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ABSTRACT 
In this paper, we estimate a joint household-level model of the number of vehicles owned by the 
household, the vehicle type choice of each vehicle, the annual mileage on each vehicle, as well 
as the individual assigned as the primary driver for each vehicle. A version of the proposed 
model system currently serves as the engine for a household vehicle composition and evolution 
simulator, which itself has been embedded within the larger SimAGENT (for Simulator of 
Activities, Greenhouse emissions, Energy, Networks, and Travel) activity-based travel and 
emissions forecasting system for the Southern California Association of Governments (SCAG) 
planning region.  
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1. INTRODUCTION 
In regional travel modeling and simulation, the combination of the number of vehicles owned by 
a household, the type choice (defined as combination of body type and vintage) of the vehicles, 
and the usage (miles traveled) of the vehicles are important on-road vehicular travel 
determinants of greenhouse gas (GHG) emissions, fuel consumption, and pollutant emissions (1, 
2). In the state-of-the-art practice, when TDMs are interfaced with EPA’s MOBILE6 or the 
recently released MOVES model or the EMFAC model in California for emissions forecasting, 
default values (percent of vehicles in each of specified technology classes) are used to represent 
the VMT mix. The use of default values offers simplicity; however, these default values may not 
reflect local conditions with respect to vehicle fleet composition. Even if they do, there is no 
basis to forecast future vehicle fleet composition in response to changes in such factors as fuel 
prices, socio-economic shifts (for example, aging of the US population), and policy decisions 
(for example, allowing vehicles attaining a certain fuel efficiency to use high-occupancy vehicle 
or HOV lanes).1 Besides, there is increasing interest in, and legislative initiatives to, proactively 
influence the regional fleet mix of vehicles through environmental policies aimed at reducing 
pollutants and greenhouse gas emissions (for example, CARB (3)), calling for models of 
household vehicle fleet composition.  Of course, in addition to the need for household vehicle 
fleet models to better improve the ability to forecast regional fleet mix and use, such models are 
also fundamentally important for travel demand modeling and transportation policy analysis.  
 To be sure, the importance of modeling household vehicle fleet choices has been 
recognized for several decades now, though the urgency in terms of GHG emission and fossil-
fuel energy dependence is definitively more recent. Also, until recently, studies were hampered 
by the availability of computationally efficient and econometrically appropriate methodological 
tools to jointly forecast the number of vehicles owned by a household as well as the vehicle types 
of each of the vehicles. For instance, most earlier studies have either (a) focused on the vehicle 
type characteristics of the most recently purchased or the most driven household vehicle (4, 5), 
or (b) confined attention to vehicle type characteristics of the most frequently used vehicle (6), or 
(c) examined ownership and vehicle type choices for only households with two vehicles or less 
to reduce the number of possible vehicle type combinations (7-10), and even then using 
aggregate classifications of vehicle types such as car versus non-car or sports utility vehicles 
(SUV) versus non-SUV vehicles. A few of these studies have also considered the amount of use 
(annual mileage) of each household vehicle (7, 10, 11).  

Within the broad context of the methodological challenge of modeling all dimensions of 
all vehicles owned by a household, as just discussed, Bhat and colleagues (12, 13) recently 
proposed the use of a flexible multiple discrete-continuous extreme value model (MDCEV) 
model. The MDCEV model has a simple closed form structure for the probability expressions, 
and allows the choice of multiple alternatives jointly. Thus, a disaggregate vehicle typology can 
be used without much problems in the MDCEV approach, while doing so is virtually impossible 
in the traditional choice models because of the explosion in the number of choice alternatives for 

                                                            
1The FHWA offers some guidance on how default values on vehicle mix distributions can be adjusted using local 
vehicle registration data and vehicle classification counts 
(http://www.fhwa.dot.gov/environment/conformity/emission/emismeth7.htm). But these values are still aggregate-
level numbers that offer little for forecasting future vehicle fleet composition.  
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multiple vehicle households.2 The MDCEV model also incorporates the notion that households 
own and use different vehicles for different functional purposes as well as to accommodate 
different preferences of individuals within a household. As such, the MDCEV model framework 
offers an elegant, theoretically consistent, and econometrically integrated approach to model 
vehicle ownership, vehicle type, and vehicle usage decisions, and all of them simultaneously (see 
Feng et al. (10) for a discussion of the importance of doing so).  
 In this paper, we discuss efforts to estimate MDCEV-based household vehicle type 
choice and use model for the State of California. An important distinction between our current 
effort and earlier household vehicle holdings research, in addition to differences relating to 
methodology and the comprehensiveness of modeling vehicle types in a household, is that our 
vehicle ownership and type choice model serves as the engine for a household vehicle 
composition and evolution simulator, which itself has been embedded within the larger activity-
based travel and emissions forecasting system labeled as SimAGENT (for Simulator of 
Activities, Greenhouse emissions, Energy, Networks, and Travel) developed for the Southern 
California Association of Governments (SCAG) region (see Goulias et al. (15) for an overview).  

 In the process of the integration discussed above, another unique aspect of our model is 
that we jointly estimate the household vehicle fleet characteristics as well as identify a member 
of the household who will be the primary driver for each of the vehicles. This emphasis on the 
primary driver assignment is important for two reasons. First, household decisions of what body 
type and vintage of vehicles to own, and who the primary drivers would be for each vehicle, are 
not made independently. For instance, women of driving age, in general, may prefer newer 
vintage vehicles than men (as our own empirical results will show). Similarly, a household with 
a working couple and two children may prefer to get a car for the husband (i.e., the husband is 
the primary driver of the car) and an SUV for the wife since the wife is likely to be primarily 
responsible for child-care (see (16)). Another example would be parents deciding whether and 
what type of vehicles to provide their teenage children. Some may prefer to provide the old 
“hand-me down” vehicle to their child and get a new vehicle, while others may overrule the 
preferences of their child for a sporty vehicle and purchase a new mid-sized sedan with 
substantial safety features. In all these instances, the preferences of each driving age individual, 
the anticipated activity-travel patterns of individuals, and the types of vehicles parents may want 
to provide for their teenage children will all certainly feature in the discussions at the household-
level of what type of vehicles to own. Second, the assignment of a primary driver for each 
vehicle owned by a household enables us later in SimAGENT to assign a vehicle to each trip 
made by the household (we discuss this issue later in the conclusions section). The explicit trip-
vehicle pairing enables us to develop a time-space vehicle use profile and associated vehicular 
emissions at the fine spatial and temporal resolution of SimAGENT. Overall, and considering 
that many metropolitan planning organizations (MPOs) and state agencies are moving toward 
activity-based models, the primary driver allocation will increasingly become a central 
behavioral consideration to produce more accurate travel and emissions forecasts. 
 
                                                            
2 For instance, in the empirical analysis of the current paper, there are 54 vehicle types. This would lead to a total of 
1486 alternative vehicle type choice bundles (including the no vehicle alternative) in the traditional choice models 
even if the analysis is confined to households with two or fewer vehicles. Extending the analysis to all households 
(with no restriction on the number of vehicles) would lead to a total of 6,564,834,826 choice bundles in the 
empirical sample of the current study. Note also that one cannot use a random sampling approach in estimation even 
if the restrictive multinomial logit model is used, because of the joint nature of the discrete (vehicle type) and 
continuous choices (amount of use of each vehicle) (see Bento (14)).  
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2. METHODOLOGY 
The joint MDCEV-MNL model is briefly discussed in this section. For notational simplicity, we 
suppress the index for the household throughout the discussion. Let K be the different vehicle 
types (characterized by a combination of body type, size, and vintage) that a household can own. 
Also, let the different vehicle types be defined such that households own no more than one 
vehicle of each type (this may be achieved by defining the vehicle types in disaggregate body 
type, size, and vintage categories such as small SUV-new, small SUV 2-3 years old, small SUV 
3-4 years old, mid-sized SUV-new, and mid-sized SUV 2-3 years old).3 With this 
characterization of vehicle types, K effectively represents the total number of vehicles a 
household can possibly own. If a household owns a particular vehicle type, this vehicle type may 
be assigned to any one of the drivers in the household.4 Let km  be the annual mileage of each 
vehicle type k (k = 1, 2, …, K) and let l be the index for drivers in the household (l=1, 2, …, N). 
Let lkW  be the utility perceived by the household from assigning vehicle type k to driver l as the 
primary driver (this basically is a combination of individual l’s preferences for vehicle type k and 
the household’s overall assessment of the value of holding vehicle type k and assigning it to 
driver l).  Moreover, consider that all the households have a non-zero non-motorized mileage (as 
discussed later in Section 3). In our model, we consider the “non-motorized mode” as being the 
first vehicle “type”, which then makes the total household motorized annual mileage endogenous 
to the formulation.5 The underlying utility function that the household maximizes can be written 
as (see (17)): 
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annual mileage across all the k vehicle types (including non-motorized travel; M is determined in 
an earlier step in SimAGENT), lkδ  is a dummy variable that takes a value of 1 if the lth member 
is the primary driver for vehicle type k, and kα is the satiation parameter that influences the rate 
of diminishing marginal utility from using vehicle type k . 

Given that there can only be one primary driver for each vehicle type, the household, if it 
chooses to own vehicle type k, will assign that vehicle to driver l so that there is maximum utility 
from that assignment. The utility expression in Equation (1) can thus be rewritten as: 
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3 In fact, the definition of the vehicle types (as characterized by body type, body size, and vintage) can always be 
constructed in such a way that there are no households with multiple vehicles of the same type. But, in practical 
modeling, a balance is warranted between the number of vehicle type categories and the percentage of households 
accommodated through the MDCEV modeling structure, as discussed further in Section 3.  
4 SimAGENT considers all individuals with a driver’s license as a candidate for assignment as a primary driver for a 
vehicle (a module in an earlier demographic simulator in SimAGENT determines whether a driving age adult has a 
driver’s license or not).  
5 We do not distinguish between different non-motorized modes (bicycling and walking) in the current analysis, 
because the focus is on motorized travel. 
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The optimization problem above can be solved by forming the Lagrangian and applying 
the Kuhn-Tucker conditions. Keeping the non-motorized alternative to which the household 
always allocates a non-zero mileage as the base alternative, the Kuhn-Tucker conditions may be 
written as (17): 

1HHk =  if 0* >km                  (3) 
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where kxβ ′  is the overall observed utility component of vehicle type k, lkz  is an exogenous 
variable vector influencing the utility of the driver l-vehicle type k pairing, γ  is the 
corresponding coefficient vector to be estimated, and lkε  is an unobserved error component 
representing idiosyncratic preferences of driver l for vehicle type k. We assume that the lkε  
terms are identically Gumbel distributed. But the intrinsic preferences of all drivers in the 
household for vehicle type k may be generally high or generally low. For instance, all drivers in a 
“sporty” lifestyle family may have a higher preference for small vehicles (relative to their 
observationally equivalent peer households), or all drivers in a “luxury-minded” family may 
have a higher preference for large SUVs. This generates correlation (across drivers l) in the error 
terms lkε . Let this correlation be determined by a logsum (or dissimilarity) parameter kθ . Then, 
the distribution function of the error terms of the drivers within a household can be written as:  
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generalized extreme value (MDCGEV) model of Pinjari (18) for the upper level model instead of 
the MDCEV. This is left for future efforts.  
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where kε  is a standard Gumbel distributed random term.  Also, since 0),cov( =′′kllk εε  if kk ′≠ , 
0),cov( =′kk εε . The probability that the household chooses the first Q of K vehicle categories 
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where 1V  and )2( ≥kVk  may be inferred from Equation (7).  
 The conditional probability of member l being the primary driver for vehicle k (k >1), 
given that vehicle k is owned by the household (i.e., )0* >km , can be obtained as6: 
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The unconditional probability that individual ‘a’ is the primary driver for the second vehicle 
type, individual ‘b’ is the primary driver for the third vehicle type, ….individual ‘q’ is the 
primary driver for vehicle type Q, can be written as: 
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The parameters to be estimated include β , γ , and the dissimilarity parameters kθ .  
 
3. DATA SOURCE AND SAMPLE FORMULATION 
We used the residential component of the 2008 California Vehicle Survey data collected by the 
California Energy Commission (CEC) to estimate the vehicle fleet composition and use model of 
this paper (see Paleti et al. (19) for more details on this data).  

The vehicle type alternative in our study is defined as a combination of body type 
(including vehicle size) and vintage. For the MDCEV model, we cannot have households owning 
multiple vehicles of the same type. To ensure this does not happen, we attempted several 
different categorization schemes of vehicle types, while also retaining richness in body type and 
vintage. At the end, we defined nine body type/size categories and six vintage categories, for a 
total of 54 vehicle types, such that no more than 5% of the households have multiple vehicles of 

                                                            
6 The implicit assumption here is that households do not own cars and keep them idle throughout the year.  
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the same vehicle type (we excluded this 5% subset of households from our analysis).7 The 9 
body types/sizes are: (1) Sub-compact car, (2) Compact car, (3) Mid-sized car, (4) Large car, (5) 
Small SUV, (6) Mid-sized SUV, (7) Large SUV, (8) Van, and (9) Pick-up, and the 6 vintage 
categories are: (1) Less than 2 years old, (2) 2 to 3 years old, (3) 4 to 5 years old, (4) 6 to 9 years 
old, (5) 10 to 12 years old, and (6) Older than 12 years (the vintage categories are based on 
taking the difference between the survey year and the reported year of manufacture of the 
vehicle).  Overall, there are a total of 55 alternatives in the MDCEV model - 54 alternatives 
obtained as combinations of nine body types/sizes and 6 vintage categories + one non-motorized 
vehicle “type” category that is always “consumed” (that is, households travel using non-
motorized modes for some positive amount). However, the survey data did not collect 
information about the household’s non-motorized mileage. So, we estimated the non-motorized 
mileage of each household using a deterministic rule that each individual in the household walks 
or bikes for half a mile daily. The total annual non-motorized mileage for a household is 
obtained as 0.5*365*(household size).8  

The final dataset used in the analysis consists of 4711 households. Of these households, 
3.4 % do not own any vehicles, 32.6 % own one vehicle, 45.2 % own two vehicles, 14.6 % own 
three vehicles, and 4.2 % own four or more vehicles. The average number of vehicles per 
household is 1.84. Across all the vehicles in the sample (across all households), the highest 
percentage by body type corresponds to a mid-size car (22.3% of all vehicles), while the lowest 
is for a sub-compact car (3.4%). Overall, half of all vehicles are passenger cars (sub-compact, 
compact car, mid-sized car, and large car). SUVs are the second most preferred body-type, with 
26.2% of households owning an SUV (small, mid-sized, or large). Pick-ups also constitute a 
sizeable fraction, making up 17% of the vehicle fleet. By vintage category, vehicles of 6 to 9 
years old are the most common (26.3% of the total vehicle fleet). The average vintage of vehicles 
in the sample is 7.78 years. On average, a vehicle is driven 13,328 miles annually. Compact cars 
are slightly more driven with an annual mileage of 14,319 miles. Old cars (10 years or older) are 
the least driven, as is reasonable to expect. In terms of the primary driver assignment, 80% of 
pick-up trucks are assigned to a male member of household. For the rest of the body types, the 
                                                            
7 One could use an even more disaggregate classification of the vintage categories, with the result that the vehicle 
types (which are combinations of body type, body size, and vintage) are so disaggregate that households do not own 
more than one vehicle of each vehicle type. While there are no conceptual or implementation issues in doing so 
because of the relative flexibility of the MDCEV model, there is a need here for a trade-off and balance. For 
example, if we wanted to include more than 98% of households in the current analysis, we would have to go to 18 
vintage categories rather than the six being used right now. However, such a very disaggregate vintage classification 
does not provide much additional information for vehicle policy analysis or GHG emissions analysis, and essentially 
becomes simply a device to accommodate more households within the MDCEV modeling scheme. At the same 
time, the number of alternatives rises to 163 alternatives in the MDCEV from the current 54 alternatives, which 
increases the number of parameters to be estimated and reduces econometric efficiency of the estimated parameters. 
So, we prefer to use the MDCEV modeling framework to estimate parameters in a theoretically consistent and 
econometrically efficient manner for the vast majority of households, and then use traditional (and simplistic) 
estimation approaches for the small fraction of remaining households. For instance, for the SCAG implementation, 
we first have a simple binary choice model to separate households into those that do not have multiple vehicles of 
each type within the 54-vehicle type categorization scheme and those that do. Then, the households that do not have 
multiple vehicles of each type are taken through the MDCEV approach to forecast number of vehicles, vehicle type, 
and vehicle usage decisions. For the 5% of households that do have multiple vehicles of the same type within the 54-
vehicle type classification, more disjointed models using traditional single discrete choice methods are estimated and 
applied. 
8 The model results were not sensitive to the mileage value assigned to the non-motorized mode “type”. This 
assignment is simply a devise to be able to apply the MDCEV model.  
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proportion of male primary drivers is more or less the same as that of female primary drivers. Of 
course, these results do not control for other variables, as does our multivariate and joint 
MDCEV-MNL model. 

Several demographic variables are considered in the empirical analysis. For the MDCEV 
estimation, the exogenous variables include household race, household size, number of adults   
(> 15 years of age), household income, number of children in the household by age groups- 0 to 
4 years, 5 to 12 years, 12 to 15 years, number of senior adults (aged more than 65 years), highest 
education level attained among all household members, number of workers, and mean distance 
to work calculated among workers (in miles). For the MNL estimation, individual characteristics 
including age, gender, race, education level, employment status, and distance to work place (in 
miles) are used.   
 
4. EMPIRICAL RESULTS 
In the most general way of specifying the MDCEV model, we can estimate 54 coefficients for 
each covariate. However, estimating such a model is not only practically infeasible but also 
inefficient. Instead, to avoid the explosion in the number of parameters to be estimated, we 
consider the total baseline utility associated for each MDCEV alternative as the sum of 
independent utilities for the body type and vintage dimensions. We also attempted interaction 
effects of variables across the two dimensions, but these did not come out to be statistically 
significant. 

Since only differences in utilities matter, and because of our way of specifying 
dimension-specific utilities, a base category needs to be specified for both the body type and 
vintage dimensions. We used the non-motorized annual mileage as the base category for the 
body type dimension (for ease in presentation, we will refer to the body type/size combination 
dimension simply as the body type dimension from hereon), and the “New” vehicle category 
(less than 2 years old) as the base category for the vintage dimension. This type of formulation 
reduces the number of coefficients to be estimated for each exogenous variable to 14 (9 for body 
type + 5 for vintage type). The effects of exogenous variables can then be calculated by 
combining the appropriate coefficients. For example, for the small SUV which is more than 12 
years old, the total impact of number of workers on the baseline utility can be obtained as: 

years 12 aged worker,# SmallSUVworker,# >+ ββ . The satiation parameters are also specified in a similar 

manner. Specifically, the kα  satiation parameters in Equation (1) are specified as 

( )kk μδ −−+ exp1
1 ,  where the first component kδ  corresponds to the effect originating from the 

body type dimension of vehicle type k, and the second component kμ  originates from the 
vintage dimension of vehicle type k.  The functional form used guarantees that kα is bounded 
between 0 and 1.  

For the MNL estimation, the maximum number of alternatives is 6, which corresponds to 
the maximum number of drivers in any household in the estimation data. But the number of 
alternatives varies across households because of varying numbers of driving-age adults. Further, 
each alternative in the MNL model corresponds to an individual, who is identified by her/his 
characteristics rather than by labels of A or B or C. Thus, this estimation corresponds to that of 
an “unlabelled” estimation, with the alternatives being purely characterized by individual-
associated attributes. 
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4.1 MDCEV Model Results 
Table 1 presents the estimation results of MDCEV component of the final model. As mentioned 
earlier, the non-motorized annual mileage is the base category for the body type dimension and 
“New” (age less than 2 years) is the base category for the vintage dimension. Thus, these 
categories do not appear in Table 1. Further, a “--” in Table 1 indicates that the effect of the 
corresponding variable (described in the column) on the corresponding dimension (as described 
in the rows) is the same as that on the base category. Also, values in parentheses are the t-
statistics corresponding to each parameter estimate. 
 
Household race: We used 5 race variables: (1) African-American, (2) Hispanic, (3) Asian, and 
(4) Caucasian and (5) Other race. The base race constitutes “other races” which are not included 
in above four categories. If all the individuals in the household have the same race, then we 
coded the household race as the race of any of these members. If members in the household were 
of different race groups, the household was assigned to the “other race” category. The results in 
Table 1 show that race has a statistically significant effect on the household’s vehicle holdings. 
African-Americans are likely to own large cars and vehicles that are 4-5 years old, suggesting a 
preference for vehicles in the medium age range. Hispanic households have the same preferences 
as households belonging to the “other” race category. Asian households do not hold preferences 
for any particular body type, but, similar to African-American households, they have a high 
preference for vehicles 4 to 5 years old. Also, Caucasian households are disinclined to own 
compact cars and large SUVs. These results may be reflective of different lifestyle, cultural, and 
attitudinal factors among different races/ethnic groups. 
 
Number of adults (> 15 years of age): Households with many adults have the least preference for 
small SUVs and the highest preference for vans/compact/large cars, results that need further 
exploration in future studies. The negative sign on these coefficients (relative to the base of non-
motorized travel) is simply an artifact of the way the non-motorized travel mileage was created, 
and should not be interpreted in any behavioral sense.  
 
Number of male adults (>15 years of age): This variable provides the marginal utility differential 
between an additional male in the household compared to an additional female adult in the 
household (because of the presence of the number of adults variable earlier). The results indicate 
that males tend to be less drawn toward compact cars and mid-sized SUVs compared to women.  
The general social perception is that SUVs are driven by middle-aged working women with 
children (see (20)), which is consistent with the finding here. Also, the lower preference for 
compact cars among males may simply be a reflection of body frame size differences between 
men and women.  
 
Household income ($): Several functional forms of the household income variable were 
considered in the baseline utility specification, including a continuous income specification, and 
spline variables and dummy variables for different income ranges. However, the simple 
continuous income specification provided the best statistical fit. Table 1 shows that, along the 
body-type dimension, the sign of the coefficients on the income variable is generally positive. 
That is, households with high income are likely to own multiple vehicles. This is expected 
because high income households have more purchasing power. In addition, such households 
have a high preference for large SUVs and a low preference for compact cars, suggesting an 
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emphasis on luxury vehicles (see also (11, 21, 22)). Along the vintage dimension, the coefficient 
on income is negative for all categories above 4 years, suggesting that, as the income of a 
household increases, the preference for older vehicles decreases ((23) and (24) also find a similar 
result). 
 
Number of senior adults (aged > 65 years): Households with many senior members are more 
likely (relative to those with few senior members) to own large cars. Moreover, households with 
senior adults are also found to be less likely to own pick-up trucks. These results might be 
indicative of the fact that senior adults prefer vehicles which are more affordable and 
comfortable, and easy to get into and out of. Interestingly, as with the number of children, the 
number of senior members in households does not have any influence on the vintage dimension.  
 
Number of children: We considered the effect of number of children by three age categories, as 
mentioned before. Overall, households with children have a high preference for spacious body-
types such as SUVs and vans, and a low preference for compact and sub-compact cars. These 
effects permeate across all age groups, perhaps because of a perceived need for additional 
cargo/luggage space (to carry tricycles, childcare equipment etc.), and additional passenger room 
for car-pooling arrangements of children within and across households. The number of children 
does not have any substantial effects on preferences based on vehicle vintage.  
 
Highest education in household: Households with bachelor’s or associate (highest) degree (as the 
highest degree across all household members) are less likely to own sub-compact cars, large cars, 
large SUVs and pick-up trucks relative to other body types. Also, these households are most 
likely to own vehicles that are 6 to 9 years old. A higher education probably makes these 
households less prone to hold vehicles that are not fuel efficient (such as large cars, SUVs, and 
pick-up trucks). Households having individuals with post graduate degrees are particularly 
unlikely to prefer pick-up vehicles. It is possible that, when making vehicle type choice 
decisions, individuals with the highest education level in the household tend to bring their 
environmentally conscious outlook to overall household decisions, thus avoiding large vehicles. 
Taken along with the household income effect, the suggestion is that households with high 
incomes are likely to gravitate toward luxury large vehicles, but this effect is attenuated by the 
high education status of the person with the highest education level in the household. Thus, for 
example, consider two two-worker households, both with high household income earnings– one 
has a very highly educated individual who earns a substantial fraction of the overall household 
income, and the other has two individuals of moderate education levels earning about equal 
fractions of the overall household income. Our results suggest that the first household can be 
expected to own smaller sized cars than the second household. 
 
Number of workers: Households with many workers are likely to own mid-sized SUVs and the 
least likely to own vans, as also observed by Chao and Shen (25). Interestingly, the vintage of the 
vehicle owned by a household is not affected by the number of workers in that household.  
 
Mean distance to work: Households with a longer mean distance to work are the most likely to 
own pick-up trucks. This is perhaps a reflection of the type of jobs that people who reside at 
places far from home get to do. It is possible that people involved in the construction and repair 
industry, who usually prefer pick-up trucks to carry work equipment, work at multiple locations 



Vyas, Paleti, Bhat, Goulias, Pendyala, Hu, Adler, and Bahreinian 10 

on a given day because of the nature of their job.. Thus, they might report longer commute 
durations compared to employees with a fixed work place in other industry sectors (26). 
Unfortunately, we did not have information on occupation categories in our data to examine this 
interaction effect of distance to work and occupation, an issue that needs additional attention in 
future research efforts. Along the vintage dimension, households with workers having longer 
commute distances prefer newer vehicles aged 2-3 years.  
 
Constants and satiation parameters:  The baseline constants in the model do not have any 
substantive interpretation because of the presence of several continuous variables in the model 
(these constants are not presented here to conserve on space). In addition to constants for the 
body type and vintage dimensions, we also explored specifications for constants corresponding 
to interactions of body type and vintage. Several of these interaction constants came out to be 
highly significant. Specifically, the interaction constants for older (more than 10 years old) 
pickup trucks, new (less than 5 years old) small SUVs, and 2-to-3 year old large cars are 
positive, indicating, respectively, that pickup trucks retain more value (relative to other body 
types) over time, small SUVs are preferred as new vehicles, and large cars generally are likely to 
be held in the intermediate vintage categories.  
 
Satiation parameters: The satiation parameters need to be computed from the kδ  and kμ  
estimates, as discussed earlier. This will provide a separate satiation parameter for each of the 55 
vehicle types. However, due to space considerations, we present the implied satiation parameters 

kα  (and corresponding standard errors) separately for the body type dimension (assuming a 
vehicle less than 2 years of age) and the vintage dimension (assuming a sub-compact vehicle). 
The satiation parameter for the non-motorized mode, not shown in Table 1, is effectively zero, 
consistent with the very low mileage by non-motorized modes. The results for other body types 
and vintages are presented in Table 1. Several results may be observed from Table 1. First, the 
satiation parameters for all alternatives are significantly different from 1, indicating the presence 
of satiation effects in vehicle holding and usage decisions (the t-statistics in Table 1 for the 
satiation parameters are computed with respect to the value of 1). Second, the relative 
magnitudes of the kα  parameters suggest that pick-up trucks have the highest satiation effects 
among all vehicle body types. Third, along the vintage dimension, the satiation effect is highest 
for vehicles older than 12 years, consistent with the lower average annual mileage value for 
vehicles in this age group.  
 
4.2 MNL Results 
Table 2 presents the estimation results of the MNL component of the final model. The variables 
below correspond to characteristics associated with the individual.  
 
Age:  The best fit was obtained with three dummy variables: (1) Age between 16 to 25 years, (2) 
age between 26 to 40 years, and (3) age between 41 to 65 years.  The household members 
belonging to the first age category are the least likely to prefer SUVs and vans. This category 
belongs to young people, and such individuals may have a tendency to prefer sporty vehicles 
rather than what they consider to be “uncool” or “family” vehicles. Individuals in the second age 
category are found to prefer SUVs. This category belongs to middle aged individuals, and 
additional responsibilities such as child care, child’s school drop-off and pick-up, and additional 
comfort considerations may draw these individuals toward more spacious and safer SUVs. 
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Lastly, household members between 41 to 65 years old have the highest tendency for SUVs. 
Comfort and convenience (getting in and out of vehicles) might be the main criterion for these 
individuals. 
 
Gender and race: Women are less likely to use body types other than vans, and are particularly 
unlikely to drive large cars and small SUVs, compared to men. Also, women prefer new vehicles 
more so than men. There are no race differences of any consequence.   
 
Education: Household members with bachelor or associate degree are indifferent between body-
types, but have a low preference to drive older vehicles (relative to individuals with high school 
or college degree).  
 
Worker: Employed members in the household have a higher preference for sub-compact cars 
relative to unemployed members, perhaps reflecting a desire for balance in size and comfort. 
That is, employed individuals may prefer a smaller car for the commute in peak hours to save on 
fuel expenses, but may not also want to compromise on comfort. Along the vintage dimension, it 
is observed that workers have a tendency to drive vehicles that are less than 4 years old.  
 
Distance to work (in miles): Several distance specification were explored, but the best 
specification was obtained with a dummy variable for “distance to work less than 10 miles”. For 
workers whose commute distance is less than 10 miles, mid-sized SUVs are the most preferred 
vehicle, possibly indicative of additional responsibilities toward children (such as dropping 
children at school). Along the vintage dimension, new vehicles are less preferred, perhaps 
because of less of a perceived need for the safety features of newer cars given the short commute 
or because of less concern about commute-related fuel costs.  
 
4.3 Logsum Parameters 
A total of 54 log-sum parameters ( kθ ) may be estimated, capturing correlation in the preferences 
of individuals within a household for each of the 54 motorized vehicle types. However, 22 of 
these did not come out to be different from the value of 1, suggesting lack of correlation. For the 
remaining 32 vehicle types, we examined patterns of correlation and finally constrained the 
logsum parameters among these vehicle types to obtain three distinct values of the logsum 
parameters. We do not present these here to conserve on space, but the general trend indicated 
higher correlations (or generic inclinations or dis-inclinations within individuals in a family) for 
the car alternatives (compact car, mid-sized sedan, and large car) of recent vintage (less than 4 to 
5 years old). That is, there is more volatility (across households) in the overall household-level 
preferences (due to unobserved factors) for the car alternatives of recent vintage. On the other 
hand, the logsum parameters indicated relatively less volatility (across households) in 
preferences for the small, mid-sized, and large SUV categories. This suggests that SUVs have a 
more consistent “value” position in the cognitive maps of households when making vehicle type 
choice decisions.  
 
4.4 Model Fit 
The final log-likelihood value at convergence of the joint MDCEV-MNL model is –54003.2. We 
estimated another model with just constants for the vehicle body type and vintage both in the 
baseline utility specification and the satiation parameters, with no variables in the primary driver 
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allocation model, and with all logsum parameters fixed at 1. The log-likelihood of that model is  
–56883.00. The log-likelihood ratio test statistic value for comparison between these two models 
is 5759.60, which is higher than the critical chi-squared value for 107 degrees of freedom at any 
level of significance. This clearly indicates the value of the model estimated in this paper to 
predict vehicle holdings, usage, and primary driver assignment. 
 
5. CONCLUSION 
In this paper, we discuss efforts to estimate and apply a joint MDCEV-MNL household-level 
model of the number of vehicles owned by the household, the vehicle type choice of each 
vehicle, the annual mileage on each vehicle, as well as the individual assigned as the primary 
driver for each vehicle.  The empirical results of our model indicate that several household and 
individual demographic variables have significant impacts on the vehicle holdings decisions. The 
resulting model can also be incorporated easily in any activity-based micro-simulation 
framework, thanks to the recent advances in the design of efficient forecasting algorithms for 
predicting using the MDCEV model (see Pinjari and Bhat (27)). The model developed in this 
study currently serves as the engine for a household vehicle composition and evolution 
simulator, which itself has been embedded within the larger SimAGENT activity-based travel 
and emissions forecasting system for the SCAG region. To our knowledge, this is the first such 
effort to integrate a complete household vehicle ownership and type choice simulator within a 
larger activity-based model micro-simulator system.  Further, the assignment of a primary driver 
for each vehicle owned by a household allows us later in SimAGENT to assign a vehicle to each 
trip made by a household.  
 In the current version of SimAGENT, we first predict the household vehicle fleet, and the 
usage (annual mileage) and primary driver of each vehicle in the fleet. Subsequently, we estimate 
and apply a make/model MNL model within each body/vintage type. We also assume that all 
tours/trips made during the day by an individual are made using his/her primary vehicle. Further, 
we have an explicit vehicle type MNL model to determine the type of vehicle which is used for 
joint tours. The primary vehicles of all the individuals participating in the joint tours form the 
alternate choice set for this model. Thus, SimAGENT’s output includes the complete travel 
pattern of all individuals in the household on a continuous time scale along with the information 
about the body type, vintage, make, and model of the vehicle used for every vehicular trip/tour 
made during the day. In addition, the structure of the MDCEV model also provides aggregate 
forecasts of annual mileage of each of the vehicles in the household. This is used by SimAGENT 
as a measure of the overall use of each vehicle when assigning tours (trips) to vehicles. At the 
same time, the aggregate mileage predictions serve another useful role. They allow SimAGENT 
to be used as a quick-response tool to examine the impact of a variety of land-use and 
transportation policies on GHG emissions and energy consumption, without needing to run the 
complete SimAGENT system for each policy. This allows a “first-order pruning” of policy 
alternatives, so that only those that seem most promising get taken further for a comprehensive 
SimAGENT evaluation (see Goulias et al. (15)). 

Our latest efforts are focused on enhancing the implementation of the simulator within 
the larger activity-travel generation model system. For instance, it need not be the case that each 
(and all) of person A’s tours (trips) should be assigned to the vehicle whose primary driver is 
person A (though this is the deterministic assignment in SimAGENT at this point). Other 
contextual information, such as the estimated annual mileage of each vehicle as predicted by the 
MDCEV model, availability of other household vehicles in the time window of activity 
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participation and travel, the attributes of the available vehicles (fuel efficiency, vehicle size, 
trunk space, etc.), the characteristics of the activity episodes (such as location vis-à-vis origin 
point, destination zone characteristics/parking tightness, and activity purpose), and individual 
characteristics may also be considered in the individual trip assignment. Accordingly, we are 
developing an additional model for the vehicle-to-trip/tour assignment, with the primary driver 
being an important (but not sole) exogenous variable in the model. Another important 
enhancement being pursued is to use the vehicle holdings and primary driver assignment 
information (predicted upstream of all the activity generation and scheduling modules of 
SimAGENT) not only to facilitate the process of post-assigning vehicles to generated tours (and 
trips), but also more directly to influence household activity generation and scheduling patterns 
in SimAGENT. Concurrent with these modeling improvements, we are also in the process of 
obtaining information on the geo-locations of the households surveyed in the California Energy 
Commission (CEC) data to append relevant built environment measures, and include such 
measures in the vehicle type choice and primary driver assignment model. 
 
ACKNOWLEDGEMENTS 
The authors would like to thank the California Energy Commission for providing access to the 
data used in this research, and the Southern California Association of Governments for 
facilitating this research.  The authors are also grateful to Lisa Macias for her help in formatting 
this document. Four anonymous reviewers provided valuable comments on an earlier version of 
this paper.  



Vyas, Paleti, Bhat, Goulias, Pendyala, Hu, Adler, and Bahreinian 14 

REFERENCES 
 
1. Environmental Protection Agency (EPA). Report on the Environment: Science Report (SAB 

Review Report). National Center for Environmental Assessment, Report EPA/600/R-07/045, 
2007. 

2. Schrank, D., T. Lomax, and S. Turner. Urban Mobility Report 2010. Texas Transportation 
Institute, Texas A&M University, College Station, TX, 2010. 

3. California Air Resources Board (CARB). Incentive Programs for Alternative Fuels and 
Vehicles. California Environmental Protection Agency, 2011. 
http://www.arb.ca.gov/fuels/altfuels/incentives/incentives.htm.  Accessed July 15, 2011. 

4. Train, K.E., and C. Winston. Vehicle Choice Behavior and the Declining Market Share of 
U.S. Automakers. International Economic Review, Vol. 48, No. 4, 2007, pp. 1469-1496. 

5. Spissu, E., A.R. Pinjari, R.M. Pendyala, and C.R. Bhat. A Copula-Based Joint Multinomial 
Discrete-Continuous Model of Vehicle Type Choice and Miles of Travel. Transportation, 
Vol. 36, No. 4, 2009, pp. 403-422. 

6. Choo, S., and P.L. Mokhtarian. What Type of Vehicle Do People Drive? The Role of 
Attitude and Lifestyle in Influencing Vehicle Type Choice. Transportation Research Part A, 
Vol. 38, No. 3, 2004, pp. 201-222. 

7. Mannering, F., and C. Winston. A Dynamic Empirical Analysis of Household Vehicle 
Ownership and Utilization. Rand Journal of Economics, Vol. 16, No. 2, 21985, pp. 15-236. 

8. West, S. Distributional Effects of Alternative Vehicle Pollution Control Policies. Journal of 
Public Economics, Vol. 88, No. 3-4, 2004, pp. 735-757. 

9. Brownstone, D., and H.A. Fang. A Vehicle Ownership and Utilization Choice Model with 
Endogenous Resident Density. Compendium of Papers DVD, Transportation Research Board 
88th Annual Meeting, Washington, D.C, 2009. 

10. Feng, Y., D. Fullerton, and L. Gan. Vehicle Choices, Miles Driven, and Pollution Policies. 
National Bureau of Economic Research, NBER Working Paper No. 11553, 2005. 

11. Fang, H.A. A Discrete-Continuous Model of Households’ Vehicle Choice and Usage, with 
an Application to the Effects of Residential Density. Transportation Research Part B, Vol. 
42, No. 9, 2008, pp. 736-758. 

12. Bhat, C.R., and S. Sen. Household Vehicle Type Holdings and Usage: An Application of the 
Multiple Discrete-Continuous Extreme Value (MDCEV) Model. Transportation Research 
Part B, Vol. 40, No. 1, 2006, pp. 35-53. 

13. Bhat, C.R., S. Sen, and N. Eluru. The Impact of Demographics, Built Environment 
Attributes, Vehicle Characteristics, and Gasoline Prices on Household Vehicle Holdings and 
Use. Transportation Research Part B, Vol. 43, No. 1, 2009, pp. 1-18. 

14. Bento, A.M., L.H. Goulder, M.R. Jacobsen, and R.H. von Haefen. Distributional and 
Efficiency Impacts of Increased US Gasoline Taxes. American Economic Review, Vol. 99, 
No. 3, 2009, pp. 667-699. 



Vyas, Paleti, Bhat, Goulias, Pendyala, Hu, Adler, and Bahreinian 15 

15. Goulias, K.G., C.R. Bhat, R.M. Pendyala, Y. Chen, R. Paleti, K.C. Konduri, T. Lei, D. Tang, 
S.Y. Youn, G. Huang, and H.H. Hu. Simulator of Activities, Greenhouse Emissions, 
Networks, and Travel (SimAGENT) in Southern California. Presented at the 91st Annual 
Meeting of the Transportation Research Board, Washington, D.C., January 2012. 

16. Hilbrecht, M., S.M. Shaw, L.C. Johnson, and J. Andrey. I'm Home for the Kids': 
Contradictory Implications for Work-Life Balance of Teleworking Mothers. Gender, Work 
and Organization, Vol. 15, No. 5, 2008, pp. 454-476. 

17. Bhat, C.R. The Multiple Discrete-Continuous Extreme Value (MDCEV) Model: Role of 
Utility Function Parameters, Identification Considerations, and Model Extensions. 
Transportation Research Part B, Vol. 42, No. 3, 2008, pp. 274-303. 

18. Pinjari, A.R. Generalized Extreme Value (GEV)-Based Error Structures for Multiple 
Discrete-Continuous Choice Models. Transportation Research Part B, Vol. 45, No. 3, 2011, 
474-489. 

19. Paleti, R., N. Eluru, C.R. Bhat, R.M. Pendyala, T.J. Adler, and K.G. Goulias. Design of 
Comprehensive Microsimulator of Household Vehicle Fleet Composition, Utilization, and 
Evolution. In Transportation Research Record: Journal of the Transportation Research 
Board, No. 2254, Transportation Research Board of the National Academies, Washington, 
D.C., 2011, pp. 44-57. 

20. Walsh, M. Gendering Mobility: Women, Work and Automobility in the United States. 
History, Vol. 93, No. 311, 2008, pp. 376-395. 

21. Kitamura, R., T.F. Golob, T. Yamamoto, and G. Wu. Accessibility and Auto Use in a 
Motorized Metropolis. Presented at the 79th Annual Meeting of the Transportation Research 
Board, Washington, D.C., January, 2000. 

22. Cao, X., P.L. Mokhtarian, S.L. Handy. Neighborhood Design and Vehicle Type Choice: 
Evidence from Northern California. Transportation Research Part D, Vol. 11, No. 2, 2006, 
pp. 133-145. 

23. Ong, P., and C. Lee. Spatial Pattern of Vehicle Ownership by Vintage. University of 
California Transportation Center, UC Berkeley, 2007. 

24. Yurko, A. From Consumer Incomes to Car Ages: How the Distribution of Income Affects the 
Distribution of Vehicle Vintages. University Library of Munich, Germany, MPRA Paper No. 
8849, 2008. 

25. Chao, L., and Q. Shen. An Empirical Analysis of the Influence of Urban Form on Household 
Travel and Energy Consumption. Computers, Environment and Urban Systems, Vol. 35, No. 
5, 2011, pp. 347-357. 

26. Zolnik, E.J. The Effect of Sprawl on Private-Vehicle Commuting Outcomes. Environment 
and Planning A, Vol. 43, No. 8, 2011, pp. 1875-1893. 

27. Pinjari, A.R., and C.R. Bhat. Computationally Efficient Forecasting Procedures for Kuhn-
Tucker Consumer Demand Model Systems: Application to Residential Energy Consumption 
Analysis. Technical paper, Department of Civil and Environmental Engineering, University 
of South Florida, 2011. 



Vyas, Paleti, Bhat, Goulias, Pendyala, Hu, Adler, and Bahreinian 16 

LIST OF TABLES 

 
TABLE 1 Estimation Results of MDCEV Component for Vehicle Holdings 
 
TABLE 2 Estimation Results of MNL Component for Primary Driver Allocation 
 
 



Vyas, Paleti, Bhat, Goulias, Pendyala, Hu, Adler, and Bahreinian 17 

 

 

TABLE 1 Estimation Results of MDCEV Component for Vehicle Holdings 

Variable  
Household Race Number of 

Adults 
Number of 

Male Adults 
Household 

Income 

Number of 
Senior 

Member Black Hispanic Asian Caucasian 

Sub-compact -1.017 (-1.896) -- -- -- -0.266 (-2.321) -- 0.025 (1.816) -0.182 (-3.358)
Compact car -- -- -- -0.073 (-1.186) -0.147 (-1.712) -0.142 (-2.445) -- -- 

Mid-sized car -- -- -- -- -0.263 (-3.206) -- 0.033 (4.943) -- 

Large car 0.530 (2.035) -- -- -- -0.151 (-1.419) -- 0.068 (6.134) 0.207 (3.142) 
Small SUV -- -- -- -- -0.488 (-4.637) -- 0.037 (2.890) -- 

Mid-sized SUV -- -- -- -- -0.469 (-4.312) -0.085 (-0.982) 0.052 (5.697) -- 

Large SUV -- -- -0.316 (-1.575) -0.186 (-2.374) -0.195 (-2.102) -- 0.090 (10.701) -- 

Van -- -- -1.336 (-4.158) -- -0.121 (-1.252) -- -- -- 

Pickup -0.888 (-2.898) -- -- -- -0.254 (-3.181) -- 0.030 (3.475) -0.097 (-1.690)
Less than 2 years -- -- -- -- -- -- -- -- 

2 to 3 years -- -- -- -- -- -- -- -- 

4 to 5 years 0.234 (1.305) -- 0.334 (2.286) -- -- -- -0.011 (-1.431) -- 

6 to 9 years -- -- -- -- -- -- -0.031 (-5.205) -- 

10 to 12 years -- -- -- 0.089 (1.659) -- -- -0.062 (-7.926) -- 
More than 12 years -- -- -- 0.089 (1.659) -- -- -0.099 (-14.271) -- 
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TABLE 1 (Continued) Estimation Results of MDCEV Component for Vehicle Holdings  

Variable 
Number of Children by age group Highest education level attained 

in household Number of 
Workers 

Mean 
distance to 

work 
calculated 

among 
workers 

Satiation 
Parameters* 

0-4 years 5-12 years 13-15 years Bachelor or 
Associate Postgraduation 

Sub-compact -0.468 (-2.718) -- -0.373 (-1.921) -0.202 (-1.571) -- -- -- 0.806( 4.797) 
Compact car -0.138 (-2.032) -0.119 (-1.888) -- -- 0.308 (4.145) -- -- 0.830 (7.590) 
Mid-sized car -- -0.201 (-3.230) -- -- 0.146 (2.005) -- -0.465 (-2.126) 0.831 (7.811) 
Large car -- -0.232 (-1.761) -- -0.139 (-1.319) -- -0.320 (-4.254) -- 0.825 (5.573) 
Small SUV -0.238 (-1.408) -0.219 (-1.522) -- -- -- -- -- 0.737 (6.643) 
Mid-sized SUV -- -- -- -- -- 0.082 (1.488) -- 0.842 (6.328) 
Large SUV 0.376 (5.714) 0.229 (3.513) 0.334 (4.374) -0.179 (-1.962) -0.375 (-3.434) -- -- 0.806 (6.749) 
Van 0.353 (4.187) 0.476 (6.427) 0.481 (5.382) -- 0.281 (2.577) -- -- 0.847 (5.619) 
Pickup -- -- -- -0.142 (-1.738) -0.595 (-5.542) -- 0.469 (1.999) 0.793 (7.418) 
Less than 2 years -- -- -- -- -- -- -- -- 
2 to 3 years 0.106 (1.879) -- -- 0.072 (1.078) -- -- 0.598 (2.665) 0.836 (4.109) 
4 to 5 years -- -- -- -- -- -- -- 0.830 (4.101) 
6 to 9 years -- -- -- 0.113 (2.082) -- -- -- 0.826 (4.305) 
10 to 12 years -- -- -- -1.017 (-1.896) -- -- -- 0.808 (4.23) 
More than 12 years -0.156 (-2.308) -- -- -- -- -- -- 0.737 (4.57) 

* The t-statistics for the satiation parameters are computed with respect to the value of 1.  
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TABLE 2 Estimation Results of MNL Component for Primary Driver Allocation  

Variable  
Age 

Female 
Race Education 

Level 
Employment 

Status  Work 
distance less 
than 10 miles 16-25 years 26-40 years 41-65 years Caucasian Bachelor or 

Associate Worker 

No vehicle -- -- -- -- -- -- -- -- 

Sub-compact -- -0.271 (-3.062) -0.294 (-4.250) -0.248 (-4.590) -0.274 (-2.057) -- 0.143 (2.346) -- 

Compact car -- -0.271 (-3.062) -0.294 (-4.250) -0.248 (-4.590) -- -- 0.143 (2.346) -- 

Mid-sized car -0.359 (-3.436) -0.260 (-2.713) -0.239 (-3.030) -0.249 (-4.910) -- -- 0.090 (1.434) -- 

Large car 0.359 (-3.436) -0.260 (-2.713) -0.239 (-3.030) -0.614 (-8.716) -- -- 0.070 (0.829) -- 

Small SUV -- -- -- -0.614 (-8.716) -- -- 0.070 (0.829) -- 

Mid-sized SUV -- -- 0.172 (2.087) -- -- -- -- 0.073 (0.903) 

Large SUV -0.627 (-3.449) -- 0.151 (1.721) -0.231 (-3.204) -- -- -0.231 (-3.626) 0.073 (0.903) 

Van -0.951 (-4.826) -0.400 (-3.368) -- -- -- -- -0.231 (-3.626) -- 

Pickup -0.825 (-6.856) -0.215 (-2.242) -- -1.987 (-23.144) -- -- -- -- 

Less than 2 years -0.468 (-3.756) -- -- 0.573 (11.067) 0.086 (1.889) 0.060 (1.310) 0.103 (2.217) -0.062 (-1.208)

2 to 3 years -- -- -- 0.573 (11.067) 0.086 1.889) 0.060 (1.310) 0.103 (2.217) -0.062 (-1.208)

4 to 5 years -- -- -- 0.581 (9.616) 0.086 (1.889) 0.060 (1.310) -- -- 

6 to 9 years -- -- -- 0.430 (8.522) 0.086 (1.889) -- -- -- 

10 to 12 years -- -- -- -- -- -- -- -- 

More than 12 years -- -- -- -- -- -- -- -- 

 


