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ABSTRACT

This paper proposes and implements a fractional split model that predicts the VMT mix

on links as a function of the functional roadway classification of the link, the physical attributes

of the link, the operating conditions on the link, and the attributes of the traffic analysis zone in

which the link lies. The fractional split model is an useful formulation for VMT mix analysis

because it accommodates boundary values of fractional VMT in a vehicle class, is easy to estimate

using commonly available econometric software, and is easy to apply in forecasting mode to

predict the VMT mix on each link of a network. The empirical analysis in the paper applies the

fraction split model structure to estimate a VMT mix model for the Dallas-Fort Worth

metropolitan region in Texas. Results of model evaluation are also presented.

Keywords: VMT mix, mobile-source emissions modeling, air quality analysis, fractional split

model, emissions factors.



Bhat and Nair 1

1.  BACKGROUND AND SIGNIFICANCE OF WORK

The integration of transportation planning and air quality planning is important for mobile

source emissions estimation. The Environmental Protection Agency (EPA) requires the use of

MOBILE5 for such emissions estimation for all areas except California which uses the EMFAC7F

model. 

The emissions factor models (MOBILE5 or EMFAC7F) require several traffic-related

inputs, including travel speeds, vehicles miles of travel, on-road operating conditions (operating

mode of vehicles, environmental conditions, existence of inspection/maintenance programs, etc.),

vehicle age distribution by vehicle class in the area of analysis, and vehicle mileage accumulation

rates by vehicle class. These are used to calculate emissions factors (in grams per mile of vehicle

travel for each pollutant) for eight different vehicle classes. The vehicle-class specific emissions

factors are then applied to the VMT accumulated by each of the eight vehicle classes, and finally

aggregated across all vehicle classes to obtain total vehicular emissions.

The level of detail at which the emissions analysis is conducted varies quite substantially

among metropolitan regions. But the EPA requires that metropolitan planning areas rated as

serious or higher in non-attainment designation for ozone and carbon-monoxide estimate their

mobile source emissions using network-based transportation models. The planning organizations

in these areas, in general, conduct their emissions analysis at an individual link level. This

involves the estimation of volumes and speeds on each network link in the metropolitan area from

travel demand models, followed by the computation of link-specific emissions based on a) link

VMT, b) vehicle speed on the link, c) the vehicle class-specific emissions factors, and d) VMT

mix fractions in the eight vehicle classes. Of these, the link VMT and link speeds are obtained
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directly from the network-based travel demand models. The vehicle class-specific emissions

factors are obtained from the emissions factor models based on the various inputs listed earlier.

The VMT fraction by vehicle class (referred to as VMT mix in the MOBILE5 model) is a

supplementary traffic-related parameter that is to be provided by the analyst.

The emissions factors for each of the three pollutants; carbon monoxide (CO), Volatile

organic compounds (VOC), and oxides of nitrogen (Nox); vary quite widely among the different

vehicle classes. Consequently, the emissions analysis is very sensitive to VMT mix. For example,

at high temperatures, a 2.8% change in the heavy duty gas vehicle (HDGV) mix causes about a

10% change in the CO emissions rate, and a 4.8% change in the HDGV mix leads to about a 10%

shift in the VOC emissions rate (see Chatterjee et al. [1], page 45). It is, therefore, important to

provide accurate VMT mix values at the individual link level (see NCHRP Research Results

Digest [2], which identifies improvement in VMT mix modeling as an area of research that would

be particularly beneficial for emissions modeling). The purpose of the current paper is to propose

and implement a methodology for obtaining improved link-specific VMT mix values compared

to those obtained from extant methods. Specifically, we develop a fractional split model that

predicts the VMT mix on links as a function of the functional roadway classification of the link,

the physical attributes of the link, the operating conditions on the link, and the attributes of the

traffic analysis zone in which the link lies. 

The rest of this paper is structured as follows. The next section reviews the state of the

art/practice in VMT mix modeling. Section 3 presents the structure of, and the estimation

technique for, the fractional split model used in the current paper. Section 4 provides an overview

of the data sources used in the study and discusses issues related to data preparation. Section 5
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presents empirical results. Section 6 focuses on model application. Section 7 discusses model

evaluation issues. The final section concludes the paper.

2.  STATE OF THE ART/PRACTICE IN VMT MIX DETERMINATION

The emission factor models require the VMT split by eight vehicle classes. The vehicle

classes are based on the size and weight of vehicles as well as the type of fuel used. The eight

vehicle classes are: light-duty gasoline vehicle (LDGV), light-duty gasoline truck, type 1

(LDGT1), light-duty gasoline truck, type 2 (LDGV2), heavy duty gasoline vehicle (HDGV), light

duty diesel vehicle (LDDV), light duty diesel truck (LDDT), heavy duty diesel vehicle (HDDV),

and motorcycle (MC). 

The current practice in many metropolitan areas is to accept the aggregate default VMT

mix computed by MOBILE5 and to apply this mix to all network links. The default VMT mix is

based on national data reflecting the proportion of travel by each vehicle type in urban areas.

Another approach adopted by some metropolitan agencies is to use 24-hour local vehicle

classification-counts (rather than MOBILE5 default values) to determine VMT mix, followed by

the application of factors to convert vehicle types in traffic counts to the eight MOBILE5 vehicle

classes. EPA recommends that local agencies adopt this approach because the MOBILE5 default

values may not be reflective of the local traffic vehicle mix. In this local vehicle count-based

approach, the VMT mix is typically stratified by the functional classification of roadways to

accommodate variations across roadway classes. However, since most counts are conducted only

on higher roadway classes (such as interstates and major arterials), there is inadequate information

to comprehensively capture variations in VMT mix by roadway class. Values of VMT mix
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obtained for the higher roadway classes are applied (sometimes after ad hoc adjustments based on

judgement) to the lower roadway classes (such as minor arterials, collectors, and local roads).

A problem with the state of the art/practice discussed above for VMT mix determination

is that they apply aggregate-level values across links in the road network in a region. In an

analysis of VMT mix from 477 different count sites in the U.S., Chatterjee et al. [1] find

substantial variation in VMT mix across the sites, emphasizing the need for local determination

of VMT mix values (rather than using MOBILE default values). The same study also indicates

substantial variation in VMT mix even after controlling for roadway class at any given site,

underscoring the need to consider explanatory factors other than roadway class in local VMT mix

analysis.

The discussion above motivates the research in this paper. Specifically, we formulate and

estimate a fractional split model that determines the VMT mix ratio as a function of several

informative variables, including the physical attributes of links (such as number of lanes and

whether the link is a divided road or not), the operating characteristics of links (such as link

speed), aggregate area type characterizations of the traffic survey zone in which the link lies (such

as urban, suburban, and rural), and the land use attributes of the zone (such as retail acreage in

zone and manufacturing/warehouse acreage in zone). Such a model will enable accurate VMT mix

computations at a fine level of geographic resolution. 
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3.  FRACTIONAL SPLIT MODEL STRUCTURE

3.1.  General Background

Fractional response dependent variables arise naturally in many transportation and other

analysis contexts. Examples of such variables include the proportion of freight tonnage for a

commodity group moving from an origin to each of several destinations, the proportion of inter-

city trips made by each of several travel modes, time spent by an individual in one of several

activity types (shopping, social-recreational, personal business, etc.), and (as in the present

analysis) the fraction of VMT accrued by each vehicle class. A characteristic of all these analyses

is that the variable of interest is in the form of fractions. The sum of the fractions across all

categories of the variable is equal to one, and each fraction is bounded between zero and one.

Further, one or more of the fractions may take the boundary values of zero or one. In the

subsequent discussion, we present the fractional split model structure in the context of VMT mix

analysis.

Mathematically, let be the fraction of VMT accrued by vehicle type i (i=1,2,...,I)yqi

on link q. Let this fraction be a function of a vector of relevant explanatory variablesxq

associated with attributes of the link and the traffic analysis zone in which the link lies. A common

approach to analyzing fractional dependent variables is to model the log-odds ratio as a linear

function (for example, see Bhat and Misra [3]):

(1)

where is a parameter vector to be estimated for each i (except a base category which needs$i

to be normalized to zero for identification; in the above equation, the first category is arbitrarily
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     1If the dependent variable represents proportions from a fixed number of groups with known group

sizes, suitable adjustments have been proposed in the econometric literature (see Maddala [5]; page 30).

However, the corresponding Berkson's minimum chi-squared estimation method is not applicable when

the fractions arise naturally in analysis settings (as in the current VMT mix setting) rather than arising as

a result of the discrete grouping of disaggregate observations.

considered as the base category; i.e., is the null vector of the appropriate size). $1 ' 0 , where 0 yq1

 is the VMT fraction accrued by the first vehicle type. If some parameters in the vectors are$i

equal across categories, such restrictions can be imposed by jointly estimating all vectors after$i

appropriate data structuring (see Bhat and Misra, [3]).    

The specification in equation (1) is attractive since the transformed dependent variable in

the regression is unbounded and can take values anywhere on the real line as varies betweenyqi

0 and 1. Thus, a linear regression is appropriate. However, as pointed out by Papke and

Wooldridge [4], the specification has at least two major problems. First, the dependent variable

is undefined when the fraction of VMT in a vehicle class is zero or one. If the number of vehicle

class-observation combinations for which the boundary conditions prevail are few, arbitrary small

adjustments may be made before computing the log-odds ratio without significantly affecting the

estimated parameters. However, if there are several vehicle class-observation combinations for

which the boundary conditions prevail, the adjustments can have a substantial impact on

estimation. In our analysis, the fractional VMT for some vehicle types (such as buses and trucks)

is zero for a large percentage of observations (i.e., links) for which vehicle classification counts

are available.1 A second problem with the specification in equation (1) is that, even if the

econometric specification in equation (1) is appropriate and well-defined, one cannot
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obtain (which is of primary interest for VMT fraction forecasting) without additionalE(yqi*xq )

assumptions about the distribution of the residuals, If auqi ' log [yqi /yq1 ]&$N
i xq (i'2,3,...I) .

distribution is assumed or estimated, then may be computed by first obtaining theE(yqi*xq )

conditional (on residuals) expected value for each fraction and then unconditioning out the

residuals by integrating over the distribution of the assumed or estimated distribution for the

residuals (see Bhat [6] for an application of this method). However, this approach is either non-

robust (if an incorrect parametric distribution is assumed) or cumbersome (if a non-parametric

distribution for the residuals is estimated). Also, the integration in this method will involve as

many dimensions as the number of vehicle types, and this can become tedious. 

3.2.  Quasi-Likelihood Estimation

The model we propose here for VMT mix modeling is a polychotomous extension of the

binary fractional split model proposed by Papke and Wooldridge [4]. The approach does not need

any ad hoc adjustment for boundary values of the dependent variable fractions and directly

specifies a model for . At the same time, the approach is easy to implement and isE(yqi*xq )

robust since we make no assumptions about the distribution of conditional on . The focusyqi xq

is on consistent estimation of the parameters appearing in the conditional mean

specification and on consistent, asymptotically robust, estimation of the standard errorsE(yqi*xq)

of the conditional mean parameters. 

Consider the following econometric specification:

(2)
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 (i=1,2,...I) in the above equation is a pre-determined function and the propertiesGi (.)

specified above for it ensure that the predicted fractional VMT in each vehicle class for any link

will lie in the interval (0,1) and will sum to 1 across vehicle classes. The econometric model in

equation (2) is well-defined even if takes on the value of 0 or 1 with positive probability. Theyqi

reader will note that the specification above does not make any assumption about the true

underlying conditional distribution of given This is considered unknown and can haveyqi xq .

any underlying structure. 

The parameter vector in the conditional mean model of equation (2) is estimated by$

maximizing a likelihood function associated with a family of probability distributions which does

not necessarily contain the true unknown distribution. The label "quasi-likelihood estimation" is

used for such estimations (see Gourieroux et al. [7]). Specifically, we use the multinomial log-

likelihood function in the quasi-estimation:

(3)

The multinomial quasi-likelihood estimator used above belongs more generally to the linear

exponential family (LEF). Gourieroux et al. [7] prove the strong consistency and asymptotic

normality of the parameter estimator of the conditional mean (i.e., the elements of the vector)$

obtained by maximizing , as long as (and if and only if) belongs to the LEF (see'
q
‹q ($) ‹q($)

also Wooldridge [8]). This is a very strong result, since it is based only on the correct

specification of the conditional mean function of equation (2). The result holds irrespective of the

true distribution of conditional on . Of course, if we are able to specify correctly this trueyqi xq

distribution, we can maximize the true likelihood function to obtain a more efficient estimator than



Bhat and Nair 9

Gi($ ,xq) '
e $Ni xq

'I
j'1

e $Nj xq

, where $' ($N
2,$

N
3 ,ÿ,$N

I )
N
.

the quasi-likelihood estimator used here. However, the disadvantage of this alternative approach

(compared to the quasi-approach) is that the resulting "true-likelihood" estimator is inconsistent

under an incorrect assumption for the true distribution.

Within the family of LEF-based quasi-likelihood estimators, asymptotic efficiency can be

achieved if the functional form of the true conditional second order moment (i.e., variance)

of given is known. This is unlikely to be the case. We prefer to base our inference onlyyqi xq

on the conditional mean specification of equation (2) and propose consistent and asymptotically

robust inference for the conditional mean parameter vector As indicated by Papke and$ .

Wooldridge [4], this can be achieved by computing the asymptotic variance-covariance matrix

of as H-1)H-1, where H is the Hessian and ) is the cross-product matrix of the gradients (H$

and ) are evaluated at the estimated parameter values). 

A final model structure issue concerns the specification of the functional form for inGi

the conditional mean specification of equation (2). We use a multinomial logit functional form

for since this structure is easy to program and implement. In this structure, we write:Gi

(4)

4.  DATA PREPARATION

4.1.  Data Sources

Several data sources are used in the current analysis. These include the following: a)

Vehicle classification counts conducted in the Dallas-Fort Worth area by the Texas Department

of Transportation's (TxDOT) Regional Planning Organization (R.P.O) and the Division 10 of
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TxDOT, b) 1996 GIS-based road network file for the Dallas-Fort Worth area, c) Zonal level land

use characteristics file of the Dallas-Fort Worth area, and d) 1996 GIS-based Dallas-Fort Worth

zonal coverage file. The latter three data files were obtained from the North Central Texas Council

of Governments (NCTCOG). Each of the four data sources are briefly discussed next.

The TxDOT vehicle classification counts used in the analysis were conducted at several

fixed stations in the Dallas-Fort Worth area during the periods 1977-1987 and 1983-1993. The

counts covered all the functional roadway classes, and a mixture of land-uses, with an intent to

obtain a sample which is representative of the VMT mix in the region. The counts were recorded

using a manual count board from 6 am to 10 pm on weekdays in the same month every year. The

16-hour counts were expanded to a 24-hour period to obtain the 24-hour vehicle classification

counts. These 24-hour counts form the basis for computing the VMT mix on links. The counts

distinguished among the following vehicle types: automobiles, pickups and vans (PUV), sports

utility vehicles (SUV), combination trucks (2 axles, 3 axles, 4 axles and 6 axles), buses (2 axles

and 3 axles) and Motorcycles (including all two-wheelers). The counts separate trucks by the

number of axles, but we combined them for the current analysis because of the very frequent

occurrence of zero counts in several axle categories. We also combined 2 axle and 3 axle buses

into a single bus category for the same reason. The fraction of counts of each vehicle type

represent the VMT mix at the individual link level and is the dependent variable in the current

analysis. 

The 1996 GIS road network file includes information on the characteristics of each link

in the Dallas Fort Worth Metropolitan planning area. The Metropolitan Area (MA) includes about

a 4,980 square-mile area with over 45,000 unique roadway links to represent the roadway
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network. The MA covers the existing urbanized area and the contiguous area expected to be

urbanized by the year 2020. It includes all of Collin, Dallas, Denton, Rockwall, and Tarrant

Counties and portions of Ellis, Johnson, Kaufman, and Parker Counties. The link attributes

available in the network file include length of the link, traffic direction, functional classification,

number of lanes, free speed, capacity, and whether the link is divided or not. 

The zonal level land use characteristics file of the Dallas-Fort Worth area contains land use

data at the level of the traffic survey zone used by NCTCOG for their travel demand modeling

purposes. There are about 6000 traffic survey zones in the Dallas Fort Worth metropolitan

planning area. The land use data for each zone includes total land area, and acreage in several

individual land use purposes (such as in manufacturing and warehousing, in retail, hotel and

motel, in institutional buildings like churches, government, museums, schools and hospitals, and

in airport runways/terminals). 

The 1996 GIS-based Dallas-Fort Worth zonal coverage file provides the spatial

configuration of the traffic survey zones in the Dallas Fort Worth planning area.

4.2.  Data Assembly

The objective of the data assembly steps was to append the appropriate link/zone

characteristics to each link vehicle classification count observation. To accomplish this, we first

spatially overlaid the 1996 GIS road network file and the 1996 GIS zonal coverage file. Next,

each link at which vehicle counts were recorded was manually queried in the network database

using the name of the street and the names of the cross streets at the end nodes. Once the link at

which a count was made was spatially located in the GIS road network coverage, its identifier
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     2The reader will note that even if the aggregate sample VMT mix does not reflect the actual aggregate

VMT mix in a region, the estimated model parameters will still be consistent except for the category-

specific constants. This is because of the multinomial logit structure of equation (4). Consistent values of

the category-specific constants can be obtained in a straight-forward fashion if the aggregate vehicle type

distribution in the local region is known (see Ben-Akiva and Lerman [9], page 237).

number in the network file was extracted. Also, the traffic analysis zone which spatially contains

the link of interest was identified from the GIS zonal coverage. Using these link and zonal

identifier fields, the relevant link and land use characteristics were mapped to each vehicle count

observation.

The raw TxDOT vehicle classification counts included 370 observations of link vehicle

counts, of which only 244 observations could be geo-coded in the manner discussed above. These

244 link count observations constituted the final sample for analysis. The vehicle type distribution

in this final sample was almost the same as the vehicle type distribution in the raw data.2

5.  EMPIRICAL ANALYSIS

5.1.  Sample Description

The descriptive statistics of the dependent variable (i.e., the fractional splits among the six

vehicle types across observations) in the sample is provided in Table 1. As expected, on average,

the automobile fractional split is highest, followed by the fraction of pick-ups and vans (PUV).

The average percentage of sports utility vehicles (SUV) and trucks is between 3-5%. However,

at an individual link level, the SUV percentage is as high as 48.7% and the truck percentage is

as high as 26.3%. The fraction of buses and motorcycles in the vehicle stream is relatively low.
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The percentage of observations for which the fractional mix of trucks, buses, and

motorcycles are at or very close to the boundary value of zero is rather high. In particular, the

truck fraction is less than 0.01 for 33% of observations, the bus fraction is less than 0.01 for 99%

of observations, and the motorcycle fraction is less than 0.01 for 95% of observations. Thus,

using the log-odds analysis method (equation 1) would be inappropriate in the current modeling

context. The specification in equation (2) which can accommodate boundary values of the

dependent variable is the appropriate approach. 

Five sets of independent variables were included in the model to predict the VMT mix on

links. These are: a) link functional classification, b) link physical attributes, c) link free speed

variables, d) degree of urbanization of zone (in which link lies), and e) zonal land use

characteristics. A number of variables within each of the five variable classes were considered in

the model specification. The final set of variables and their method of inclusion in the VMT mix

model was determined based on a systematic process of eliminating variables found to be

statistically insignificant in previous specifications and based on considerations of parsimony in

representation. In the description below, we briefly highlight some of the characteristics of the

variables in each of the five sets of variables that were retained in the final model specification.

The link functional classification identifies each link with one of five roadway classes:

freeways, major arterials, minor arterials, collectors, and local/residential roads. Since the number

of observations on local/residential roads were very few (only 4 out of the sample size of 244),

we combined the collector and local/residential road classes into a single "collector/local"

category. The sample split among the four resulting roadway classes is as follows: freeways

(41.8%), major arterials (26.2%), minor arterials (13.5%) and collector/local links (18.5%).
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Two link physical attributes turned out to be important determinants of link VMT mix: the

number of lanes and whether or not the link is divided. A majority of links (56.6%) in the sample

have 2 lanes. 10.2% of links have one lane, 24.2% have three lanes, and 9% have four lanes. A

substantial percentage (82.4%) of links are divided roads.

The link free speed varies between 9 mph to 68 mph, with a mean value of 45 mph. A

direct specification with free speed as the independent variable was inferior to the specification

that categorized links into one of four free speed groups: low speed (less than or equal to 30 mph),

low to medium speed (31-40 mph), medium speed (41-55 mph) and high speed (greater than 55

mph). 

The degree of urbanization of the zone (in which the link lies) is characterized by

classifying the zone as a central business district, an urban residential area or a suburb/rural area

(the differentiation between suburb and rural areas did not impact VMT mix and hence these two

categories were combined into a single category). In the sample, about 5% of links are in a CBD

area, about 40% in an urban area, and the remainder in a suburban/rural area.

The zonal land use variables include a) an airport presence variable indicating the presence

(or absence) of airport runway/terminal facilities in the zone in which the link lies, b) an

institution presence variable indicating the presence/absence of institutions such as churches,

schools, and hospitals, c) zone acreage in retail and office space, and d) acreage in manufacturing

plants and warehousing. In the sample, about 5% of links lie in a zone with airport-related

infrastructure and about 49% of links are in zones with some land use in institutional facilities.

The average zone acreage in retail/office space in the sample is 18.43 acres and the average zone

acreage in manufacturing/warehousing is 31 acres.
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5.2.  Fractional Split Model Results

The final model specification results are provided in Table 2. The table provides estimates

of the parameter vector in equation (4). $

The link functional classification variables are introduced with the freeway class being the

base roadway category. The results indicate an increase in the pick-up/van (PUV) and motorcycle

fractions on major and minor arterials (relative to freeways and relative to other vehicle types).

The fraction of these two vehicle types, however, is highest on collector/local streets. The bus

fraction is lower on minor arterials (compared to freeways and major arterials) and even lower on

collector/residential streets.

The results of the effect of link physical attributes indicate an increase in truck fraction,

and a decrease in bus fraction, on divided roads. Motorcycles are also more prevalent on divided

highways than other non-truck vehicle types. The impact of number of lanes on vehicle mix

suggests a decrease in the truck and bus fractions in the vehicle fleet on links with several lanes.

The link free speed variable coefficients show fewer PUVs and SUVs (as a fraction of total

vehicles) on low speed links relative to buses/passenger cars and relative to medium/high speed

links. The same, though more tempered, negative trend exists for PUVs and SUVs on low-to-

medium speed links. Generally speaking, PUVs and SUVs are more prevalent on higher speed

links than on lower speed links. The same is true for the truck mix in the vehicle fleet, except that

this effect is much stronger than for SUVs and PUVs. The results also indicate that the bus

fraction is highest on low speed facilities, and higher on low-to-medium speed facilities than on

high free speed links. Finally, the fraction of motorcycles and other two wheelers is higher on

medium speed links than on other links.
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The coefficients on the variables characterizing degree of urbanization show a lower

fraction of trucks on links in central business district (CBD) and urban residential zones relative

to links in suburban/rural zones. Among the non-truck vehicle types, the PUV fraction is likely

to be lesser than the other vehicle types on CBD links and the SUV fraction is likely to be lesser

than other vehicle types on urban links. Also, the bus fraction is highest on CBD links compared

to other link types. 

The final set of variables are the land use variables. The result reveal that the proportion

of PUVs is high on links in zones with airport facilities. This is quite reasonable because PUVs

are more convenient to transport baggage and passengers to airports. The auto proportion is high

on links in zones where institutions such as churches, schools, and hospitals are present. Similarly,

the auto proportion is high on links in zones with large areas allocated to retail and office space.

Finally, vehicle types other than automobiles and motor cycles are likely to capture a high

proportion of the VMT mix in zones with large areas invested in manufacturing plants and

warehouses. 

6.  MODEL APPLICATION

The model results in Table 2 can be applied in forecasting mode to determine the VMT

mix in the six vehicle types: autos, PUVs, SUVs, trucks, buses, and motorcycles/two wheelers.

The implementation is particularly straight-forward using a GIS platform. This is the method that

the research team is using to determine the VMT mix on each link in the Dallas-Fort Worth

Metropolitan planning area as part of an ongoing air quality-related project funded by the Texas

Department of Transportation (TxDOT).
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The model-predicted VMT mix in the six vehicle types has to be converted into the eight-

class EPA vehicle classification for input into the MOBILE emissions factor model. We propose

an approach that combines local vehicle registration data from the Dallas-Forth Worth area with

information provided in the Transportation Energy Data Book (or TEDB, [10]) for this

conversion, as discussed below. 

The TEDB estimates that 98.8% of passenger cars are gasoline-driven and 1.2% are diesel-

driven. These splits are used to allocate the "autos" VMT mix between the LDGV (light-duty

gasoline powered vehicles) and LDDV (light-duty diesel powered vehicles) EPA categories.

Pick-ups and vans (PUVs, including minivans and passenger vans) and sports utility

vehicles (SUVs) fall under the classification of light-duty trucks and are to be assigned among the

LDGT1 (light-duty gasoline-powered trucks of gross vehicle weight less than 6000 pounds),

LDGT2 (light-duty gasoline-powered trucks of gross vehicle weight between 6000 and 8500

pounds), and LDDT (light-duty diesel-powered trucks of gross vehicle weight less than 8500

pounds) EPA vehicle types. From the TEDB, we computed the gasoline to diesel split for light-

duty trucks as 97.88% to 2.12% based on truck sale information until 1995. This information is

used to allocate 2.12% of the "PUV" VMT mix and the "SUV" VMT mix to the LDDT category.

The remaining 97.88% of gasoline-powered PUVs and SUVs are allocated between the less than

6000 pounds (LDGT1) and 6000-8500 pounds (LDGT2) categories based on 1996 local vehicle

registration data obtained from TxDOT for the Dallas-Fort Worth region. Since the local vehicle

registration data are differentiated by County, and the split of the LDGT1 and LDGT2 categories

in the registration data are quite different across counties, we developed county-specific estimates

of PUV and SUV splits in the LDGT1 and LDGT2 categories (our method, of course, assumes
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that the split of traffic in the LDGT1 and LDGT2 categories in each county is the same as the

vehicle registration split in these categories in the county; the method does not consider inter-

county travel which may lead to a differential LDGT1/LDGT2 traffic split vis-a-vis the

registration data split in each county) .

The 1996 local vehicle registration data for the Dallas-Fort Worth area provides the

gasoline-diesel splits of combination trucks (vehicles with gross weight of over 8500 pounds) by

county and this information is used directly to apportion the "combination trucks" VMT mix into

the HDGV (heavy-duty gasoline vehicles) and HDDV (heavy-duty diesel vehicles) EPA

categories.

A "Bus" vehicle type classification is not included in the 1996 local vehicle registration

data. So, we use the TEDB-estimated 20.09% to 79.91% split of buses into the gasoline-powered

and diesel-powered vehicles to allocate the "bus" VMT mix between the HDGV and HDDV EPA

vehicle categories.

Finally, the model-predicted "motorcycle" VMT mix is assigned completely to the

motorcycle (MC) EPA vehicle category.

Table 3 provides the final county-specific conversion factors between the six-vehicle type

classification typology used in the VMT mix modeling of the current paper and the eight-vehicle

type EPA classification typology. 

Two points to note about the conversion factors. First, these conversion factors can be

updated continually as more local information becomes available. Second, the current EPA

MOBILE emissions factor model does not distinguish between PUVs and SUVs; both of these are

classified under light-duty trucks. Thus, the distinction between PUVs and SUVs in our VMT mix
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model is rather academic at this point. However, new versions of the MOBILE models that

distinguish between emissions of PUVs and SUVs are planned. The VMT mix model proposed

here can be used to provide the disaggregate input needed by these forthcoming MOBILE models.

7.  MODEL EVALUATION

In this section, we evaluate the ability of the proposed model to replicate the actual VMT

mix on links in the sample. We also compare the predicted emissions on each link (based on the

proposed VMT mix model) with the actual emissions on that link (based on the observed link-

specific VMT mix values). In addition, we compare the performance of the proposed model with

that of a “default” model that uses only roadway functional classification as the controlling

variable for VMT mix analysis (this is the state-of-the-practice in the Dallas-Fort Worth area and

in other metropolitan areas which use local VMT mix values). It will be noted that the “default”

model is better than using the MOBILE5 default values because it is based on local conditions.

But it is restrictive compared to the proposed model in this paper because it ignores factors other

than roadway classification which may affect VMT fractions.

7.1.  VMT Mix Performance Evaluation

For each sample link observation, we have the actual observed VMT mix in the six vehicle

types: autos, PUVs, SUVs, tucks, buses, and motorcycles. We also have the corresponding

model-predicted VMT mix in these six vehicle types. The evaluation of the proximity of estimated

and actual VMT mixes on links is based on three  criteria: the mean absolute error (MAE), the

mean percentage absolute error (MPAE) and a pseudo-R2 value. The MAE is computed for each
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2

,

vehicle type as the average (across link observations) of the absolute difference between the

model-predicted and actual VMT fractions for that vehicle type. The MPAE is computed as the

link-averaged absolute difference between the model-predicted and actual VMT fractions as a

percentage of the actual VMT fraction. The pseudo-R2 measure is an overall model fit measure

computed as follows:

(5) 

where is the actual fraction of VMT accrued by vehicle type i on link q, is the model-yqi ŷqi

predicted fraction, and is the area-wide average VMT (from Table 1) for vehicle type i. Theȳi

denominator in equation (5) is the variation in the actual link VMT mix values around the mean

area-wide VMT mix value, summed across all vehicle types and links. The numerator represents

the variation explained by the model. Thus, the pseudo-R2 measure may be viewed as the fraction

of total variation in VMT mix explained by the model. The measure  varies between 0 and 1. 

Table 4 provides the measures of fit (MAE, MPAE and pseudo-R2) for the proposed model

and a “default” model that uses only roadway functional classification as the controlling variable.

We do not compute an MPAE for buses and motorcycles in Table 4 because the actual VMT

fractions for these vehicles are extremely small, leading to substantially high MPAE values by

construction. 

The MAE and MPAE results in Table 4 clearly indicate the superiority of the proposed

model over the default model. The MPAE for SUVs and trucks are rather high even for the

proposed model, but this is an artifact of very low VMT fractions of these two vehicle types on
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many links. The more significant observation is that there is a large improvement in the fit of the

proposed model relative to the default model in these two vehicle classes, especially for trucks.

More generally, the percentage higher error in the default model compared to the proposed model

is quite substantial across all vehicle types. 

The pseudo-R2 measure of the proposed and default models in Table 4 is another indicator

of the superior performance of the proposed model. The results indicate that the default model is

only able to explain 3% of the variation of link VMT fractions, while the proposed model is able

to explain 44% of this variation. This result implies that roadway classification alone does not

contribute much in explaining VMT mix; there are several other very important link and land-use

attributes that should be considered in VMT mix analysis. This is, of course, also quite apparent

from the results in Table 2.

7.2.  Emissions Performance Evaluation

To evaluate the benefit of the proposed VMT mix model for emissions prediction, we

applied the conversion factors developed in section 6 to convert the actual/predicted count-based

VMT mix fractions into VMT fractions by the eight EPA vehicle classes. Since the total volumes

and the lengths of each link in the sample are known, we then computed the actual/predicted link

VMT accrued by each of the EPA vehicle classes. Finally, we applied area-wide emission factors

by pollutant type and EPA vehicle class (as obtained from the MOBILE5 model by the North

Central Texas Council of Government Staff for the Dallas-Fort Worth area) to calculate

“actual”/predicted emissions for each pollutant type on each link. The evaluation of the ability of

the proposed model and the “default” model to replicate “actual” link emissions was based on the
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same three criteria; mean absolute error (MAE), mean percentage absolute error (MPAE) and

pseudo-R2; as used for VMT mix analysis.

Table 5 provides the evaluation results. The MAE results in the table indicate the average

link level error in the emissions predictions (in grams), while the MPAE provides the average link

level percentage error in the emissions predictions. The results again indicate that the proposed

model fits the data much better than the default model. The MAE in the default model is about

24-30% higher than from the proposed model, while the MPAE in the default model is between

50-120%  higher than from the proposed model depending on the pollutant type (the MPAE in

Table 5 for emissions is of an order lower than that in Table 4 for VMT mix because the

magnitude of link emissions is very high compared to the VMT mix fractions; thus, a 1% error

in emissions implies a much larger absolute error compared to a 1% error in VMT mix fractions).

The pseudo-R2 measure from the two models again emphasizes the much superior

performance of the proposed model. In summary, the improvement in VMT mix predictions by

the proposed model does indeed translate to improved emissions estimation. 

8.  CONCLUSIONS

VMT mix or the distribution of vehicles by weight and fuel type is an important traffic-

related parameter in determining the composite mobile source emissions on links of a network.

The emissions factors (in grams per mile of vehicle travel for each pollutant) vary quite widely

among different vehicle classes and therefore the emissions analysis is very sensitive to the VMT

mix. Consequently, it is important to develop methods that provide accurate VMT mix values at

the individual link level.
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Current approaches to VMT mix determination apply aggregate-level values across all links

in the road network based on national level traffic count statistics or apply roadway-class specific

values based on local vehicle classification traffic counts. However, it has been documented in the

literature that there is substantial variation in VMT mix across different regions and across links

of the same roadway class within a region. 

This paper proposes a fractional split model that relates VMT mix on links to several, more

informative, explanatory variables than just roadway class. The fractional split model is a valuable

formulation for VMT mix analysis because it accommodates boundary values of the fractional

VMT in a vehicle class, is easy to estimate using commonly available econometric software, and

is easy to apply in forecasting mode to predict the VMT mix on each link of a network. A quasi-

likelihood approach that provides consistent and asymptotically robust inference for the parameters

in the fractional split model is used in estimation.

The empirical analysis in the paper applies the fraction split model structure to estimate

a VMT mix model for the Dallas-Fort Worth metropolitan region in Texas. Several data sources

are used to assemble the data needed in the estimation. This assembly requires a reasonable,

though not very substantial,  amount of effort. Once the data is assembled, estimation of the VMT

mix model proposed here is straight-forward and so is the application of the model to predict link

VMT mix values. Thus, though the current paper uses the Dallas-Fort Worth region as the study

area, similar models can be estimated easily in other areas. This is particularly the case today

because many metropolitan areas now have network and land-use files in a GIS format, from

which the information required for the proposed model estimation can be immediately extracted.
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The empirical results for the Dallas-Fort Worth area show important differences in VMT

mix based on link functional classification, link physical attributes, link speed characteristics,

degree of urbanization of zone that contains the link, and land-use variable of the zone in which

the link lies. Model evaluation efforts indicate that the proposed model provides much better

predictions of VMT mix and emissions estimation than the default model in use by Metropolitan

Planning Organizations. The proposed model is currently being embedded within a GIS platform

to predict the VMT mix on all links of the Dallas Fort Worth metropolitan region.

There are two limitations of the current empirical analysis. First, variations in VMT mix

across different times of the day are not captured in the model. Second, seasonal variation in VMT

mix are also not incorporated in our model. The vehicle classification counts used in the current

paper provided only 24-hour counts and were conducted during the same month each year. Thus,

they are inadequate for capturing temporal and seasonal variations. To accommodate these

variations, more extensive vehicle classification counts at different times of the day and different

seasons of the year are needed. Once such data becomes available, the fractional split model

structure can be applied to capture these additional effects. It is likely that the measures of fit of

the proposed model in Tables 4 and 5 will improve even more after accommodating such temporal

and seasonal variations in VMT mix.
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Table 1:  Fractional Split of Vehicle Types

Vehicle Type Mean value Std. dev. Minimum Maximum

Autos 0.653 0.088 0.389 0.875

Pick-Ups/Vans (PUV) 0.262 0.062 0.098 0.416

Sports Utility Vehs. (SUV) 0.035 0.034 0.000 0.487

Trucks 0.043 0.045 0.000 0.263

Buses 0.002 0.008 0.000 0.118

Motorcycles (MC) 0.005 0.003 0.000 0.023
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Table 2: VMT Fractional Split Model Estimation Results

Variable Parameter estimate t-statistic

Link functional classification

Major arterials

PUV  0.0934  2.090

MC  0.3595  4.130

Minor arterials

PUV  0.1076  1.177

Bus -1.0570 -2.193

MC  0.3138  2.506

Collector/local streets

PUV  0.2416  3.427

Bus -1.7264 -3.140

MC  0.6679  4.460

Link physical attributes

Divided road

Truck  1.1389   3.149

Bus -0.6862  -2.328

MC  0.3427   2.625

Number of lanes

Truck -0.1738  -2.202

Bus -0.5230  -2.045

Link free speed variables

Low speed

PUV -0.2903  -3.838

SUV -0.7688  -6.499

Truck -1.7293  -7.013

Bus  1.0436   2.610

Low to medium speed

PUV -0.1469  -2.297

SUV -0.3377  -3.259

Truck -1.8454 -11.480

Bus  0.5063   1.744

Medium speed

Truck -0.4125  -3.847

MC  0.1481   1.829



Bhat and Nair 30

Variable Parameter estimate t-statistic

Degree of urbanization

Central Business District

PUV -0.2919  -3.205

Truck -1.0350  -3.409

Bus  1.7342   4.106

Urban residential

PUV -0.0918  -1.932

SUV -0.2322  -2.395

Truck -0.5645  -4.209

Zonal land-use variables

Airport presence

PUV  0.1823   2.211

Institution presence

Auto  0.1207   2.904

Acreage in office/retail space

PUV -0.0019  -2.399

SUV -0.0038  -1.796

Truck -0.0165  -4.282

Bus -0.0146  -1.937

MC -0.0026  -2.169

Acreage in manufacturing/warehousing

PUV  0.0009   3.427

SUV  0.0021   5.494

Truck  0.0067   9.632

Bus  0.0031   2.457

Notes: 1) PUV - Pick-ups and vans, SUV - Sports utility vehicle, MC - Motorcycles/two-wheelers

2) The estimated constant values for each vehicle type are as follows (the auto vehicle type is the

base): -0.8147 (for PUV), -2.1601 (for SUV), -2.4148 (for trucks), -4.2927 (for buses), and

-5.3752 (for MC).
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Table 3:  TxDOT Vehicle Count Vehicle Type to MOBILE Vehicle Type Conversion Factors

Dallas County
TxDOT
classification

EPA MOBILE vehicle type classification
LDGV LDDV LDGT1 LDGT2 LDDT HDGV HDDV MC

Autos 98.8% 1.2% - - - - - -
PUV - - 95.16 2.72 2.12% - - -
SUV - - 95.16 2.72 2.12% - - -
Trucks - - - - - 35.43% 64.57% -
Buses - - - - - 20.09% 79.91% -
Motorcycles - - - - - - - 100%

Tarrant County

TxDOT
classification

EPA MOBILE vehicle type classification
LDGV LDDV LDGT1 LDGT2 LDDT HDGV HDDV MC

Autos 98.8% 1.2% - - - - - -
PUV - - 96.07% 1.81% 2.12% - - -
SUV - - 96.07% 1.81% 2.12% - - -
Trucks - - - - - 39.31% 60.69% -
Buses - - - - - 20.09% 79.91% -
Motorcycles - - - - - - - 100%

Collin County

TxDOT
classification

EPA MOBILE vehicle type classification
LDGV LDDV LDGT1 LDGT2 LDDT HDGV HDDV MC

Autos 98.8% 1.2% - - - - - -
PUV - - 96.15% 1.73% 2.12% - - -
SUV - - 96.15% 1.73% 2.12% - - -
Trucks - - - - - 44.24% 55.76% -
Buses - - - - - 20.09% 79.91% -
Motorcycles - - - - - - - 100%

Denton County

TxDOT
classification

EPA MOBILE vehicle type classification
LDGV LDDV LDGT1 LDGT2 LDDT HDGV HDDV MC

Autos 98.8% 1.2% - - - - - -
PUV - - 96.36% 1.52% 2.12% - - -
SUV - - 96.36% 1.52% 2.12% - - -
Trucks - - - - - 43.30% 56.70% -
Buses - - - - - 20.09% 79.91% -
Motorcycles - - - - - - - 100%

Rockwell County

TxDOT
classification

EPA MOBILE vehicle type classification
LDGV LDDV LDGT1 LDGT2 LDDT HDGV HDDV MC

Autos 98.8% 1.2% - - - - - -
PUV - - 95.96% 1.92% 2.12% - - -
SUV - - 95.96% 1.92% 2.12% - - -
Trucks - - - - - 34.24% 65.76% -
Buses - - - - - 20.09% 79.91% -
Motorcycles - - - - - - - 100%
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Table 4: VMT Mix Performance Evaluation

Fit Statistic Model
Vehicle Type

Auto PUV SUV Trucks Buses Motorcycles

Mean Absolute
Error (MAE)

Proposed 0.0482 0.0398 0.0133 0.0163 0.0016 0.0019

Default 0.0720 0.0475 0.0150 0.0350 0.0018 0.0019

% higher error in
default over proposed

49.38 19.35 12.78 114.72 12.50 0.00

Mean Percentage
Absolute Error
(MPAE)

Proposed 7.60 17.36 38.45 44.43 - -

Default 11.35 20.70 47.69 67.96 - -

% higher error in
default over proposed

49.34 19.24 24.03 52.96 - -

Pseudo-R2 Proposed 0.43

Default 0.03
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Table 5: Emissions Performance Evaluation

Fit Statistic Model
Pollutant Type

Carbon Monoxide
(CO)

Volatile Organic
Compounds (VOCs)

Oxides of Nitrogen
(NOx)

Mean Absolute
Error (MAE) in
grams 

Proposed 9992 684 6098

Default 12754 853 8030

% higher error in
default over proposed

27.64 24.76 31.70

Mean Percentage
Absolute Error
(MPAE)

Proposed 1.84 1.30  8.71

Default 2.93 2.00 19.06

% higher error in
default over proposed

59.24 53.40 118.82

Pseudo-R2 Proposed 0.515

Default 0.004
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