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Abstract

This technical report presents detailed derivations of a perturbation curvilinear approach that
can be applied to numerical modeling of rivers, estuaries and reservoirs wherein the channel
width is small compared to the radius of curvature of bends. The report complements the
manuscript by Hodges and Imberger: “A perturbation curvilinear form of the Navier-Stokes
equations,” Centre for Water Research ED1120BH (2000).
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Chapter 1

Introduction

1.1 2D v. 3D modelling

Hydrodynamic models of rivers and estuaries can often produce useful analyses of currents
and transport mechanisms by using two-dimensional vertically-averaged or laterally-averaged
methodology. However, it can be argued that coupled hydrodynamic/water-quality modelling
of estuaries and rivers should be fundamentally approached as a three-dimensional system that
is not particularly amenable to reduction in dimension. In particular, lateral averaging (typically
used in riverine systems) produces a model which has a uniform depth at each cross section,
eliminating the effects of the shallows where reduced water velocities, nutrient introduction from
land margins and the high light levels at the benthic boundary result in ideal conditions for algal
production. Using vertical averaging may preserve some of the shallow effects that are lost in
laterally-averaged systems, but produces a distorted picture of the transport when stratification
effects (either temperature or salinity) allow the development of significant baroclinic modes of
motion.

1.2 Time scales

Arriving at the idea that three-dimensional models of hydrodynamics are desirable for water-
quality modelling, we are presented with the problem of disparities in time scales. Water quality
responds to changes in environmental forcing on relatively long time scales (days, weeks or
months) while the hydrodynamics responds rapidly (minutes or hours) to heating, cooling and
changes in flow rate.

The maximum time step in a hydrodynamic model is fundamentally limited by the flow
rate and the space scale on which the regime is gridded. Even without consideration of the
type of numerical model applied, it holds true that finer grid scales demand finer time steps. It
follows that the manner in which we produce a computational grid will influence the allowable
time step in a model and thus will determine the temporal length of a model run that can be
achieved with a fixed amount of computational power.
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1.3 Space scales

Estuaries are rivers are typically characterized by a significant disparity in cross-channel and
along-channel length scales. That is, the cross-channel dimension may range from tens or hun-
dreds of metres to several kilometres, while the along-channel dimension may range from tens
to hundreds of kilometres. A grid scale appropriate to resolving the along-channel physics and
water quality may be on the order of 500 metres to 2 or perhaps 3 kilometres (depending on
the system), which is clearly inappropriate for a cross-channel grid. Typically we find that the
appropriate grid-spacing in the cross-channel direction is in the range of 10 to 50 metres. To
this point, previous 3D works have addressed the problem of the disparity in spatial scales in
one of three ways: (1) boundary-conforming structured curvilinear grids, (2) uniform Cartesian
grids applying the cross-channel grid scale over the entire domain, (3) finite element algorithms
applied on triangular meshes. All these approaches are capable of producing 3D models, but
each has peculiar drawbacks.

1.3.1 Boundary-conforming curvilinear grids

The use of boundary-conforming structured curvilinear grids allows computationally efficient
finite-difference models to be used but has three major drawbacks: (1) development of a
boundary-fitted curvilinear grid for a topologically complex estuary is not a trivial task; (2)
the numerical discretization for solution of the Navier-Stokes equations on curvilinear coordi-
nates are significantly more complex than that required for a simple Cartesian system; and (3)
the time step of the curvilinear solution is generally set by the smallest of the curvilinear grid
cells: the compression of the grid in a narrow channel may limit the time step over the entire do-
main. The last drawback can certainly be addressed by the use of effective grid nesting for small
features, and the first drawback can be addressed by the use of suitable domain-decomposition
techniques. However, both these add to the computational complexity of the modelling task.

1.3.2 Uniform Cartesian grids

The use of uniform Cartesian grids (using the cross-channel grid scale) allows application of
computationally efficient models to be used with complicated topography in what might be
termed a “naive” manner. That is, we simply discretize the domain with some suitable grid
whose size is determined by the smallest feature we would like to resolve. As this is typically
based on obtaining 5 to 10 grid cells in the cross-channel direction, this approach requires for
an inordinately large amount of grid cells to discretize an estuary. For example, the use of a
20 x 20 metre horizontal grid to discretize the upper 24 kilometres of the Swan River estuary
with 10 grid cells in the vertical direction requires a total of 2 x 10° grid cells. In addition, the
use of a uniformly fine mesh throughout the domain requires a small time step and reduces the
practicality of using uniform Cartesian grids for seasonal computation.

1.3.3 Finite-element models

Finite-element models have some significant advantages in the ability to easily grid a complex
topographical space with triangles. Furthermore, the existence of well-tested, commercial finite-
element flow solvers that are inherently stable for large time steps can be attractive to the casual
user. The drawbacks of the finite-element approach are the computational complexity of the
algorithms and the relatively high demands of computer memory and CPU time required for
unsteady flow computations. It has yet to be demonstrated that a finite-element method can be
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competitive with a finite-difference method in CPU time per real-time interval for models with
similar grid resolutions. Furthermore, one must be careful not to confuse stability at large time
steps with accuracy. While it is perfectly possible to design a numerical method that is stable
for a CFL ;, 10, the accuracy of any such algorithm is very much in question. If the time scale
of the model is significantly larger than the fundamental time scales of the unsteady physics,
then there cannot be an accurate solution.

1.3.4 A proposal for a “straightened” Cartesian grid

In this report, we develop an approach that has the advantages of the uniform Cartesian grid
(simplicity and efficiency of algorithms) while allowing different grid scales in cross-river and
along-river directions in a manner similar to boundary-fitted curvilinear coordinate systems. To
the “zeroth” order, this approach is a simple straightening of the river or estuary so that a
rectangular Cartesian grid can be applied. It will be demonstrated that this is identical to a
curvilinear transformation that neglects terms that have the leading order of §r. ! , where r,
is the radius of curvature at the center of the river or estuary and ¢ is the half-channel width.
As §r;1 is a small number throughout most estuaries and rivers, we can include terms of this
order (and smaller) as source/sink terms in the Navier-Stokes equations and thus make simple
modifications to a Cartesian-grid model to account for the curvilinear effects.



Chapter 2

A grid-stretched curvilinear form
of the Navier-Stokes equations

Our objective is to define a curvilinear form of the Navier-Stokes equations that can be seen
as the Cartesian form of the equations plus perturbation terms. The curvilinear derivations in
this paper rely on the tensor concepts found in Aris (1962) and apply the Einstein summation
convention to repeated subscripts placed in contravariant/covariant pairs.

2.1 Definitions of curvilinear terms

Consider the transformation between Cartesian space (' or z,y,z) and curvilinear space
(&% or &,m,¢) where the covariant transformation metrics are defined as:

and the covariant metric tensor (AI’iS, 1962, eq 4234)

3
Gy = > RIRI (2.2)

j=1
and the Jacobian of the transformation from Cartesian to curvilinear space is

ox'
oI

J = det’ (2.3)

In some texts, this would be defined as the inverse Jacobian. For the purposes of this pa-
per, we shall use the above convention as found in Aris (1962, eq 7.24.4). The contravariant
transformation metric tensor can be defined in terms of the covariant tensor (Aris, 1962, eq
7.24.8)
» 1.

GY = 2 e Gl pGhg (2.4)
Where €™ is the tensor permutation symbol. The unsteady incompressible Navier-Stokes
equations can be written in the tensor form found in Aris (1962, eq 8.22.2)

ou? 4 , ,
P {—Eh + U]U?j} = —GY; + pGrUT, (2.5)

6
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Where the tensor derivatives (i.e. U’qj) indicate covariant differentiation (requiring Christoffel
symbols for evaluation). Note that the scalars p, p and p are defined as properties of physical
space and are unaffected by the transformation. If we let ( = f (z), then the unsteady incom-
pressible Navier-Stokes equations with the hydrostatic and Bousinesq approximations can be
written as

ou” , GoB H _
+ UUY = —gG*H, — J {/ ,o'dz} + vGR U, (2.6)
: s

8t Lo ’

where Latin sub- and super-scripts are evaluated over 3-space (i.e. 7,k = 1,2,3) while Greek
sub- and super-scripts are evaluated over 2-space (i.e. a,( = 1,2). Slightly more clearly, this
can be written as
ou«
ot

sOH  gG*¥ 9 /H
ogP po OE8

+ UUY = —gG” pldz + vGIFU%, (2.7)

2.2 Covariant metrics

Consider the definition of grid terms provided in figure (2.1). The angles 6 and ¢ are the angles
that the curvilinear £ and H axes form with the x axis. The axes h; and ho are a discrete
linear version of the curvilinear axes that are measured in physical space dimensions such that
Ah? = Az? + Ay?. From some simple trigonometry we can write:

Az Axo n Ay Ay
Ahy Ahg Ahy Ahgy

= cosf cos¢p + sinf sin¢

= cos (0 — o) (2.8)
Let the local grid skewness is represented by the angle v, where
b=(6-0 -3 (2.9)
From trigonometry again
cos (—1/) - g) = sin(—¢y) = —siny (2.10)

so we end up with
00 00 oy Oy

Ohy Ohs Ohy Ohs
The chain rule for transformations between £9 and h; can be written as:

o oh; 0

= —siny (2.11)

G A 2.12
o0& 064 Oh; ( )
From equation (2.2)
Oz Ox dy dy
G2 = ¢ on + 3¢ o

_Ohy 00 Oy 05 Oby Oy Oy Oy

~ 0¢ Oh; On Ohy 0¢ Oh; On Ohy

_ Oh 05 b Ox | Ohi Oy Ohe Oy

_ Om ok [or 05 0y Oy

N 85 67} 8h1 8h2 6}11 8h2

= Oy Oh, sin 1) (2.13)

o6 o
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Figure 2.1: Grid definitions: Ahi, Ah2, Azand Ay are physical distances in Cartesian space;
A& and An are fixed curvilinear coordinate measures.

where we have used the geometrical identity 0h;/0¢? = 0 for j # g and equation (2.11). Next,

from trigonometry we have
(dho)® = (dz)® + (dy)? (2.14)

2 2 2

() - () @)oo
2 2 2

B - () B e e

resulting in equation (2.13) being written as

G12 = —/ G11 G22 Sin?/) (217)

So that we can write

Let us require a transformation that locally preserves physical space dimensions in the
horizontal plane with only small amounts of stretching and has no change in the vertical such
that:

Gu = 1+ 7n(z,y) (18.a)
Gao = 1+ 7(z,y) (18.b)
Gss = 1 (18.¢)
Giz = 0 (18.d)
Gas = 0 (18.¢)

Gy = — {1 + 71+ 7+ 72}1/2 Sin’(/) (18f)
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where v; = v; (z, y) and ¢ = ¢ (x, y). The Jacobian of the transformation defined by equation

(2.3) is

Note from the above that

Oz Oy dy Ox

¢ On o0& on

Oy Ohy f0x Dy _ 0y Ox
af 877 8h1 8}12 8h1 Bhg

= /G11 Goy {cosfsing — sinf cosp}
= /G11 Gy sin (¢ — 0)

= VG Ga cost)

= (147 + % + m72)"? cosvy

Gi1a = —J tany

2.3 Contravariant metrics

We now find the contravariant metrics as defined from equation (2.4)

Gll

G22

G33

G12

GlS
G23

_ 1+
= J ?GpGss = ((]7272)

_ 1+
= J?G1Gss = (Jiz’h)

. L+ 7+ 7+
= J2G Gy = ( gi! JZQ Y172)
= —J ?G12Gs
_ tanv
-
=0

0

2.4 Christoffel symbols

Covariant differentiation is defined as (Aris, 1962, eq 7.55.4)

. OA? )
At = 22 Ak
s J aé'] + {] k}

where the Christoffel symbol is (Aris, 1962, eq 7.53.3)

‘ = lGiil’ aGl)j + 8ka . 6G]k
J ok 2 gk &I P

(21.a)

(21.b)

(21.c)

(22)

(23)
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and it can be seen that ) _
i )

= 24

{j k } { kg } 29

As the G and G35 metrics are zero for i # 3, all the Christoffel symbols involving the
vertical coordinate (3) mixed with the horizontal components (1) and (2) evaluate to exactly
zero by inspection. The non-trivial terms are:

1 _111)
{11}‘20

L 9Gn 3G
ot T ogt T oer

0G,,  9Gis
¢ e oer

0Gy  0Ga
&2 €2 oer

)
)
G aG“) (25.d)
)
)
)

(25.a)

(25.b)

—_

(25.c)

e

0G,,  0Gis
2 e oer
0G,,  0Ga
o2 €2 oer

0Gy;  0Gss
o8 T s T Toer

(25.¢)

—_
[\
[\

(25.f)

[\
[\

w
w

— A N
—
[N}
—_
_ =~ Y~ Y Y= =
|
N =
Q
D
S|
D
o))
ISy
=
_|_
I
o))
AN
bS]

Evaluating these:

() - e () b2
{1 1 2} %Gll 656221 * %Gu 8362212 2ob)
{2 1 2} - %GH (288%2 - %%212) " %GD (866232> (269
{1 2 1} B %Gzl 8862111 * %GQQ (2 86%1 - 8862121> 200
(1) -t - don s
{2 2 2} B % . (2836222 B 8362212) % G 886222 (260
) - o)
Common terms in the above are evaluated as
636211 _ % (27.a)
0G11 _ om (27.b)

e og
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6G22 _ %
ot ol
8G22 _ %
0&2 &2
0Gsz
o 0
6G12 _ / (9_’(/} _ 851 (GllG22) .
oEr (G11G22)"" " cos P 7(G11G22)1/2 sin
G + G %2
_ 1/ _1/) Lz 351 1179¢0
= (Gnng) cos Y aeT (G11G22)1/2 sin ¢
o1 9
= 7Jaiw G228_’gl + Gllagl sin w
o¢! G11G22>1/2

L0 (G om (GuNTonl
afl 2 Gll 851 G22 351

0 0w

1
oz T o¢ 5(

For small ¢, we can say sin =~ tan

o 1+7\? 0% | ..
et " <1+72> agr [

o2 14792 %571 )
) o (1) 652}5””/’

Y~ Op/Og ~

\/
D=

[SIC

O (v). Tt follows that G'? ~

11

(27.c)

(27.d)

(27.e)

(27.f)

(27.g)

G2 =

0G12/0¢ =~ O (¢b). Then, to order (w2), substituting for the gradients of contravariant metrics

we can write the Christoffel symbols as:

Pl o Landn 1aedn 2
{1 1} = 3¢ ot 2¢ 0¢? + ()

1 _ 1 118’71 L 128'72
{1 2} = 30t

1 1 11% 12 672 11 8¢
{2 2} N 2G ol +2 e +-Ja €2

L a1 T4+791)2 072 14 25’)’1 .
2¢ {(Hw) o+ (1+71> o2 [ S

2 _ 21%__ 223’71
{1 1} B QG ot ¢ oe? ¢t

—J G22 817[)

_l 29 1+P)/2 2% 1+’71 %% .
2" {<1+%> oer <1+72> ger [ Y

2 _ L2 871 1 22 072
1 2f G 652 G et

2 I R (2P’ 1 21 072 2
2 2f 2G 02 2G o€l + 0 (¥)

(28.a)

(28.b)

(28.¢c)

(28.d)

(28.e)

(28.f)
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Substituting the relations for G'', G?2 and G'? provides:

tant) Ovq

1 _ 14 on m 2
{1 1} = S oog o2 oe PO
1 _ I+ dn tany) 0y
1 2 2J2 €2 2J  o¢!
1 I e R r) tant dy2 14 0y
2 2f 2J2 QO¢! 2J 0¢2 J  0¢2
2J2 1+ 7 852 1+m 852
2 _ tanyp Oy 14y On 14 O
1 1) 27 0¢t 2J2 Q€2 2J  0€!
14 L+ %%+ 1+m %% sin 1)
2.J2 1+ /) 0¢ L+7y) 08!
2 _ l+m O tan) 0y,
1 2f 22 9¢t 2J 0¢?
2 _ 147 0y tany Op 2
{2 2} T 2J2 ¢ 27 o+ O

12

(29.a)

(29.b)

(29.c)

(29.d)

(29.e)

(29.1)

If we neglect terms of O (¢) (i.e. the non-orthogonality of the transformation) then we arrive

at the Christoffel symbols

) = At oW
{212} B _123322_23+0(¢)
{121} - —1;;2%2—;+0(¢)
{122} - 1;31%+0(¢)
{222} - 12;31%+0(¢)

2.5 Covariant velocity derivatives

Neglecting the O(t)) terms we can write the covariant derivatives of the velocity field as:

1+
2J2

o
2_
+ U ¢

1 om

ot

out
U=

+ O0(¥)

(30.a)

(30.b)

(30.c)

(30.d)

(30.e)

(3l.a)
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ou?  1+m 02 2
2 _ 1 2
Ve = @ T ap (Vo t Ve
. U’
Vs T e
N 88
U, = 6_U1 Lty | 10n U2 972
)2 352 2.J2 352 ¢l
oU? 14+~1 02 o7
2 _ e 2774 174
U = Ga T e |Vaa — Ve

2.6 Terms in the Navier-Stokes equations

2.6.1 Advective terms

Examining the advective terms for the (1) component of the Navier-Stokes equations:

utul, + UUY, + UUY

8U1 1+"}/2 871
1 e I
v {851 T o Ve
ou! 1+ 871
2 )Y 174
U {352 RYE 2¢?
ou!t
3—
+U s T 0W)
This can be written as
Utut, + UUY, + UPUY
out out out
_ 1Y 2YY 3 7Y
= U6§1+U8§2+U6§3
(I+72) JOn ;12 OV 1172
= 22 1-
Substituting J2 = (1 +v2) (1 + 1) + O (v)
Utul, + UPUY, + UUY
ou!t ou! ou!t
_ 1~ 27Y 37
= Uga tUV% V%
1 o 142 01 111 470
+ = (U +2_5U'U
2(1+m) {351 ) 0¢?

13

+ O(¥) (31.b)

(31.¢)

(31.d)

+ 0 @) (31.)

+ O ) (31.5)
)

2t

-]

(32)

8’)/2 2\ 2
oE1 (U?) } + O () (33)

072

5 (U2)2} + 0(¥) (34)
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2.6.2 Free-surface terms

14

Next consider the first type of free surface term from the N-S equations. For the (1) component

gG

10 00
oee

_ gGll

J2

et
oH
oH
oH
oH
oH

2.6.3 Baroclinic terms

o
o¢t

(1 + v2) OH

OH 1+
+g( 72

+ gG*?

e Y

J2

JQ

9

H
+—(1—J2+’72)a

J2

T =T+ ) on

o
0¢?

1, 0H
J og2

— 1 a_H + l tanwa_H
gt T 97 oe?

tan 6—H

+ 782

g1 9
aet T

a—§1+0(¢)

gll+ 72 — 1+m)[1+1)] 0H

gy (1+

gn_ OH
14+m 851

(14+71) (1

-1 + 0@)

(T4+71) (1 +72) ogt

OH
f%) ger T OW

+ O (¢)

The baroclinic term in the Navier-Stokes equations for the (1) component is

o [,
ser . ¢

gGla
Po

J? po

H
_/ o ds —
2! Po

(1+m) aet

Gt oo M
Lo [,

1 H

o¢t

ae?

g tan
J po

G2 o9 M
g / p/ dZ
Po 2!

) H
o |

H 1 _J2 H H
/ Jae 4 90022 0 / pfdzﬂtawi/ o ds

J? po

oet Jpy  O€2

H H

po [1+ ]

g 0

[1+ 2] ot

H
[ ddz+ 0w

(35)
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2.7 Grid-stretched form for N-S equations

Putting together the previous terms, we arrive at a statement of the Navier-Stokes equations
for the (1) and (2) components:

ouU! QU OH g o [, )
ot + UJ 8{3 + g 851 +%3_§1/21 de_VU,kk

_ 1 % 1 % 1772 072 2
- 2(1+vl>{a£1 W+ 25V - (U>}

gm ) oH 13/H/
i {8&1 T aer [, e P OW) (872)

ouU? oU? OH g 0 [H, )
Tt Vag gt e |, M Uk

2(14+ ) | 0€2 851 0¢?
972 oH 1 0 " /
1+72{8—€2+%8—§2/2/ pdz}+o<w> (37b)

Where the curvilinear grid stretches in only one direction, i.e. where 72 = 0 and ¥ = 0 we
obtain

o V% T T ad

= 1{8% (U1)2 + 28’71 U1U2}

Ut U OH g 8 /H,

2(1+m) | 0¢

agmn OH 1 0 " ’
*mwoﬁﬁ+;ﬁélpw}+“w

(38.a)
oU? oU? OH g 8 H
i J i ~z ! _
_ 1 (9’}/1 1 2
+3 22 (UY” + O(v)
(38.b)

It is useful to consider the case where there stretching is only in one direction and only changes
across the second dimension, i.e. 7, = 0 and 9v;/9¢! = 0:

Ut Ut oH g & [H, .
Wt U et e [ U

b Mg _gm JoH 18/H/
B (1+m) 852U vt (I+m) | o0&t * po O J. Pz + OW)
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(39.a)
oU? , OU? O0H g 0 "
e 7 el J / o 2
En + U o7 +ga€2 eroan {/Z/ pdz vU%
1 871 2
= oo (UhH” + o)
(39.b)

2.8 Correspondence with cylindrical polar coordinates

As a demonstration of the validity of the curvilinear form, consider a curvilinear space that
may be defined by the cylindrical polar coordinates (7,0, z). The correspondence between the
curvilinear form and the polar form is

&= r.0 (40.a)
e = r (40.b)
8 = z (40.c)

where r. is some “central” radius of curvature.

The cylindrical polar system is orthogonal so

1) = 0. The velocities transform as

Tc

Ul = S (41.a)
r
Ut = u, (41.b)
U3 = U, (41(3)
Transforming the derivatives, we have
0 00 0 10
9 _ 909 190 4.
o¢l o' 90~ 1. 06 (42.2)
0 or 0 0
- = = = = 42.
g2 02 or or (42.b)
0 0z 0 0
- = Z 2 - = 42.
¢ 06 92~ 0z (42.c)

For a sufficiently small 8 where the arc is aligned with the Cartesian = axis we have Ax = r Af

so we find
r A0 rAQ

G Ar Az 4

W= AL Al T NG rAG m
As the cylindrical polar coordinate system is uniform in the € direction, this result holds through-
out the curvilinear system. It follows that:

(43)

2 r2 2

Moo= 2 1= = (44.a)

Y2 =0 (44.b)

v =0 (44.c)
2

J = 14~y = 2 (44.d)
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% 0 (44.)
o om 2r
% - o 2 (44.0
0%y 0%y 2
0606 o 12 (44)

Substituting the polar coordinate relations into the Navier-Stokes equations (39.a) and
(39.b) for the conditions 97, /¢ = 0 with ¢ = 0 and 2 = 0 we obtain

200 () 5 () e () e () + 2

g1 0 [H

/
= — = d
+ po e 00 ), paz
r? 2r (rc) L r? —r? r? 1 OH . 1 0 /H d
=— (=) ) (=) uwu — —— + — = z
r2 r2 r o g r2 r2 r. 00 poTe 00 P
+ viscous terms (45.a)
Ouy + i(r_cu)aur+u%+u aur+ 8_H+££/H ' dz
ot re \r %) 90 " or © 0z I or po Or J. P
12 c 2 .
= 3 r_g (% u9> + viscous terms (45.b)

For simplicity, we are not transforming the viscous terms. Note that the derivatives with respect
to the radial direction of the U velocity become

a [re re. Oug e
Z (e — <220 _ - 46
87“<ru0> r Or o2 (46)
while the second derivatives expand as
0?2 (rc ) 0 (r. Oug Te
Il (L - 2 (=0 _ ==
orz \p ? or \r Or o2
re 0%ug re. Oug A re re Oug
= _—— = — vy — — —  ——
r Or? r2 or = r2 Or
re 0%ug 2r. Oug Te
- - 22T 4 2up— 47
r Or? r2 Or + 2us r3 (47)
Cancelling terms and substituting the derivative expansions provides
re Oug (Tc ) Oug . r. Oug Te . re  Oug i 1 OH
— — —up) —- — Up —— — Up UG — — Uy — —
r Ot 2 %) "9 r or 02 0z g re. 00

_ % g U + 7“2—7"2 i87H+ 1 2 H’dz
N r2 6% g 72 re 00 poTe 00 J, p
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+ viscous terms (48.a)
8Ur+lu%+u%+u%+ 8_H+£2/H’dz
ot r? 00 " or ® 0z ™ po Or J, P
= ;ug + viscous terms (48.b)
Multiply the first equation through by r/r. and clean up:
Ouyg ug Oug Oug Uy Ug Oug r OH
o T v e Tar T Ty T 92
H
g r 0 ’
= = = d
+ Lo ’I"g 00 P paz
__2u0u7'_|_ L_l 8_H+i2/H’dZ
- Te g r2 r 00 po 00 J, p
+ viscous terms (49.a)
aur_’_%am_i_u@ur_’_u@ur_’_ a_H ig/H/dz
ot r 00 " or 9z " Tor oor ). *
w2
= 7‘9 -+ viscous terms (49.b)
Some reworking makes a cancellations more obvious
Oug ug Ouyg Oug Uy Ug Oug r OH g r 0 H ,
A, — Tan r o AR 5 Tan T "o Aan d
ot i r89+u87‘ r u82+g7‘§80+p0r289 Z/pz
= —M—i— 1—T—z La—H—kiLg H'dz + viscous term
B T g 72 r2 06 po 12 00 ). r
(50.a)
oup  ug Our . Qup o Ou. o OH g O "ol
ot r 90 " or 0z "% T oar ) F
2
= (uo) + viscous term (50.b)
r
Further combining of terms and cleaning up provides
8u(; Ug 8“9 8u9 8'LL9
a v T T
. H "
= - % - gaa—e — % % ; p'dz + viscous term (5l.a)
oup  ug Our . Oup o Ou. o OH g O S
ot r 00 " or 7 0z 9 or po Or J, P
(up)”

= + viscous term (51.b)
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Any fluid mechanics textbook can be consulted to confirm that this is the cylindrical polar
coordinate form of the Navier-Stokes equations with the Bousinesq and hydrostatic pressure
approximations. Thus, we have confirmed that the curvilinear form we derived simplifies appro-
priately when transformed back to physical space.



Chapter 3

Perturbation expansion for a
river or estuary

Let us define a “river” curvilinear coordinate system where the £2 coordinate varies along straight
lines in physical space that intersect at right angles a set of smoothly curving lines along which
¢! varies. One value of constant £2 (i.e. a ¢! line) is designated as the “central” coordinate
line which has the central radius of curvature r,. (f 1). We require distances along straight lines

of the £2 coordinate to be physical distances so that A¢2 = /Axz2? + Ay2. We also requre

that distances measured along the central arc of ¢! to be physical distances such that A¢Y|,.. =

v Az2 + Ay2. To prevent overlapping grid points, it is necessary to require that the local

radius of curvature r(f L {2) is colinear with and a small perturbation from the central radius

of curvature at the same value of £'. The &' coordinate is similar to 6 in the cylindrical polar

coordinate system except that the central radius of curvature (r.) changes as a function of £*.

The limitation of the river system to values of r that are small perturbations from r. can be
formalized by defining a perturbation parameter € such that

r—re
e = - (1L.a)
lef < 1 (1.b)

The normal distance of any point from the central radius r. is defined as

§(€%) = () —re (&) (2)
which is invariant along a line of varying &;. It follows that
)
<= (3)
and that
O _ 00 eOre €A (4.2)
ot r2 0¢t  r.08r . '
Oe 1 or 1
- = = = 4.
€2 re 02 Te (4.)

Where we have defined A\ = 9r./0¢! as the gradient of the river curvature. In the same manner
as equation (44.a) was obtained, the stretching of the river coordinate system can be defined
as:

wo= o (5.2)
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The former can be written as

Y=

e(r + re
7= ( )
Te
r
o= e(——i—l)
Te
o= ele+2)
i o= 2e + €
It follows that
on 2€eA 2€2 A
o€t B Te Te
2€A
= — 1
1+
0 2 2
om 2 2
652 Tc Te
2
= — (1
~(+9

21

(7.b)

The primary difference between the cylindrical polar coordinates and the curvilinear
system defined herein is that the dv;/9¢t is identically zero in the cylindrical polar system,
while in the present approach it is a function of the gradient of the radius of curvature dr./9&*.

In the continuous sense, the grid is orthogonal as the radii of curvature (lines of varying
€2 and constant ') cut through the lines of varying £ and constant £2 at angles of 7/2, which
results in equations (38.a) and (38.b) being applicable. Substituting the relations for ~ into

equations (38.a) and (38.b) results in

ou! QU OH g o [(H, )
W + Uja—gj“r‘ga—gl“r‘%a—gl/z/pdz—l/(]’kk
B 1 2eA 1\ 2 2 179
- _2(1+26+€2){— - (1+e€) (UY) +2T—C(1+€)UU}
g (2e+€?) [oH 1o [,
A sy, a?l*?oa?/z, pdzp + OY)
oU? - OU? OH g o [H
W + Ujai@+gai§2+%87§2/z, p’dz—z/U?kk

-+ 1 (1+6¢) (UY? + O()

Te

(8.a)
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Figure 3.1: Definitions of the central radius of curvature (r.), the radius of curvature (r) and the
distance to the thalweg (9).
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Gathering and cancelling some terms provides

Ut Ut OH o [
Tt Vg o b g [, A vV
_ _ﬁ{—e(l+6)A(U1)2+2(1+6)U1U2}
Te €
ge(2+¢) [oH 16/H dz
(1+e¢? |0 po 05 /. P
oU? - OU? oH g o (" (1+e¢) 2
W + J 853 + 98—52 % 852/ p/dZ — VU,2k'k = " (Ul)
Further cancellation provides
Ut Ut OH o (7
Tt Vg togm e [, A0
1 1\2 1772
2+ for ii/H iz
(L+eo? ot " ppoet L7
oU? - OU? oOH g o [7 ) (1+e)
Tt Ves T oam  ae [, 10 Uk =

Binomial series expansion (for for €2 < 1) gives

1—1|—e = 1—e+62—0(63)
1 2 3
R = 1 - 2e+ 3¢ — O()
€

So that the equations can be expanded as

6_U1 + U 8U1 _|_ aH + i i
ot ¢ 551 po O&*
- —Ti{—ex((ﬂf + 2U1U2} + =

- < { —ex (UY)? + 20! U2}

Te

oOH 1 0
+ge (2 +e) 361 +%8—€1

OH 1 9
- 2g62 (2 +E){a§1 + %aigl

Tec

H
/ pldz — vUZ,
Z/

{— ex (UY)? + 201 U2}

H
/p’dz}
H
/ p'dz} + O(€)

23
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(14.a)
ouU? QU2 OH g o [H
¥ J et g4 Y / _ 2
Bn + U o€ + 9852 + P 852/ dz — vU7,
1
- +— U + = (Y (14.b)
Tec Tc
Regrouping terms
Ut QU OH g o [H
— Ul —_— + L = '"dz — vU?
a a@*gasl*poasl/z/” el
OH 1 9 [H 2
= 2 - = /d _ “rrlgr2
+ g€{8§1+p08§1 /Z/p z} chU
+ A (UY? 20U - 2 8H+ii/H 'dz
e T oer T opooer )7
€ 2 1772 3
— =X (UY + 20U + O() (15.a)
Te
oU? - QU? aH g o [H
vY 7 v E /d o 2
1
- -+ = (U1)2 (15.b)

Te Te

For r. > 1 and r. > ¢ we can say €/r. ~ 0(62) and €2 /r. ~ 0(63) as long as a product of A is
not involved. In general, A may be O (r.). Thus we can write the approximation to order (€?)
as

ou! QU OH a [H )
ot + U’ 8§J + g 6_51 + p_6_£1/ pdz — VU,kk
= 2ge¢ a—H—&-ii/Hp'dz U1U2+2(U) + O(€®) (16.a)
ot po 06t ). c '
oU? L OU? oH g o 7, ) 1, 1\2 )
ot + UY 8§J + 9 a£2 +_6_£2/z/ de_VU’kk_T_C(U) +O(€)

(16.b)

Finally, for r. > 1 and r. > & we can say r_ ! ~ O(e) so that:

1 1 H
o + UaU + 8H+ii/ pldz — vUYy,

0 + O(e) (17.a)

ot ocr " Yagt T g o

oU? QU OH g o !

= j g g Y 11, 2 _

o U ag tiaE t o 852/ pldz — vU%, = 0 + O(e)

(17.b)



Chapter 4

Viscous terms

Thus far we have neglected the viscous terms, carrying them along in a curvilinear form. Rather
than performing a transformation (requiring derivatives of Christoffel symbols) we can simply
neglect molecular viscous processes as they are dominated by turbulent processes throughout
our geophysical applications of the method. The viscous term that we need to define is then the
turbulent term arrived at through Reynolds-averaging of the equations. If we let U represent
the unsteady Reynolds-averaged velocity and w the turbulent fluctuations, the Reynolds stress
terms that would be added to the right-hand-side of equations (16.a) and (16.b) are

0 €A
SRS DO . S ) CATT T 1
a&uu Cuu —|—Tcuu (1L.a)
and 9
_ Y2 ST
8§juuj+ cuu (1.b)
and 9
3
6§ju ul (1.c)
One could make the modeling statements that
3
0 out 0 . 2 €N ——
A e N D RIS W AT
;8@ (uJ 351') = (%ju ud rcu u? + o uly (2.a)
3
0 ou? 0 : 1
T B T ) D
;88 (z/J 8§j> = 3§ju ul + Tcu u (2.b)
3
0 ou3 0 .
R e O AN
;8@' (”ﬂ ae‘) - Tt &

which would allow the standard treatment of turbulence as an eddy-viscosity. As often the

horizontal eddy-viscosities in a river or estuary are treated a simple constants, the above ap-
proximation is likely to prove reasonable within the approximations of geophysical modeling.
An approach that is arguably an improvement is to neglect the effect of the gradient of river
curvature, in which case the model forms for the turbulence terms can be obtained from the
cylindrical polar Navier-Stokes equations as:

O (o Ny LI (,2um 9 (, dur) _ 2veTup (3.0)
or \ror " 200 \" 90 92 \"* 02 2 90 A

25
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and

9 (9 +iﬁ , 2ue
or \r or' "0 200 \ " 90

0
"o
1 8 6uz 8uz auz
ror (”” ar ) T 250 ( ) ( ) (8.0)

The relation between the terms is

Oug 2ug Ou,.
( a >+ 2o o, (3:b)

and

o= 047, (4.a)

uy = %Ul (4.b)

u. = U? (4.¢)

u, = U® (4.d)

0 0

% = Tca—gl (46)

0 0

0 0

9. 3—53 (4.8)

Ve = U9 (4h)

vg = 1 (4.1)

v, = V3 (4J)
(4.)

Applying the relationship between the cylindrical-polar coordinate system and the curvilinear
form we can write these as

0 [vy O 9 r. O oU? 0 oU? 2rq.vy O A
o€z (7“ oe"V ) T <””1 851) * o <”3 RE 7 og \r 0 ) )

and

o (ve 0 [r? re O o [r 4 0 0 1 211 OU?
2 (r o€? L«CU D T og (“”1651 [ch o s RU]) * o ae
(5.b)

10 ou? re 0 ou? 0 ou?
rog \"oe )t ae \"aer ) oo Mo (5

Expanding the derivatives we obtain

0 oU? vU? Or Te 0 oU? 8U2 or. 8 8U2
e \"ae T T ee) T e \ea \Maa ) T e o T a2\ a2

vy 1\ OU? 2ran UL 0 r
— — — — | — (6.a)
r2 r. ) O0&1 72 o0& \ r,
and

0 [ [r?] oU! V2U1 o [r? r. O Ut Ut a |r
0_52<7 Ha—w rooe H) i ﬁa?(“”[ }agl et e H)

r 0 5 B_Ul 2111 OU?
2 0z 2 9er

and

re. 0z

and

1( or ou3 0 ou? re [ Ore ou? 0 ou? 0

(6.c)

ous

¢

)



Hodges: Derivation of perturbation curvilinear methods 27
Cancellations give
0 (LU wUPOrN w20 (U | wrndU0n | O ( 0U?
0e2 \ " 92 r 02 r2 0et \ "t oet 2 ot ol T 9z \? 0z
2 out 2ren U O (1 (7.2)
r O¢! r2  0& \r. ’
and
0 (rmoUT | wUt O PN e 0 OUT g O [
92 \ r. 0€2 r 9€ |r. r2oet \" ot T aet |,
r 0 out 2r.vy OU?
T () ¢ e (7:6)
and
Lor (L OUP\ 0 ( U\ | ron (OUPN 20 ( U\ o ( out
r O€2 2 o¢2 o¢2 2 o¢2 r2 O¢t 1 O¢t r2 ¢! 1 OEt o¢3 3 o¢3
(7.¢)
Note that
ore
6_51 = A (8&)
or 15} ore
ot~ e Tog (&)
Oe 0 r
ot o (7) (8.0)
O (rN _ Lo ot A rdre A rA_ (re—r
851 Te B Tc 661 " afl B Te 7"3 351 B Tc rz B T%
Ae
= == (8.d)
or
ore
9 0 (8.f)
or—1 1 Or 1
[ o
or;t 1 oOr
oz _E8§2 =0 (8.h)
O (ry _ Lo ol 1 rore 1 (8.0)
o2 \r. )  r.oe " 082 1, r2 062 71, 5
o () | 1o _wor "
oe\r.) ~ ro0e T r0e !
So further simplification leads to
i Va_U2_|_V2U2 +ﬁi V@_W +V1)\r58_[]2
aez \ 7% oez r r29et [t et r2 ogl
0 oU? 2y OU? 2Nev Ul
EE (a_> T T (9-2)
and
0 (U U\ e 0 OUL s
oe2 \'r. g2 T r2oet " agt .
r 0 oUt 2r.vy OU?
s (1/3 02) + 2 o8 (9.b)
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and
F(n22) 2 (m22) 4 (2 2 () 1 2 (22
r 0&2 0&2 0¢? ot 2 9¢! ¢t g3 g3 '
Cancellation and distribution gives
0 oU? 0 [(1U? r2 9 oU? vy Ar. OU?
e () + o (%) + oo () + %

0 oU? 2uy OU! 2Nevy Ut
+&C“£)‘7we+ " (10-2)

and

0 (rvy0U! 0 [2wU! r. O ouU!t re O 1

o (72 5) + ae (Mn) + g (M) — ge Gent?)

r 0 Ut 2r.vy OU?

e 0z <V3 0z ) r2  o¢! (10-5)

with no further changes to equation (9.c) for the moment.

Some further manipulations

0 ouU? 10 or—1 20 ouU? Ar. OU?
(V2—> + - (1U?) + 1/2U2r— + T—c—< —) nole o

ae \"oer) T roe oz " rzog " og 2 DEr
0 oU? 2y QU 2N e Ul
+ & (V?,E) — T 851 + 2 (11&)

and
r 0 out out o [r 2 0 Lort
z&JW@)+”%m?GJ+mw@W>+“Um2

re O Ut oul r, or re O Te o\ Oe
o () + e o Mo () — 0 (G + o)
r 0 ouU!t 2r.vy OU?
re 0z (”3 0z ) 12 Ol (L)
It follows that

i( 3_U2) li( 2U?) — vaU” re 0 ( 3U2> vi Ar. OU?

oe2 \"* oe2 roez 2 T r2gg \Maa 2 o
o [ oU? 2 U 2\ewy UL
+ @ <V38Z) — T 851 + 7"2 (12&)

and

r 0 oU!t vy OU 2 9

T \2ee) t e tnae

e 0§ 3 re 08 e 0§

re O oUt V17T N OUL re O re [ OA eN?

+78—§1<I/18§1> + T2 8£1 _)\E’r_za_gl(lel) _V1U1T_2<6___.>

r 0 oU!t 211 OU?

e 0z (VB 0z ) r2  Qgt (12.5)

Some rearranging gives
2O (OUN\ 0 ( oUPN 0 ( oU
r2 oct \7t o¢t o¢z \ 77 oe2 0z \ 2 0z
2 e 1 0wy 2
1 2 (10V2 12
v < r2 ) U (7'852 r2>

21y OU! vy OU? vy Ar, OU?
e T T g (13.2)

(vU")
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and
re 0 (, 00\ r 0 ( oU r o ( oul
s . 062 \ " ez ro 02 \"* 70z
2 vy redv e[ 0N €N
V1r2 6851 Te

1 —_— —
U (rc o¢2 ‘2o
OUY (vire. A Te UL [y 205 211 OU?
(55 o) < 5 (2 52) « 25 o

3—51 r2

ro¢t

Noting that r = r. (1 + €) we have
Lo Uty 0 ( oty o, v
(1+e)2 o€\ ot 0e2 \ " o2 0z \° 0z
1 2X ey )+ 12 1 (’“)_1/3 B vy :
rZ[1+ ¢ re[L+€l 08 r2[1+ €]
2 2
oUu A oU (14.0)

. 21/1 8U1 + 1%}
re (14 ¢€) O&! re (14 €) 02 re (1+€)® 06

and
oUt oUt >

SRS I/a—Ul —1—(1—1-6)i vo——= | + (1+€) — (v3——
L+eoct \"M ot o¢z \7? oe2 92 \"* 9z
2 Ovs e Oy 1 [ O\ 6)\2:|
LUt =2z - 2= 7 I P
(rc 9& "~ rtrost T Uiyt Lo T
Ut U1 A oUt (3u2> 2Quy OU?
— + ——— (14b
¢! (rc [1+¢? rc(1+e)2> 96 \ re re (14 ¢)? 0€ (145)

V1>\6

with 9.c becoming
o (L OU\ o ( auty o ( out
r2(1+e2 06 Mo o \oer) T o\ og?
1 <1/ 8U3) N Te )\(V 8U3>
re(L+¢) \ 2 0€2 r2(1+e)? \ o

(14.¢)

Using the binomial expansion relations for small € we obtain

{—9 0 ou? 0 ou? 0 ou?
=295 \("oe) T o \"oe) T oz \"ar
1 2X ey o [([1— €] O Vo [1 — 2€]
v <[1 - 26] T2 ) v < Tec 852 a Tg )

uAU () (15.a)

2U1 8U1 | %] 8U2
i [1_6]7"_86—62 + [1_26] ro 851

oUt +a+t )g ouU!t
¢ 0z Y3 0z

and
0 oU!t 0
— (V1—> + (1+6)8—§2 (Vga—é2

[1— 2¢] {Q B eAQD

2 Ovy 9 e Og

re O€!
o’ (uM[l—e]) Lo (%) + (1_26)%‘2_? + 0 ()(15.b)

re 02 \ 7.

[1—2¢
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and

0 U3 0 ous 0 ouUs3
<1—2e>3—§1(ma—€1) T e ( ae)*a?g(”%—@)

(rl i) <V283—[£> + %(1—26) (ulz—lg) + O (15.0)

If we neglect terms of order €2, r_2

c

sumption that A ~ O (e7')), we obtam

0 ouU? 0 oU? 0 oU?
(1=2¢) ger (“1a—gl> T ae (”Qa—e) T o (“W)

er;1 and er; 2\ and €?r_ ') and higher (under the pre-

1 ov 2vy OU! vy OU? v1 A OU?
w0t (ge) - et e v g+ 0(@) e
and
0 Ut 0 ouU!t 0 oUt
=05 (n5er) + 04958 (#5g) + 0205 (+57)
i 3%_&%_2 oA e
U (rc a¢z ~ 7, oet D T
8U1 %41 A 8U 31/2 21/1 6U2 2
[1_36]({9—51 (T—C) + ({9—52 (T_c> + T_Ca—fl + 0(6) (16-b)
and

0 ous3 0 ous 0 ous3

3 3
’/‘lc <I/2%%> + T‘i(l — 26) (1/1%%) + 0] (52) (]_6(3)

(&

Some regrouping of terms

0 ouU? 0 ouU? 0 ouU?
(1=2¢) per (f) e (W) T o (a—)

1 8 vy OU! A OU?
and
0 oUt 0 oUt oUt
1= ggr (ner) + 0+ 95 () + 1405 (w5;)
3 9 1 1 (10w e duy 121 0 eN?
e ag<”2U>‘U< ot rooe [8&‘?])

[1 _ 36] 8U1 <V1 )\) 2V1 8U

g7 e oer T O©) .

We began with the cylindrical polar coordinate form, but derived terms including A\ which
should be exactly zero for the cylindrical polar form. These terms arise in the transformation.
However, it is possible that these terms would be offset by other A terms that would be obtained
from a derivation from the curvilinear form. Thus, it is reasonable for the purposes of developing
a turbulence model to neglect terms with A\ and obtain

0 oU? 0 oU? 0 oU?
(1729 per (1¥> - %(2¥) * o (”3W>

1 6 2V1 8U1
tm () - e 0@) (152)



Hodges: Derivation of perturbation curvilinear methods 31

and
0 oUt 0 ou!t 0 ou!
(1 — 6) 8_51 (Vla_fl) + (1 -I-E) 8_52 <V28—§2> + (]. + 6) & (VBW)
2
+ 2 () v (L5 + 25k 0@ (18)
and
L O (U L0 (LU o () ov
( €) Pl <’/1 (%1) + 9e? (VQ 8§2> + P <V3 3§3>
3
o) e

Some further modifications provides
0 (U 0 (Ut o ( ou
et \"Moet 0e2 \ " o2 0z \ 0z

1 2
20 (a7) ¢ L2 () 200 (L) o)

re €1 re O€2 re og8  Tog Mo
(19.a)
and
o (,oUuTN 0 ( oUT\ o ( oU
aer \ " oet ogz \ 2 g2 9z \"* 0z
_JJo (Ut o outy 9 ([ oUt
Noer \" ot aez \ " pez 92\ 0z
39 1 20 2 _ g (LOw) _ 2U%0m 2
T oe (”2U> T (”IU) v ( a§2> oo T OE)
(19.b)
and

0 ouUs3 0 U3 0 U3
8_51<V18£1> - 6_52(”2852) * 8_53(”3853>
1 U3 0 U3
v () ~2gm (mge) T 0@ o)

Under the conditions that dvy /9¢7 ~ O (€) and dva/3E ~ O (€) we obtain

0 ou? 0 ou? 0 ou?
o \"oer ) T o \ae ) T o e

%8_Ul + 28_U2 _ 21/ eﬁ +
re 9L . 9€2 L ogtaet

— 0] (62)
(20.a)

and

0 Rl 0 Ut 0 Bl
oc Mot ) Taa\Maee ) T 9.\ as

e v o out
Loetpet 20¢20¢2 0z \ ° 0z
3vy QUL 2v; oU?

e 0 2
to e T L aa + O (€%

(20.b)
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and
o (N o ( oty o ( aut
aet \ ! oet 92 \? o¢2 a3 \ 7 o3
vy OU3 o*U3
—+ r—ca—é_z — 261/1@ + 0(62) (200)
So we finally obtain the eddy-viscosity turbulence model formulation as
0 . 1
_ Y2 s
agiu u + Tcu U
3
0 8U2 2V1 8U1 120} 3U2 82U2 2
~Yae (w5) - T+ Hoe i apma + O
(21.a)
and
— 2 —— EN ——
_ Y Tig . f2a.2 AT, T
8€juu 7ﬂcuu +Tcuu
O A :LC WY (P O PO L
T o\ og toclogt  Poetagr T 92\ o2
31/2 8U1 2V1 8U2 2
0@t oo T O
(21.b)
and
0
_ 3407
8§ju U



Chapter 5

Continuity and the kinematic
boundary condition

5.1 Curvilinear continuity in the grid-stretched form

The following approach applies the grid stretching and perturbation expansion to the continuity
equation. However, this was found to provide poor results. A better approach is found in Hodges
and Imberger (2000).

The continuity equation is (aris pg 178 eq 8.12.3)
U =0 (1)

out ouU? ou3 1+

Ul = +

+ + 7
st agl 852 8&‘3 2J2

2J?

02 072
1972 2072
U 7e! + U o¢?

omn o
1971 20M
U 7¢! + U o¢?

+ (2)

5.2 Reduction to cylindrical polar coordinates

first remove 3 terms and ¢! gradient of v,

10 /re ou, Ou, 1 0o
— 2 (e il —Up—— = 0 3
r. 00 (7’ uo) or + 0z + 272" 0&2 3)
Next substitute other relations
1 Oug ou, ou,, r2  2r
- — U — = 0 4
r 00 or 0z 2r2u r2 )
Arrive at
1 Oug ou, ou,, Ur 0 (5)

T R P
5.3 The curvilinear perturbation form of continuity

out  ou? U3 2 126X 5 2
<l - 1 —(1 =
ae1 + oe2 + i tgz2|-U - ( +e)+UTC( +€) 0 (6)
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or noting that 1+ € =r/r.

out ou?  oU® 1 2\
+ + + -U! l4+e) + U= (1+¢)| =0 7
a¢! o¢? 98 2(14¢)? Te 1+e ¢ 1+e @)
or
out  ou? U3 1 LEA 5 1
Bel + e + oes + i+ U - U ol i 0 (8)
with binomial expansion
ou- + ov” + ov° + (1-¢ |- el +0(?) =0 (9)
oet o T e e U -
o out ou? ou3 A
U U U G 51 9
_ - - = 1
o T o toe UTC+UTC+O(6) 0 (10)
5.4 Kinematic boundary condition
The kinematic boundary condition can be derived as
oH oH oH
— =U U= - U 11
ot ot 0¢? (11)
Next, let us consider the vertical integration of continuity
H 1 2
ou ou Ou, 1 €A 51
- - — = - = 12
/b {851 +8§2 + 9, Urc+Urc}dZ 0 (12)
or
" oyt " au? 5u
—dz + —dz + “d / Ul—dz + / U2—dz = 13
A A A 1)
Applying Leibnitz rule
o M OH ob
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or
OH 0H
. _ Ul_ _ 2777
wien — (58) L, - (V5),
d /H ( . ab> d / ) ( ) 8b)
= - — U-d U U=d U —
¢! ¢! 852 &) .,
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+ usz—i——/ U'dz /b U?dz (16)
o)
6_H = / Uldz ﬁ _i/H(ﬂdZ_ U2@
ot 851 851 b 0¢? J, 02 ) .,
A I
+()b+i—bU1dzfr—/b U2dz (17)
if all velocities are 0 at z = b then
OH ) o [, ex (7o, 1 )
A discrete form might be written as
OH 1 - 1 S
i,j i+1/2,5 i—1/2,5
1 H 1 "
- — / U?dz + Ay / U%dz
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H H
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I I
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2r 2r
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This provides

oH « m 1 B " 1
(ﬁ)u - (rm/b UdZ) f(a—x/b v
K i+1/2,5 i—1/2,5
H H
- (Ai/ U2dz> + (Ai/ U2dz>
YJo ij+1/2 Yo

Let the velocity be written in a matrix form (Casulli and Cheng, 1992) as
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we then arrive at
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A n
+g [m—z (az)T A‘lAZ} HH
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1__73 dan n+1
m Jn i— ’L 1,5
dz]dz 1,9
s™). .
(’(/J >ZJ+% dn gl

/qn _Jn g1, 541
dudw+1
11—— n n+l _  n
\/W\/ dw 1Hw 1= %y
1,571,J

define

- n pntl
€i,j dit; Hij

n

ikl
Yt T gman

4,7 it1,j

n

s

(NES

a; ;411 = T
J
2 JJd ’jdmil

%J

We have

€ij

38



Chapter 6

Straightening the bathymetry
with cubic splines

We generally have available a bathymetry data set that provides the depth (d) as d = f (v, yx)
over some set of k points'. We’d like to compute a corresponding curvilinear system of d (§ L 52)
that exists on some regular rectangular array of m x n grid cells. If we select a discrete set of
points (z;, y;) for i = 1, n in physical space that represent the approximate center (or “thalweg”)
of the river or estuary?, we can compute a continuous representation of the centerline in terms
of cubic splines of the form

y = a(@—21)° +bx—a10) + c(x—x1) + d (1)

where z;, < x < xp; and x;,, Tp; are a pair of z;, x;41 points in the discrete set. As the thalweg
of a river or estuary is may not be single-valued in either the z or y coordinate system, it is
necessary to divide the thalweg up into discrete sections that can be represented by separate
splines in with the z or y axis as the independent axis as necessary. The cubic spline coefficients
are readily computed using methods in any number of textbooks (e.g. Al-Khafaji and Tooley,
1986). The relationship between the x, y and the arclength s is given by

ds®> = dr® + dy? (2)

(&) - (2 (2)

For a general cubic equation of the form of equation (1) we have

We can write

d
Y 34 (. —20)° + 2b(x —210) + (4)
dx
from which it follows that
ds\? 9 2
<%) =1+ [Sa(x—a:lo) + 2b(x—x) + c} (5)

IThe bathymetry data set is often a rectangular array of regularly-spaced data, but need not be limited to
such a set in the following work.

2The thalweg points are not required to be a subset of (z, yx) points used in the bathymetry, although it is
convenient to specify them as such.
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The arc length from x = z;, to any point z;, < x < xp; along the cubic spline can be found
from numerically solving the differential equation:

1/2
ds 2 2
e 1+ [3(1 (x —x0)" + 2b (& —x10) + C] T <z < xpy (6)

So the arc length at any point z, y on the thalweg can be found by successively solving the above
differential equation over each cubic spline section. This allows us to develop an algorithm for
computing a set of discrete (x, y) locations along the thalweg that are evenly spaced along the
arc length. The computation of the slope of the tangent and normal lines at any point along a
cubic spline curve is trivial as the tangent slope is simply equation (4) and the normal slope is
the negative inverse of the tangent slope. One can readily compute a discrete set of points that
are uniformly spaced along the normal line. As long as r/r. < 1 the normal lines will not cross
and every discrete point in the domain will be simply-connected.

The radius of curvature (r.) at any point along a 2D curve is readily found as (Borisenko

and Tarapov, 1968)
2z\’ d?y 2) 7
Te = — | + | (7)
ds? ds?

This gives us the tools to compute the values of €, A and r_ ! throughout the domain, provid-
ing the necessary coefficients for computing either (1) the neglected terms in a “straightened”
solution or (2) adding the order e or higher terms to the model equations.



Bibliography

Al-Khafaji, A. W. and Tooley, J. R. (1986). Numerical Methods in Engineering Practice. CBS College
Publishing.

Aris, R. (1962). Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover.
Borisenko, A. I. and Tarapov, I. E. (1968). Vector and Tensor Analysis with Applications. Dover.

Casulli, V. and Cheng, R. T. (1992). Semi-implicit finite difference methods for three-dimensional
shallow water flow. International Journal for Numerical Methods in Fluids, 15:629-648.

Hodges, B. R. and Imberger, J. (2000). A perturbation curivlinear form of the navier-stokes equations.
Journal of Computational Physics, (to be submitted):—.

41



