CENDAP User's Manual

Table of Contents

INTRODUCTION	1
1. SYSTEM REQUIREMENTS AND INSTALLATION INSTRUCTIONS	2
1.1 MINIMUM SYSTEM REQUIREMENTS 1.2 INSTALLATION INSTRUCTIONS 1.3 TO UNINSTALL	2 2 4
2. THE CEMDAP ENVIRONMENT	6
2.1 MAIN WINDOW 2.2 MENUS 2.5 PROGRESS BAR	7 7 8
3. INPUT AND OUTPUT FILES	9
 3.1 INPUT DATA SPECIFICATION	9 9 <i>12</i> 13
4. BASIC OPERATIONS	16
 4.1 REGISTERING THE INPUT DATABASE	 16 19 20 21 22 26 31 32 32 43
TUTORIAL	45
APPENDIX A. MODEL CONFIGURATION FILE	72
APPENDIX B. LIST OF MODEL COMPONENTS IN CEMDAP	79
APPENDIX C. D-FW INPUT DATA	81

Introduction

The "Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns" (CEMDAP), is a software implementation of a system of econometric models that represent the decision-making behavior of individuals. It is one of the first systems to comprehensively simulate the activity-travel patterns of workers as well as non-workers in a continuous time domain. Given various land-use, socio-demographic, activity system, and transportation level-of-service attributes as input, the system provides as output the complete daily activity-travel patterns for each individual in the household.

CEMDAP has been developed using Object Oriented Design. It was implemented in Visual C++ using the Visual Studio .NET development platform. The software provides a user-friendly Windows environment to configure or modify the components of the modeling system, save or load the model configurations, load the input data and run the simulation. For an overview of the modeling system embedded in CEMDAP, refer the *Guidebook on Activity-based Travel Demand Modeling for Planners* included in CEMDAP's documentation set. The rest of this manual is organized as follows. Chapter 1 describes the system requirements and installation instructions for the software. Chapter 2 provides an overview of the CEMDAP environment including a description of the menus and commands available. Chapter 3 describes the prescribed input and output file specifications and formats. Chapter 4 guides the user through the basic operations such as loading inputs, configuring model components etc. Chapter 5 is a tutorial that leads the user through the entire process of simulating the activity-travel patterns of a synthetic population using sample input files.

1. System Requirements and Installation Instructions

1.1 MINIMUM SYSTEM REQUIREMENTS

CEMDAP requires a Pentium II-class processor or above to perform satisfactorily. The operating systems supported include Windows NT 4, Windows 2000 and Windows XP.

1.2 INSTALLATION INSTRUCTIONS

To install CEMDAP in your system, find the *CemdapSetup.msi* file in the installation CD and follow the steps outlined below.

- 1. Double click *CemdapSetup.msi* to run the CEMDAP setup wizard.
- 2. In the *Welcome* screen, click *Next* to continue.

3. This leads to the *Select Installation Folder* screen. Choose the destination location and folder name for the program installation (for example, C:\Program Files\University of Texas\Cemdap) and click *Next* to continue.

谒 Cemdap	
Select Installation Folder	
The installer will install Cemdap to the following folder. To install in this folder, click "Next". To install to a different folder, enter it belo Eolder:	ow or click "Browse".
C:\Program Files\University of Texas\Cemdap\	Browse
	Disk Cost
Install Cemdap for yourself, or for anyone who uses this computer:	
OEveryone	
 Just me 	
Cancel < Back	Next>

4. Click Next in the Confirm Installation screen.

🎼 Cemdap			
Confirm Installation			
The installer is ready to install Cemda	p on your computer.		
Click "Next" to start the installation.			
	Cancel	< Back	Next >

- 5. Installation will complete in a few seconds.
- 6. Click Close to exit the wizard.

😸 Cemdap			
Installation Complete			
Cemdap has been sucessfully installed Click "Close" to exit.			
	Cancel	KBack	Close

At the end of the installation process, CEMDAP will be added to the Program menu, and a shortcut to the program will be created on the Desktop. Double click to start CEMDAP. Sample data files for running CEMDAP can be found in */data* under the installation destination directory (for instance, C:/Program Files/University of Texas/Cemdap/data). A sub-directory under */data* titled */DFW_Models* contains Microsoft Excel files with the model system estimation results for Dallas-Fort Worth.

1.3 TO UNINSTALL

To uninstall CEMDAP use the *CemdapSetup.msi* file in the installation CD and follow the instructions given below.

1. Double click *CemdapSetup.msi* to run the CEMDAP setup wizard.

2. In the *Welcome* screen select the *Remove Cemdap* radial button and click *Finish*.

3. Click *Close* to exit.

2. The CEMDAP Environment

CEMDAP offers a user-friendly environment to simulate the activity-travel patterns of a population by using standard Windows user interface features. In this chapter we shall take a look at all the basic features that comprise the CEMDAP environment.

To start CEMDAP double-click the *shortcut to CEMDAP* on your desktop, or find CEMDAP in the *Start* menu under *All Programs*. This opens up the following CEMDAP window consisting of the main window and menus. Each of these is described in the following sections. Also described is the progress bar which appears during a simulation run.

Main Window

2.1 MAIN WINDOW

The main CEMDAP window remains open as long as the software is being used and has no functionality by itself other than the fact that it hosts the important menu items and other dialog boxes.

2.2 MENUS

The primary functionality of CEMDAP lies within the menu commands. The commands available from the menu bar and their functions are tabulated below.

Data Menu

Choose	То
Input	Load the input data. The input data must be 'registered' prior to loading it (refer Chapter 3 for details).
Output	Specify the names and locations for the output files. The output file formats are described in detail in Chapter 3.
Exit	Quit from the CEMDAP environment.

Models Menu

Choose	То
Load	Load the model configurations from file (refer Chapter 4 on Basic Operations for instructions on configuring models).
Save	Save the model configurations to file (refer Chapter 4 on Basic Operations for instructions on configuring models).
Generation-Allocation	To access the model configuration dialog boxes for the suite of generation-allocation model components (refer Appendix B).
Pattern-level	To access the model configuration dialog boxes for the suite of pattern-level model components (refer Appendix B).
Tour-level	To access the model configuration dialog boxes for the suite of tour-level model components (refer Appendix B).

Stop-level	To access the model configuration dialog boxes for the suite of stop-level model components (refer Appendix B).
Interactive UI	To open the interactive user interface that ties all model configuration dialog boxes together using the modeling system framework (refer 'Guide to Activity-based Analysis').

Simulation Menu

Choose	То
Run	Initiate a simulation run. (Note that the input data must be loaded and the complete model system configured prior to using the <i>Run</i> command).

Help Menu

Choose	То
About	Display the About CEMDAP dialog box that shows copyright and version information

2.5 PROGRESS BAR

Ľ

The progress bar is launched whenever a simulation run is initiated and serves to keep track of the progress of the simulation. In particular, the progress bar displays the time elapsed and the ID of the household being processed. The title of the progress bar reads '*Simulation in Progress*...' when the simulation is in progress and reads '*Simulation Completed*!' when it is completed.

3. Input and Output Files

3.1 INPUT DATA SPECIFICATION

The inputs required by CEMDAP can be broadly classified into two categories: a) **input data**, which includes the population characteristics, zonal descriptives and level-of-service data of the transportation network; and b) **model parameters** for all the components of the embedded model system. The **input data** file must be registered prior to loading it in CEMDAP. Chapter 4 on *Basic Operations* describes the database registering process.

3.1.1 Input Data

The **input data** is required to be in the Microsoft Access database format, and consists of five tables, viz; Households, Persons, Zones, Zone2Zone and LOS. The household and person tables together describe the entire population of interest. CEMDAP simulates the activity-travel patterns only for adults (age greater than or equal to 16), and therefore the household and person tables must contain information only for the adults in the population. And then there are the zonal descriptives, static inter-zonal descriptives, and level-of-service tables. The following input specification tables describe the exact format of the input tables. Listed in these specification tables are the columns **required** in the input database. Additional columns (such as household income in the Households table, or age and ethnicity in the Persons table) can be added at the end of the Households or Persons tables, if required by the estimated model system. Each exogenous variable used in the model system must have a corresponding entry in the appropriate Households or Persons table. The input tables in the Microsoft Access database must take the titles

specified below and the variables must be of the '*double*' type. The columns of **required** data must also take the variable names as prescribed.

Note: (1) Household ID and Person ID together uniquely identify every individual in the population of interest. (2) By specifying the start and end times in the LOS table one can achieve any level of temporal disaggregation.

Column #	Variable	Variable Name
1	HH ID	HID
2	# adults	N_ADULTS
3	# autos	N_AUTOS
4	Location	ZONE_ID

Table Title: Households

Table Title: **Persons**

Column		Variable	
#	Variable	Name	Comment
1	HH ID	HID	
2	Person ID	PID	
3	employed	EMPLOYED	employment status variables: along with neither employed nor student, forms a mutually exclusive,
4	student have driver's	STUDYING	collectively exhaustive set
5	license	LICENSE	
6	Location of work	WORK_ZON	if employed
7	Location of school	STUD_ZON	if student
8	female	FEMALE	

Table Title: Zones

Column #	Variable	Variable Name
1	Zone ID	ZID
2	LN(total population +1)	LN_POP
3	LN(total employment +1)	LN_EMP

Column #	Variable	Variable Name	Comment
1	Origin Zone	ORIG_ZON	
2	Destination Zone	DEST_ZON	
3	adjacent	ADJACENT	1 if origin and destination zones are neighboring
4	distance	DISTANCE	in miles

Table Title: **Zone2Zone**

Column			
#	Variable	Variable Name	Comment
1	start of time period	START_T	in minutes from 3 AM
2	end of time period	END_T	in minutes from 3 AM
3	Origin Zone	ORIG_ZON	
4	Destination zone	DEST_ZON	
5	DA IVTT	DA_IVTT	minutes
6	DA OVTT	DA_OVTT	minutes
7	DA cost	DA_COST	cents
8	SR IVTT	SR_IVTT	minutes
9	SR OVTT	SR_OVTT	minutes
10	SR cost	SR_COST	cents
11	transit availability	TR_AVAIL	
12	transit IVTT	TR_IVTT	minutes
13	transit OVTT	TR_OVTT	minutes
14	transit cost	TR_COST	cents

Table Title: LOS

A sample data file in the Microsoft Access format can be found in /data under the installation destination directory. This contains all the variables (listed in Appendix B) needed for the estimated D-FW model system, which includes the 'required variables' and some 'additional variables'. A view of the sample dataset with all the five required tables is provided below.

— Test Input Database

3.1.2 Model Parameters

The model system embedded in CEMDAP is described in greater detail in the *Guidebook on Activity-based Travel Demand Modeling for Planners* included in CEMDAP's documentation set. Refer Appendix B for a list of all the model components. The parameters of each of the model components that constitute this model system must be specified the first time that CEMDAP is used. Thereafter, the model configurations can be saved into a file using the *Save* command in the *Models Menu* and reloaded as

desired using the *Load* command in the *Models Menu*. The first time specification of the model configurations can be achieved in one of three ways (refer section 4.4 for further details).

- Access each of the model configuration dialog boxes through the commands in the Models Menu. In particular, access the dialog boxes under the Generation-Allocation, Pattern-level, Tour-level and Stop-level entries in the Models Menu. (This method is recommended for changing the parameters of a few models).
- 2. Access the model configuration dialog boxes through the *Interactive UI*, which is also in the *Models Menu*. The interactive user interface ties all the dialog boxes together using the embedded modeling framework. (This method is recommended for first time model parameter input).
- **3.** The model parameters for all the model components can be coded into a text file (model configuration file) in a prescribed format, and then loaded into the system using the *Load* command in the *Models Menu*. A sample model configuration file can be found in */data* under the installation destination directory. Appendix A describes the prescribed format of the model configuration file. (This method is not recommended).

3.2 OUTPUT DATA FILES

CEMDAP produces as output the complete activity-travel patterns for a day for every individual in the population of interest. Following the representation framework for activity-travel patterns (refer *Guidebook on Activity-based Travel Demand Modeling for Planners*) the output is saved into six files. The files *Households.out* and *Persons.out* contain the decision to undertake activities of different types at the household and individual levels, and include household and person IDs which identify each individual uniquely. The files *Workers.out* and *Nonworkers.out* contain the pattern-level attributes of the workers' and non-workers' patterns respectively, while the files *Tours.out* and *Stops.out* contain the tour-level and stop-level attributes for all the individuals that undertake one or more tours. These output files can easily be imported into any spreadsheet of your choice. The formats of these output files are given below.

HOUSEHOLDS.OUT

Column No.	Description
1	Household identification number
2	Number of workers in household
3	Household makes shopping activity
4	Household makes social/recreational activity
5	Household makes personal activity

PERSONS.OUT

Column No.	Description
1	Household identification number
2	Person identification number
3	Person goes to work on the day
4	Person makes shopping activity
5	Person makes social/recreational activity
6	Person makes personal activity
7	Person makes other activity

WORKERS.OUT

Column No.	Description
1	Household identification number
2	Person identification number
3	Work duration
4	Work start time
5	Worker makes a Before-Work tour
6	Worker makes a Work-based tour
7	Worker makes a After-Work tour
8	Total number of tours made (including commutes)

NONWORKERS.OUT	
Column No.	Description
1	Household identification number
2	Person identification number

Total number of tours made

TOURS.OUT

3

Column No.	Description
1	Household identification number
2	Person identification number
3	Tour identification number ¹
4	Home stay start time
5	Home stay duration
6	Tour mode ²
7	Tour duration
8	Number of stops in tour
9	Available tour time
10	Available home stay time

STOPS.OUT

	Description
Column No.	Description
1	Household identification number
2	Person identification number
3	Tour identification number
4	Stop identification number
5	Activity type ³
6	Start time
7	Travel Time to stop
8	Stop duration
9	Available stop time
10	Available travel time
11	Stop location (zone) ID
12	location of origin zone (zone ID)

¹ Tour ID values for workers: 0 = Work-Home Commute, 1 = Home-Work Commute, 2 = Before-Work Tour, 3 = Work-based Tour, and 4 = After-Work Tour.

² Tour mode value labels: 0 = Drive-Alone, 1 = Shared-Ride, 2 = Drive-Alone & Shared-Ride, 3 = Walk, and 4 = Transit.

³ Activity type value labels: 0 = Shopping, 1 = Social/Recreational, 2 = Personal Business, 3 = Eat-out, 4 = Serve Passengers, and 5 = Miscellaneous.

Tour ID values for non-workers: 1 =First Tour, 2 =Second Tour, 3 =Third Tour, and 4 =Fourth Tour. Stop IDs for workers and non-workers are similarly coded in order of occurrence.

4. Basic Operations

4.1 REGISTERING THE INPUT DATABASE

The input database, which is in the Microsoft Access database format (refer chapter 3), must be registered before it can be loaded in CEMDAP. Follow the instructions below to register an input file.

 Open the Control Panel dialog (Start Menu -> Settings -> Control Panel in Windows NT/2000; Start Menu -> Control Panel in Windows XP). In the Control Panel dialog double-click the Administrative Tools icon which opens the Administrative Tools dialog.

Then in the *Administrative Tools* dialog double-click the *Data Sources (ODBC)* icon, which opens the *ODBC Data Source Administrator* dialog.

2. In the ODBC Data Source Administrator dialog box, select the System DSN tab.

Then click the Add button to bring up the Create New Data Source dialog box.

and the second second		Auu
CDCMusic treme Sample Dat	Microsoft Access Driver (*.mdb) abase Microsoft Access Driver (*.mdb)	Remove
		Configure

3. In the Create New Data Source dialog box, select the Microsoft Access Driver

from the list of drivers and click Finish.

	Name	Versio 木
	Driver da Microsoft para arquivos texto (*.txt; *.csv)	4.00.60
	Driver do Microsoft Access (*.mdb)	4.00.60 💼
	Driver do Microsoft dBase (*.dbf)	4.00.60
- There are	Driver do Microsoft Excel(*xls)	4.00.60
- Casto	Driver do Microsoft Paradox (*.db.)	4.00.60
	Driver para o Microsoft Visual FoxPro	6.01.86
	Microsoft Access Driver (* mdb)	4.00.60
	Microsoft Access-Treiber (*.mdb)	4.00.60
	Microsoft dBase Driver (*.dbf)	4.00.60
	Microsoft dBase VEP Driver (* dbf)	<u> 6 01 86 🎽</u>
	<	>
	Microsoft dBase Driver (*.dbf) Microsoft dBase VEP Driver (*.dbf)	4.00.8 4.00.8 6.01.8

4. In the *ODBC Microsoft Access Setup* dialog box that pops up, enter the appropriate *Data Source Name* and *Description*. The *Data Source Name* is used to identify the input data for use in CEMDAP. The *Description* field enables you to include more specific information about the data source.

Data Source Name:	DFW4080	ОК
Description: Database	Test Data	Cancel
Database:		Help
Select	Create Repair Compact	Advanced
System Database		
None		
C Database:		
	System Database	Options>>

 Click the Select button in the ODBC Microsoft Access Setup dialog box. This opens the Select Database dialog box. Locate and select the appropriate Microsoft Access database file (for example; Policy_test_data.mdb).

Database Name	Directories:	ОК
Policy_test_data.mdb	c:\\cemdap\data	
Policy_test_data.mdb		Cancel
	Program Files	Help
	Data	Read Only
	2	Exclusive
ist Files of Type:	Drives:	

6. Finalize the database registration process by clicking *OK* to close the dialog boxes. CEMDAP is now setup to access the database file you registered.

4.2 LOADING THE INPUT DATA FILE

Any Microsoft Access database that satisfies the prescribed format (refer Chapter 3) and has been registered as explained above can be loaded in CEMDAP as input. The following procedure must be followed to load the input data.

1. Click on the *Input* command in the *Data Menu* of CEMDAP.

Data	Models	Simulation H	Help
Inp	ut	h 6 8 9	?
Ou	tput		
Exi	t		

2. In the Select Data Source dialog that opens up select the Machine Data Source

tab and choose the registered data source to be loaded (for example, DFW4080).

Data Source Name	Туре	Description
dBASE Files DFW4080 ECDCMusic Excel Files MS Access Database Visual FoxPro Database Visual FoxPro Tables Xtreme Sample Database	User System User User User User System	Test Data Personal music CD titles
A Macking Data Source is on	ocific to this n	New
sources are specific to a user all users on this machine, or b	r on this mach y a system-w	ine. "System" data sources can be used by ide service.

3. Click *OK* and the input data is loaded.

4.3 SPECIFYING THE OUTPUT FILES

During a simulation run CEMDAP creates six output files (refer Chapter 3 for file

formats). The following steps are used to specify the location and names of these six

files.

1. Click on the Output command in the Data Menu of CEMDAP.

2. In the Save Simulation Results As... dialog box that opens, click on Browse to select the location for each file and type in the desired file names. The default file names are households.out, persons.out, workers.out, nonworkers.out, tours.out and stops.out, and the default file location is the /data folder in the installation destination directory. In the example below, the location specified for the output files is E:\Project4080\Output.

ousehold attributes:	E:\Project4080\Output\households.out	Browse
Person attributes:	E:\Project4080\Output\persons.out	Browse
Workers' Patterns:	E:\Project4080\Output\workers.out	Browse
Non-workers'	E:\Project4080\Output\nonworkers.out	Browse
Tours:	E:\Project4080\Output\tours.out	Browse
Stops:	E:\Project4080\Output\stops.out	Browse

3. Once all the file names and locations are specified click *OK* to complete the process.

4.4 CONFIGURING THE MODEL SYSTEM

The model system embedded in CEMDAP is described in detail in the *Guidebook* on Activity-based Travel Demand Modeling for Planners included in the documentation set, and Appendix B lists all the model components of this system. All the model components of this system must be configured before a simulation run. Model configuration involves selecting the relevant variables and inputting their parameters. The model system can be completely configured either by accessing all the corresponding dialog boxes to specify the models or by loading the complete model configuration file. The model configuration file can either be created manually (refer Appendix A for format) or is created when the *Save* command in the *Models Menu* is used.

Sections 4.4.1 and 4.4.2 describe two methods of accessing all the model dialog boxes to configure the entire model system. Section 4.4.3 explains how the complete model configuration entered using the dialog boxes can be saved in a file. Section 4.4.4 explains how to load a model configuration file into CEMDAP. All the model components fall into one of six categories: Linear Regression, Hazard Duration, Multinomial Logit, Binary Logit, Location Choice or Ordered Probit. Section 4.4.5 takes an example of each of these types to explain how they must be configured.

4.4.1 Accessing model module dialog boxes through the Models Menu

Data	Models Simulation Help	b	
	Load Save		
	Generation-Allocation	•	Go to Work
	Pattern-Level	•	Go to School
	Tour-Level	×	Work Duration
	Stop-Level	E.	Work Start Time
	Interactive UI		School Duration School Start Time
		T	HH Activity Generation
			Shopping Activity Allocation
			Soc/Rec Activity Allocation
			Personal Activity Allocation
			Other Activity Participation

The *Generation-Allocation* entry in the *Models Menu* allows access to the generation-allocation suite of model components. Clicking on any of the models in this suite opens up the corresponding dialog box to configure the model.

The *Pattern-Level* entry in the *Models Menu* allows access to the pattern-level suite of model components for workers and non-workers. Clicking on any of the models in this suite opens up the corresponding dialog box to configure the model.

The *Tour-Level* entry in the *Models Menu* allows access to the tour-level suite of model components for workers and non-workers. The tour-level models for workers must be configured for each of the Before-Work (BW), Work-Based (WB), and After-Work (AW) tours, whereas the tour-level models for non-workers must be configured for each of the four non-worker tours. Clicking on any of the models in this suite opens up the corresponding dialog box to configure the model.

Data	Models	Simulation	Help					
3	Load.	në.		1				
	Save.	00						
-	Gener	ation-Allocati	on 🕨					
	Patter	m-Level	•	1				
	Tour-	Level	•					
	Stop-	Level	Þ	Worker	•	Activity Type	•	WH
	Intore	etivo LIT		Non-worke	r 🔸	Activity Duration	•	HW
	In iter a			1		Travel Time	۲	BW
						Location (by auto)	•	WB
							-	ALAC
СЕМ	DAP - L	Intitled						~~~
CEM	DAP - L	Intitled	Halp					~~~
CEM ata N	DAP - L Models	J ntitled Simulation I	Help					~~~
CEM ata N	DAP - L 10dels Load	Untitled Simulation	Help					~~~
CEM ata N	DAP - L Models Load Save	Intitled Simulation I	Help					
CEM ata N	DAP - L Models Load Save Genera	Untitled Simulation I	Help					
CEM ata M	DAP - L Iodels Load Save Genera Patterr	Untitled Simulation ation-Allocatio n-Level	Help					
CEM ata N	DAP - L Aodels Load Save Genera Patterr Tour-L	Untitled Simulation I stion-Allocatio 1-Level evel	Help					
CEM ata N	DAP - L lodels Load Save Genera Patterr Tour-L Stop-L	Untitled Simulation I ation-Allocatio n-Level evel evel	Help n •	Worker				
CEM	DAP - L Iodels Load Save Genera Patterr Tour-L Stop-L	Untitled Simulation I ation-Allocatio n-Level evel evel evel	Help	Worker Non-worker		Activity Type		Tour1
CEM ata N	DAP - L 40dels Load Save Genera Patterr Tour-L Stop-L Interac	Untitled Simulation I ation-Allocatio h-Level evel evel evel stive UI	Help	Worker Non-worker	•	Activity Type Activity Duration		Tour1 Tour2
CEM ata	DAP - L 40dels Load Save Genera Patterr Tour-L Stop-L Interac	Untitled Simulation I ation-Allocatio n-Level evel evel evel stive UI	Help	Worker Non-worker	•	Activity Type Activity Duration Travel Time		Tour1 Tour2 Tour3

The *Stop-Level* entry in the *Models Menu* allows access to the stop-level suite of model components for workers and non-workers. The stop-level models for workers must be configured for each of the Before-Work (BW), Work-Based (WB), and After-Work (AW) tours, and the Home-Work (HW) and Work-Home (WH) commutes, whereas the stop-level models for non-workers must be configured for each of the four non-worker tours. Clicking on any of the models in this suite opens up the corresponding dialog box to configure the model.

4.4.2 Accessing model module dialog boxes through the Interactive

User Interface

The *Interactive UI* command in the *Models Menu* opens up the interactive user interface that ties together the model configuration dialog boxes for all the model components that constitute the embedded model system. The main dialog box of the interactive user interface shows the overall modeling framework and looks as shown below.

The *Generation-Allocation Model System* button opens up a dialog box with the generation-allocation modeling framework as shown below. Each of the components of this system can be configured by clicking on the corresponding buttons.

When all the components of the generation-allocation model system have been configured click *Close* to get back to the main dialog box. Then clicking on the button for the pattern-level model system for workers opens a dialog box with the pattern-level

modeling framework for workers as shown below. Each of the components of this system can be configured by clicking on the corresponding buttons.

Click *Close* to exit the dialog box and return to the main dialog box. The patternlevel model system for non-workers can then be configured similarly (dialog box shown below).

When all the components of the pattern-level model system for workers and nonworkers have been configured, click on the button for the tour-level model system for workers from the main dialog box. This opens a dialog box with the tour-level modeling framework for workers.

Clicking on each of the buttons in this dialog box opens up the tour-level model system for the BW, WB and AW tours, which are essentially identical in their framework. The dialog box corresponding to the tour-level model system for the BW tour is shown below. Each of the components of these systems can be configured by clicking on the corresponding buttons.

When the entire tour-level model system for workers has been configured, return to the main dialog box by clicking *Close* in all other dialog boxes. The tour-level model system for non-workers and the stop-level model systems can then be configured in a similar manner.

4.4.3 Saving model configuration file

The model configurations entered using the dialog boxes can be saved into a model configuration file for future use. This is achieved by clicking on the *Save* command in the *Models Menu*.

The *Save* command opens the *Save As* dialog box. Choose the desired location and type in the desired model configuration filename in this dialog box, and click *Save* to finish.

Save As	2 🗙
Save in: 🗀 Data.	🖌 🗿 🏂 📰 🗸
DFW_Model_All Policy_test_data.mdb	
File name:	Save
Save as type:	Cancel

4.4.4 Loading model configuration file

The model configuration file saved using the *Save* command in the *Models Menu*, or created manually by entering the model configurations into a text file, can be loaded into CEMDAP using the *Load* command in the *Models Menu*.

The *Load* command opens the *Open* dialog box. Navigate to the location of the model configuration file and select the file. Click *Open* to finish.

Open				? 🗙
Look in: ն	Data	 O 	ð 🖻	
DFW_Mod	el_All :_data.ldb :_data.mdb			
File name:	DFW_Model_All			Open
Files of type:			~	Cancel

4.4.5 Configuring specific model types

All the model components in the embedded model system fall into one of six categories based on their econometric structures: Linear Regression, Hazard Duration, Binary Logit, Multinomial Logit, Location Choice or Ordered Probit. Appendix B lists the model components and their prescribed econometric structures (model types) in CEMDAP. In this section, we take an example of each of these model types and illustrate their methods of configuration. (Note: Clicking *OK* in any dialog box only saves the information temporarily. In order to save a model configuration, choose the *Save* command in the Models Menu).

Linear Regression

An example of a linear regression model is the Work-Home Commute Duration Model within the pattern-level model system for workers. (Note that the dependent variable in the regression models for duration is assumed to be the log of the duration. This is done to ensure that we always predict a positive value).

The inputs required for this model are the variance, the parameters and variables in the linear regression equation. First enter the variance in the box titled 'Variance' in the top left corner of the dialog box. Then enter the linear regression equation by picking the relevant variable from the Variable list and entering its parameter in the space designated 'Coefficient'. Click the arrow button (=>) to add the term to the linear regression expression. The 'From' option lists the sets of variables available. 'Households' (which is highlighted in the figure below) contains all the household-related variables from the input persons table and 'Zones' contains the zonal variables from the input zones table. 'Other' is a list of other variables including the constant, any interaction terms and variables that may be generated during the simulation process by models higher up in the modeling framework.

In the figure below, we enter the constant (= 2.88498) by selecting '*Other*' in the '*From*' list and '*Constant (One)*' from the corresponding *Variable* list. Enter the value of the constant in the *Coefficient* box and click the arrow button (=>) to enter the constant.

From:	Linear terms entered:
Variable: Constant (One) Work end time (continous) WH commute by DA (binary) WH commute by DA (binary) WH commute by VBA: (binary) WH commute by VBA: (binary) WH commute by TR (binary) WH commute by TR (binary) WH commute by TR (binary) WH commute (hteger) Zern stons in WH commute (hteger)	2.88498 * Constant (Une)

When the linear regression equation has been completely configured, the dialog box looks as shown below. The arrow buttons (=> and <=) can be used to add, remove or edit terms.

WH Commute Duration			
Variance: 0.37888 Regression Function From:		Linear terms entered:	
Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MORTADUL Coefficient:	=>	2.88498 * Constant (O 1.18973 * One stop in ¹ 1.62317 * Two stops in 2.1055 * Three stops in 0.31521 * WH commut 0.35367 * WH commut 0.35367 * WH commut 2.504e-002 * WH auta 1.452e-002 * WH auta 1.452e-002 * WH auta	ne) WH commute (binary) wH commute (binar) n WH commute (binar te by SR (binary) te by TR (binary) te by DA-SR (binary) IVTT at work end time ime (continous)
		ОК	Cancel
Hazard Duration

An example of a hazard duration model is the Work Duration Model within the generation-allocation model system. The model type supported is a hazard-based duration model with a non-parametric baseline and gamma heterogeneity. The inputs required for this model can be configured in three steps. Step <u>One</u>; enter the parameter estimated for the gamma heterogeneity term in the box titled '*Variance*' in the top left corner of the dialog box. Step <u>Two</u>; configure the parameters on the covariates. This procedure is identical to entering the linear regression equation. Select the relevant input table from the '*From*' list, and pick the variables from the *Variable* list. Specify the coefficient for each variable and use the arrow button (=>) to add the terms.

/ariance: 1.077]	
From:		Linear terms entered:
Households		-0.514*FEMALE
HID PID EMPLOYED STUDYING LICENSE WORK_ZON STUD_ZON FEMALE AGE		
Coefficient -0.514		

Step <u>Three</u>, after all the covariates have been configured (refer figure below) enter the threshold parameters. First, in the box titled '# *Baseline time intervals*' enter the number of discrete time periods (N) into which the duration is divided. Then to enter the threshold parameters (number of threshold parameters = N-1) click *Edit*. Additional boxes open up to enter the start times of each of the discrete periods and the corresponding parameter estimates (sequentially from start time of the second discrete period to the start time of the last discrete period, hence there are N-1 parameters). (Note: the start time of the first discrete period is taken as zero and the end time of the last discrete period is taken as zero and the end time of the last discrete period. The end time of any discrete duration period is taken as the start time of the next period). Click on the arrow buttons (=> and <=) to scroll. When the hazard model is fully configured, the dialog box looks as shown below.

Work Duration					\mathbf{X}
Variance: 1.077					
Erom:				Linear terms entered	
Households Persons Zones Other	~			-0.5014*FEMALE 0.894*LICENSE 0.4317*WRKPFLEX 0.5707*WRKBASIC	
Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL			 => <= <= 		
Coefficient:					
# Baseine time intervals	s: 30	Edit]	ОК	Cancel
Base Line Hazard					1
Time Marker:	1	2	3	4 5	=>
Time:	239.5	299.5	359.5 4	19.5 449.5	
Parameter:	-2.4919	-1.91	-1.4941 -1	.2359 -1.0478	<=

Multinomial Logit

An example of a multinomial logit model is the Household Activity Generation Model within the generation-allocation model system. The discrete choices for this model are shopping, social/recreational, personal business, shopping and social/recreational, shopping and personal business, social/recreational and personal business, all three types of activity (shopping, social/recreational and personal business), and none. The model configuration dialog box for this looks as follows.

HH Activity Generation	Ê.	
Base alternative: Utility Function Alternative: From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MORTADUL Coefficient:	None None Shopping Social/Recreational Personal business Shopping and Social/Recreational Shopping and Personal Business Social/Recreational and Personal Business All Three Types of Activity	Linear terms entered:
		OK Cancel

To configure the multinomial logit model, first select the base alternative from the drop down menu, (in the figure above we have selected 'None' as the base). The utility of the base alternative is taken to be zero and the utility functions of the remaining alternatives must be specified. Select the remaining alternatives one at a time from the drop down menu titled '*Alternative*' to configure the corresponding utility function. In the example shown below, we have selected the *Shopping* alternative.

Base alternative:	None	~	
Utility Function Alternative: From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGEDA	Shopping Social/Recreational Personal business Shopping and Social/Recreational Shopping and Personal Business Social/Recreational and Personal Business All Three Types of Activity	>	Linear terms entered:
NAGE515 NONEMPST NUMLIC MORIADUL			Clear function OK Cancel

To configure the utility function for the shopping alternative, select the relevant variables one at a time and enter the coefficient in the designated space. Then click the arrow button (=>) to add the term to the utility function for that alternative. This step is similar to configuring the linear regression expression. In the example shown below we have selected the constant and entered the corresponding coefficient for the utility function of the shopping alternative.

IH Activity Generatio	n	×
Base alternative:	None	
Utility Function Alternative:	Shopping	
From: Persons Zones Other Variable: Constant (One) One HH adult g Two HH adults g	pes to work (binary) go to work (binary)	Linear terms entered: -8.244 * Constant (One)
Coefficient: -8.244		Clear function OK Cancel

When the utility function for the shopping alternative has been fully configured, the dialog box looks as shown below. The utility functions for all other alternatives can be similarly configured.

HH Activity Generatio	n		Σ
Base alternative:	None	×	
Alternative:	Shopping	~	
From: Households Persons Zones Other Variable:	•		Linear terms entered: -8.244 * Constant (One) 0.1769 * N_AUTOS 0.5605 * NONEMPST 1.54e-002 * Z_MEDINC 0.7111 * ACC_RET
N_ADULTS N_ADULTS N_AUTOS ZONE_ID NAGE614 NAGE615 NONEMPST NUMLIC MORTADUL		=>	-0.5943 * One HH adult goes to work (binar -0.6432 * Two HH adults go to work (binary
Coefficient:			Clear function
			OK Cancel

Binary Logit

The binary logit model is a special case of the multinomial logit model, with only two alternatives. It follows the same method of configuration as the multinomial logit. The binary logit model, however, is simpler since it has only one utility function (corresponding to the *Yes* alternative) to be configured. The *No* alternative is always taken as the base with zero utility. Take the example of the Decision to Work Model within the generation-allocation model system. The alternatives are either that the person decides to go to work on the given day or not. Hence there is only a single utility function to be configured with the other alternative (*No*) serving as the base. The completely configured dialog box looks as shown below.

Decision to Work				X
Decision to Work Base alternative: Utility Function Alternative: From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL	NO YES	=>	Linear terms entered: 1.9021 * Constant (One) -1.49e-002 * AGE 2.61e-002 * FEMALE 0.4665 * GRADSCHL 1.558 * WRKPFLEX 1.0786 * WRKFIXED -0.2322 * NAGE04 -1.17e-002 * Z_MEDINC -1.0029 * FEMNKIDS	Clear function
			ОК	Cancel

Location Choice

An example of a location choice model is the Work-Home Stop Location Model. Since there is only one utility function to be configured, configuration of the location choice model is similar to that of a linear regression model. First, enter the variance determined for the travel time model corresponding to the tour under consideration (in this case enter the variance obtained for the travel time model for stops in the Work-Home commute) in the space designated '*Variance*'. This variance of the travel time model will be used in the location choice model for probabilistic choice set generation. Then configure the utility function in the same way that the linear regression equation is configured. That is, select the relevant input table from the '*From*' list, and pick the variables from the '*Variables*' box. Specify the coefficient for each variable and use the arrow button (=>) to add the term. The completely configured dialog box looks as shown below.

H Commute Stop Location (Auto mode) /ariance: D.47358 Utility Function From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL Coefficient:	 Linear terms entered: 0.1699 * interaction: Ln population and s 0.1699 * interaction: Ln population and m 0.2945 * interaction: Ln employment and 0.2945 * interaction: DA IVTT and socia 0.1681 * interaction: DA IVTT and perso 0.232 * interaction: DA IVTT and perso 0.232 * interaction: DA IVTT and serv r 0.1681 * interaction: DA IVTT and misc * 0.1754 * distance of D from ultimate des 0.8785 * O and D zones are adjacent 1.0064 * O and D are same zones -4.1e-002 * interaction: DA IVTT and fem
	OK Cancel

Note that the list of variables supported by the location choice model is predetermined and available only under the '*Other*' variables list. The list of variables includes the inter-zonal LOS characteristics, and interactions between household or person characteristics and destination zone or inter-zonal LOS characteristics. The user must use only these in the calibration and enter the parameters appropriately.

Ordered Probit

An example of an ordered probit model is the Work-Home Commute Number of Stops Model. The inputs required for this model are the propensity function and threshold parameters. Configuring the propensity function is identical to configuring the linear regression equation. That is, select the relevant variables from each list (*Households, Persons, Zones* and *Other*). Enter the coefficient corresponding to the variable and click on the arrow button (=>) to add the term. The number of threshold parameters to be input for any model is pre-determined and based on the representation frameworks supported for workers and non-workers. For example, the software supports three tours for non-workers in the D-FW model system and hence the number of threshold parameters for the ordered probit model for # tours for non-workers is 2. This number shows up in the '#*Threshold Values*' box in the bottom left corner of the dialog box. In the Work-Home Commute Number of Stops Model, the software supports four stop options (0-3 stops) and hence the threshold parameter is 3. Click on *Edit* to specify the threshold parameters.

Utility Function From: Households Persons Zones Other Variable: HID N_ADULTS N_ADULTS N_ADUS ZONE_DD NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL Coefficient	Linear terms entered: -1.6e-003 * Work end time (continous) 0.9075 * WH commute by DA (binary) 1.8203 * WH commute by SR (binary) 3.1131 * WH commute by DA-SR (binary) 0.7321 * Person undertakes shopping activit 0.5329 * Person undertakes social activity (k 1.0344 * Person undertakes personal busine -0.2321 * MOR1ADUL 0.6224 * EMPLOYED -0.2981 * NAGE515
#Threshold Values: 3 Edit	OK Cancel
Threshold: 1 2 3 Value: 1.0531 2.4323 3.3847	=> <=

4.5 INITIATING A SIMULATION RUN

Prior to starting a simulation, ensure that the input database is registered and loaded, the output files are specified, and the model system is completely configured. Then select the *Run* command in the *Simulation Menu*.

and the second second		<u></u>
Data Models	Simulation	Help
0 📽 🖬 🐇	Setup	1
	Run	

The progress bar pops up and indicates the ID of the household being processed and the time elapsed since initiation of the run. When the simulation run is complete the progress bar indicates the completion as shown below.

Simulation Completed!	×
Current household ID:	þo
Time elaped (secconds):	1

Close the progress bar and ensure that the output files have been created. The output files can then be imported into any spreadsheet and the simulated activity-travel patterns of the population can be analyzed.

Tutorial

The aim of this tutorial is to the guide the user through the entire procedure of running a trial simulation in CEMDAP using the sample input data and the model system configured for the Dallas-Fort Worth metropolitan area. The Microsoft Excel files available in the /data/DFW_Models directory within the installation destination directory contain the estimation results for all the model components for D-FW. A list of all the model components that constitute the model system embedded in CEMDAP is provided in Appendix A. Appendix B lists all the variables required to configure the model system for D-FW. These are the variables available in the sample input data, which is titled *test_data.mdb* and can be located in the /data directory under the installation destination directory (for instance, C:/Program Files/University of Texas/data/test_data.mdb). The steps involved in running a trial simulation are as follows.

- 1. Register the sample input database (detailed instructions in section 4.1). The sample input database is in the Microsoft Access format, as specified in section 3.1.1, and is named *test_data.mdb*.
 - a. Open the *Control Panel* dialog (*Start Menu -> Settings -> Control Panel* in Windows NT/2000; *Start Menu -> Control Panel* in Windows XP). In the *Control Panel* dialog double-click the *Administrative Tools* icon which opens the *Administrative Tools* dialog. Then in the *Administrative Tools* dialog double-click the *Data Sources (ODBC)* icon, which opens the *ODBC Data Source Administrator* dialog.

- b. In the *ODBC Data Source Administrator* dialog box, select the *System DSN* tab. Then click the *Add* button to bring up the *Create New Data Source* dialog box.
- c. In the *Create New Data Source* dialog box, select the *Microsoft Access Driver* from the list of drivers and click Finish.
- d. In the *ODBC Microsoft Access Setup* dialog box that pops up, enter 'DFW4080' as the *Data Source Name* and 'Test Data' as the *Description*.

Data Source Name:	DFW4080	ОК
Description: Database	Test Data	Cancel
Database:		Help
Select	Create Repair Compact	Advanced
System Database –		
None		
🔿 Database:		
	System Database	

- e. Click the Select button in the ODBC Microsoft Access Setup dialog box. This opens the Select Database dialog box. Locate and select the sample data file (e.g., C:/Program Files/University of Texas/data/test_data.mdb).
- f. Finalize the database registration process by clicking *OK* to close the dialog boxes.
- 2. Open CEMDAP either by clicking on the desktop shortcut to CEMDAP or from the list of *All Programs* under the *Start Menu*.

3. Load the input data in CEMDAP using the *Input* command in the *Data Menu*. When the *Select Data Source* dialog box appears, choose the data source that you just registered i.e. DFW4080.

Data Source Name	Туре	Description
dBASE Files DFW4080 ECDCMusic Excel Files MS Access Database Visual FoxPro Database Visual FoxPro Tables Xtreme Sample Database	User System System User User User System	Test Data Personal music CD titles
		New
A Machine Data Source is sp sources are specific to a use all users on this machine, or b	ecific to this n r on this mach by a system-w	nachine, and cannot be shared. "User" data ine. "System" data sources can be used by ide service.

Use the default names and locations for the output files (*Output* command in *Data Menu*). The output files will be created in the /data folder under the installation destination directory.

🛃 CEMDAP							
Data Models	Simulation Help						
	x h r / 7						
	Save Simulation R	esults As		×			
	Household attributes:	households.out	Browse				
	Person attributes	persons.out	Browse				
	r or our attributes.						
	Workers' Patterns:	workers.out	Browse	> 0	10		
	Non-workers'	nonworkers.out	Browse) 7	(\mathbf{P}_{1})		
	Tours	trains out		-	L V 1.0		
	rours.		Browse	Sec. 1			
	Stops:	stops.out	Browse	the second			
					Auctin		
				Save As	1 AUSLIN		
					573		
				Save in:		000	
				Policy_test	a_All _data.mdb		
		Devel	oped by: Chana				
			Sivari				
				File name:	households out		Save
				0			
				Save as type:		*	Cancel
Ready							

- Let us now configure one model of each category from the estimated D-FW model system. The Microsoft Excel files available under the /data/DFW_Models contain all the model estimation results for D-FW.
 - a. Work-Home Commute Duration Model (Linear Regression).

The Work-Home Commute Duration Model can be found within the Pattern-level suite of models for workers. The following table contains estimation results for the Work-Home Commute Duration Model for D-FW.

Variable	Parameter
Constant	2.88498
one stop in WH commute	1.18973
two stops in WH commute	1.62317
three stops in commute	2.10550
WH mode is SR	-0.13521
WH mode is TR	0.91512
WH mode is Walk	0.35367
WH mode is DASR	-0.39622
expected auto travel time between work and home at work end time(if WH mode is auto)	0.02504
expected transit travel time between work and home at work end time (if WH	
mode is TR)	0.01452
work end time (in minutes from 3 AM)	-0.00041
Variance	0.37888

First, enter the variance 0.37888 in the box titled '*Variance*'. Then, select '*Other*' in the '*From*' box and find the constant in the list of variables. Click on it and enter the value of the constant (2.88498) in the box titled '*Coefficient*'. Click on the arrow button (=>) to add the constant term.

l Commute Duration	
A Commute Duration ariance: 0.37888 Regression Function From: Persons Zones Other Variable: Va	Linear terms entered: 2.88498 * Constant (One) :=
Coefficient: 2.88498	OK Cancel

Continuing with the 'Other' variable list, find all the remaining variables (such as 'one stop in WH commute', 'two stops in WH commute' and 'three stops in WH commute') and enter them in the same manner. The completed dialog box looks as shown below. With this we have completed the configuration of the Work-Home Commute Duration Model.

WH Commute Duration	×
WH Commute Duration Variance: 0.37888 Regression Function From: From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MORIADUL V	Linear terms entered: 2.88498 * Constant (One) 1.18973 * One stop in WH commute (binary) 1.62317 * Two stops in WH commute (binary) 2.1055 * Three stops in WH commute (binary) 0.13521 * WH commute by SR (binary) 0.91512 * WH commute by TR (binary) 0.35367 * WH commute by TR (binary) 0.39622 * WH commute by DA-SR (binary) 2.504e-002 * WH auto IVTT at work end time 1.452e-002 * WH TR IVTT at work end time 4.1e-004 * Work end time (continous)
	OK Cancel

b. Work Duration Model (Hazard Duration)

The Work Duration Model can be found within the Generation-Allocation suite of models. The following tables contain estimation results for the Work Duration Model for D-FW. The first table lists the estimated coefficients for the covariates, and the second table lists the estimated threshold parameters.

Variable	Parameter
female	-0.50140
have driver's license	0.89400
partly flexible work schedule	0.43170
works in basic industry	0.57070

variance of gamma heterogeneity terr		erm	m 1.07700	
Thresholds	Parameter	Sta	rt time	End time
THRESH01	-2.49190		0	239.5
THRESH02	-1.91000		239.5	299.5
THRESH03	-1.49410		299.5	359.5
THRESH04	-1.23590		359.5	419.5
THRESH05	-1.04780		419.5	449.5
THRESH06	-0.79510		449.5	479.5
THRESH07	-0.40350		479.5	494.5
THRESH08	-0.10770		494.5	509.5
THRESH09	0.20990		509.5	514.5
THRESH10	0.30960		514.5	519.5
THRESH11	0.46780		519.5	524.5
THRESH12	0.61950		524.5	529.5
THRESH13	0.69180		529.5	534.5
THRESH14	0.76800		534.5	539.5
THRESH15	1.15260		539.5	544.5
THRESH16	1.27240		544.5	549.5
THRESH17	1.38920		549.5	554.5
THRESH18	1.51740		554.5	559.5
THRESH19	1.61070		559.5	564.5
THRESH20	1.71600		564.5	569.5
THRESH21	1.93710		569.5	574.5
THRESH22	2.01110		574.5	579.5
THRESH23	2.12050		579.5	584.5
THRESH24	2.39890		584.5	599.5
THRESH25	2.76370		599.5	614.5
THRESH26	3.09690		614.5	629.5
THRESH27	3.67420		629.5	659.5
THRESH28	4.14240		659.5	689.5
THRESH29	5.00170		689.5	749.5

First, enter the variance of the gamma heterogeneity term (1.077) in the box titled '*Variance*'. Then, select '*Persons*' in the '*From*' box and find the variable '*Female*' in the list of variables. Click on it and enter the coefficient (-5.014) in the box titled '*Coefficient*'. Click on the arrow button (=>) to add the term.

ariance: 1.077	
Duration Function	
From:	Linear terms entered:
Households	-0.514* FEMALE
Variable:	
HID PID EMPLOYED STUDYING LICENSE WORK_ZON STUD_ZON FEMALE AGE	
Coefficient -0.514	

Enter all the other covariates in a similar manner. After all the covariates have been configured enter the threshold parameters. First, in the box titled '# *Baseline time intervals*' enter the number of discrete time periods (30) into which the duration is divided. Then to enter the threshold parameters (number of threshold parameters = 30-1 = 29) click *Edit*. Additional boxes open up to enter the start times of each of the discrete periods and the corresponding parameter estimates (sequentially from start time of the second discrete period to the start time of the last discrete period, hence there are 29 parameters for this model). For example, enter the time in the first box as 239.5 (start time of second discrete period) and the corresponding threshold parameter for the first discrete period as -2.4919. Similarly the time in the second box will be 299.5 and the corresponding threshold parameter is -1.91. Click on the arrow buttons (=> and <=) to scroll and

enter all 29 threshold parameters. The fully completed dialog box looks as shown below.

Vork Duration						l
Variance: 1.0	77					
- Duration Function				Linearte	ms entered [.]	
Households Persons Zones Other	~			-0.5014* 0.894*Ll 0.4317** 0.5707**	FEMALE CENSE WRKPFLEX WRKBASIC	
Variable:						
HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL]		
Coefficient:						
# Baseine time inte	irvals: 30	Edit			ок	Cancel
Base Line Hazar	d					
Time Marke	r. 1	2	3	4	5	-
Time	e: 239.5	299.5	359.5	419.5	449.5	
Paramete	r: -2.4919	-1.91	-1.4941	-1.2359	-1.0478	<=

c. Household Activity Generation Model (Multinomial Logit)

The Household Activity Generation Model can be found within the Generation-Allocation suite of models. The discrete choices for this model are shopping, social/recreational, personal business, shopping and social/recreational, shopping and personal business, social/recreational and personal business, all three types of activity (shopping, social/recreational and personal business), and none of three. *'None'* is taken to be the base, and the utility functions estimated for D-FW for all the other alternatives are presented below.

Shopping		Social/Recreational	
Variable	Parameter	Variable	Parameter
Constant	-8.24400	Constant	-7.81370
# HH vehicles	0.17690	# HH vehicles	0.25970
# not employed/studying in HH	0.56050	median income of HH zone	0.01660
median income of HH zone	0.01540	accessibility to all employment	0.50380
accessibility to retail employment	0.71110	one HH adult goes to work	-0.57060
one HH adult goes to work	-0.59430	two HH adults go to work	-0.46260
two HH adults go to work	-0.64320		

Personal Business Shopping - Soc/Recreational

Variable	Parameter	Variable	Parameter
Constant	-1.48060	Constant	-15.82690
# kids age 5 to 15 in HH	-0.26760	# HH vehicles	0.43660
# HH vehicles	0.42500	# not employed/studying in HH	0.56050
HH income (\$1000)	0.00330	median income of HH zone	0.03200
median income of HH zone	0.01040	accessibility to retail employment	0.71110
one HH adult goes to work	-0.81150	accessibility to all employment	0.50380
two HH adults go to work	-1.37410	one HH adult goes to work	-1.16490
		two HH adults go to work	-1.10580

Shopping – Personal Business		Soc/Recreational – Pers. Bus.	
Variable	Parameter	Variable	Parameter
Constant	-9.17120	Constant	-8.91260
# kids age 5 to 15 in HH	-0.26760	# kids age 5 to 15 in HH	-0.26760
# HH vehicles	0.60190	# HH vehicles	0.68470
<pre># not employed/studying in HH</pre>	0.56050	HH income (\$1000)	0.00330
HH income (\$1000)	0.00330	median income of HH zone	0.02700
median income of HH zone	0.02580	accessibility to all employment	0.50380
accessibility to retail employment	0.71110	one HH adult goes to work	-1.38210
one HH adult goes to work	-1.40580	two HH adults go to work	-1.83670
two HH adults go to work	-2.01730		

All three

Variable	Parameter
Constant	-16.16240
# kids age 5 to 15 in HH	-0.26760
# HH vehicles	0.86160
<pre># not employed/studying in HH</pre>	0.56050
HH income (\$1000)	0.00330
median income of HH zone	0.04240
accessibility to retail employment	0.71110
accessibility to all employment	0.50380
one HH adult goes to work	-1.97640
two HH adults go to work	-2.47990

First, select the base alternative (*None*) from the '*Base Alternative*' drop-down list. Then select each of the remaining alternatives by turn from the '*Alternative*' drop-down list and configure the corresponding utility function. The method of configuration of a utility function is identical to that of the linear regression model, i.e., select the variables from the '*Variable*' list, enter the coefficient in the '*Coefficient*' box and click on the arrow (=>) to add the terms. For instance, the completely configured utility function for the *shopping* alternative is shown below.

HH Activity Gener	ation	
HH Activity Gener Base alternative: Utility Function Alternative: From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL Coefficient	Ation	Linear terms entered: -8.244* Constant (One) 0.1769* N_AUTOS 0.5605* NONEMPST 1.54e-002* Z_MEDINC 0.7111*ACC_RET -0.5943* One HH adult goes to work (binary) -0.6432* Two HH adults go to work (binary)
		Clear function OK Cancel

When the *shopping* alternative is configured, select the *social/recreational* alternative and proceed to configure it. The configured utility function is shown in the following figure.

HH Activity Gener	ration	X
Base alternative: Utility Function Alternative: From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_JD NAGE515 NONEMPST NUMLIC MOR1ADUL Coefficient	None	Linear terms entered: -7.8137 * Constant (One) 0.2597 * N_AUTOS 1.66e-002 * Z_MEDINC 0.5038 * ACC_ALL -0.5706 * One HH adult goes to work (binary -0.4626 * Two HH adults go to work (binary)
		Clear function
		OK Cancel

Proceed in a similar manner with the remaining alternatives. The configured utility function for the personal business alternative is shown below.

HH Activity Gener	ation		X
Base alternative:	None	•	
Utility Function Alternative: From: Households Persons Zones Other Variable: HID N_ADULTS N_AULTOS	Personal business	× ->	Linear terms entered: -1.4806 * Constant (One) -0.2676 * NAGE515 0.425 * N_AUTOS 3.3e-003 * HHTOTINC 1.04e-002 * Z_MEDINC -0.8115 * One HH adult goes to work (binary) -1.3741 * Two HH adults go to work (binary)
ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL		(=	
			Clear function
			OK Cancel

The configured utility function for the *shopping and social/recreational* alternative is seen in the following figure, which is followed by the utility function for *shopping and personal business*.

Base alternative:	None	~	
Utility Function			
Atternative: From: Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE515 NONEMPST NUMLIC MOR1ADUL Coefficient		=>	Linear terms entered: -15.8269 * Constant (One) 0.4366 * N_AUTOS 0.5605 * NONEMPST 3.2e-002 * Z_MEDINC -1.1649 * One HH adult goes to work (binary -1.1058 * Two HH adults go to work (binary) 0.7111 * ACC_RET 0.5038 * ACC_ALL
			Clear function
			OK Cancel

HH Activity Gener	ation		X
HH Activity Gener Base alternative: Utility Function Alternative: From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE04 NAGE0515 NONEMPST NUMLIC MOR1ADUL	ation None Shopping and Personal B	usiness	Linear terms entered: -9.1712 * Constant (One) -0.2676 * NAGE515 0.6019 * N_AUTOS 0.5605 * NONEMPST 3.3e-003 * HHTOTINC 2.58e-002 * Z_MEDINC 0.7111 * ACC_RET -1.4058 * One HH adult goes to work (binary) -2.0173 * Two HH adults go to work (binary)
			Clear function

Finally, the following two figures represent the utility functions for the alternatives '*social/recreational and personal business*' and '*all three types*'.

HH Activity Genera	ation	X
Base alternative: Utility Function Alternative: From: Households Persons Cones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL Coefficient	None	Linear terms entered: -8.9126 * Constant (One) -0.2676 * NAGE515 0.6847 * N_AUTOS 3.3e-003 * HHTOTINC 2.7e-002 * Z_MEDINC -1.3821 * One HH adult goes to work (binary) -1.8367 * Two HH adults go to work (binary) 0.5038 * ACC_ALL
		Clear function
		OK Cancel

HH Activity Gene	ration		<u> </u>
Base alternati∨e:	None	*	
Utility Function]
Alternative:	All Three Types of Activity	~	
From:			Linear terms entered:
Households Persons Zones Other			-16.1624 * Constant (One) -0.2676 * NAGE515 0.8616 * N_AUTOS 0.5605 * NONEMPST
Variable:			3.3e-003*HHTOTINC 4.24e-002*Z MEDINC
HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL		=>	-1.9764* One HH adult goes to work (binary -2.4799*Two HH adults go to work (binary) 0.7111*ACC_RET 0.5038*ACC_ALL
Coefficient:			Clear function
			OK Cancel

This concludes the configuration of the Household Activity Generation Model.

d. Work-Home Stop Location Model (Location Choice)

The Work-Home Stop Location Model can be found within the Stop-level suite of models for non-workers. The inputs required for the location choice model are the variance and the utility function expression. Therefore, configuring this model is identical to configuring a linear regression model. The variance, which is essentially the variance of the regression model for travel time, is 0.47358 for D-FW. The following table contains estimation results for the utility function for D-FW.

Variable	Parameter
LN (total employment)	0.2945
LN (total population)	0.1699
auto IVTT	-0.1681
interaction: eat out and auto IVTT	-0.0639
distance from ultimate destination	-0.1754

0.8785
1.0064
-0.041

First enter the variance (0.47358) in the box titled 'Variance', and then enter the terms of the utility function. For the variables LN(total employment) and LN(total population), enter the same parameter value for each of the six interaction terms with the six activity types that can be undertaken at the stop location viz; shopping, social/recreational, personal business, eat out, serve passengers and miscellaneous. So for example, select the interaction variables of LN (total population) with the six activity types and enter 0.1699 as the *Coefficient* for each. This is illustrated in the dialog box shown below.

tility Function From: Persons Zones Other Variable: O and D zones are adjacent O and D are same zones distance of D from ultimate destination interaction: Ln population and shop activity interaction: Ln population and personal activity interaction: Ln population and serve pax activity interaction: Ln population and misc activity interaction: Ln population and misc activity	 Linear terms entered: 0.1699 * interaction: Ln population and shop 0.1699 * interaction: Ln population and serve 0.1699 * interaction: Ln population and eat o 0.1699 * interaction: Ln population and serve 0.1699 * interaction: Ln population and misc
--	--

Follow the same procedure for LN (total employment). For auto IVTT, the coefficient of the interaction terms with all activity types, except eat out, is - 0.1681. The coefficient of the interaction term of auto IVTT with eat out is given by the sum of -0.1681 and -0.0639, which is -0.232. The remaining variables will be specified as is. Thus, the fully configured dialog box is as shown in the following figure.

Variance: 0.47358	 Linear terms entered: 0.1699 * interaction: Ln population au 0.1699 * interaction: Ln population au 0.2945 * interaction: Ln employment 0.2945 * interaction: DA IVTT and si -0.1681 * interaction: DA IVTT and si -0.1681 * interaction: DA IVTT and p -0.232 * interaction: DA IVTT and p -0.232 * interaction: DA IVTT and si -0.1681 * interaction: DA IVTT and si -0.1681 * interaction: DA IVTT and p -0.232 * interaction: DA IVTT and p -0.232 * interaction: DA IVTT and si -0.1681 * interaction: DA IVTT and si -	Id s: A Id m and and and and and and and and
-------------------	--	---

e. Work-Home Commute Number of Stops Model (Ordered Probit)

The Work-Home Commute Number of Stops Model can be found within the Pattern-level suite of models for workers. The following table presents the estimation results for the WH Commute Number of Stops Model for D-FW.

Variable	Parameter
Work end time	-0.00160

WH mode is DA	0.90750
WH mode is SR	1.82030
WH mode is DASR	3.11310
Person undertakes shopping	0.73210
Person undertakes social/recreation	0.53290
Person undertakes personal-	
business	1.03440
Multiple adult HH	-0.23210
Employed	0.62240
# kids 5-15 in the HH	-0.29810
Thresholds	Parameter
0 and 1 stop	1.05310
1 and 2 stops	2.43230
2 and 3 stops	3.38470

The only inputs required for this model are the propensity function and threshold parameters. Configuring the propensity function is identical to configuring the linear regression expression. For the WH Commute Number of Stops Model, first select the *Work end time* variable from the *Other* list and enter the corresponding coefficient (-0.0016). Click on the arrow button (=>) to add the term.

From:	Linear terms entered:
Persons Zones Dther /ariable: Work end time (continous) WH commute by DA (binary) WH commute by SR (binary) WH commute by SR (binary) WH commute by Valk (binary) WH commute by TR (binary) Person undertakes shopping activity (binary) Person undertakes personal business activity (binary)	-0.0016 * Work end time (continous)
0.0016	

Proceed to add all the remaining terms. When the utility (or propensity) function has been fully configured, turn to the threshold parameters. The software supports four stop options (0-3 stops) during the Work-Home commute; hence the number of threshold parameters for the Work-Home Commute Number of Stops Model is predetermined to be 3. Click on the *Edit* button adjacent to the '#*Threshold Values*' box to specify the threshold parameters. This causes three additional boxes to open up where the threshold parameters may be entered. From the model results table we see that the threshold parameter between 0 and 1 stops is 1.0531. Enter this value into the first box. The completely configured dialog box is as shown below.

WH Number of Sta Utility Function From: Households Persons Zones Other Variable: HID N_ADULTS N_AUTOS ZONE_ID NAGE04 NAGE515 NONEMPST NUMLIC MOR1ADUL Coefficient:	pps		=> < =	Linear terms entered: -1.6e-003 * Work end 0.9075 * WH commute 1.8203 * WH commute 3.1131 * WH commute 0.7321 * Person unde 0.5329 * Person unde 1.0344 * Person unde -0.2321 * MOR1ADUL 0.6224 * EMPLOYED -0.2981 * NAGE515	time (continous) e by DA (binary) e by SR (binary) e by DA-SR (binary) rtakes shopping activit rtakes social activity (k rtakes personal busine
# Threshold Values:	3	Edit		ОК	Cancel
Threshold: Value:	1 1.0531	2.4323	3.3847		=>

6. When the entire model system has been configured using the dialog boxes as described, save the model system in a model configuration file using the *Save* command in the Models Menu. Specify the location and title for the model configuration file.

7. Load the sample model configuration file DFW_Model_All (which contains the entire D-FW model system) located in the /data folder under the installation destination directory using the Load command in the Models Menu. Take a look at all the dialog boxes to examine the completely configured models.

8. Initiate the trial simulation run by clicking on the *Run* command in the *Simulation Menu*. When all twenty households in the sample input database have been processed the simulation will terminate. The output files will be created in the default location and can be examined to analyze the simulated activity-travel patterns. The output files in the ASCII format appear as shown below.

CEMDAP User's Manual v 1.0

- 9. Import the data into SPSS following the instructions outlined below.
 - a. Open SPSS by clicking on the program from the *Start* menu.
 - b. Go to the *File* menu, find *Open -> Data* and click on it.

🛅 Untitled - SPSS D	ata Editor		
File Edit View Dat	a Transform	Analyze	Graphs
New	•	(A) 》王]	
Open	•	Data	i i
Open Database		Synta:	x
Read Text Data		Outpu	it
Save	Ctrl+S	Script. Other	. [
Save As			
Display Data Info			
Apply Data Dictional	γ		
Cache Data			
Print	Ctrl+P		

c. In the *Open File* dialog box that opens up, select 'All *file types*' and navigate to the location of the output files. Click on *households.out* and click *Open*.

Open File			? 🔀
Look in: 🔎	outputs	🛨 🗢 🗲	.
households nonworkers persons.out stops.out tours.out workers.out	.out .out t		
File name:	households.out		Open
Files of type:	All Files (*.*)	_	Paste
			Cancel

d. In the *Text Import Wizard* dialog box that opens up, select the radial button that reads *Yes* under the question '*Does your text file match a pre-defined format?*', and use the browse button to locate the SPSS Text Wizard Template file *HHfile.tpf*. Click *Next* when finished.

- e. Now click *Next* in the all remaining screens of the *Text Import Wizard* until the final step. In the final screen click *Finish*. The imported data is loaded into SPSS.
 Click on *File -> Save As* to specify a location and filename for the imported data.
- f. Proceed in the same manner with all the remaining output files, and save the corresponding SPSS files as persons.sav, workers.sav, nonworkers.sav, tours.sav and stops.sav. Refer chapter 3 for a description of the columns in the output files.
- 10. The imported SPSS household and person data files look as shown in the following figure. In particular, take a look at the household with ID 13806. This household consists of two adults, both non-workers. On the given day, person 1 makes shopping and personal business stops, while person 2 makes only personal business stop(s).

🛗 HHfile. sav - SPSS Data Editor								
File Edit	View Data 1	Fransform Ana	alyze Graphs	Utilities Windo	ow Help			
2 -								
1 : hid 10075								
1	hid	n work	makeshop	makesoc	makepers	var		
1	10075	2	0	0	1			
2	10136	0	0	0	1			
3	10317	0	0	0	1			
4	10357	1	0	0	0			
5	10385	2	1	0	1			
6	10386	1	0	0	0			
7	10407	1	1	0	0			
8	10476	1	0	0	1			
9	10664	2	0	0	0			
10	10785	1	0	0	1			
11	10966	0	0	0	1	-		
12	11065	1	0	0	0			
13	11384	2	0	0	1	-		
14	11393	0	1	0	1			
15	12241	0	0	0	0			
16	12350	2	0	0	0			
17	12557	2	0	0	1			
18	13536	0	1	0	0			
19	13771	0	0	0	1			
20	13806	0	1	0	1			
21							T	
▲ ►\Da	ta View 🛛 Var	iable View /	•	a a a a a a a a a a a a a a a a a a a				
		6		SPSS Pr	ocessor is ready	,	- //.	

🔲 Person	file.sav - SPSS	Data Editor							
File Edit	View Data Tr	ransform Anal	lyze Graphs	Utilities Windov	v Help				
280		1 🔚 🗗 🚧	*III II II	5					
1 : hid 10075									
r I	hid	pid	isworker	pshop	psoc	ppers	pother 📩		
26	11384	1	1	0	0	0	1		
27	11393	1	0	0	0	1	1		
28	11393	2	0	1	0	1	1		
29	12241	2	0	0	0	0	0		
30	12241	1	0	0	0	0	0		
31	12350	1	1	0	0	0	1		
32	12350	2	1	0	0	0	0		
33	12557	1	1	0	0	1	1		
34	12557	2	1	0	0	0	0		
35	13536	1	0	0	0	0	0		
36	13536	2	0	1	0	0	0		
37	13771	1	0	0	0	1	0		
38	13771	2	0	0	0	0	1		
39	13806	1	0	1	0	1	0		
40	13806	2	0	0	0	1	0		
41	· · · · · · · · · · · · · · · · · · ·								
42				1					

Let us take a look at the pattern-level attributes for this individual in the nonworkers.sav SPSS output file. As seen from the figure below, this person is predicted to have made one tour.

🎬 nonworker. sav - SPSS Data Editor									
File Edit	View Data	Transform Ar	alyze Graphs	Utilities	Window Help				
	🖳 🔊 🖂	🗐 🔚 💽 M		e 🖪 🛛	0				
22 : hid		138	06						
	hid	pid	ntours	var	var				
19	13771	1	2						
20	13771	2	: 1						
21	13806	1	1						
22	13806	2	1						
23		2							

Further, examining the tour-level attributes for this individual (refer figure below) indicates that the person stays at home until 6:06AM (home-stay duration = 186.13 minutes from the start of the day at 3:00AM). We also note that the person makes two stops during the tour.

💼 tour. sa	av - SPSS Data	Editor									
File Edit	View Data T	ransform Analy	yze Graphs '	Utilities Windo	w Help						
2 88		1 🛌 😥 🏘	* it 3 4								
62 : hid		13806									
	hid	pid	tourid	hsstart	hsdur	mode	tourdur	nstops	atimetur	atimehs	
59	13771	1	2	647.25	286.58	0	18.63	1	792.75	774.12	
60	13771	2	1	.00	642.63	0	79.67	2	1440.00	1360.33	
61	13806	1	1	.00	269.34	0	299.21	2	1440.00	1140.79	_
62	13806	2	1	.00	186.13	0	380.02	2	1440.00	1059.98	
63											
64											-
<u>∢</u>) ∖Da	ta View (Vari	able View /				•				<u> </u>	

Next, examine the stop-level attributes in the SPSS output file *stop.sav*. The person leaves home at 6:06AM (home-stay duration = 186.13 minutes) and reaches the first stop location at 7:02AM (travel time = 56.33 minutes) where he undertakes personal business (activity type = 2) until 8:29AM (duration of activity = 86.87 minutes). In
addition we also know that the person leaves from zone 362 (home, and origin stop location) and that the location of the first stop is zone 162. Similarly the characteristics of the second stop can be determined to completely construct the individual's activity-travel patterns.

🛅 stop. sa	w - SPSS Data	Editor											X
File Edit	File Edit View Data Transform Analyze Graphs Utilities Window Help												
685													
49 : hid		13806	5										
	hid	pid	tourid	stopid	acttype	startt	travt	duration	avtimes	avtimet	stoploc	ostoploc	
47	13806	1	1	1	2	269.34	49.98	56.14	299.21	243.07	114	362	-
48	13806	1	1	2	2	375.47	23.60	116.54	193.09	76.56	95	114	
49	13806	2	1	1	2	186.13	56.33	86.87	380.02	293.15	162	362	-
50	13806	2	1	2	2	329.33	36.32	92.31	236.82	144.51	218	162	
51		11 (1)			12	19							
▲ ►\Da	✓ Data View (Variable View /												
				SPSS Pro	ocessor is ready								1

Appendix A. Model Configuration File

CEMDAP comprises of a suite of econometric models and consequently requires the user to specify a large number of parameters in order to complete describe the econometric system. The software offers a means to save the parameters specified through the GUI into an external ASCII file for re-use. This external ASCII file is called the model configuration file. The syntax of the file is designed more for its compatibility with the class hierarchy of CEMDAP than for its readability. Users are advised to configure models via the user interface provided by CEMDAP as opposed to editing the configuration file directly.

The file contains a complete description of each of the modeling modules included in the CEMDAP modeling framework in a predefined sequence (refer Table A.1. for the sequence). The description of each model module begins with a class name that identifies the modeling template from which the particular choice model is derived (<u>CBLogitMM</u> for Binary Logit, <u>CHazardMM</u> for Hazard Duration, <u>CRegressMM</u> for Linear Regression, <u>CMNLogitMM</u> for Multinomial Logit, <u>COrdProbitMM</u> for Ordered Probit, and <u>CLocationMM</u> for Location Choice). The second line in the section is the name of the modeling module. (A complete list of all the model components that constitute the modeling system embedded in CEMDAP and their prescribed econometric types is presented in Appendix B). The subsequent lines then describe the various parameters associated with that modeling module, such as the number of explanatory variables, the numbers identifying the specific variables for the model and the corresponding coefficients. The syntax in which the parameters are recorded is class dependent. The formats of entry in the model configuration file for each of the six classes is specified

below:

```
class CBLogitMM *
<model name>
<no. of explanatory variable in utility function>
<ID of variable 1> <ID of variable 2> ...
<Coefficient 1> < Coefficient 2> ...
class CHazardMM *
<model name>
<variance>
<no. of explanatory variable in utility function>
<ID of variable 1> <ID of variable 2> ...
< Coefficient 1> < Coefficient 2> ...
<no. of baseline time intervals>
<start of interval 2> <start of interval 3> ...
<parameter for interval 2> <parameter for interval 3> ...
class CRegressMM *
<model name>
<variance>
<no. of explanatory variable in utility function>
<ID of variable 1> <ID of variable 2> ...
< Coefficient 1> < Coefficient 2> ...
class CMNLogitMM *
<model name>
<number of alternatives>
<ID of the base alternative>
<ID of the 1<sup>st</sup> alternative> <no. of explanatory variable in utility function>
<ID of variable 1> <ID of variable 2> ...
< Coefficient 1> < Coefficient 2> ...
<ID of the 2<sup>nd</sup> alternative> <no. of explanatory variable in utility function>
<ID of variable 1> <ID of variable 2> ...
< Coefficient 1> < Coefficient 2> ...
class COrdProbitMM *
<model name>
<no. of explanatory variable in utility function>
<ID of variable 1> <ID of variable 2> ...
< Coefficient 1> < Coefficient 2> ...
```

<no. of thresholds>

<threshold 1> <threshold 2> ...

class CLocationMM *
<model name>
<no. of explanatory variable in utility function>
<ID of variable 1> <ID of variable 2> ...
<Coefficient 1> < Coefficient 2> ...

Note that the variables in the configuration file are identified by unique IDs generated within CEMDAP. An ID is computed by (*list ID*)*10000 + (*variable ID*). The list ID is 0, 1, 2 and 3 for variables selected from the *Households*, *Persons*, *Zones* and the *Other* list, respectively. For variables selected from the *Households*, *Persons* and *Zones* lists, the variable ID corresponds to the column number in the respective input tables. For variables from the *Other* list, the variable ID is determined from the lookup table, Table A.2.

S.No.	Model Module
1	Decision to Work
2	Decision to go to School
3	Work Duration
4	Work Start Time
5	School Duration
6	School Start Time
7	HH Activity Generation
8	Shopping Activity Allocation
9	Soc/Rec Activity Allocation
10	Personal-business Activity Allocation
11	Other Activity Allocation
12	WH commute mode
13	WH Number of Stops
14	WH Commute Duration
15	HW commute mode, WH mode is DA
16	HW commute mode, WH mode is DA-SR
17	HW Number of Stops
18	HW Commute Duration
19	Worker Decision to Make Tours
20	BW Tour Mode
21	BW Tour Number of Stops
22	BW Tour Duration
23	BW Home Stay
24	WB Tour Mode
25	WB Tour Number of Stops
26	WB Tour Duration
27	WB Home Stay

 Table A.1. Sequence of Model Modules in Model Configuration File

28	AW Tour Mode
29	AW Tour Number of Stops
30	AW Tour Duration
31	AW Home Stay
32	WH Commute Stop Activity Type
33	WH Commute Stop Activity Duration
34	WH Commute Stop Travel Time
35	WH Commute Stop Location (Auto mode)
36	HW Commute Stop Activity Type
37	HW Commute Stop Activity Duration
38	HW Commute Stop Travel Time
39	HW Commute Stop Location (Auto mode)
40	BW Tour Stop Activity Type
41	BW Tour Stop Activity Duration
42	BW Tour Stop Travel Time
43	BW Tour Stop Location (Auto mode)
44	WB Tour Stop Activity Type
45	WB Tour Stop Activity Duration
46	WB Tour Stop Travel Time
47	WB Tour Stop Location (Auto mode)
48	AW Tour Stop Activity Type
49	AW Tour Stop Activity Duration
50	AW Tour Stop Travel Time
51	AW Tour Stop Location (Auto mode)
52	Number of Tours NW
53	Mode for Tour 1
54	Number of Stops in Tour 1
55	Duration of Tour 1
56	Home Stay Duration before Tour 1
57	Mode for Tour 2
58	Number of Stops in Tour 2
59	Duration of Tour 2
60	Home Stay Duration before Tour 2
61	Mode for Tour 3
62	Number of Stops in Tour 3
63	Duration of Tour 3
64	Home Stay Duration before Tour 3
65	Mode for Tour 4
66	Number of Stops in Tour 4
67	Duration of Tour 4
68	Home Stay Duration before Tour 4
69	Tour 1 Stop Activity Type
70	Tour 1 Stop Activity Duration
71	Tour 1 Stop Travel Time
72	Tour 1 Stop Location (by Auto Mode)
73	Tour 2 Stop Activity Type
74	Tour 2 Stop Activity Duration
75	Tour 2 Stop Travel Time
76	Tour 2 Stop Location (by Auto Mode)
77	Tour 3 Stop Activity Type
78	Tour 3 Stop Activity Duration
79	Tour 3 Stop Travel Time
80	Tour 3 Stop Location (by Auto Mode)

81	Tour 4 Stop Activity Type
82	Tour 4 Stop Activity Duration
83	Tour 4 Stop Travel Time
84	Tour 4 Stop Location (by Auto Mode)

Table A.2. List of 'other' variables

Variable ID	Variable name
0	Constant (equals one)
1	Work-based duration (continuous)
2	One adult goes to work (binary)
3	Two adults go to work (binary)
4	Work-based duration of other worker in HH, if any (continuous)
5	Person undertakes shopping activity (binary)
6	Person undertakes social activity (binary)
7	Person undertakes personal business activity (binary)
8	Person undertakes other activity (binary)
9	Another HH adult goes to work (binary)
10	Another HH adult undertakes shopping activity (binary)
11	Another HH adult undertakes social activity (binary)
12	Another HH adult undertakes personal business activity (binary)
13	WH commute by DA (binary)
14	WH commute by SR (binary)
15	WH commute by DA-SR (binary)
16	WH commute by Walk (binary)
17	WH commute by TR (binary)
18	HW commute by DA (binary)
19	HW commute by SR (binary)
20	HW commute by DA-SR (binary)
21	HW commute by Walk (binary)
22	HW commute by TR (binary)
23	Work end time (continuous)
24	Work start time (continuous)
25	Number of WH commute stops (integer)
26	0 WH commute stop (binary)
27	1 WH commute stops (binary)
28	2 WH commute stops (binary)
29	3 WH commute stops (binary)
30	4 WH commute stops (binary)
31	2 or more WH commute stops (binary)
32	Number of HW commute stops (integer)
33 24	0 Hw commute stop (binary)
54 25	2 HW commute stops (binary)
33 26	2 HW commute stops (binary)
30 27	3 Hw commute stops (binary)
29	2 or more HW commute stops (binary)
30	2 of more risk commute stops (officially)
39 40	WW commute duration (continuous)
40	Number of tours, non worker (integer)
41	1 tour non worker (integer)
42 13	2 tours non worker (integer)
43 11	2 tours, non worker (integer)
44	5 tours, non worker (integer)

45	4 tours, non worker (integer)
46	Two or more tours by non-worker (binary)
47	Current tour made by DA (binary)
48	Current tour made by SR (binary)
49	Current tour made by DA-SR (binary)
50	Current tour made by Walk (binary)
52	Start time of home to work commute (continuous)
53	End time of work to home commute (continuous)
54	Available time for tour and home stay before tour (continuous)
55	Available time for home stay before tour (continuous)
56	Duration of tour (continuous)
57	Number of stops in tour (integer)
58	1 Tour stop (binary)
59	2 Tour stops (binary)
60	3 Tour stops (binary)
61	4 Tour stops (binary)
62	2 or more Tour stops (binary)
63	Stop for shopping activity (binary)
64	Stop for social/recreational activity (binary)
65	Stop for personal business activity (binary)
66	Stop for eat-out activity (binary)
67	Stop for serve-passenger activity (binary)
68	Stop for miscellaneous activity (binary)
69	First stop in tour/commute (binary)
70	Second stop in tour/commute (binary)
71	Third stop in tour/commute (binary)
72	Fourth stop in tour/commute (binary)
73	Available time for activity and travel (continuous)
74	Interaction: Available time for activity and travel (continuous) * One stop in tour (binary)
75	Interaction: Available time for activity and travel (continuous) * Two stops in tour (binary)
76	Interaction: Available time for activity and travel (continuous) * Three stops in tour (binary)
77	Interaction: Available time for activity and travel (continuous) * Four stops in tour (binary)
78	Available time for travel (continuous)
79	Interaction: Available time for travel (continuous) * One stop in tour
80	Interaction: Available time for travel (continuous) * Two stops in tour
81	Interaction: Available time for travel (continuous) * Three stops in tour
82	Interaction: Available time for travel (continuous) * Four stops in tour
83	Duration of activity (continuous)
84	Expected WH commute time at work end time by auto (continuous)
85	Expected HW commute time at work start time by auto (continuous)
86	Expected total commute time by auto (continuous)
87	WH DA IVTT at work end time (continuous)
88	WH DA OVTT at work end time (continuous)
89	WH DA cost at work end time (continuous)
90	WH SR IVTT at work end time (continuous)
91	WH SR OVTT at work end time (continuous)
92	WH SR cost at work end time (continuous)
93	WH transit IVTT at work end time (continuous)
94	WH transit OVTT at work end time (continuous)
95	WH transit cost at work end time (continuous)
96	WH auto IVIT at work end time if WH mode is DA
9 7	WH transit IVIT at work end time if WH mode is transit (continuous)
98	HW auto IVIT at work start time if HW mode is DA
99 100	HW transit IVTT at work start time if HW mode is transit(continuous)
100	inter zonal travel time by DA mode at trip start time

101	O and D zones are adjacent
102	O and D are same zones
103	distance of D from ultimate destination
104	interaction: Ln population and shop activity
105	interaction: Ln population and social activity
106	interaction: Ln population and personal activity
107	interaction: Ln population and eat out activity
108	interaction: Ln population and serve passenger activity
109	interaction: Ln population and miscellaneous activity
110	interaction: Ln employment and shop activity
111	interaction: Ln employment and social activity
112	interaction: Ln employment and personal activity
113	interaction: Ln employment and eat out activity
114	interaction: Ln employment and serve passenger activity
115	interaction: Ln employment and miscellaneous activity
116	interaction: DA IVTT and shop activity
117	interaction: DA IVTT and social activity
118	interaction: DA IVTT and personal activity
119	interaction: DA IVTT and eat activity
120	interaction: DA IVTT and serve passenger activity
121	interaction: DA IVTT and miscellaneous activity
122	interaction: DA IVTT and DA mode
123	interaction: DA IVTT and female

Appendix B. List of Model Components in CEMDAP

The complete listing of the components of the model system embedded in CEMDAP is presented in the following tables. Also listed are the econometric structures prescribed in CEMDAP for the model components, and a simple model type supported in case estimated models of the prescribed type are not available.

	Prescribed Model	
Model Description	Туре	Simple Model Type
Decision to go to work	Binary logit	Constant only
Work-based duration	Hazard-duration ¹	Simple Probabilistic
Work start time	Hazard-duration ¹	Simple Probabilistic
Decision to go to school	Binary logit	Constant only
School-based duration	Linear-regression	Simple Probabilistic
School start time	Linear-regression	Simple Probabilistic
HH activity generation	Multinomial logit	Constants only
Shopping activity allocation	Binary logit	Constant only
Social/Recreational activity allocation	Binary logit	Constant only
Personal business activity allocation	Binary logit	Constant only
"Other" activity participation	Binary logit	Constant only

 Table B.1. Components of the generation-allocation model system

proportional hazard function with non-parametric baseline hazard and gamma heterogeneity

Model Description	Prescribed Model Type	Simple Model Type
The pattern-level model system		
WH commute mode	Multinomial logit	Constants only
WH commute stops	Ordered probit	Thresholds only
WH commute duration	Linear-regression	Simple Probabilistic
HW commute mode (WH Drive-Alone)	Binary logit	Constants only
HW commute mode (WH Drive-Alone/Shared-Ride)	Binary logit	Constants only
HW commute stops	Ordered probit	Thresholds only
HW commute duration	Linear-regression	Simple Probabilistic
Decision to make a tour in each period	Multinomial logit	Constants only

 Table B.2. Components of the scheduling model system for workers

The tour-level model system ¹		
Mode	Multinomial logit	Constants only
Stops	Ordered probit	Thresholds only
Tour duration	Linear-regression	Simple Probabilistic
Home-stay duration before tour	Linear-regression	Simple Probabilistic
The stop-level model system ²		
Activity type	Multinomial logit	Constants only
Activity duration	Linear-regression	Simple Probabilistic
Travel time	Linear-regression	Simple Probabilistic
Location	Spatial location choice	Multinomial logit

¹ Separate models for each of the BW, WB and AW tours

² Separate models for stops in each of WH and HW commutes and BW, WB, and AW tours

	Prescribed Model	
Model Description	Туре	Simple Model Type
The pattern-level model system		
Number of tours	Ordered probit	Thresholds only
The tour-level model system ¹		
Mode	Multinomial logit	Constants only
Stops	Ordered probit	Ordered probit
Tour duration	Linear-regression	Simple Probabilistic
Home-stay duration before tour	Linear-regression	Simple Probabilistic
The stop-level model system ²		
Activity type	Multinomial logit	Constants only
Activity duration	Linear-regression	Simple Probabilistic
Travel time	Linear-regression	Simple Probabilistic
Location	Spatial location choice	Multinomial logit

 Table B.3. Components of the scheduling model system for non-workers

¹ Separate models for tours 1 2 3 and 4

² Separate models for stops in each of tours 1 2 3 and 4

Appendix C. D-FW Input Data

The input data requirements for running a simulation of the Dallas-Fort Worth metropolitan area are dependent on the model configurations estimated for D-FW. This input data therefore includes not only the 'required variables' specified in chapter 3 but also additional variables that are specific to the estimated D-FW models. The file *test_data.mdb*, included in the */data* directory under the installation destination directory, contains the data required for a small sample of the D-FW population for test purposes. The following tables contain the input specifications for this dataset. The variables are all of the '*double*' type.

Column #	Variable	Variable Name
_ 1		
-		
2	# adults	N_ADULTS
3	# autos	N_AUTOS
4	Location	ZONE_ID
5	# kids 0 to 4	
6	# kids 5 to 15	
7	# adults not employed/student	
8	# licensed adults	
9	HH has two or more adults	
10	HH income (1000\$)	
11	Median income of HH Zone (1000\$)	
12	HH Accessibility to retail	
13	HH Accessibility to all employment types	

Households Table

Columns 1-4 required by CEMDAP, columns 5-13 required for D-FW

The accessibility measures in columns 12 and 13 are described as follows:

Peak auto accessibility to retail business = log sum of (retail employment/peak period auto IVTT)

Peak auto accessibility to all business = log sum of (total employment/peak period auto IVTT)

Table

Column		Variable		
#	Variable	Name	Comment	
1	HH ID	HID		
2	Person ID	PID		
3	employed	EMPLOYED	employment status variables:	
			along with neither employed	
			nor student, forms a mutually	
4	student	STUDYING	exhaustive set	
5	have driver's license	LICENSE		
			if employed (set to 0 if not	
6	location of work	WORK_ZON	employed	
7	location of school	STUD_ZON	if student	
8	female	FEMALE		
9	age			
10	caucasian		ethnicity variables: mutually	
11	african-american		exclusive, collectively	
12	other race		exhaustive	
13	no school education			
14	high school		education level variables:	
14	education		mutually exclusive,	
15	graduate education		conectively exhaustive	
16	college education		1: 0 if parson does not have	
	personal vehicle		license = $\#autos / \# licensed$	
	availability		adults in HH, if person has	
17	•		license	
4.0	flexible work		work flexibility variables:	
18	schedule		mutually exclusive,	
18	work schedule		collectively exhaustive (if	
10	fixed work schedule		employed)	
17	works in basic			
20	industry		work type variables:	
	works in retail		mutually exclusive, collectively exhaustive (if employed)	
21	industry			
22	works in service			
	female and $\#$ kids 0			
23	to 4		binary	
			third category of employment	
	Not		status variable. OK if not	
24	employed/student		included	
	1	1	1	

Columns 1-8 are required by CEMDAP, columns 9-24 are required for D-FW

Zones Table

Column #	Variable	Variable Name
1	Zone ID	ZID
2	LN(total population +1)	LN_POP
3	LN(total employment +1)	LN_EMP

All three variables are required by CEMDAP, there are no D-FW specific variables

Zone2Zone Table

Column			
#	Variable	Variable Name	Comment
1	Origin Zone	ORIG_ZON	
2	Destination Zone	DEST_ZON	
3	adjacent	ADJACENT	1 if origin and destination zones are neighboring
4	distance	DISTANCE	in miles

These are the only variables in this table

LOS Table

Variable	Variable Name	Comment
start of time period	START_T	in minutes from 3 AM
end of time period	END_T	in minutes from 3 AM
Origin Zone	ORIG_ZON	
Destination zone	DEST_ZON	
DA IVTT	DA_IVTT	minutes
DA OVTT	DA_OVTT	minutes
DA cost	DA_COST	cents
SR IVTT	SR_IVTT	minutes
SR OVTT	SR_OVTT	minutes
SR cost	SR_COST	cents
transit availability	TR_AVAIL	
transit IVTT	TR_IVTT	minutes
transit OVTT	TR_OVTT	minutes
transit cost	TR_COST	cents
	Variablestart of time periodend of time periodOrigin ZoneDestination zoneDA IVTTDA OVTTDA costSR IVTTSR OVTTSR costtransit availabilitytransit IVTTtransit OVTTtransit Cost	VariableVariable Namestart of time periodSTART_Tend of time periodEND_TOrigin ZoneORIG_ZONDestination zoneDEST_ZONDA IVTTDA_IVTTDA OVTTDA_OVTTDA costDA_COSTSR IVTTSR_OVTTSR costSR_COSTtransit availabilityTR_AVAILtransit OVTTTR_OVTTtransit costTR_COST

All variables are required by CEMDAP, only columns 1-5, 11 and 12 are used for D-FW