Code Documentation for “New Matrix-Based Methods for the Analytic Evaluation of the Multivariate Cumulative Normal Distribution Function”
Chandra Bhat
This addendum serves to document the GAUSS matrix programming codes for the proposed matrix-based implementation of the ME method, and for all the new proposed analytic methods as well as the SSJ method (and gradients of all these analytic methods). If you use any part of the codes, either within the GAUSS environment or after translating the codes to a different environment, please do cite Bhat (2018).
Bhat, C.R. (2018). New Matrix-Based Methods for the Analytic Evaluation of the Multivariate Cumulative Normal Distribution Function. Transportation Research Part B, 109, 238-256.

1. Main Gauss functions
The calls to the approximation procedures have the following structure:

{ P,s1 } = cdfmvnanalytic(mu,cov,x,s); analytically approximated CDF of multivariate normal
{ P,gmu,gcov,gx,s1 } = pdfmvnanalytic(mu,cov,x,s): Gradient of approximated CDF

GLOBALS:

_covarr = 1 implies cov is a covariance matrix; _covarr=0 means cov is a correlation matrix

_perms = n means n permutations of abscissae will be used in the Switzer, Solow, Joe analytic approach, n=1 means only one permutation will be used; For all non-SSJ methods, only one sequence (based on global _optimal) will be used, and _perms is irrelevant

_optimal = 0 implies that non-SSJ methods will be based on simple ascending order of abscissae	
 = 1 means non-SSJ methods will be based on an ordering following the GGE approach
 = 2 implies that non-SSJ methods will be based on random ordering of the abscissae
 = 3 implies the abscissae are used in the same order as given.
 The value of _optimal does not matter for the SSJ method.

 IMPORTANT NOTE: For the TVBS method, only the _optimal=0, 2, or 3 values must be used to get correct analytic gradients, because the TVBS method already is based on an approximate quadrivariate CDF function evaluation; this requirement is already taken care of in the code, by putting _optimal=0 (if _optimal is provided as 1) if the TVBS method is used.

_method = "SSJ"			- Switzer, Solow, and Joe Method
 "TG"			- Trinh and Genz's univariate conditioning approximation
 "ME"			- Traditional ME approach based on LDLT implementation
 "OVUS"		- One-variate univariate screening approach
 "OVBS"		- One-variate bivariate screening approach
 "TGBME" 	- Trinh and Genz's bivariate conditioning approximation
 "BME" 		- Bivariate ME approach
 "TVBS" 		- Two-variate bivariate screening approach

INPUTS

** mu = { mu1,mu2,mu3,mu4 }’; 			Kx1 (K>=2) vector of means (say K=4)

** cov = { cov11 cov12 cov13 cov14, 		cov is KxK covariance matrix (if _covarr=1)
 cov12 cov22 cov23 cov24,
 cov13 cov23 cov33 cov34,
 cov14 cov24 cov34 cov44 };

** cov = { 1 rho12 rho13 rho14, 		cov is KxK correlation matrix (if _covarr=0)
 rho12 1 rho23 rho24,
 rho13 rho23 1 rho34,
 rho14 rho24 rho34 1 };

** x = { x1,x2,x3,x4 }’; 				Kx1 vector of abscissae

** s is a seed value that is relevant only for the SSJ method or for the randomized versions of other methods (when using _optimal=3). But always provide a value.

OUTPUTS

** P = cdfmvnanalytic(x,mu,cov) 		1x1 scalar

** gmu = { dP/dmu1, 			Kx1 vector
 dP/dmu2,
 dP/dmu3,
 dP/dmu4 };

** gcov = { dP/dcov11 			[K*(K+1)/2 x 1] vector if _covarr=1
 dP/dcov12
 dP/dcov13
 dP/dcov14
 dP/dcov22
 dP/dcov23
 dP/dcov24
 dP/dcov33
 dP/dcov34
 dP/dcov44 };

** gcov = { dP/drho12 			[K*(K-1)/2 x 1] vector if _covarr=0
 dP/drho13
 dP/drho14
 dP/drho23
 dP/drho24
 dP/drho34 };

** gx = { dP/dx1, 		Kx1 vector
 dP/dx2,
 dP/dx3,
 dP/dx4 };

** s1 - Vector seed coming out of SSJ method or from random ordering of other methods (having this, and using this as seed for next call of an MVNCD evaluation is helpful for model estimation where multiple MVNCD evaluations have to be undertaken); if not SSJ method and not random ordering for other methods, s1 is the same as the input scalar seed s */

[bookmark: _GoBack]
2. Running the codes
To test if you have installed things correctly and to run the code, the reader can use the following values for the vector of abscissae, correlation matrix, and seed.
a = { 	0.2,
 	0.1,
 	1.0,
 	0.8,
 	1.0 };
rr = { 1.0 	-0.3 	 0.2 	-0.3	0.5,
 -0.3 	 1.0 	 0.5 	 0.4 	0.5,
 0.2 	 0.5 	 1.0 	-0.2 	0.3,
 	-0.3 	 0.4 	-0.2 	 1.0 	0.2,
 0.5 	 0.5 	 0.3 	 0.2 	1.0 };
s=100;

/* For the TG Method */

_perms = 1; /* value is irrelevant for non-SSJ methods */
_covarr=0; /* Input is a correlation matrix */
_optimal=0; /* The abscissae are arranged in ascending order prior to MVNCD evaluation */
_method="TG"; /* Invoking the TG method */

/* The actual call to the MVNCD function */

{ P,s1 } = cdfmvnanalytic(mu,cov,x,s);

/* The call to the gradient function */

{ P,gmu,gcov,gx,s1 } = pdfmvnanalytic(mu,cov,x,s);

The table on the next page shows the MVNCD values (=P from the cdfmvnanalytic procedure) that users should obtain using the different methods (all that the user needs to do is to appropriately change the global variables of _perms, _optimal, and _method). To reduce clutter, we do not provide the gradient outputs from the pdfmvnanalytic procedure.

	Method
	 optimal=0
	optimal=1
	optimal=2
	optimal=3

	TG
	0.22357055
	0.22357055
	0.18836947
	0.22402930

	ME
	0.21125693
	0.21125693
	0.21926507
	0.21150397

	OVUS
	0.21137500
	0.21137500
	0.22019261
	0.21203451

	OVBS
	0.21174956
	0.21174956
	0.21761081
	0.21219719

	TGBME
	0.21881104
	0.21881104
	0.21939961
	0.21881104

	BME
	0.21214166
	0.21214166
	0.22028079
	0.21214166

	TVBS
	0.21215933
	--
	0.21953740
	0.21255795

	SSJ (n=1)
	0.20597365

	SSJ (n=10)
	0.21314977

	True Value
	0.21310503

