute to spatial correlation in physical activity 

choices between each pair of observational units (teenagers in the current application). These 
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included (1) whether or not two teenagers reside in the same TAZ, (2) whether or not two teenagers 

reside in contiguous TAZs, (3) the boundary length of the shared border between the residence zones 

of two teenagers, and 4) several functional forms of the distance between the residence TAZ activity 

centroids of the two teenagers, such as inverse of distance, square of inverse of distance, and 

distance “cliff ” measures (the latter form essentially allows the spatial correlation between two 

teenagers to go to zero beyond a certain distance threshold).10  

 

5.  MODEL RESULTS 

5.1 Variable Specification  

Several variable specifications and functional forms were considered in the model.  These included 

(1) teenager demographics (age, sex, race, driver’s license holding, physical disability status, etc.), 

(2) household demographics (number of adults, number of children, household composition and 

family structure, household income, dwelling type, whether the house is owned or rented, etc.), (3) 

activity-day variables (season of the year, day of week, rain-fall, etc.), (4) physical environment 

measures (see Section 4.2.2), and (5) spatial correlation variables (see Section 4.2.3). In addition, 

several interaction effects of the variables were considered. 

The final model specification was based on intuitive considerations, insights from previous 

literature, parsimony in specification, and statistical fit/significance considerations. The final 

specification includes some variables that are not highly statistically significant, because of their 

intuitive effects and potential to guide future research efforts in the field.  

 

5.2 Estimation Results 

Table 1 presents the estimation results for teenagers’ weekday physical activity participation choice. 

The coefficients provide the effects of variables on the latent propensity to participate in physical 

activity. The second main column provides the aspatial binary logit (ABL) model results, while the 

third main column presents the copula-based spatially correlated heteroscedastic binary logit model 

(SCHBL) results. Overall, the parameter estimates for the two models have the same sign (except  

the presence of bicycle variable), though the asymptotic t-statistic values of several determinants of 

                                                 
10 Due to privacy considerations, we do not have the point coordinates of each teenager’s residence. We only have the 
TAZ of residence of each teenager. Thus, for two teenagers in the same zone, we assigned a distance that was one-half of 
the distance between that zone and its closest neighboring zone.  
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physical activity are much improved in the SCHBL relative to the ABL model. This may be 

attributed to the increased efficiency from accounting for spatial correlation among teenagers’ 

physical activity choices in the SCHBL model.  

In the next few sections, we discuss the estimation results by variable category, discussing 

differences in the results among the ABL and SCBHL models.  

 

5.2.1 Individual Demographics 

The effect of individual demographics indicates that, among teenagers, males are more likely to 

participate in physical activity than females, a result also found in other public health studies (see, 

for example, Mhuircheartaigh, 1999). This variable is statistically significant at beyond the 5% level 

in the SCHBL model, but not in the ABL model. The race variables suggest that Caucasian and 

Hispanic teenagers have a higher propensity to partake in physical activity relative to African 

Americans, Asians, and other ethnic groups (see Sallis et al., 2000 and Sener et al., 2008, for similar 

results). Both the race variables are statistically significant at the 10% level in the SCBHL model, 

though this is true only for the Caucasian variable in the ABL model.  

The final variable in the category of individual demographics indicates that teenagers with a 

driver’s license are more likely (than those without a driver’s license) to participate in physical 

activity, presumably due to less dependency on others to access physical activity opportunity 

locations. Perhaps, an appropriate policy strategy to increase the physical activity participation 

among non-driving teenagers would be to improve accessibility to activity opportunity centers 

and/or natural parks, as well as improving the neighborhood in terms of walking/cycling facilities 

(see Hoefer et al., 2001 and Sjloie and Thuen, 2002). Interestingly, we also considered age variables 

in the specification to examine if physical activity participation among teenagers drops off with age 

as suggested by some earlier studies, but did not find any such statistically significant effects.  
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5.2.2 Household Demographics 

The household demographic variable effects reflect the higher prevalence of physical activity 

participation among teenagers living in large families, possibly due to increased opportunities for 

joint physical activities with siblings and/or parents. We also examined if the type of household 

members (i.e., number of children, active adults, and senior adults) had an impact, but the results 

suggested no differential impacts among these categories of household members after controlling for 

the household structure effects, as discussed next. Teenagers living in single parent households are 

more likely to be physically active compared to those in other household structure types (nuclear 

families, roommate families, and joint families with several adults), a result that needs to be further 

explored. Finally, the coefficient on the “Presence of bicycle” variable has opposite signs in the ABL 

and SCHBL models, with the sign being intuitive in the SCHBL model though significant only at the 

20% level. The corresponding result from the ABL model is counter-intuitive, though also 

insignificantly different from zero. Interestingly, we did not find any statistically significant effects 

of household income and household car ownership on the physical activity levels of teenagers.  

 

5.2.3 Household Location and Season Variables  

The next set of variables in Table 1 indicates the impact of household location and season variables. 

The results show a higher tendency to pursue physical activity among teenagers residing in San 

Francisco county compared to the rest of the counties in the region (i.e. San Mateo, Santa Clara, 

Alameda, Contra Costa, Solano, Napa, Sonoma, and Marin counties), though this effect is significant 

only at the 20% level in the SCHBL model. The seasonal variables imply that the summer and fall 

seasons correspond to higher levels of physical activity participation among teenagers in the San 

Francisco Bay area (see Sener and Bhat, 2007 for similar seasonal variations). This may be a result 

of more time availability in the summer, and temperate weather conditions in the summer and fall, 

for physically active outdoor pursuits.  

 

5.2.4 Zonal Structure, Density, and Race Composition Variables  

In addition to the demographic, location, and season-related variables, the built environment and 

race composition measures identified in Section 4.2.2 were also considered in the model 

specification. Many of these variables did not turn out to be statistically significant at the 15% level 



22 

or lower in the SCHBL model, and hence do not appear in Table 1. The insignificance of several 

variables in this category can be attributed to the high correlation among these variables.11  

The effect of the zonal structure and density variables in Table 1 show that there is higher 

propensity to participate in physical activity among teenagers residing in zones with a high share of 

multi-family units, though this effect is tempered if the teenager is in a high household density 

neighborhood. The first result may be a reflection of more opportunities for joint physical activity 

participation with peers and other individuals in neighborhoods with a high share of multi-family 

units, while the second result is perhaps related to the lack of open space in areas of high household 

density that may discourage physical activity (see Copperman and Bhat, 2007a).  

Among the zonal ethnic composition measures, the negative sign on the “fraction of African-

American population” reveals that teenagers living in an area with a high percentage of African-

American population are less likely to participate in physical activity relative to teenagers in other 

areas. Gordon-Larsen et al. (2005; 2006) also find similar results and suggest that this is due to poor 

neighborhood quality, and lack of good recreational facilities in areas with a high fraction of 

African-American population. Our results also indicate higher levels of physical activity 

participation among teenagers residing in highly populated Asian areas, though this result is not very 

statistically significant even in the SCHBL model. Interestingly, the race composition variables are 

not at all significant in the ABL model. 

 

5.2.5 Zonal Activity Opportunity, Housing Cost, and Transportation Network Variables 

As expected, the number of physically active recreation centers such as fitness centers, sports 

centers, dance, and yoga studios in a zone has a positive influence on the physical activity levels of 

teenagers residing in that zone, indicating that, as suggested by Trost et al. (1997), an effective 

policy to increase physical activity among teenagers would be to facilitate more opportunities for 

community-based physical activity outlets including sport/fitness programs, summer parks, and 

recreation programs.12 The zonal housing cost variable has a positive impact on the physical activity 

                                                 
11 The following discussion of the effects of built environment measures should be viewed with some caution, since we 
have not considered potential residential self-selection effects. That is, it is possible that highly physically active families 
self-select themselves into zones with built environment measures that support their active lifestyles (see Bhat and Guo, 
2007 and Bhat and Eluru, 2008 for methodologies to accommodate such self-selection effects).  
12In addition to the number of activity opportunities, we also considered the presence of activity opportunities in the 
zone as well as accessibility to shopping, recreation, and employment opportunities. But these variables did not turn 
out to be statistically significant after including the number of opportunities.   



23 

levels of teenagers, perhaps because of better recreational opportunities in such zones (Lacar et al., 

2000 and Gordon-Larsen et al., 2005 also find a similar result). Finally, the transportation network 

measure effects emphasize the positive influence of good bicycle facilities and walk/bicycle 

accessibility to activity opportunities on physical activity levels. This suggests that urban and 

transportation planners should consider the provision of well designed bicycle paths, and the design 

of dense, mixed land-use, neighborhoods as a means to increase physical activity levels of teenagers 

(Krizek et al., 2004 also discuss the importance of community design on the physical activity 

participation of the youth). The reader will note that the bicycle density variable is not significant in 

the ABL model, while it is statistically significant at about the 5% level of significance in the 

SCBHL model. 

 

5.3. Heteroscedasticity, Spatial Dependency, and Data Fit  

This section presents the parameter estimates characterizing heteroscedasticity and spatial 

correlation in the SCHBL model, and discusses data fit measures for the ABL and SCHBL models. 

 

 5.3.1 Heteroscedasticity 

The SCBHL model accommodates heteroscedasticity in the variance of the error term across 

individuals due to both individual attributes as well as spatial residence zone attributes.  In the 

current application, only three variables turned out to be statistically significant in influencing 

heteroscedasticity, including two household attributes and one built environment measure. Note that 

the estimates reported in the table correspond to the λ  vector in Equation (13). The results indicate  

a much tighter variation (i.e., less spread) in the propensity to be physically active among teenagers 

who (1) live in single parent households, (2) belong to households owning a bicycle, and (3) live in 

areas with a high share of multi-family units. Specifically, the scale parameter is normalized to 1 for 

teenagers in non-single parent family households with no bicycles in the household and living in 

single-family dwelling units, but is statistically significantly smaller for other teenagers. For 

instance, if we consider the pool of teenagers in a single parent family with no bicycles in the 

household and living in a zone with no multi-family dwelling units, the scale parameter estimate is 

exp(–2.177) = 0.11 (with a standard error estimate of 0.06), while the corresponding value for 

teenagers in a non-single parent family with bicycles in the household and living in a zone with no 

multi-family dwelling units is exp(–0.305) = 0.73 (with a standard error estimate of 0.18).   
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In combination with the direct positive influence of the single parent, presence of bicycle, 

and fraction of multi-family dwelling unit variables on the physical activity propensity, as discussed 

in earlier sections, the overall implication is that teenagers in single parent households with a 

bicycle, and living in areas with a high share of multi-family units, are uniformly more likely to 

participate in physical activity. The estimates of the ABL model, which ignores such 

heteroscedasticity, are therefore inconsistent.  

 

5.3.2 Spatial Correlation Effects 

In addition to heteroscedasticity, the SCBHL model also incorporates spatial correlation across 

observational units. In this regard, several spatial variables and functional forms of these variables 

were considered to accommodate spatial correlation across teenagers’ propensity to participate in 

physical activity (see Section 3). The best specification included a single “inverse of distance” 

variable in the qks  vector of Equation (12). The corresponding δ  coefficient on this variable is 

reported in Table 1, and has a value of 3.862 (with a standard error estimate of 2.13). Given the 

range of the distance between teenagers’ residences in the sample, this results in qkθ  values (see 

Equation (12)) that range from 0.252 (for two teenagers located 141 miles apart) to 0.997 (for two 

teenagers located 0.14 miles apart), with a mean value of 0.590. The corresponding range of 

Spearman’s correlation between the physical activity propensities of teenagers is from 0.075 to 

0.303, with a mean correlation coefficient of 0.180. Table 2 provides the estimated qkθ  and 

correlation coefficient values for pairs of teenagers located (in terms of their residences) at different 

distances from each other. The table also provides the share of teenager pairs in the sample for each 

distance value. The asymptotic t-statistics for  qkθ  and the correlation coefficient for each distance 

value are computed for the null hypothesis of no dependence (i.e., qkθ = 0 and the correlation is 

zero).13 The results show, as expected, the correlation decay with distance. As importantly, the 

correlation values are statistically significant at about the 10% level (for a one-tailed t-test) up to a 

distance of about 35 miles. The share of teenage pairings within 35 miles is 50.6%, indicating that 

spatial correlation is present and statistically significant for a high fraction of teenage pairings. The 

                                                 
13 The standard errors for θqk and the correlation coefficient are computed based on the standard error of the estimated δ 
coefficient using the familiar “delta” method for the asymptotic distribution of a nonlinear function (see Greene, 2000, 
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aspatial binary logit (ABL) model ignores these spatial correlations, and so it is not surprising that 

the spatially correlated heteroscedastic binary logit (SCHBL) model provides more efficient 

parameter estimates (as discussed in Sections 5.2.1 through 5.2.5).   

 

5.3.3 Overall Likelihood-Based Measures of Fit 

The data fit of the ABL and SCHBL models may be compared formally using likelihood ratio tests. 

The log-likelihood value at convergence for the ABL model is –318.3, while that for the SCHBL 

model is –308.3. The likelihood ratio test for testing between these two models is 20.1, which is 

larger than the critical χ2 value with 4 degrees of freedom at any reasonable level of significance, 

confirming the importance of accommodating heteroscedasticity and spatial correlation when 

modeling physical activity participation choice of teenagers. Further, the log-likelihood value for the 

model with only heteroscedasticity is –310.8. The likelihood ratio between this model and the ABL 

model yields a value of 15, which is again larger than the critical χ2 value with 3 degrees of freedom 

at any reasonable level of significance, rejecting the null hypothesis of absence of heteroscedasticity. 

Finally, a comparison of the SCHBL model and the model with only heteroscedasticity yields a 

likelihood ratio test value of 5, indicating that the null hypothesis of the absence of spatial 

correlation can be rejected at the 2.5% level of significance. Overall, the likelihood ratio tests show 

that heteroscedasticity and spatial correlation are both individually and jointly statistically 

significant.  

 

5.4 Aggregate-Level Elasticity Effects 

The parameters on the exogenous variables in Table 1 do not directly provide the magnitude of the 

effects of the variables on the probability of teenagers’ physical activity participation. Further, the 

parameters in the ABL and SCHBL models cannot be directly compared because the SCHBL model 

allows heteroscedasticity across individuals. To address these issues, we compute the aggregate-

level “elasticity effects” of each variable. In particular, to compute the aggregate-level elasticity of a 

dummy exogenous variable (such as the “male” variable), we change the value of the variable to one 

for the subsample of observations for which the variable takes a value of zero and to zero for the 

subsample of observations for which the variable takes a value of one. We then sum the shifts in 

                                                                                                                                                             
page 120). The asymptotic t-statistics for θqk and the correlation coefficient are identical because the correlation 
coefficient is a simple linear function of θqk. 
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expected aggregate shares in the two subsamples after reversing the sign of the shifts in the second 

subsample, and compute an effective percentage change in the expected aggregate share of teenagers 

participating in physical activity due to a change in the dummy variable from 0 to 1. On the other 

hand, to compute the aggregate level elasticity effect of an ordinal variable (such as household size), 

we increase the value of the variable by 1 and compute a percentage change in the expected 

aggregate share of teenagers participating in physical activity. Finally, the aggregate-level “arc” 

elasticity effect of a continuous exogenous variable (such as fraction of multi-family dwelling unit) 

is obtained by increasing the value of the corresponding variable by 10% for each individual in the 

sample, and computing a percentage change in the expected aggregate share of teenagers 

participating in physical activity  due to the increase in the continuous variable.  

 The elasticity effects by variable category and for both the ABL and SCHBL models are 

presented in Table 3. The numbers in the table may be interpreted as the percentage change in the 

share of teenagers participating in physical activity. For instance, the first number “12.93” 

corresponding to the “male” variable in the ABL model indicates that the share of male teenagers 

participating in physical activity is about 13% higher than the share of female teenagers participating 

in physical activity. Similarly, the number “34.07” corresponding to the “household size” variable in 

the ABL model reflects that an increase in household size by 1 leads to a 34% increase in the level 

of teenager participation in physical activity, while the number “1.33%” for the effect of the “zonal 

fraction of multi-family dwelling units” implies that teenager physical activity participation levels 

increase by 1.33% due to a 10% increase in the zonal fraction of multi-family dwelling units. 

The elasticity results provide several insights. First, among the demographics and 

locational/seasonal variables, seasonality (whether the season is fall or not) constitutes the most 

important factor influencing teenagers’ physical activity participation levels, followed by family 

structure (whether the teenager is part of a single parent family or not). This suggests that public 

health policies aimed at encouraging year-round teenager physical activity participation should focus 

on providing more indoor recreational activity opportunities at affordable cost during the non-fall 

seasons in general, and the winter and spring seasons in particular. Also, the result related to family 

structure needs further exploration. Perhaps teenagers in single parent families are more independent 

and have a less-structured activity schedule because of the multiple responsibilities shouldered by 

single parents. Conversely, it may be that teenagers in two-parent (and other non-single parent) 

households have less independence and feel more “monitored”, contributing to less opportunity for 
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physically active free play. Overall, there is a suggestion that physical activity participation may be 

related to independence and empowerment within the household. The behavioral dynamics of 

interpersonal interactions and how they manifest themselves in physical activity participation is a 

research topic that should benefit from joint collaborative research efforts by sociologists, public 

health researchers, and transportation professionals. 

Second, among the built environment measures, the two major factors determining teenagers’ 

physical activity participation levels are zonal household density and the number of zones accessible 

within four non-motorized mode miles, suggesting that policies to provide planned open spaces in 

high density neighborhoods and increased accessibility by walk/bicycle modes have the potential to 

increase teenager physical activity levels. However, teenager physical activity levels appear to be 

quite inelastic to built environment changes.  

Third, there are differences in the elasticity effects between the ABL and SCHBL models. 

This, combined with the better data fit of the SCHBL model, points to the inconsistent elasticity 

effects from the ABL model. For instance, the ABL model underestimates gender differences and 

family structure differences in physical activity participation levels among teenagers, and 

overestimates the impact of residing in San Francisco County. Further, the ABL model predicts that 

teenager physical activity participation levels in the pool of households owning bicycles is 15% less 

than that in the pool of households not owning bicycles. This result is rather unintuitive. The 

SCHBL model, on the other hand, shows a marginally higher level of physical activity participation 

among teenagers in households with bicycles. Thus, ignoring spatial effects, when present, can lead 

to inconsistent estimation of variable effects that, in turn, can lead to misinformed policy actions and 

recommendations. 

 

   

6. CONCLUSIONS 

Spatial dependence is rather ubiquitous in many choice decisions in geography, transportation, 

political science, economics, and other social sciences. The current methods to address such 

dependence range from (1) ignoring the dependence entirely to (2) sampling from the data 

systematically to reduce the dependence among observations to (3) accommodating the full spatial 

dependency using simulation techniques. The first approach is known to produce inconsistent and 

inefficient estimates in the presence of spatial heteroscedasticity and correlation. The second 
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approach is inefficient because it reduces the size of the available data for estimation. The third 

approach considers the full spatial specification explicitly, but the techniques are too 

computationally intensive and not feasible for sample sizes of the type frequently encountered in 

practice.  

In the current paper, we propose a new copula-based approach that adopts the full spatial 

specification approach. In contrast to current full spatial specification methods, our approach is 

based on a spatial logit structure rather than a spatial probit structure. The dependence between the 

logistic error terms of different observational units is directly accommodated using a multivariate 

logistic distribution based on the Farlie-Gumbel-Morgenstein (FGM) copula. The approach 

represents a simple, powerful, technique that results in a closed-form analytic expression for the 

joint probability of choice across observational units, and is straightforward to apply using a 

standard and direct maximum likelihood inference procedure. There is no simulation machinery 

involved, leading to substantial computation gains relative to current methods. The method is 

computationally tractable even for a high number of observational units. In addition to 

computational efficiency gains, there is another more basic reason to prefer the closed-form copula-

based spatial logit model over the extant spatial probit model. This is related to the fact that closed-

form analytic structures should be used whenever feasible, because they are always more accurate 

than the simulation evaluation of analytically intractable structures (see Train, 2003; pg. 191). Of 

course, one issue with our spatial logit approach is that the correlation between observations is 

limited to moderate levels. However, in the typical context of spatial structure-based dependence, 

where the correlation between observational units drops off sharply with geographic distance, the 

correlation range of the FGM logistic distribution is not likely to be too limiting.  

In the current paper, we demonstrate an application of the model to teenagers’ physical 

activity participation levels, a subject that is of considerable interest in the public health, 

transportation, sociology, and adolescence development fields. The data for the analysis is drawn 

from the 2000 San Francisco Bay Area Survey, supplemented with several other sources to obtain 

measures of built environment determinants. The empirical results indicate the important effects of 

individual demographics (gender, race, driver license holding), household demographics (family 

structure, household size and presence of bicycle), household location (whether teenager residence is 

in San Francisco County or not), and season of year. Physical environment variables are also 
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statistically significant determinants of teenagers’ physical activity levels, though these variable 

effects are inelastic.  

A comparison of the aspatial binary logit (ABL) model and the spatially correlated 

heteroscedastic binary logit (SCHBL) model proposed in the paper indicates the significant presence 

of heteroscedasticity across observations and spatial correlation between teenager pairs. The ABL 

model, which ignores these effects, provides inconsistent and inefficient parameter estimates. The 

SCHBL model also leads to a statistically superior data fit. In addition, the results indicate that 

failing to accommodate heteroscedasticity and spatial correlation can lead to incorrect conclusions 

regarding the elasticity effects of exogenous variables. 

To summarize, this paper introduces a copula-based approach to addressing spatial 

dependency and heteroscedasticity issues in binary choice models. The study, to our knowledge, 

represents the first formulation and application of such an approach for spatial analysis, and 

highlights the power of closed-form techniques for accommodating spatial effects. The authors are 

currently focusing on extending the approach to consider spatial effects in unordered multinomial 

choice models and exploring the use of other more flexible copula structures for incorporating 

spatial effects. 
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Table 1. Estimation Results for Teenagers’ Weekday Physical Activity Participation 

Choice 
 
 

Variables 
(Aspatial) Binary  

Logit Model 

Copula-based Spatially 
Correlated and 

Heteroscedastic Model 

Parameter t-stat Parameter t-stat 

Constant -5.534 -7.45 -3.211 -3.56 

Individual demographics     

Male   0.238   1.18   0.259   2.22 

Caucasian   0.722   2.42   0.320   1.82 

Hispanic   0.457   0.95   0.336   1.72 

Driver’s license   0.661   3.02   0.309   2.23 

Household demographics     

Household size   0.562   5.40   0.275   2.73 

Single parent family   1.264   2.95   1.070   3.35 

Presence of bicycle -0.266 -0.93   0.168   1.35 

Household location and season variables     

San Francisco County   1.309   1.84   0.341   1.36 

Summer   0.816   3.94   0.450   3.28 

Fall   4.265   8.47   2.459   3.37 

Physical environment measures     

Zonal structure, density, and race 
composition variables     

Fraction of multi-family dwelling units 1.100 1.57   0.883   2.66 

Household density -0.308 -3.54 -0.155 -3.32 

Fraction of African-American population -1.299 -0.59 -2.379 -1.65 

Fraction of Asian population  0.152  0.17   0.459   1.49 
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Table 1 (Continued). Estimation Results for Teenagers’ Weekday Physical Activity 
Participation Choice 

 

 

Variables 

(Aspatial) Binary  
Logit Model  

Copula-based Spatially 
Correlated and 

Heteroscedastic Model 

Parameter t-stat Parameter t-stat 

Zonal activity opportunity, housing cost, 
and transportation network variables     

Number of physically active recreation 
centers such as fitness centers, sports 
centers, dance and yoga studios 

 0.031 1.07   0.021   1.68 

Average of median housing value 0.132 2.09   0.052   1.67 

Bicycling facility density (miles of bike 
lanes per square mile) 0.033 0.66   0.035   1.89 

Number of zones within 4 non-motorized 
mode miles14 0.032 2.16   0.019   2.54 

(Spatial) heteroscedasticity variables      

Single parent family --- --- -2.177 -3.95 

Presence of bicycle --- --- -0.305 -1.23 

Fraction of multi-family dwelling units --- --- -0.982 -2.02 

Spatial correlation variables (δ) in the θ 
parameter     

Inverse of distance between zonal centroids --- ---   3.862   1.81 

Number of Observations 722 722 

Log-likelihood at convergence -318.323 -308.273 

 

                                                 
14 The non-motorized distance between zones, which is computed based on the actual bike/walk way, was used in the 
empirical analysis to develop an accessibility measure by non-motorized modes, computed as the number of zones (a 
proxy for activity opportunities) within “x” non-motorized mode miles of the teenager’s residence zone. Several variables 
with different thresholds for “x” were formulated and tested. 
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Table 2. Spatial Correlation Patterns in Physical Activity Propensity 
 

Distance between 
teenagers  
(in miles) 

Cumulative share of 
teenagers within 
specified distance 

qkθ  
Spearman’s 
correlation 
coefficient 

t-stat* Estimate Estimate 

0.1 0.0 0.998 0.303 223.3 

1.0 0.4 0.979 0.298 22.8 

5.0 2.9 0.905 0.275 4.9 

10.0 7.8 0.827 0.251 2.7 

15.0 15.1 0.760 0.231 2.0 

20.0 23.1 0.704 0.214 1.6 

25.0 32.1 0.655 0.199 1.4 

35.0 50.6 0.576 0.175 1.1 

50.0 72.4 0.488 0.148 0.9 

100.0 98.8 0.322 0.098 0.7 

150.0 100.0 0.241 0.073 0.6 

 
*The t-statistic values apply to both the θqk and the correlation coefficient estimates.  

 
 

 



39 

 
Table 3. Aggregate-level Elasticity Effects 

 

Formulation of the 
Change on the 

Variable 

(Aspatial) 
Binary Logit 

Model 

Copula-based 
Spatially Correlated 
and Heteroscedastic 

Model 
Individual socio-demographics  
Male changed from 0 to 1 12.93 25.90 
Caucasian changed from 0 to 1 36.33 29.63 
Hispanic changed from 0 to 1 26.86 36.72 
Driver's license changed from 0 to 1 37.85 31.61 

Household socio-demographics    
Household size increased by 1 34.07 30.72 
Single parent family changed from 0 to 1 82.22 137.63 
Presence of bicycle changed from 0 to 1 -15.02 1.10 

Household location variables    
San Francisco changed from 0 to 1 87.46 38.62 

Seasonal variables    
Summer changed from 0 to 1 45.53 47.94 
Fall changed from 0 to 1 274.37 243.60 

Zonal structure, density, and race 
composition variables  

  

Fraction of multi-family dwelling units increased by 10% 1.33 1.48 

Household density increased by 10% -3.99 -4.69 

Fraction of African-American 
population 

increased by 10% -0.29 -0.95 

Fraction of Asian population increased by 10% 0.13 0.90 

Zonal activity opportunity, housing 
cost, and transportation network 
variables 

   

Number of physically active recreation 
centers such as fitness centers, sports 
centers, dance and yoga studios 

increased by 10% 0.50 0.62 

Average of median housing value increased by 10% 2.99 2.33 

Bicycling facility density (miles of bike 
lanes per square miles) 

increased by 10% 0.42 1.01 

Number of zones within 4 non-
motorized mode miles 

increased by 10% 2.82 3.63 

 


