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Abstract

The study of free�surface �ows covers a wide range of engineering and environmental

�ows� including such areas as small�scale bubble dynamics� liquid �lm deposition�

solidi�cation� wave mechanics� �ow about a ship or o�shore structure� open�channel

�ows� and ocean�atmosphere interactions� In the present work� we are interested in

examining the kinematics of the interaction between surface waves and a turbulent

current� This is a basic research task that is directed at increasing our understanding

of the processes that occur where surface waves and turbulent undercurrents interact�

Our primary motivation is two�fold� �	� to investigate the physical processes of wave�

turbulence interaction in the near�surface region that e�ects both the 
signature� of

turbulence at the free surface and the mixing beneath the surface� and ��� to develop

a numerical simulation method that can be used for future investigations of free�

surface phenomena where �nite�amplitude waves� turbulence� and structures �such as

ship hulls� interact with viscous and nonlinear e�ects�

Through the use of a newly�developed method of numerical simulation� in

this dissertation we show that turbulence in the near�surface region is enhanced by

the interactions between non�breaking waves and a turbulent shear current� The

irrotational strains of the wave�induced velocity �eld serve to rotate and stretch the

sheared turbulence in the current� As a wave crest passes over a turbulent current� it

pulls the turbulent structures up toward the crest and into the region above the level

of the trough� This can be considered an enhancement of the turbulent 
stirring�

of the �uid� As the trough approaches� the turbulence becomes trapped in and

near the free�surface boundary layer� Successive crests and troughs appear to have

a 
pumping� e�ect on the turbulence trapped in the this near�surface region� This

intensi�cation of the turbulent structures is due to the stretching and compression

of vortex lines� which can be seen in data animations of the �uctuating enstrophy�

These e�ects are demonstrated to occur with non�breaking �nite�amplitude waves�

and possibly contribute to the persistence of turbulent structures at a free�surface in

the wake of a ship�

This dissertation includes a detailed study of the numerical method developed

for a time�accurate simulation of an unsteady turbulent free�surface �ow in three
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space�dimensions with a progressive� �nite�amplitude� free�surface wave� The simu�

lation uses the time�dependent Navier�Stokes equations with the nonlinear kinematic

and dynamic boundary conditions� The method is demonstrated to be accurate in

the simulation of two�dimensional and three�dimensional �ows of laminar standing

waves� Comparisons with the experimental studies validate the method for turbulent

free�surface �ows� and provide insight into the �ow behavior seen in laboratory �umes�

Visualization of instantaneous and phase�averaged �ow variables provide insight into

the dynamics of the of the wave�turbulence interactions�

From this study several conclusions can be drawn� �	� simulation of three�

dimensional� unsteady turbulent free�surface �ows is practical using the numerical

method developed in this research project
 ��� a �nite�amplitude surface wave can

cause vertical stirring of the �uid where a surface wave propagates over a current

with a strong shear
 ��� turbulence in the near�free surface region is enhanced by

interaction of the wave straining �eld acting on turbulent structures
 and ��� rapid

distortion of the turbulence by the wave straining �eld plays an important role in the

wave�turbulence interaction�
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Chapter �

Introduction

The study of wind� wave� swell� and current interactions is an area where the inter�

ests of a number of disciplines collide� For oceanographers� the water�s surface is the

upper boundary of their domain� so parameterization of the interactions at the sur�

face are important for developing accurate boundary conditions for ocean circulation

simulations� Atmospheric scientists are interested in parameterizations of the surface

for the lower boundary of their simulations� Researchers in global climate change

are concerned with the mixing and transfer of heat and greenhouse gases across the

water�s surface� Biologists are interested in the manner in which mixing in the near

surface region enhances productivity �which may also e�ect CO� absorption�� Naval

architects are interested in the kinematics and dynamics of the free surface up to the

scale of the largest wavelengths� Aerospace� mechanical� ocean� and naval engineers

are interested in the small�scale structures at the surface which hold the signature of

a ship�s wake that can be seen using synthetic aperture radar �or visually from the

space shuttle when the sun glints o� the waves�� Civil�environmental engineers are

interested in such areas as the surface e�ects on river and estuarine systems� lakes�

sediment transport� and beach erosion� If you broaden the area of study to include

all free�surface �ows� then mechanical� industrial� chemical� and aerospace engineer�

ing become intertwined� Most of these disciplines are also interested in the study of

free�surface �ows as a fundamental �ow of �uid dynamics� a complex and ubiquitous

�ow in engineering and the environment that is yet to be fully understood and has

not been fully captured by solvable equations� detailed experimentation� or practical

numerical simulations�

In the study of global climate change� it has become apparent that the linkage

between the atmosphere and the oceans may be one of the most important �and least

understood� parameters that govern long�term oscillations of the climate� The ocean

is a potential sink for large amounts of CO� and thus may serve to mitigate the e�ects

of increased CO� production caused by the progressive industrialization of developing
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countries� Accurate calculation of the long�term e�ect of the ocean on the climate

requires prediction of the rate at which absorption of CO� will occur� The answer to

this question is linked to the small�scale dynamics and mixing processes at the ocean

surface� To determine the rate of mixing at the ocean�s surface� we must �rst obtain a

better understanding of the mixing processes in the interactions between wind� waves

and currents�

This dissertation is directed toward increasing our knowledge of how non�

breaking waves on the the water�s surface interact with turbulent currents below�

This is a basic research task that has practical application in the study of near�surface

ocean dynamics as well as in examining the persistence of turbulent ship wakes�

��� Motivation and objectives

In the study of geophysical �ows� the scales of interest are so large that the interface

between oceanographic circulations and atmospheric circulations can only be provided

by simple modeling assumptions� The processes that control the interactions at the

water�s surface are inherently nonlinear and small scale� These processes are as yet

not fully understood due to the di�culty in modeling the problem in a solvable and

accurate manner�

A landsman�s view of the ocean�s surface tends to be of a vast expanse of

breaking waves� Wave�breaking is both visually and dynamically dramatic and results

in augmented mixing near and across the ocean�s surface� The study of this mixing

is a challenging problem that is being attacked on many fronts� but will not be

addressed in this thesis� Instead� we are motivated by the problem of the majority of

the ocean�s surface� where the waves may not be breaking� but are long rolling swells

with smaller parasitic waves� These waves and swells are moving over and interacting

with turbulent currents in the near�surface layer� It is important to understand the

interactions between turbulent currents and surface motions since this can e�ect the

transfer of heat� mass� and momentum near the ocean surface� The area of the ocean

surface covered by non�breaking waves is large� so even small�scale e�ects can have

global implications�
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The study of turbulent interactions� mixing� and stirring of a �uid near a free

surface requires an understanding of the kinematics and dynamics of the surface�

This proves challenging due to �	� the inherent nonlinearity of �nite�amplitude water

waves� ��� the dissipative and anisotropic e�ects of turbulence with a mean shear� and

��� the �ne scale over which viscous e�ects are important beneath a water wave� This

motivates our primary objective for this research� the development and application

of a time�accurate numerical simulation method for three space dimensions that is

capable of �	� simulating non�steady�state wave motions and ��� resolving the viscous

boundary layer beneath a �nite�amplitude wave traveling over a turbulent current�

Our goal is to develop a research tool that can be used to investigate the turbulent

structure beneath a free�surface wave� and then use the tool to develop a framework

for understanding the interactions between waves and a turbulent current�

One of the di�culties with free�surface numerical methods presented in the

literature is that they are generally so complex that their use and adaption by other

research centers is di�cult �e�g� the Dommermuth %	���& method designed for mas�

sively parallel machines�� As noted by Sarpkaya �	�����

���the modeling of free�surface phenomena still poses di�culties� not

only because of an insu�cient understanding of the physics of the

vorticity�free�surface interaction� but also because of the necessity to

devise and use mathematical formulations� numerical schemes� and

physical�property experiments of far greater complexity than had hith�

erto been used���

This provides the motivation for our secondary objectives� �	� to develop a numerical

method that is straightforward in its implementation� using the least�complicated

algorithms consistent with maintaining second�order accuracy in time and space
 and

��� to investigate the numerical requirements and limitations for practical simulations

of free�surface �ows�

��� Approach

This study of the turbulent wave�current interactions uses a numerical simulation of

the Navier�Stokes equations with the dynamic and kinematic boundary conditions�

Large�Eddy Simulation �LES� techniques are applied to keep the number of grid
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cells required to a minimum while still attaining reasonable resolution of the large

turbulent scales of motion� The �ow studied is a temporally�evolving open�channel

�ow driven by a constant pressure gradient in the streamwise direction� The bottom

boundary of the channel is a no�slip boundary� producing turbulence with coherent

structures that interact with the free surface� A train of �nite�amplitude waves with

a wavy��ow �eld is superposed over the open�channel �ow as an initial condition and

the system is allowed to evolve with time�

��� Background

This work is concerned with surface waves� turbulence� open�channel �ows� and nu�

merical simulation methods for free�surface �ows� an extensive range that makes it

impossible to provide an in�depth background for each area� This section provides

a look at a few key recent developments in research of �	� surface waves and turbu�

lent currents� ��� open�channel �ows� ��� interactions between turbulence and a free

surface� and ��� numerical simulations of viscous free�surface �ows�

����� Finite�amplitude waves and turbulent currents

The non�breaking long waves on the ocean�s surface �commonly called 
swell� to

distinguish from local wind waves� have kinematic behavior that is generally well�

described by classic irrotational �nite�amplitude wave theory� However� such theory is

of limited value in the study of �	� nonlinear interactions between waves� ��� nonlinear

interactions with currents� or ��� viscous interactions with turbulence� The latter

two areas are of primary concern in the present work� Viscous e�ects for laminar

�ow with small�amplitude waves were derived by Longuet�Higgins �	����� For �nite�

amplitude waves� Dore �	���� proposed a viscous model that has yet to be conclusively

demonstrated either experimentally or numerically� A number of theories of wave�

turbulence interaction have been proposed�� but none have been proven due to the

di�culties in obtaining data either experimentally or numerically�

�See Cowen ������ for a detailed discussion of wave�turbulence theories�



CHAPTER �� INTRODUCTION �

Investigating water waves and turbulence with either physical or numerical ex�

periments presents a similar set of problems� �	� the motion of the free surface is rapid�

causing stability problems in numerical simulations and data collection problems in

laboratory experiments� ��� the viscous boundary layer beneath a water gravity wave

is small� O�	��� m�� yet it must be resolved both in numerical and laboratory exper�

iments to obtain a clear picture of the turbulence near the free surface� and ��� waves

on a turbulent �ow are a macroscopic phenomena that evolve in space and time� cre�

ating problems in obtaining a reasonable ensemble for computing turbulent statistics�

More details of the problems associated with gathering experimental data under the

free surface in the laboratory will be found in Cowen �	����� Further exposition of

problems in numerical simulations will be found in chapter � of this dissertation�

Cowen�s �	���� study provides experimental data within the viscous boundary

layer beneath a water�wave that is unique in the literature� The ability of his digital

particle tracking velocimetry �DPTV� technique to provide data in the region between

the still�water level and the crest allows the �rst experimental look at the �ne�scales of

turbulence beneath a wave� Cowen�s work shows that the capillary waves in laboratory

channels become the dominant �uctuating e�ects in the near surface region� making

it ����di�cult to di	erentiate between the e	ects of the gravity wave on turbulence and

the e	ects of capillary waves�
 The present numerical work has the complementary

problem� resolution of capillary waves on gravity waves requires an extremely �ne grid

in the streamwise� spanwise and surface normal directions� which is impractical with

current computational power for a four�dimensional simulation� As a consequence�

experimental techniques such as Cowen�s are suited for the investigation of combined

capillary�gravity e�ects� while numerical work is ideal for studying either capillary or

gravity waves� but not the combination�

����� Turbulent open�channel �ows

The systematic study of turbulent open�channel �ows has a history that begins with

Leonardo da Vinci�s studies of the behavior of rivers� a necessary part of his civil

engineering works in supplying water to cities �Tokaty %	��	&�� The engineering�

oriented nature of da Vinci�s inquiries sets the tone for most of the open�channel

�ow studies conducted until the development of hot��lm anemometers and advanced

�ow visualization techniques in the 	����s �Nezu and Nakagawa %	���&�� With these
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techniques came the ability to study directly the turbulence in water �ows� Most

open�channel �ow literature is directed at the study of �ows without signi�cant wave

motion �supercritical �ows being a prominent exception�� The open channel provides

an ideal test laboratory for studying the evolution of turbulent boundary layers in

incompressible �ows� A comprehensive review of experimental and numerical work

on open channel �ows can be found in the recent monograph by Nezu and Nakagawa

�	�����

Recent works not discussed in Nezu and Nakagawa �	���� are numerical simu�

lations of open�channel �ows by Lam and Banerjee �	����� Pan and Banerjee �	�����

Komori et al� �	����� McDonald �	����� Borue et al� �	����� Salvetti et al� �	����� and

Garg �	����� Banerjee�s research group studied turbulent open�channel �ows using

the classic 
rigid� shear�free lid� approximation where the free�surface is treated as a

�at surface that cannot support a shear� This provides a domain for e�cient numerical

simulations of turbulence in the bottom boundary layer and the free stream� However�

the loss of the true dynamic and kinematic boundary conditions makes this approach

unsuitable for studying the small�scale viscous realm in the free�surface boundary

layer� Furthermore� the implementation of a �at lid as a model for the free�surface

prevents this approach from being used to study the e�ects of waves on the turbu�

lence� A similar approach was taken by Salvetti et al� �	����� where the decay of the

turbulent �eld generated by the Direct Navier�Stokes �DNS� simulation of Pan and

Banerjee �	���� was duplicated using several subgrid�scale turbulence models� Garg

�	���� provides a detailed numerical study of strati�ed open�channel �ow with a �at�

free�slip lid� McDonald �	���� developed a method which used a rigid� shear�free lid

with a �xed surface wave that propagates over the domain� This allows interactions

of free�stream turbulence and wave�induced �uctuations to be analyzed� but not the

e�ects of the viscous boundary layer� The work of Borue et al� �	���� provides for

movement of the free surface using linearized boundary conditions� The linearization

has the unfortunate side�e�ect of limiting the range of applicability of the simulation

method to surface deformations that are less than the free�surface boundary layer

thickness� O�	��� m� for water� The method can be used to investigate interactions

of turbulence with a free surface� but cannot be used with any signi�cant progressive

waves� Komori et al� �	���� have the only published turbulent open�channel �ow

with the nonlinear kinematic and dynamic boundary conditions imposed on a true

free surface� However their simulations have been limited to free�surface deformations
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caused by the turbulent channel �ow� which remain small�amplitude and appear to

have little e�ect on the turbulence��

For the purposes of the present work� the open�channel �ow can be thought of

as a convenient testing ground for studying wave�turbulence interaction� The solid

boundary at the bottom of the open channel provides the production of turbulence

and coherent structures that can interact with the free�surface and surface waves� Our

goal is not to study the structures and turbulence produced by the bottom boundary�

but to understand how these interact with the �ow produced by a progressive train

of waves�

����� Interactions of turbulence and a free surface

Due to the interests of the O�ce of Naval Research� a signi�cant amount of recent

work has addressed the interactions of coherent vortices with a quiescent free surface�

A full review will be found in Sarpkaya �	����� The primary aim of research in this

area has been to understand how coherent vortex rings �typically produced in the

wake of a submarine or ship� interact with a free surface and provide a 
signature�

that is detectable at the surface� Much of the work in understanding vortex�free

surface interactions has been done in laminar regimes �e�g� Lught and Ohring %	���&�

Dommermuth %	���&� Wang and Leighton %	���&�� A compendium of recent work

with turbulent free�surface �ows will be found in Rood and Katz �	����� With the

exception of Dommermuth et al� �	����� the numerical work in this area has been

with linearized or rigid�lid shear�free boundary conditions on the surface� which limits

the ability to model signi�cant free�surface deformations� Dommermuth et al� �	����

studied the interaction of a surface wave packet with grid�stirred turbulence� Using

this simulation they were able to elucidate e�ects of turbulent roughening of the

surface� turbulent scattering of the wave packet� and vortical structures induced by

the waves� Their approach relies on a modeling assumption for the free�surface viscous

boundary layer �which was not resolved in the simulations��

�As of this date� there has been no sign in the indexed literature of an open�channel simulation
with progressive waves using the Komori et al� method� It may be ��� such work has been published
in a report not generally available or cited in the literature indexes� ��� the method has proven
unsuitable for larger waves� or �	� they simply have not had the time or funding for such research�
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Rigid� shear�free lid simulations such as Pan and Banerjee �	����� Salvetti et al�

�	���� and Walker et al� �	���� have provided signi�cant insights into the interactions

of turbulence with an idealized free surface� Walker et al� �	���� have investigated

the decay of initially homogeneous and isotropic turbulence in the presence of a

rigid� shear�free surface� Of particular interest is their results which show that the

anisotropy of the turbulence caused by the free surface extends to a depth of the

turbulent length scale� while the surface e�ect on vorticity is one�tenth of the turbulent

length scale� With the rigid shear�free lid they noted a decrease in the dissipation

and an increase in the turbulent kinetic energy near the surface which they attributed

to a reduction in tangential enstrophy at the surface� However� Cowen �	���� found

sharp increases in both the �uctuating vorticity and dissipation near the free surface

in physical experiments� which he attributed to small capillary waves on the free�

surface� Gharib et al� �	���� also found an increase in enstrophy near the surface

in a laboratory experiment� which seems to indicate that the near�surface enstrophy

decay in rigid�lid� shear�free surface simulations may be a result of neglecting small

surface deformations�

����� Numerical methods

In order to place our simulation method in the appropriate context� the following

section brie�y reviews several approaches to viscous free�surface simulation� The

references provided are a representative sample of types of simulations found in the

literature� and should not be considered an exhaustive listing� A comprehensive

review of free�surface simulations will not be attempted as the �eld has grown too

large� and recent review papers by Tsai and Yue �	���� and Floryan and Rasmussen

�	���� are available� as well as a textbook on moving�grid�free�surface simulations by

Shyy �	�����

We have neglected several areas of free�surface simulation� �	� numerical meth�

ods with rigid�lid shear�free boundary conditions� which can generally use standard

non�moving grid solution techniques �an exception being McDonald %	���&� where a

moving shear�free rigid�lid was used as a free�surface model�
 ��� inviscid free�surface

numerical methods� such as those of Tulin�s research group �e�g� Yao et al� %	���&��

While these methods have much to o�er in the study of free�surface phenomena� they

are not directly comparable to the approach in the present work�
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Fixed grid vs� moving grid

Simulation methods for viscous free�surface �ows can roughly be grouped into two

categories� �	� 
�xed�grid� simulations where the governing equations are discretized

in physical space on a �xed �usually Cartesian� grid while the free surface moves within

the grid
 and ��� 
moving�grid� simulations where a new� boundary�conforming grid

that moves with the free surface is generated at each time step�

The �xed�grid approach is advantageous for handling changes in the topology

of a free surface� such as the merging of two �uids� or the pinching of a single bubble

into two bubbles� The two major approaches are �	� variants on the marker�and�

cell �MAC� approach ' in its recent incarnation typi�ed by the work of Raad et al�

�	����� and ��� the level�set approach which directly simulates two��uid interactions

�e�g� Sussman et al� %	���&�� However� it is di�cult to accurately model the free�

surface viscous boundary layer and the interactions of turbulence with a free surface

in a �xed�grid approach� Additionally� conservation of mass and physical continuity

of the free surface can be problems for �xed�grid simulations�

Moving�grid simulations tend to be more computationally intense than �xed�

grid simulations� but are capable of accurately resolving the free�surface boundary

layer and turbulent �uid interactions under free�surface waves� Prior to the current

work� this capability had not been demonstrated for a turbulent �ow with signi�cant

surface motion� Numerical conservation of mass and smoothness of the free�surface

can be readily achieved in moving�grid simulations as long as the free�surface does

not have slope discontinuities� The introduction of discontinuities in surface slope

or changes in surface topology are challenges for moving�grid simulations that are a

good subject for future research� It is likely that some hybrid technique combining a

�xed�grid approach �such as the level�set method� with a moving grid simulation will

prove the most e�ective technique for such a problem�

Coupling between grid generation and �ow solution

The numerical techniques used to advance the free surface in moving�grid simula�

tions of viscous free�surface problems fall into two categories� �	� coupled�grid� or ���
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uncoupled�grid� The coupled�grid techniques simultaneously solve implicit discretiza�

tions of a coupled set of equations consisting of the Navier�Stokes equations� the kine�

matic and dynamic boundary conditions� and one or more grid generation equations�

The advantage of the coupled�grid technique is that the free�surface motion deter�

mined by the kinematic boundary condition is coupled directly to the �ow solution

and the dynamic boundary condition� which is arguably the most accurate and numer�

ically stable approach� The disadvantage is that signi�cant computational complexity

is involved in the implicit coupling of grid generation and free�surface movement to the

�ow solution� The complexity of this approach can be appreciated by considering that

the system of equations may consist of �	� the predominantly�elliptic� incompressible

Navier�Stokes equations� ��� a combined pressure�velocity gradient dynamic bound�

ary condition� ��� the hyperbolic kinematic boundary condition� and ��� an elliptic

grid generation equation whose source term must be re�evaluated during the iterative

solution process to control grid quality� Furthermore� once such a code is developed�

the coupling of the equations makes it di�cult �if not impossible� to experiment with

new algorithms or di�erent numerical methods� Unfortunately� the �eld of numerical

grid generation is not su�ciently mature to provide a set of general�purpose algo�

rithms that can provide e�cient implicit coupling with Navier�Stokes �ow solvers�

To date� the coupled�grid approach for the Navier�Stokes equations has only been

implemented in a maximum of three dimensions� either steady�state with three space

dimensions such as Farmer et al� �	����� or two space dimensions and unsteady in

time such as Loh and Rasmussen �	����� Lugt and Ohring �	����� and Hino et al�

�	����� It appears unlikely that any of these methods could be practically extended

to a four�dimensional simulation�

Uncoupled�grid techniques integrate the kinematic boundary condition in time

without implicit reference to velocities at the �n$ 	� time step� This allows the kine�

matic boundary condition to be solved with only the time �n� velocity data� e�ectively

uncoupling the free surface advance and the grid generation from the solution of the

Navier�Stokes equations� Uncoupled techniques sequentially compute the free�surface

position and the curvilinear grid prior to advancing the �ow solution in time� allow�

ing signi�cant �exibility in the design of a numerical simulation code� Since the �ow

solver� grid generation� and free surface advance are all separate modules� di�erent

numerical approaches can be implemented with minimal e�ect on other modules�

Using an uncoupled approach� we have worked with three grid generation methods
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�including two packages designed by other research teams�� along with two di�erent

numerical algorithms for the free surface advance and two methods for �ow solution�

The ability to easily change and adapt the numerical algorithms makes the uncoupled

technique preferred in a research code� A number of simulation methods in the lit�

erature have e�ectively used uncoupled�grid approaches for unsteady �ows with two

space dimensions �e�g� Park et al� %	���& and Hinatsu %	���&�� Four�dimensional �ows

have also proven tractable for uncoupled�grid techniques in the works of Dommer�

muth �	����� Miyata� et al� �	����� Wang and Leighton �	����� and Kassinos and

Prusa �	�����

Free�surface advance

The integration of the kinematic boundary condition to advance the free�surface in

moving�grid simulations in the literature has been accomplished through �ve di�erent

forms of the Eulerian kinematic boundary condition� �	� numerical integration of the

physical space Eulerian kinematic boundary condition �Hino et al� %	���&� Loh and

Rasmussen %	���&� and Farmer et al� %	���&�
 ��� numerical integration of a curvilinear

transformation of the physical space Eulerian kinematic boundary condition �Park et

al� %	���&� Miyata et al� %	���&� Hinatsu %	���&� Lugt and Ohring %	���&� and Komori

et al� %	���&�
 ��� rotation of the Cartesian space frame and integration of the phys�

ical space Eulerian kinematic boundary condition in a more desirable orientation in

Kassinos and Prusa �	����
 ��� Helmholtz decomposition of the �ow solution� which

provides the kinematic boundary condition in terms of the solenoidal velocity poten�

tial rather than the Cartesian or curvilinear velocity in Dommermuth �	����
 and

��� integration of a curvilinear derivation of the kinematic boundary condition �Hino

%	���&� and Hodges et al� %	���&�� The �rst two methods are unusable for waves which

do not remain single�valued in the physical space� The third method� rotation of

the coordinate system� allows computation of a free�surface that is multiple�valued in

physical space
 however� the surface must remain single�valued in the rotated Carte�

sian space frame� which eliminates the method from use with overturning waves� The

fourth approach is unique to Dommermuth�s work and has only been implemented

in a form suitable for single�valued waves� We have been able to �nd only two ex�

amples of the �fth approach� which were developed independently� In Hino�s work�

the curvilinear kinematic boundary condition was used without derivation and was

applied in a �xed�grid rather than a moving�grid simulation� Section ����� presents
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a derivation of the curvilinear kinematic boundary condition used in our free�surface

advance �Hodges et al� %	���&�� The derivation is based upon a Taylor�series expan�

sion in curvilinear space� and is similar to the derivation of the Eulerian kinematic

boundary condition in physical space by Mei �	����� This curvilinear approach is

advantageous because it allows the simulation of a free�surface that does not remain

single�valued in physical space coordinates� Furthermore� steepening of the surface

wave does not degrade the accuracy of the free�surface advance� Most of the ap�

proaches to the kinematic boundary condition track the surface by the movement of

particles that are required to move vertically in physical space
 this has some draw�

backs in the accuracy of the free surface advance for steep waves since increasing the

slope will increase the skewness of the grid cells�

Moving�grid �ow solvers

There has been a wide range of numerical �ow solvers used in free�surface simu�

lations� Most of the �ow solvers �present work included� are developed through a

time�dependent curvilinear transformation of the Eulerian Navier�Stokes equations�

This provides an additional convective term to account for the motion of the grid�

One of the drawbacks of this approach is that the introduction of the convective term

for the grid motion creates a Courant�Friedrichs�Lewy �CFL� stability limit on the

movement of the grid� This limits the local deformation of the grid from one time

step to the next and can require a time step smaller than that set by the convec�

tive CFL limit �see section ������� An approach which overcomes this limitation has

been developed for use in adaptive gridding with internal �ows by La�in and McRae

�	����� Instead of applying the grid motion to the convective term� their adaptive

approach interpolates the time �n� solution to the time �n$	� grid� where the Navier�

Stokes equations can be solved in the standard Eulerian form� thus accommodating

large local changes in the grid between time steps� This method has not been ap�

plied to a free�surface �ow and there remain some open questions as to appropriate

interpolation of a �D �ow �eld in the immediate vicinity of the free surface�
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Numerical approaches in the literature

To put our method in perspective� it is worthwhile to brie�y discuss some of the

numerical approaches that other authors have taken to address moving�grid free sur�

face problems� We limit our discussion to �nite�di�erence techniques and spectral

methods which have proved e�ective in capturing turbulent �ows� Finite�element

techniques are routinely used for laminar �ows� but have not been demonstrated to

be practical in turbulent simulations�

Dommermuth �	���� has implemented a sophisticated three�dimensional tech�

nique that uses fourth� and sixth�order �nite di�erences with a third�order Runge�

Kutta scheme for the unsteady Navier�Stokes equations� Dommermuth�s method is

unique in that �	� it applies Helmholtz decomposition to split the governing equations

into irrotational and vortical �ow parts� and ��� it is designed for implementation on

massively parallel machines� Komori et al� �	���� also uses a Runge�Kutta scheme

to integrate the Navier�Stokes equations� however their approach has a second�order

RK scheme with �fth�order upwind discretization for nonlinear terms� second�order

discretization for other derivatives� and Crank�Nicolson discretization in time for

the kinematic boundary condition� Hino et al� �	���� have developed an arti�cial�

compressibility multigrid method that is suitable for steady�state solutions about

ship hull forms� Lugt and Ohring�s �	���� coupled�grid method uses arti�cial com�

pressibility to solve for unsteady �ow in two dimensions� Wang and Leighton �	����

have developed a spectral method that discretizes the Navier�Stokes equations in a

vertical�velocity� vertical�vorticity formulation that is suitable for periodic boundary

condition problems� Park et al� �	����� Hinatsu �	����� Miyata et al� �	����� and

Yeung and Ananthakrishnan �	���� use fractional�step methods with discretization

on staggered grids� The approach of Yeung and Ananthakrishnan is unique in that

it uses an additional predictor�corrector method within the fractional�step algorithm

so that the corrected free�surface can be advanced with the predicted velocities� This

approach requires the solution of two pressure Poisson equations in each time step�

but arguably should allow a larger time step while maintaining simulation accuracy�

The present works uses a fractional�step method that is similar to others in the

literature with the following major di�erences� �	� the free surface is advanced by a

method that is not limited to single�valued waves
 ��� a non�staggered grid is used to

reduce storage requirements for metric terms and increase computational e�ciency
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��� an e�cient multigrid solver is utilized for solution of the pressure Poisson equation�

and ��� the viscous free�surface boundary layer is resolved beneath a �nite�amplitude

wave�

Limitations of previous works

Free�surface methods in the literature have had a range of limitations in their ability

to capture free surface deformations� Recent work in turbulent channel �ows has

been limited to linearized boundary conditions with in�nitesimal waves �Borue et al�

%	���&�� non�deforming surfaces �Pan and Banerjee %	���&� Walker et al� %	���&� Mc�

Donald %	���&� Salvetti et al� %	���&�� or small�deformation surfaces with non�linear

boundary conditions �Komori et al� %	���&�� Fixed grid methods have demonstrated

their ability to capture large surface deformations from the very start of the genre

with the simulations of Harlow and Welch �	���� and �	���� and later improvements

such as Chan and Street �	���a� and �	���b�� However� the ability of �xed�grid

methods to accurately capture the physics of turbulence under a free surface remains

an open question� Moving�grid methods for laminar �ows have been used to simulate

relatively large free�surface deformations with only two space dimensions by a num�

ber of authors �Lugt and Ohring %	���&� Ananthakrishnan and Yeung %	���&� Wang

and Leighton %	���&� Loh and Rasmussen %	���&�� Smaller deformations have been

simulated with three space dimensions by several authors� including Miyata et al�

�	����� and Dommermuth �	�����

For inviscid �uids� large wave deformations �including overturning waves�

have been simulated using boundary�element methods for the potential �ow prob�

lem� Longuet�Higgins and Cokelet �	���� is the classic paper in this area� More

recently� the research group under M�P� Tulin �e�g� Wang et al� %	���&� has made

important contributions in this area� However� the methods remain constrained to

inviscid �ow solutions�

Of particular interest to the extension of free�surface simulations to turbulent

regimes is the resolution of the viscous boundary layer beneath the free surface�

This boundary layer is extremely thin� on the order of ���������� where � is the

kinematic viscosity and � is the surface�wave radian frequency� It appears that only

two simulation methods in the recent literature �Dommermuth %	���& and Borue et

al� %	���&� explicitly consider the thickness of the free�surface boundary layer when
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setting up the computational grid� However� it is apparent that a number of the low

Reynolds number simulations also have su�cient grid points to resolve the boundary

layer� even though it is not explicitly stated or investigated� Numerical simulations

of turbulent �ows in the literature which resolve the free�surface boundary layer have

done so for �uids with a viscosity signi�cantly higher than water �e�g� Borue et al�

%	���& used a kinematic viscosity of ��� � 	���� about ��� times more viscous than

water�� While most methods could theoretically be extended to the �ne resolution

needed for a low�viscosity �uid� the computational cost will be high� The question of

resolving the boundary layer is not merely an academic exercise� since the dynamic

boundary condition derived from �rst principles� is only appropriate when the free

surface boundary layer is resolved��

�A di
erent dynamic boundary condition can be derived from the Bernoulli equation� This
does not require boundary layer resolution� but is not appropriate as a boundary condition on the
Navier�Stokes equations�

�This requirement is similar to the numerical restriction on applying a no�slip boundary condition
for a Dirichlet boundary� Unless the viscous sub�layer is resolved on a no�slip boundary� it is more
appropriate to use an approximate matching condition to the log�law pro�le to get the correct
boundary condition�
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Mathematical formulation

��� Introduction

The �ow of a �uid beneath a free surface is governed by the Navier�Stokes equations

subject to conservation of mass in the �uid volume along with kinematic and dy�

namic boundary conditions at the free surface� In addition� for a temporally�evolving

turbulent channel �ow� we require a no�slip bottom boundary condition and periodic

boundary conditions in the spanwise and streamwise directions� This set of equations

is considerably more complex than the equation set for internal �ows due to the non�

linear e�ects of the boundary conditions at the free surface� The kinematic boundary

condition is nonlinear in the the velocity and spatial gradients of the surface and is

formally a hyperbolic equation� The dynamic boundary condition is generally consid�

ered to have a nonlinear e�ect from its linkage to the nonlinear momentum equations

through the surface pressure�

This chapter presents the governing equations for turbulent free�surface chan�

nel �ow� In section ��� equations are non�dimensionalized to extract the relevant

physics� Sections ��� through ��� present derivations of a set of �ltered curvilinear

equations that are suitable for discretizing using the numerical method presented in

chapter ��

��� Dimensional analysis of turbulent channel

�ows with progressive waves

The Navier�Stokes equations� kinematic boundary condition� and dynamic boundary

condition can be presented in a Cartesian tensor form as�

	�
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momentum �
Dui
Dt

� �gi � �P

�xi
$

�

�xj
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�
eij � 	
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continuity
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�uj
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kinematic b�c�
�H

�t
� u� � u�
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�x
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�H

�y
�����

normal dynamic b�c� Ps� � Ps� � ��� eijninj $ 	
�
R��

� $ R��
�

�
�����

tangential dynamic b�c� eijtinj � � �����

where ui � i � 	� � are the Cartesian �physical space� components of velocity� xi �

i � 	� � are the Cartesian coordinates� D�Dt is a material derivative� gi is gravity

vector� P is the total pressure� � is the density� � is the dynamic viscosity� �ij is the

Kronecker delta� H is the surface height above a reference baseline� the subscripts s$

and s� indicate the pressure on the upper and lower sides of the free surface� ni and

ti are the unit normal and tangent vectors� 	 is the surface tension coe�cient� R�

and R� are the principal radii of curvature of the surface� and eij is the rate�of�strain

tensor de�ned as�

eij � 	

�

�
�ui
�xj

$
�uj
�xi

�
�����

For purposes of non�dimensionalization� we can decompose the pressure into

a static pressure and a dynamic pressure�

P � � pd $ �jgj�h �����

where �h is the static head at a point in the �uid� measured as the distance from

the point to the free surface vertically over the point� For incompressible �ow� the
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momentum and continuity equations become�

momentum
Dui
Dt

� gi � jgj �
�xi

��h� � �pd
�xi

$
�

�xj

�
��eij

�
�����

continuity
�uj
�xj

� � �����

where � is the kinematic viscosity�

If the total pressure �P � outside the free surface is equal to a constant �zero is

convenient�� then the normal component of the dynamic boundary condition� equation

����� can be written as a condition on the dynamic pressure �pd��

�pd�s � �� eijninj � 	

�

�
R��

� $ R��
�

�
���	��

where the subscript s indicates the dynamic pressure on the water side of the surface�

The static head ��h� at the surface is �by de�nition� exactly zero�

For a turbulent channel �ow with a progressive surface wave� there are three

primary components to the �uid motion� �	� the turbulence produced by the shear at

the bottom boundary� ��� the convection in the streamwise direction� and ��� the oscil�

lations produced by the surface waves� This makes a general non�dimensionalization

di�cult since the choice of the correct scales depends on a priori assumption of which

scales are the most important� To complicate matters� we also have four length scales

for the �ow� �	� a turbulent length scale� ��� a convective length scale� ��� a wave�

induced orbital length scale of particle motion� and ��� a length scale of the largest

surface wave� Finally� we have time scales based upon �	� the turbulent eddy turnover

time� ��� the convective �ow�through time� and ��� the wave period�

����� Non�dimensionalization of the momentum equation

Scaling based on turbulence

If we assume that the turbulent scales of motion are dominant in all directions� then

the appropriate non�dimensionalization of the momentum equation uses the turbulent

velocity scale �U� �� In the simulations we have conducted� the maximum �ow depth
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is such that free�surface is in the log�law region of the bottom boundary layer� so

that appropriate turbulent length scale is the �ow depth �D�� and the time scale

is D�U� � The dynamic pressure is non�dimensionalized with the turbulent velocity

scale� The body force �gravity� and the gravity coe�cient of the static pressure term

are non�dimensionalized by the magnitude of gravity� Viscosity and the rate�of strain

tensor are non�dimensionalized by the turbulent length and velocity scales� Using a

��� notation to indicate non�dimensional variables� we have

ui � U�u�i ���		�

t �
D
U� t

� ���	��

gi � Gg�i ���	��

�h � D�h� ���	��

xi � Dx�i ���	��

pd � U�
� p

�
d ���	��

� � U�D�� ���	��

eij �
U�
D e�ij ���	��

This results in the non�dimensionalized momentum equation�

Du�i
Dt�

�
GD
U�
�

�
g�i �

�

�x�i
��h��

�
� �p�d

�x�i
$

�

�x�j

�
���e�ij

�
���	��

We can de�ne the turbulent Reynolds number and the bulk Froude number as�

Re� � 	

��
������

Frb � UcpGD ����	�

where Uc is a convective velocity scale� If our axes are aligned such that gravity is in

the negative direction along the x� axis� then g�i � ��i� and the non�dimensionalized

momentum equation can be written as�

Du�i
Dt�

�
	

Fr�b

�Uc
U�
��

�
��i� � �

�x�i
��h��

�
� �p�d

�x�i
$

�

�x�j

�
�

Re�
e�ij

�
������
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If i � � then
�

�x��
��h�� � �	 ������

and the balance between gravitational and hydrostatic forces is exactly zero� If i � 	

or i � �� the gravitational force is zero� and the gradient of the hydrostatic force has

to be balanced by convective and turbulent motion� Note that the gradient of the

hydrostatic pressure in the x� and x� directions should be of the order of the surface

wave steepness� not of order one as would be indicated by this non�dimensionalization�

This indicates our initial assumption of the appropriate non�dimensional scales is

incorrect� However� we can obtain some insight into the e�ect of the the hydrostatic

pressure force from this non�dimensionalization� For a subcritical �ow� the Froude

number is less than one� and the convective velocity scale is generally at least an

order of magnitude larger than the turbulent velocity scale� Thus� the coe�cient

multiplying the gradient of the hydrostatic pressure is �at minimum� in a range of

	�� to 	��� This implies that a small perturbation of the gradient of the hydrostatic

pressure causes a rapid change in the velocity �eld� A large perturbation �such as

caused by a �nite�amplitude wave� results in this term dominating the equations�

con�rming that this is not an appropriate non�dimensionalization for a �ow with a

signi�cant surface wave�

Scaling based on surface wave

If we begin with the assumption that the wave�induced e�ects dominate the velocity

�eld� then our non�dimensionalization must proceed in a di�erent� more complicated

manner� Since the irrotational velocity �eld produced by a progressive wave mov�

ing in the streamwise �x� direction is two�dimensional� the scaling in the spanwise

direction should proceed as before� based on the turbulent scales �U� � and �D�� In

the streamwise direction� the length scale is the wavelength �
�� while in the vertical

direction the length scale is the �ow depth �D�� The streamwise and vertical velocity

scale of the wave�induced motions �Uw� is the initial wave amplitude �A� divided by

the wave period� The time scale is the wave period �the initial wave amplitude divided

by the wave velocity scale�� The di�erent scales require the momentum equation to

be written as three separate equations rather than a single tensor equation� It will

be convenient from the outset to de�ne gravity as aligned with the x� axis in the
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negative direction� The non�dimensional variables can be de�ned such that�

u� � Uwu�� ������

u� � U�u�� ������

u� � Uwu�� ������

t �
A
Uw t� ������

g� � � ������

g� � � ������

g� � �G ������

jgj � G ����	�

�h � A�h� ������

x� � 
x�� ������

x� � Dx�� ������

x� � Dx�� ������

pd � U�
wp

�
d ������

� � UwD�� ������

	 � �U�
w
	

� ������

H � AH� ������

We will leave the non�dimensionalization of the rate�of strain tensor for the next

section� and write the partially non�dimensionalized momentum equations as�

Du��
Dt�

� �
�GA�

U�
w 


�
�

�x��
��h�� �

�A



�
�p�d
�x��

$
� AD

Uw

�
�

�x��

�
���e��

�
$
� A
Uw

�
�

�x��

�
���e��

�
$
� A
Uw

�
�

�x��

�
���e��

�

������

Du��
Dt�

� �
� GA�

UwU�D

�
�

�x��
��h�� �

�A
D
Uw
U�
�
�p�d
�x��

$
�AD

U�

�
�

�x��

�
���e��

�
$
�A
U�
�

�

�x��

�
���e��

�
$
�A
U�
�

�

�x��

�
���e��

�

����	�
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Du��
Dt�

� �
�A
D
�
�p�d
�x��

$
� AD

Uw

�
�

�x��

�
���e��

�
$
� A
Uw

�
�

�x��

�
���e��

�
$
� A
Uw

�
�

�x��

�
���e��

�

������

Non�dimensionalization of eij for waves

The rate�of�strain tensor is the most problematic term to correctly non�dimensionalize

in a �ow with waves and turbulence� To do so� it will be convenient to decompose

the rate�of�strain into convective ��eij�� wave�induced ��eij�� and turbulent ��eij� com�

ponents� so that

eij � �eij $ �eij $ �eij ������

where the convective velocities are similarly decomposed�

�eij �
	

�

�
��ui
�xj

$
��uj
�xi

�
������

and similar relations exist for the wave�induced and turbulent rate�of�strain compo�

nents� We de�ne our decomposition such that �	� the convective rate�of�strain is

zero except for the �e�� component� ��� the wave�induced rate�of�strain is zero for

any spanwise component �i � � or j � ��� and ��� the turbulent rate�of�strain has

contributions in all dimensions�

This approach is not practical for implementation in a simulation method�

However� it allows us to obtain a better understanding of the physics of the �ow by

providing non�dimensionalization of the separate components of the rate�of�strain us�

ing di�erent scales� For the convective term� the appropriate scales are the convective

velocity �Uc�� and the �ow depth �D� so that�

�e�� �
Uc
D �e��� ������

For the turbulent rate�of strain� the appropriate scales are the shear velocity �U� � and

the �ow depth �D��

�eij �
U�
D �e�ij ������
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For the wave�induced components� the correct non�dimensionalization depends upon

the particular �i� j� term under consideration� The wave�induced length scale depends

upon direction
 the appropriate vertical length scale is the channel depth �D�� while

the horizontal length scale is the wavelength of the surface wave �
�� So we �nd that

�e�� �
Uw



�e��� ������

�e�� �
Uw
D �e��� ������

�e�� �
	

�

�Uw
D

��u��
�x��

$
Uw



��u��
�x��

�
������

where �as before�

x� � 
x�� ������

x� � D x�� ����	�

We now can write the rate�of�strain decomposition as�

e�� �
Uw



�e��� $
U�
D �e��� ������

e�� �
U�
D �e��� ������

e�� �
Uw
D �e��� $

U�
D �e��� ������

e�� �
U�
D �e��� ������

e�� �
Uc
D �e��� $

	

�

Uw
D

�
��u��
�x��

$
D



��u��
�x��

�
$
U�
D �e��� ������

e�� �
U�
D �e��� ������



CHAPTER �� MATHEMATICAL FORMULATION ��

Non�dimensional momentum equations

Substituting the relations for the non�dimensional rates�of�strain into equations ������

through ������ gives�

Du��
Dt�

� �
�GA�

U�
w 


�
�

�x��
��h�� �

�A



�
�p�d
�x��

������

$
� AD

Uw

�
�

�x��

�
���

�Uw



�e��� $
U�
D �e���

��
$
� A
Uw

�
�

�x��

�
���

U�
D �e���

�

$
� A
Uw

�
�

�x��

�
���

�Uc
D �e��� $

	

�

Uw
D

�
��u��
��x��

$
D



��u��
��x��

	
$
U�
D �e���

��

Du��
Dt�

� �
� GA�

UwU�D

�
�

�x��
��h�� �

�A
D
Uw
U�
�
�p�d
�x��

������

$
�AD

U�

�
�

�x��

�
���

U�
D �e���

�
$
�A
U�
�

�

�x��

�
���

U�
D �e���

�

$
�A
U�
�

�

�x��

�
���

U�
D �e���

�

Du��
Dt�

� �
�A
D
�
�p�d
�x��

������

$
� AD

Uw

�
�

�x��

�
���

�Uc
D �e��� $

	

�

Uw
D

�
��u��
�x��

$
D



��u��
�x��

	
$
U�
D �e���

��

$
� A
Uw

�
�

�x��

�
���

U�
D �e���

�
$
� A
Uw

�
�

�x��

�
���

�Uw
D �e��� $

U�
D �e���

��

Cleaning these up a little gives�

Du��
Dt�

� �
�GA�

U�
w 


�
�

�x��
��h�� �

�A



�
�p�d
�x��

����	�

$
�A



�
�

�x��

�
���

�D



�e��� $
U�
Uw �e���

��
$
�A
D
U�
Uw

�
�

�x��

�
����e���

�

$
�A
D
Uc
Uw

�
�

�x��

�
���

�
�e��� $

	

�

Uw
Uc

�
��u��
��x��

$
D



��u��
��x��

	
$
U�
Uc �e���

��
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Du��
Dt�

� �
� GA�

UwU�D

�
�

�x��
��h�� �

�A
D
Uw
U�
�
�p�d
�x��

������

$
�A



�
�

�x��

�
����e���

�
$
�A
D
�

�

�x��

�
����e���

�
$
�A
D
�

�

�x��

�
����e���

�

Du��
Dt�

� �
�A
D
�
�p�d
�x��

������

$
�A



Uc
Uw

�
�

�x��

�
���

�
�e��� $

	

�

Uw
Uc

�
��u��
�x��

$
D



��u��
�x��

	
$
U�
Uc �e���

��

$
�A
D
U�
Uw

�
�

�x��

�
����e���

�
$
�A
D
�

�

�x��

�
���

�
�e��� $

U�
Uw �e���

��

����� Non�dimensional continuity and boundary conditions

In a fashion similar to the preceding section� we �nd the incompressible non�

dimensional continuity equation can be derived from equation ����� as�

�u��
�x��

$



D
U�
Uw

�u��
�x��

$



D
�u��
�x��

� � ������

From equation ������ the non�dimensional kinematic boundary condition is�

�H�

�t�
� u�� �

A


u��
�H�

�x��
� A
D
U�
Uw u

�
�

�H�

�x��
������

From equation ���	�� and the strain rates in equations ������ to ������� the normal

component of the dynamic boundary condition becomes�

�p�d�s � ���
�

n�n�

�D



�e��� $
U�
Uw �e���

�
$ n�n�

�U�
Uw �e���

�
$ n�n�

�
�e��� $

U�
Uw �e���

�

$ n�n�

�U�
Uw �e���

�
$ n�n�

� Uc
Uw �e��� $

	

�

�
��u��
�x��

$
D



��u��
�x��

�
$

U�
Uw �e���

�

$ n�n�

�U�
Uw �e���

��
� 	�

�
	

R�
�

$
	

R�
�

�
������
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From equation ����� and the strain rates in equations ������ to ������� the tangential

component of the dynamic boundary condition is�

� t�n�

�D



�e��� $
U�
Uw �e���

�
$ � t�n�

�U�
Uw �e���

�
$ � t�n�

�
�e��� $

U�
Uw �e���

�

$ �t�n� $ t�n��
�U�
Uw �e���

�
$ �t�n� $ t�n��

�U�
Uw �e���

�

$ �t�n� $ t�n��

� Uc
Uw �e��� $

	

�

�
��u��
�x��

$
D



��u��
�x��

�
$

U�
Uw �e���

�
� � ������

����� Analysis of non�dimensionalization

It is apparent that the relative scales of the mean �ow� turbulence� surface wave�

and domain size determine what terms in the governing equations are important� To

provide some clari�cation� we can de�ne six non�dimensional parameters �from the

analysis thus far� these would seem to be independent��

� � A



������

S � 


D ������

Ru � U�
Uw ������

Rew � 	

��
�

UwD
�

����	�

Frw � UwpGA ������

Wew � 	

	�
�

�Uw 

	

������

Note that � is the wave ak divided by ��� The parameter S is a measure of the

shallowness of the wave �which approaches zero asymptotically for deep water waves��

Ru is a relative measure of the velocity scales for turbulence and the wave�induced

motions� Rew� Frw and Wew are Reynolds� Froude� and Weber numbers based on

the wave�induced velocity �eld� The convective �ow velocity in an open�channel �ow

is dependent on the turbulent shear velocity� so it will be convenient to write�

Uc
Uw � �Ru ������
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where � is a scaling constant that is a function of the �ow depth and the turbulent

shear velocity�

If the waves can be approximated by second�order Stokes theory then the

non�dimensional parameters in de�nitions ������ to ������ are not all independent�

Gravity waves on the surface can be expected to have a dispersion relation of

�� � gk tanh kD ������

where � is the wave frequency� g is gravity� k is the wave number� and D is the domain

depth� Noting that � is �� divided by the wave period� and from the de�nition of

the wave�induced velocity scale as the wave amplitude divided by the wave period�

� �
��

T
� ��

Uw
A ������

The wave number is de�ned as ���
� so non�dimensional form of the dispersion

relation is�

��
U�
w

A�
�

G



tanh
�

��
D



�
������

We can write this as

Uw � A
s

G
��


tanh ���S��� ������

The Froude number� equation ������� can then be written as�

Frw �

r
�

��
tanh ���S��� ������

The non�dimensional equation set consists of�

�	� x momentum equation�

Du��
Dt�

� � ��

tanh ���S���

�

�x��
��h�� � �

�p�d
�x��

$ �
�

�x��

�
�

Rew

�
	

S �e��� $ Ru�e���

��

$ �S Ru
�

�x��

�
�

Rew
�e���

�

$ �S �

�x��

�
�

Rew

�
�Ru�e��� $

	

�

�
��u��
��x��

$
	

S
��u��
��x��

	
$ Ru�e���

��

������
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��� y momentum equation�

Du��
Dt�

� � ���S
Ru tanh ��� S���

�

�x��
��h�� � �S

Ru

�p�d
�x��

$ �
�

�x��

�
�

Rew
�e���

�
$ �S �

�x��

�
�

Rew
�e���

�
$ �S �

�x��

�
�

Rew
�e���

�

����	�

��� z momentum equation�

Du��
Dt�

� � �S �p�d
�x��

$ �
�

�x��

�
�

Rew

�
�Ru �e��� $

	

�

�
��u��
�x��

$
	

S
��u��
�x��

	
$ Ru �e���

��

$ �S Ru
�

�x��

�
�

Rew
�e���

�

$ �S �

�x��

�
��� ��e��� $ Ru �e����

�
������

��� continuity�
�u��
�x��

$ S Ru
�u��
�x��

$ S �u
�
�

�x��
� � ������

��� kinematic boundary condition�

�H�

�t�
� u�� � � u��

�H�

�x��
� �S Ru u

�
�

�H�

�x��
������

��� normal component of the dynamic boundary condition�

�p�d�s �
�

Rew

�
n�n�

�
	

S �e��� $ Ru �e���

�

$ n�n� �Ru �e����

$ n�n� ��e��� $ Ru �e����

$ n�n� �Ru �e����

$ n�n�

�
�Ru �e��� $

	

�

�
��u��
�x��

$
	

S
��u��
�x��

	
$ Ru�e���

�

$ n�n� �Ru�e����

�
� 	�

�
	

R�
�

$
	

R�
�

�
������
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��� tangential component of the dynamic boundary condition�

� t�n�

�
	

S �e��� $ Ru �e���

�
$ � t�n� �Ru �e���� $ � t�n� ��e��� $ Ru �e����

$ �t�n� $ t�n�� �Ru �e���� $ �t�n� $ t�n�� �Ru�e����

$ �t�n� $ t�n��

�
�Ru �e��� $

	

�

�
��u��
�x��

$
	

S
��u��
�x��

	
$ Ru�e���

�
� � ������

This non�dimensionalization provides a wealth of information about the re�

lationships among the turbulence� waves� and �ow domain� With the exception of

the hydrostatic pressure term� all the terms on the right hand side of the momentum

equations are of the order of the wave slope ��� and can be neglected for small am�

plitude waves� Note that none of the terms is order ��� so all terms must be retained

for �nite�amplitude waves� Some simpli�cation can be obtained by considering only

shallow�water waves �which we could de�ne here as S � 	�� For deep�water waves

�S � 	� or when the turbulent velocity scale is small compared to the wave velocity

scale �Ru � 	� the number of terms that are needed is signi�cantly reduced��

One of the most complicated cases is examined in the results of this dissertation

�chapters � through����

Ru � O
�
	���

�
������

S � O �	� ������

Rew � O
�
	��

�
������

� � O
�
	���

�
������

� � O �	�� ����	�

	� � � ������

The only terms neglected for this case are the surface tension terms�

�Consideration of boundary layer scaling in the near�surface region may mandate the retention
of some of the viscous terms that could otherwise be eliminated from deep�water or shallow�water
waves�
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��� Filtered� curvilinear Navier�Stokes equations

The non�dimensional equations presented in section ��� provide insight into the

physics of the important terms in the interactions between waves and a turbulent �ow�

However� the number of non�dimensional parameters �due to the multiple scales in

the �ow� makes numerical implementation impractical for a simulation method that

is intended to be adaptable for use with other types of �ows� One of the advantages

of Zang�s �	���� numerical method and code is its ability to be used or adapted to

almost any form of interior �ow� In a similar fashion� we want our method to be

adaptable to free�surface �ows which do not non�dimensionalize in accordance with

the previous section� For example� in Appendix C we provide a simulation of three�

dimensional sloshing of a free surface along a diagonal axis of the domain� This is a

case with �nite�amplitude wave motion in both x and y directions� which signi�cantly

changes the dimensional analysis of the �ow� In general� for an adaptable numerical

method� it is more practical to modify the the �ow domain size� viscosity� and wave

amplitude rather than adjusting non�dimensional scale parameters�

In this section� we derive a set of governing equations that is suitable for

implementation in our numerical method and are applicable to any free�surface �ow

with gravity and capillary waves� The development of the equations for the numerical

method starts from our initial statement of the governing equations in section ����

����� Cartesian space N�S equations

In the following analysis� the x� �or x� coordinate is the streamwise direction� the x�

�or y� coordinate is in the spanwise direction� and the x� �or z� coordinate is normal

to the bottom boundary �a plane surface�� Note that we are being careful not to

de�ne the z coordinate as vertical since an open�channel �ow is easier to analyze if

the coordinate system is rotated to match the slope of the channel� If we con�ne the

slope of the channel to the x direction� then the gravity vector g has components only

in the x and z directions� In the literature of open�channel �ows� the z component of

gravity is generally referred to as g� and is equal to �� jgj cos 
�� where 
 is the slope

of the channel� The body force in the streamwise direction is � jgj sin 
 which we can
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rede�ne as a gradient of a modi�ed pressure ! that drives the open�channel �ow�

�
d!

dx�
� � jgj sin 
 ������

This allows ! at any point to be de�ned by integrating to obtain�

! � jgjx�sin 
 ������

which is useful when dealing with curvilinear grids that are not aligned with the

Cartesian coordinate system�

The g� component of the gravitational body force is included in the pressure

term by de�ning the modi�ed pressure as�

p � P

�
$ g� x� ������

where x� is the vertical Cartesian coordinate and can be measured from any baseline�

For numerical implementation� it is convenient to use the bottom of the domain as

the x� � � baseline�

Using equations ���	�� ������ ������ ������� and ������� we can write the time�

dependent� constant�density� incompressible Navier�Stokes equations in conservation�

law form in physical space as�

�ui
�t

$
�Fij

�xj
� Si ������

�uj
�xj

� � ������

where the Cartesian momentum �ux tensor �Fij� and the momentum source �Si� are�

Fij � ujui $ p�ij � �
�ui
�xj

������

Si �
�!

�xi
������
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����� Filtered Navier�Stokes equations

By discretizing the equations on a grid� we are implicitly �ltering the equations and

removing the subgrid�scale e�ects that our grid cannot capture� The �ltering process

is the basis for the de�nition and development of subgrid�scale turbulence models�

The grid�scale �lter in a �nite�volume method is e�ectively a 
box� or 
top�hat�

�lter� such that the �ltered value of u is�

u �
	

������

Z
�
u d�� d�� d�� ���	���

and ��� ��� �� are the grid spacings in the x� y� and z directions�

It is generally assumed that �ltering commutes with di�erentiation so that

the di�erence between the �ltered equations and the un�ltered equations lies in the

�ltering of nonlinear terms� However� as demonstrated by Ghosal and Moin �	�����

this is strictly true only for uniform �lters �i�e� uniform grids�� For computational

grids with stretching and curvature to accommodate complex domain shapes� the

commutation of �ltering with derivatives introduces an error that is second�order in

the grid �lter width� Our method uses second�order algorithms so that commutation

of the �ltering operation is numerically consistent� However� future extensions of

this work to higher�order methods must consider the �ltering error introduced by

commutation or develop a �ltering approach that commutes to a higher order of

accuracy�

The �ltered Navier�Stokes equations can be presented as�

�ui
�t

$
�F ij

�xj
� Si ���	�	�

�uj
�xj

� � ���	���

where the momentum �ux and source are�

F ij � ujui $ p�ij � �
�ui
�xj

$ �ij ���	���

Si �
�!

�xi
���	���
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The term �ij has been introduced to represent the additional subgrid scale

terms that arise due to the �ltering of the nonlinear advection terms� This is necessary

because the �ltering of a product of two variables is not identical to the product of

the �ltered variables� Although �ij is a subgrid�scale advection term� its e�ects are

similar to those of a viscous stress� So� much like the misnamed� Reynolds stress in

statistical turbulence literature� �ij is generally referred to as the subgrid�scale stress�

By de�nition� �ij is�

�ij � uiuj � uiuj ���	���

The subgrid�scale stress term contains both the interaction of subgrid�scales with

themselves and the interaction of the subgrid�scales with the resolved scales� In

our simulation� we apply the two�parameter dynamic model of Salvetti and Banerjee

�	���� which was developed from the dynamic�mixed model of Zang et al� �	����� The

implementation of the turbulence model in the present numerical method is identical

to that of Salvetti et al� �	���� where subgrid�scale stress is modeled by�

��ij
�xj

� � �

�xj

�
�T

�ui
�xj

�
� ��T

�xj

�uj
�xi

$ Cr

�L
�m�
ij

�xj
���	���

This model introduces three terms to the �ltered Navier�Stokes equations� the eddy

viscosity �T � the scale�similarity coe�cientCr� and the modi�ed Leonard tensor� L
�m�
ij �

The eddy�viscosity is computed dynamically using the method that originated with

Germano et al� �	��	� and was subsequently improved by Lilly �	����� Zang et al�

�	����� Salvetti and Banerjee �	����� and Salvetti et al� �	����� The purpose of the

eddy�viscosity term is to implement the assumption that a portion of the unresolved

subgrid�scale stresses can be modeled using the Smagorinsky �	���� approach in which

�The Reynolds stress is not a stress� it is an advection of temporal velocity �uctuations by
the temporal velocity �uctuations that is developed in statistical treatments of the Navier�Stokes
equations� The e
ect is generally treated in a fashion similar to viscous stresses� hence the name
Reynolds stress� The use of the term stress to describe small�scale advection e
ects is an unfortunate
stretching of technical grammar since it implies physics that are not rigorously supported by the
mathematics of the derivation of the term� The Reynolds stress and the sub�grid scale stress are
mathematical constructs of our measurement and simulation techniques and are not real stresses in
the �uid�

�The modi�ed Leonard tensor is generally presented as Lmij in the literature� but this nomenclature
can be confused with that of a third�order tensor when curvilinear coordinates are being used�
Therefore� we have adopted an unconventional notation with the m in parentheses to indicate that
it is not a tensor superscript� but simply part of the variable description�
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the unresolved stresses are assumed to be proportional to the resolved strain rates�

The modi�ed Leonard tensor represents the resolved portion of the subgrid�scale

stress that can be computed explicitly� The scale�similarity coe�cient �Cr� of the

Leonard term is computed dynamically using the approach developed by Salvetti

and Banerjee and implemented in Zang�s numerical code by Salvetti et al� �	����� If

Cr � 	� the Leonard tensor term is simply the computation of the resolved part of the

subgrid�scale stress� For Cr �� 	� the Leonard tensor term becomes a modeling term

under the assumption that a part of the unresolved subgrid�scale stress is proportional

to the resolved Leonard tensor� For more detail on the Leonard tensor and dynamic

computation of �T and Cr� see Salvetti and Banerjee �	���� and Salvetti et al� �	�����

It is convenient to split the subgrid�scale stress so that part is contained in

the momentum �ux� and part is held in the source term� This requires that the

momentum equations be rewritten as�

�ui
�t

$
�Fij

�xj
� Si ���	���

where

Fij � ujui $ p�ij � �� $ �T �
�ui
�xj

���	���

Si �
�!

�xi
$

��T
�xj

�uj
�xi

� Cr

�L
�m�
ij

�xj
���	���

The above has a slight change in nomenclature when compared with equations ���	���

and ���	���� A portion of the subgrid�scale stress ��ij� that is included in the de�nition

of the momentum �ux �F ij� in equation ���	��� has been moved into the source term

�Si� in equation ���	���� It follows that Fij �� F ij and Si �� Si�

����� Curvilinear transformation of N�S equations

Solution of numerical problems in complicated domains using boundary��tted curvi�

linear coordinates is now a standard technique requiring little introduction� The

method is based on concepts of tensor analysis and coordinate transformation found

in textbooks such as Aris �	����� Numerical application of boundary��tted curvilinear

coordinates involves developing a coordinate system which matches the boundaries
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in physical space and maps to a regular orthogonal grid in computational space�

The distortions of the curvilinear coordinate system �as viewed from physical space�

are measured as metric terms� The metric terms are created when the governing

equations are transformed onto a regular orthogonal grid in computational space�

Using this technique� an irregular domain in physical space can be discretized with

a structured �e�g� �nite di�erence� numerical method on a regular grid in computa�

tional space while maintaining the simulation boundary coincident with the physical

boundary� The main disadvantages of this technique are �	� the governing equations

are more complicated when transformed to computational space� and ��� the storage

of metric terms can overwhelm computer memory� As computer memory capacity

has increased� the latter disadvantage has almost disappeared for simulations with

stationary grids� However� for moving�grid simulations� the computation of the grid

movement can require holding two copies of the grid and�or some metrics in memory

simultaneously� which signi�cantly increases the memory requirements for the simu�

lation� The development of curvilinear coordinate systems for complicated domains

with �xed grids is covered extensively in Meakin and Street �	�����

The transformation techniques used for stationary grids are readily extended

to moving grids by the addition of a curvilinear transformation of time derivatives�

Although time measured in curvilinear space may be identical to time measured

in physical space� their partial derivatives �in general� are not identical� A partial

derivative with respect to time in physical space is taken at a �xed point in physical

space� whereas a partial derivative with respect to time in curvilinear space is taken

at a �xed point in curvilinear space �which may be moving through physical space��

Extension of boundary��tted curvilinear coordinate transformations from �xed to

moving�boundary problems is straightforward and is described by Thompson et al�

�	���� as well as in most other numerical grid generation textbooks�

Implementation of boundary��tted curvilinear coordinates requires di�erential

operators for transforming the governing equations from physical space to computa�

tional space� We can derive the transformation operators using the chain rule for

partial di�erential equations� resulting in�

�

�xj
�

��q

�xj

�

��q
���		��
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�

�t
�

�

��
� �xj

��

��q

�xj

�

��q
���			�

where xj� with j � 	� �� � are the physical space coordinates
 �q with q � 	� �� � are

the computational space coordinates
 ���t is a time derivative taken at a �xed point

in physical space
 ���� is a time derivative taken at a �xed point in computational

space� and repeated subscript�superscript combinations imply summation� We are

using a formal general tensor representation with superscripts for the curvilinear

coordinates so that covariant and contravariant tensor components can be properly

distinguished� The plethora of terms of the form ��q��xj encourages us to adopt the

notation used by a number of authors� where we de�ne a surface metric tensor as a

mixed tensor� such that�

Sq
j � ��q

�xj
���		��

If we let a time derivative with respect to computational space be represented by a

dot� then the transformation rules become�

�

�xj
� Sq

j

�

��q
���		��

�

�t
�

�

��
�  xjS

q
j

�

��q
���		��

To simulate a �ow with a free surface in boundary��tted curvilinear coordi�

nates� equations ���		�� and ���		�� are used to transform the physical space Navier�

Stokes equations into computational space� Completing the transformation requires

the metric identity noted in Thompson et al� �	�����

�

��q

�
J��Sq

i

�
� � ���		��

along with the conservation of space explained by Demird(zi)c and Peri)c �	�����

�

��

�
J��

�
� �

��q

�
J��Sq

j  xj
�
� � ���		��

�This is only a correct tensor representation when xj is a Cartesian coordinate system so that
xj � xj�
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Application of the transformation rules� �equations %��		�& through %��		�&� to

the �ltered Navier�Stokes equations �%��	��&� %��	��&� %��	��&� and %��	��&� provides

the unsteady� incompressible� constant�density� �ltered Navier�Stokes equations in

time�dependent boundary��tted curvilinear coordinates as�

�

��

�
J��ui

�
$

�

��q

�
J��F q

i

�
� S i ���		��

�

��q

�
J��U

q
�

� � ���		��

where the curvilinear momentum tensor Fq

i and the curvilinear source vector S i are�

F q
i �

�
U

q �  Xq
�
ui $ Sq

i p � �� $ �T �Gqr �ui
��r

���		��

S i �
�

��q

�
J��Sq

i !
�

$ J��Sq
jS

r
i

��T
��q

�uj
��r

� Cr
�

��q

�
J��Sq

jL
�m�
ij

�
���	���

and other curvilinear quantities are de�ned as��

inverse Jacobian J�� � det






�xi��s






 ���	�	�

contravariant velocity U
q

� Sq
juj ���	���

contravariant grid velocity  Xq � Sq
j  xj ���	���

contravariant volume metrics Gqr � Sq
jS

r
j ���	���

contravariant surface metrics Sq
i �

��q

�xi
���	���

����� Non�dimensional N�S equations

In section ��� we developed a detailed non�dimensionalization of the governing equa�

tions that reveals the scaling of the terms� For practical numerical implementation�

�Readers familiar with the work of Zang ����	� should be careful here
 we have de�ned our
contravariant metrics and velocities without the inverse Jacobian� whereas Zang de�ned contravariant
�uxes and Jacobian normalized metrics� Admittedly� Zang�s approach is cleaner in its presentation of
the Navier�Stokes equations� but it complicates the presentation of the dynamic boundary condition
which we provide in section ����
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it is su�cient to non�dimensionalize the entire set of equations using a single veloc�

ity scale� a single length scale� and the time scale that results from their quotient�

However� it must be kept in mind that the other non�dimensional parameters of equa�

tions ������ through ������ are implicitly determined when setting the relationships

between wavelength� wave amplitude� wave period� water depth� and shear velocity�

If we non�dimensionalize Navier�Stokes equations by a velocity scale U � a

length scale L� a time scale L�U and the density � �dropping the usual %�& nomen�

clature that goes with the non�dimensionalization�� the momentum �ux and source

terms can be written as�

F q
i � J��

�
U

q �  Xq
�
ui $ Sq

i p �
�
Re�� $ Re��

T

�
Gqr �ui

��r
���	���

S i �
�

��q

�
Sq
i !
�

$
	

J��
Sq
jS

r
i

�uj
��r

�

��q

�
Re��

T

�
� Cr

�

��q

�
Sq
jL

�m�
ij

�
���	���

where the Reynolds numbers are�

Re � UL
�

���	���

ReT � UL
�T

���	���

and all physical space variables are non�dimensional�

The non�dimensional form of the de�nition of the modi�ed pressure� equation

������� provides�

p � P

�
$

	

�Fr��
x� ���	���

where the Froude number is�

Fr � Up
g�L ���	�	�

��� Kinematic boundary condition

The kinematic boundary condition is the Lagrangian condition that a particle on the

surface must remain on the surface� If F � � is a function that describes the location
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of the surface� then the kinematic condition requires that�

�F

�t
$ u � rF � � ���	���

It is possible to use directly the Lagrangian condition� advancing the free surface

by moving marker particles based upon their velocity at the free surface
 however�

Chan and Street �	���a� showed this method is unstable for long simulations where

an explicit advance is used to integrate the free�surface position� For coupled�grid

solutions �as discussed in section 	������ where the kinematic boundary condition and

grid generation are coupled to an implicit solution of the velocity and pressure� such

instability should not occur with the Lagrangian boundary condition�

����� Physical space kinematic boundary condition

As an alternative to the implicit Lagrangian approach� the kinematic boundary con�

dition in physical space can be written in a physical�space Eulerian form which can

be obtained through a Taylor series expansion as shown in Mei �	����� resulting in�

�H

�t
� u� � u�

�H

�x
� u�

�H

�y
���	���

where H is the height �in the x� direction� of the free surface measured from some

baseline in physical space� This boundary condition is enforced on surface particles

that are restricted to vertical motion in physical space� and is therefore unsuited for

overturning waves� The restricted curvilinear coordinate grid generation method �see

section ���� shares the same limitations� so the two approaches are often seen together

in numerical methods�

Note that if we non�dimensionalize with the same length and velocity scales

used for the Navier�Stokes equations in section ������ then non�dimensional groups

are not associated with the kinematic boundary condition� Under these conditions

the equation is identical in dimensional and non�dimensional forms�
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����� Curvilinear�space kinematic boundary condition

It was demonstrated by Hinatsu �	���� that curvilinear coordinate transformations�

equations ���		�� and ���		��� can be applied to the physical�space Eulerian kinematic

boundary condition� equation ���	���� for use in numerical simulations� This approach

�also used by Park et al� %	���&� is workable in curvilinear coordinates� but retains

the underlying vertical motion restriction on surface particles� The restriction makes

the method unsuitable for waves which do not remain single�valued and brings into

question the validity of the method for steep waves	�

There is no reason that we must begin with the Cartesian form of an equation

and transform it into computational space� A more general approach that does not

have a single�valuedness restriction in physical space requires deriving the Eulerian

kinematic boundary condition directly in curvilinear coordinates� This approach was

used by Hino �	����� However it was applied in a �xed curvilinear system rather

than in a moving�grid system� and appears to have been abandoned in the author�s

later work� A derivation is presented here because it does not appear elsewhere in

the literature
�

To obtain directly a curvilinear Eulerian kinematic boundary condition� we

consider a �xed� curvilinear space ���� ��� ��� such that the free�surface is single�valued

�Steep waves that are de�ned by particles restricted to vertical motion have the surface motion
at non�orthogonal angles to the surface� This generates additional error in the numerics due to the
requirement to handle the skew�metric terms such as G���

�In some senses� this derivation of the curvilinear kinematic boundary condition is extension of
the textbook derivation of the physical�space Eulerian kinematic boundary condition found in Mei
����	��

�To try to derive a useful curvilinear kinematic boundary condition with a moving� boundary�
�tted grid would be counter�productive since the de�nition of moving curvilinear surface implies
that

�H

��
� �

That is� the reference space for H is moving along with H so it cannot be used to determine
the movement of the space� For the purposes of derivation with a �xed grid� the boundary��tted
restriction is super�uous� For numerical discretization� the boundary��tted requirement is used with
the kinematic boundary condition in section 	�����
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in ��� De�ne F as a scalar function for the free surface such that�

F � � � t� � �� � H
�
�� � �� � t

�
� � ���	���

where � is a vector representing the curvilinear coordinates of a surface position at

time t� and H is the height of the free surface measured from �� � � along a line of

constant �� and �� in �xed curvilinear space�

After some small time �t� the free surface has moved� while the curvilinear

coordinate system remains �xed� We require that �t is small� so the free surface

remains single�valued in ��� A Taylor�series expansion gives�

F �� $U�t � t$ �t� � F �� � t� $

�
�F

�t
$ U � rF

�
�t $ O ��t�� ���	���

where U is the contravariant velocity vector of a point on the surface� It follows that�

�F

�t
$ U � rF � � ���	���

Substitution of equation ���	��� into equation ���	��� provides the curvilinear kine�

matic boundary condition in �xed curvilinear coordinates as�

�H
�t

� U� � U� �H
���

� U��H
���

���	���

����� Filtered curvilinear kinematic boundary condition

Because the kinematic boundary condition is inherently a nonlinear condition� the

�ltering of the equation results in subgrid�scale terms� In this case� we can follow

the approach used by Zang et al� �	���� for �ltering the density terms� The �ltered

kinematic boundary condition can be presented as

�H
�t

� U
� � U

� �H
���

$ ��
� � � � 	� � ���	���

where the subgrid�scale terms are de�ned as�

��
� � U�

�H
���

� U
� �H
���

���	���

We can follow the same approach that Germano et al� �	��	� used to rede�ne

the subgrid�scale stresses into the� �	� modi�ed Leonard term� ��� modi�ed cross term�
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and ��� modi�ed Reynolds term� The velocity and surface height are decomposed into

resolved and unresolved parts so that�

U� � U
�

$ u� ���	���

H � H $ h ���	�	�

where the overbars indicate resolved terms� and the lower�case letter represent

subgrid�scale terms �and should not be confused with Cartesian variables in this

instance�� It follows that�

��
� �

�
U

�
$ u�

�� �H
���

$
�h

���

�
�

�
U

�
$ u�

��� �H
���

$
�h

���
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We can borrow and misapply the turbulence modeling nomenclature and de�ne

the modi�ed 
Leonard�� 
cross�� and 
Reynolds� terms as�

L�
� � U

� �H
���

� U�
�H
���

���	���

C�
� � U

� �h

���
$ u�

�H
���

�
�
�U�

�h

���
$ u�

�H
���



A ���	���

R�
� � u�

�h

���
� u�

�h

���
���	���

The modi�ed Leonard term L�
� is made up of resolved quantities and can be computed

explicitly using the method of Zang et al� �	����� For the cross term and the Reynolds

term a model is required� In the development of the dynamic mixed model for density

variations� Zang could argue that the subgrid�scale density terms responded to the

strain rates in a fashion similar to the subgrid�scale velocity terms� This allowed

the development of a dynamic model where the subgrid�scale density variations were

modeled with an eddy di�usivity term �similar to an eddy viscosity term� and a scale�

similarity term� Both e�ects were assumed to be proportional to the magnitude of

the resolved strain rate and were computed dynamically on the basis of a test��lter

scheme and least�squares �t� However� the free surface will not support a shear stress�

and the basis of a kinematic boundary condition model solely on the irrotational strain

rates may be questionable� One can certainly make a scale�similarity argument that

the cross terms should be proportional the the Leonard term� but there is an open

question as to the appropriate constant of proportionality� Certainly when dealing
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with the small�scale kinematics of the free surface it would be wise to consider the

dynamics of the �ow and the dynamic boundary condition� For the small scales

of motion near the surface� pressure� viscous� and capillary e�ects in the dynamic

boundary condition may all be of similar orders of magnitude and are more likely

to drive the kinematics of the subgrid�scale �ow than is the resolved velocity �eld�

Further theoretical discussion of this issue will be delayed until section ��	��

A simple approach suitable for initial investigations into LES modeling of the

kinematic boundary condition is to compute the modi�ed Leonard term directly using

the method in Zang et al� �	����� If the cross terms and Reynolds terms are neglected

the kinematic boundary condition can be written as�

�H
�t

� U
� � U

��H
���

� U
��H
���

$ L�

�
U

�
�H

�
$ L�

�
U

�
�H

�
���	���

where L is de�ned as a Leonard stress operator�

L�

�
U

�
�H

�
� U

� �H
���

� U
� �H
���

���	���

This approach recalls the initial development stages of LES methods for the

Navier�Stokes equations� and is justi�able because we simply do not have enough

information to do any better� The development of more sophisticated models requires

well�resolved DNS experiments of nonlinear free�surface �ows to provide a sound

basis for examining the physics near the surface� Such DNS simulations do not yet

exist� Laboratory experiments such as Cowen �	���� could provide some basis for

testing LES models at the free surface� but have two major drawbacks� �	� the

laboratory data collection techniques need to be extended to three�dimensions to

obtain su�cient data to validate the three�dimensional terms in the LES models�

and ��� the laboratory experiments necessarily have surface�tension e�ects which

complicate model development and validation� for simplicity� it is preferable to �rst

develop a model without surface tension e�ects that is directly comparable to a DNS

simulation that neglects surface�tension�

The e�ects of the addition of the subgrid�scale term are not investigated in this

dissertation as the available computational power and the memory requirements of

the present simulation method make it di�cult to run a set of validation simulations

at a �ner resolution� Without such simulations it would be di�cult to analyze the

e�ects of the subgrid�scale term on the kinematic boundary condition� To avoid
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contaminating the results of our simulations by an untested algorithm� the Leonard

terms �L�� and L�� of the �ltered kinematic boundary condition at the free surface

were not implemented for the simulations presented in chapters � through � of this

dissertation� The previous derivation of the terms and the implementation presented

in section ����� are provided for completeness�

��� Dynamic boundary condition

The dynamic boundary condition is generally obtained by assuming that �	� a free sur�

face will only support the normal stress of surface tension and ��� tangential stresses

must disappear� The result is the dynamic boundary condition for an incompressible

�uid in its classic form �similar to that in Batchelor %	���&��

Ps� � Ps� � ��� eijninj $ 	
�
R��

� $ R��
�

�
���	���

eijtinj � � ���	���

where the subscripts s$ and s� indicate the pressure on the upper and lower sides of

the free surface� eij is the rate�of�strain tensor� equation ������ ni and ti are the unit

normal and tangent vectors� respectively� 	 is the surface tension coe�cient� and R�

and R� are the principal radii of curvature of the surface�

For most purposes� this form of the dynamic boundary condition is more than

suitable� In fact� it is often approximated as simply P � �� However� it should be

noted that there are actually several other terms that should appear on the right�

hand�side of the equation� A derivation of all the terms of the dynamic boundary

condition requires the use of general curvilinear coordinates and can be found in

Scriven �	���� and Aris �	����� To obtain equations ���	��� and ���	��� requires that

we neglect� �	� gradients of surface tension� ��� inertia of the surface� ��� gradients of

the dilational force� ��� force due to total curvature and velocity� ��� e�ects of varying

normal velocity� ��� normal forces due to dilation and shear� and ��� the viscosity of

the upper �uid�

Equations ���	��� and ���	��� do not provide for straightforward implemen�

tation in a boundary��tted curvilinear coordinate numerical method
 therefore� our

approach will begin with the tensor form of the full equation from Scriven �	����� By

applying the seven assumptions used to get equations ���	��� and ���	��� along with
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the requirement that the curvilinear coordinate system be boundary orthogonal� the

dynamic boundary condition can be presented as�

�Ps� � Ps�� � ���U�
�� $ �M	 ���	���

U�
�� � �G

��

�
G��U�

�� $ G��U�
��

�
���	�	�

U�
�� � �G��

�
G��U�

�� $ G��U�
��

�
���	���

where G�� is the covariant metric�

G�� �
�xj
���

�xj
���

���	���

and M is the mean curvature� de�ned for a �� surface in a boundary�orthogonal

coordinate system as�

M �
	

�

G��

G��

�
S�
j

��xj
������

�
���	���

with � and � summed over 	� � and j summed over 	� �� ��

Note that the di�erentiation in equations ���	���� ���	�	�� and ���	��� is co�

variant tensor di�erentiation and requires the application of Christo�el symbols for

deriving a discrete implementation� Because we have required boundary orthogonal�

ity� the covariant di�erentiation translates directly into a simple di�erentiation in the

tangential terms �but adds additional complexity to the normal term�� If boundary

orthogonality is not provided� a number of additional terms will be required in both

equations�

If we let the outside pressure �Ps�� equal zero� then apply equation ���	��� for

the reduced pressure and non�dimensionalize� the normal component of the dynamic

boundary condition can be written as�

ps� �
zs�

�Fr��
$

�

Re
U�
�� �

�

We
M ���	���

where zs� is the vertical Cartesian coordinate at the surface� the Weber number is

de�ned as

We �
�U�L
	

���	���

and the Reynolds and Froude numbers are de�ned in equations ���	��� and ���	�	��

Applying some algebra and tensor manipulation� we reduce the dynamic

boundary condition of equations ���	�	�� ���	���� and ���	��� to a form that can
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be more readily implemented in a numerical method� For the present second�order

method� metrics can be assumed to pass through the �lter operation� then the dy�

namic boundary condition can be written as�

ps� �
zs�

�Fr��
� �M

We
$

	

Re

��
��

�U
�

���
$ G��

�
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���
�G��� $ U
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	��
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���
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� ���	���

If our grid is su�ciently �ne and the surface is su�ciently smooth� then the

tangential derivatives of the G�� metrics on the right�hand�side of equation ���	���

will be small and can be neglected� However� if the free surface has oscillations on

the order of the grid scale or slightly larger� then these terms cannot be neglected a

priori�

�See section ��	�� for a discussion of problems with this assumption for higher order methods�
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Numerical method

��� General approach

The numerical approach in this dissertation is a free�surface�moving�grid adaption of

the method developed by Zang et al� �	���� for �xed�grid simulations� This method

has been shown to be second�order accurate in space and time for laminar and tur�

bulent �ows and is e�cient for computation of four�dimensional turbulent �ow prob�

lems� Zang�s approach uses �nite�volume discretization of the primitive variables

in curvilinear coordinates� The Navier�Stokes solution is through a fractional�step

�or projection� method with a multigrid solution of the pressure Poisson equation�

The free�surface algorithm developed as a part of this research project has been de�

signed to work within the framework of Zang�s method� but is general enough to be

adapted to any projection method� Our approach to the free�surface problem is to

use a boundary��tted grid with the free�surface advance and �ow solver decoupled

from the grid generation� The integration of the kinematic boundary condition for

the movement of the free surface is through a Runge�Kutta �th�order �RK�� method

with �th�order upwind discretization for spatial derivatives� The solution grid is gen�

erated with the Poisson equation method using a FORTRAN code adapted from the

�DGRAPE�AL code developed by Sorenson and Alter �	���� at NASA Ames and

Langley laboratories�

��� Grid generation

As the grid generation community has grown rapidly in the past decade� a number of

methods have become available for generating boundary��tted curvilinear coordinate

grids �for a selection of recent work� see Soni et al� %	���&�� Not all the methods are

suitable for a moving�grid simulation� For the boundary to track the free surface� a

��



CHAPTER �� NUMERICAL METHOD ��

new grid must be computed at each time step� so the ideal method for grid generation

is fast and e�cient in its use of computer memory and storage� Unfortunately� the grid

generation research community appears to be driven by the aerospace industry� whose

interest is in computing grids around aircraft� Much of the grid generation literature

is devoted to handling the di�cult aspects of generating grids around complicated

shapes and the computer interface between the grid generation engineer and software

applications� Because complicated grids are usually input only once� then modi�ed

only as an aircraft structural design changes� there has been little e�ort placed into

developing fast and e�cient methods for simple geometries such as we have with

a rectangular domain having a single wavy surface� This may be changing since

the CFD solvers for compressible �ow have become sophisticated enough that the

U�S� Air Force is interested in solving dynamic problems with changes in aircraft

geometry �e�g� movement of aircraft control surfaces or the separation of ordnance

from a wing rack�� We can hope that by the time the environmental �uid mechanics

world is ready to tackle viscous simulations of the physics of breaking waves� the grid

generation researchers will have developed more e�cient tools for the computation of

grids�

Perhaps the simplest approach for grid generation under a wavy surface is to

de�ne one set of computational�space coordinate lines as vertical lines in physical

space� then apply distribution functions to locate the coordinates smoothly along the

set of vertical lines� This is the predominant approach among the moving�grid free�

surface simulations in the literature� We might call this arrangement a 
restricted�

curvilinear grid because the free surface points are restricted to motion along the

vertical coordinate lines� A simple �D grid of this type is shown in �gure ���	��

The advantage of this type of grid is that it is easy to generate� Like most

easy approaches� its disadvantages are legion� including� �	� limitation to single�

valued wave surfaces ��� reduction in solution accuracy due to grid skewness� ���

increasing local errors near the free surface with increasing wave height� and ��� lack

of orthogonality at the free�surface boundary� The last point implies the need for a

more complicated dynamic boundary condition on the curvilinear velocities at the

free surface� the covariant di�erentials have skew metric terms that do not disappear

for non�orthogonal systems at the boundary�
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Figure ���� Restricted curvilinear coordinate grid

The disadvantages of the restricted curvilinear grid help point out our require�

ments for a good grid generation method� it should� �	� be computationally fast

�vectorized�� ��� use a modest amount of computer memory� ��� not require disk ac�

cess during grid computation� ��� be able to generate boundary�orthogonal grids� ���

be able to handle a steep or overturning wave �no single�valuedness restriction�� ���

minimize grid skewness� and ��� allow control of grid stretching�

Grids which are not subject to the disadvantages of the restricted grid method

can be computed using a variety of approaches found in the numerical grid genera�

tion literature� The most mature approaches for computing three�dimensional grids

are trans�nite interpolation methods and Poisson equation methods� The trans�nite

interpolation approach involves de�ning bounding surfaces and performing three�

dimensional iterpolation between surfaces to obtain the coordinates of grid points in

the volume� This is sometimes called an 
algebraic� grid generation method because

the implementation requires direct solution of polynomial interpolating functions�

While methods based on trans�nite interpolation are generally fast� they cannot

guarantee the resulting grid will be free from singularities and overlapping of grid

lines for arbitrarily�shaped domains�

A characteristic of trans�nite grid generation methods is that the solution is

not dependent on an initial estimate of the grid in the interior� For applications

where a grid is only generated once� this can be an advantage� For the present work�

the grid only changes a small amount between time steps� so it can be argued that

�This is a requirement of the CFL condition with a �ne grid discussed in section ����	�
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a trans�nite interpolation method is doing extra work because it is always starting

from the boundaries rather than from an interior solution that is close to the desired

grid�

For the Poisson equation approach to grid generation� the relationship between

curvilinear and Cartesian space is represented as a Poisson equation that is solved

to obtain the Cartesian locations of the grid points associated with each point in

curvilinear space� The source of the Poisson equation is used as a control function

to set the spacing and approach angle� of the grid near the boundaries� The source

term required for the desired spacing and approach angle cannot be determined a

priori� but must be iteratively adjusted during the grid solution� The typical Poisson

approach to grid generation requires� �	� an initial estimate of the grid coordinates

and source�term control functions required to obtain the grid boundary conditions�

��� iterative smoothing of the Poisson equation holding the source term �xed� ���

evaluation of the unconverged grid to obtain a new estimate of the source term�

��� repeat steps ��� and ��� until a desired convergence is reached� The number of

iteration steps between evaluations of the source term and the choice of method for

estimating the correct source term will determine the rate at which the grid solution

converges for a particular domain and initial conditions� Poor selection of the initial

conditions �grid and control function estimate� or the iteration approach can cause

the Poisson solution to diverge�

The Poisson equation method does not solve for the grid by simply solving a

Poisson equation� instead it is solving for the Poisson equation that relates Cartesian

and curvilinear space� Rather than thinking of the Poisson equation approach as

solving an equation of the formr�x � s� it is useful to think of the method as solving

the equation r�x � F �x� � � where x is the unknown location of the Cartesian

grid points and F is a prescribed function with unknown coe�cients that vary with

x� For more detail on Poisson equation and trans�nite interpolation methods for grid

generation see Thompson et al� �	�����

�Boundary orthogonality with �ne grid spacing is usually desired�
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Figure ���� Generalized curvilinear coordinate grid

Both the trans�nite interpolation approach and the Poisson equation method

can produce grids suitable for computing steep or overturning waves and with bound�

ary orthogonality� The grids produced by the such methods might be called 
gener�

alized grids� since they can be used in general topologies� An example of such a grid

for a large wave deformation is shown in �gure ������

The most advanced grid�generation methods �such as the Poisson equation

method� are capable of providing boundary�orthogonality� control over grid skewness�

and speci�ed point distributions near the boundaries� Control over point distributions

is desirable so that grid points can be concentrated in boundary layers for e�cient

use of computational e�ort� There are also distinct advantages in the implementation

of numerical techniques with boundary orthogonality� As shown by Zang �	�����

to obtain consistent solutions on a �xed grid with a non�orthogonal boundary in a

�nite�volume method requires a pressure boundary condition as well as a velocity

boundary condition for the pressure equation� The use of boundary orthogonality for

the grid removes the requirement for the pressure boundary condition� Furthermore�

in deriving a discrete form of the dynamic boundary condition in curvilinear space�

boundary orthogonality provides signi�cant simpli�cation by removing two of the

three skew metric terms at the free�surface� That is� for a free surface �� � 	�

boundary�orthogonality provides G�� � G�� � � �where the Gij terms are metrics

de�ned by equation ���	����

Some advanced grid generation methods provide for control over grid skew�

ness� which is desirable because large grid skewness tends to produce less accurate

results� Thompson et al� �	���� noted that the truncation error due to skewness
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varies inversely with the sine of the angle between the curvilinear coordinate lines as

viewed in physical space� A detailed investigation of the truncation errors induced by

curvilinear coordinate transformations can be found in Lee and Tsuei �	����� Grid

skewness has other consequences in addition to truncation error considerations� As

shown by Zang �	����� if grid skewness can be limited a priori� the numerical algo�

rithms can take advantage of this in the discretization of terms containing the skew

metrics and provide a more e�cient solution�

The uncoupled�grid numerical approach in the present work allowed exper�

imentation with di�erent numerical grid generation methods� We found restricted

grids to be unacceptable due to the disadvantages outlined above� Initial exper�

iments were conducted with the trans�nite interpolation sections of the EAGLE

grid generation code developed at Mississippi State University �Thompson %	���&��

Unfortunately� this code had unacceptable computational overhead in CPU time�

memory� and access to written temporary �les� Our recent work has been with the

�DGRAPE�AL code developed jointly at NASA Ames and NASA Langley labo�

ratories by Sorenson and Alter �	����� This code allows the control of boundary

orthogonality and grid spacing near the boundaries through the choice of the source�

term control functions of the Poisson equation�� We have adapted the Poisson grid

generation routines from �DGRAPE�AL to work as a callable module�

�DGRAPE�AL uses vectorized Successive Over�Relaxation �SOR� of the grid

Poisson equation to smooth an initial grid estimate into a grid which satis�es the

boundary orthogonality and grid spacing requirements� The control functions of the

Poisson equation source term can be evaluated using one of several standard methods

developed in the literature �for more detail see Sorenson and Alter %	���&�� While

it is accepted that multigrid techniques are faster than SOR for the solution of a

Poisson equation� in this case the use of SOR is preferable due to the nature of the

Poisson grid generation approach� Sorenson� attempted to apply a multigrid solution

method to the Poisson grid generation equation and noted that there is a fundamental

�The user is required to choose ��� whether or not orthogonality is required on each boundary�
��� the grid spacing for the �rst point inside each boundary� and �	� the relative rate at which the
boundary in�uence decays toward the interior of the domain� For the simulations presented in this
dissertation� the 	DGRAPE�AL default value for the boundary in�uence decay is used�

�R�L� Sorenson� NASA Ames Laboratory� personal communication �������
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incompatibility between multigrid methods and the Poisson grid generation method�

The multigrid method is predicated on using a succession of �ne and coarse grids to

rapidly smooth out the di�erence between the Laplacian of the variable and the source

term of the Poisson equation� However� Poisson grid generation methods require it�

erative evaluation of the source term to obtain the desired boundary con�guration��

The iterative adjustment of the source term means that the multigrid solver is at�

tacking a slightly di�erent equation each time the source is adjusted� Furthermore�

the method by which the source terms are generally computed �see Thompson et al�

%	���&� introduces a slightly di�erent error on each multigrid level� As a result� multi�

grid performance is severely degraded� Of course� there do not exist any numerical

methods that are e�cient with iterative adjustment of source terms
 however� the

SOR method appears to be more stable and e�cient than the multigrid method in

current implementations�

Generating a grid through the solution of a Poisson equation with iterative

adjustment of the source term control functions can be a computationally intensive

process when using only boundary information �on the order of several thousand

smoothing sweeps through the domain�� However� as pointed out by Raad	� since

the grid motion is restricted to small increments due to the grid CFL condition �see

section ������� the time �n� grid is a good starting point for the Poisson smoother

in developing the time �n $ 	� grid� This e�ectively reduces the number of Poisson

iterations to a reasonable number� In the present work� less than �� sweeps were

required to smooth the grid after the free�surface advance� This proved to be faster

than the direct solution of the grid using trans�nite interpolation methods from the

EAGLE grid generation code�

�This is one reason why Poisson grid generation is notoriously unstable and time�intensive� If
the initial grid is not close enough to the desired grid� then the solution can diverge through poor
adjustment of the source term�

�P�E� Raad� Dept� of Mech� Eng� Southern Methodist Univ�� personal communication �������
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��� Free�surface method

The approach used to advance the free surface in our method is an uncoupled�grid

approach where the kinematic boundary condition is integrated forward in time with�

out implicit reference to the time �n$	� velocities� This approach is computationally

e�cient� but has numerical stability limitations �see section �����

The method for free�surface advance requires that at time �n� there is a �xed

curvilinear grid that is boundary��tted in the �� coordinate� All three components of

the contravariant velocity must be known at each grid point on the free surface� To

�nd the change in the �� coordinates of the free surface at some small time later with

reference to the same �xed curvilinear grid �see equation %��	�& ���� a Runge�Kutta

fourth�order method is applied with the �fth�order upwind discretization for spatial

derivatives of Komori et al� �	����� The new curvilinear coordinates of the free surface

are converted back to physical space coordinates� In this approach� the coordinates

have a tendency to drift in the streamwise direction unless restrained or redistributed�

Rather than using an arti�cial restraint� we let the grid points move in accordance

with the kinematic boundary condition then redistribute using a two�dimensional

cubic spline on the free surface� This maintains a smooth and even distribution of

points on the surface in physical space�

The advantage of our free�surface method is that the kinematic boundary

condition is enforced upon points which move along a line of constant �� and ��

curvilinear coordinates rather than a line of constant x and y physical coordinates�

Thus� the free surface motion is computed along lines that are locally orthogonal

to the time n grid rather than at an angle that depends upon the steepness of the

wave� As a result� the single�valuedness requirement in physical space is replaced by a

single�valuedness requirement in curvilinear space� which is a less restrictive condition

for a boundary��tted coordinate system� requiring only that the slope of the free

surface be continuous� A discontinuous slope implies wave breaking and a violation

of the material condition of the free surface� so it can be said that the curvilinear

form is generally valid and can be implemented numerically as long as the kinematic

boundary condition itself is valid� The movement of the points along surface normal

lines provides a simpler implementation than the curvilinear transformations of the

physical space kinematic boundary condition used in the literature�
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The ability of present method to simulate near�breaking and overturning waves

is primarily a matter of the availability of computational power� The number of grid

points required for accurate simulation of a wave shape increases as a wave steepens

and overturns� Increasing the number of grid points along the surface a�ects the time

step required to avoid numerical instabilities at the surface �see section ����� The

study of near�breaking phenomena and demonstration of the numerical method for

this type of problem remains a subject for future research�

��� Numerical discretization

����� Navier�Stokes equations

Our numerical approach follows the method developed by Zang et al� �	���� that

descends from the methods of Kim and Moin �	���� and Harlow and Welch �	����� To

discretize the momentum equation we apply the explicit �nd�order Adams�Bashforth

�AB�� algorithm to the convective terms and the o��diagonal viscous terms� with the

implicit Crank�Nicolson scheme for the diagonal viscous terms� The addition of the

free surface to Zang�s method requires a convective grid��ux term which accounts

for the convective motion of the grid� This term is discretized with a second�order

approximation using the volume �ux of the grid between the time �n� and �n $ 	�

physical space positions for each cell face and the time �n� velocity
� The pressure is

removed from the momentum equation in the predictor stage of the fractional�step

method and a numerical pressure variable ��� is de�ned and computed in the solution

of a Poisson equation� Second�order accurate approximate factorization is used on

the left hand side of the discretized momentum equation for increased computational

e�ciency� The resulting system can be presented as��

�Note that use of a multi�step discretization such as AB� for the grid �ux would not be consistent
since the grid movement is an arbitrary numerical e
ect between two time steps and is not required
to be continuous with previous time steps�

�For clarity� we will drop the overbar notation for �ltered variables in discrete equations and use
� instead of � to indicate discrete derivatives�
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	� predictor step�

�I �Dn��

� � �I �Dn��

� � �I �Dn��
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�� pressure Poisson equation�
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The use of time �n $ 	� metric terms in the source of the predictor� equation ������

is allowable as our numerical method solves for the time �n $ 	� free surface position

and the curvilinear grid prior to the solution of the predictor step� The last term in

equation ����� is applied so that the velocity uni on the left�hand�side of the predictor�

equation ���	�� is multiplied by the time �n$	� inverse Jacobian during the derivation

of the discrete equations� This prevents the appearance of the time �n� Jacobian in

the corrector step and the pressure Poisson equation� and provides for a simpler

implementation�
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Discrete operators from equations ���	� through ����� are de�ned as�
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where � � 	� �� � with no summation�

DE � � �
�

��q

�
�J��Gqr �

��r
� �

�
q �
r

�����

DI � � �
�

��q

�
�J��Gqr �

��r
� �

�
q
r

�����

Ci � � �

��q

�
J��U qui

�
���	��

Bi � � � � �

��q

n
J��Sq

i � �
o

���		�

Qi �
�

��q

� �
J��  Xq

�n� �
� uni

�
���	��

In the operator Qi� we compute
�
J��  Xq

�n����
as the volume swept out by the *q�

side of a cell as the grid moves from the time �n� to the time �n $ 	� positions� An

alternative approach is to use equation ���	��� to write the grid �ux in terms of the

surface metrics �Sq
j � and the motion of the grid points at the centers of a cell face

such that� �
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j
�n���

� �
xn��

j � xnj
�

���	��

The e�ect of the moving grid is carried in the grid velocity term �Qi� which is the

net contravariant �ux of physical space through the sides of a control volume cell as

viewed from computational space� The grid �ux is a part of the source term for the

computation of the intermediate �u�� velocity� but does not explicitly appear in the

pressure Poisson equation or the corrector steps� Therefore� the Poisson solver and

corrector steps are only indirectly a�ected by the moving grid�

����� Kinematic boundary condition

The curvilinear kinematic boundary condition� derived in section ��� is�

�H
�t

� U
� � U

��H
���

� U
��H
���

$ L�

�
U

�
�H

�
$ L�

�
U

�
�H

�
���	��
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To discretize the kinematic boundary condition� we apply a �th�order Runge�

Kutta method for integration in time with the �th�order upwind di�erencing of Ko�

mori et al� �	���� for spatial derivatives� We consider the time �n� curvilinear grid to

be �xed with respect to time and require that it be boundary��tted to the time �n�

free surface� Thus� at the surface�

H�n� � ��
�n�





surface

� constant ���	��

The gradients of the time �n� free�surface height relative to the �� and �� curvilinear

coordinates will disappear� since�

�H
��q

�n�

�
���

��q

�n�

� � � q � 	� � ���	��

The resulting RK� discrete system is�

k � �tU� ���	��

�k � �t

�
U� � U�

�

�k

���
� U�

�

�k

���
$

	

�
L�

�
U�� k

�
$

	

�
L�

�
U�� k

��
���	��

�k � �t

�
U� � U�

�

��k

���
� U�

�

��k

���
$

	

�
L�

�
U�� �k

�
$

	

�
L�

�
U�� �k

��
���	��

�k � �t

�
U� � U� �

�k

���
� U� �

�k

���
$ L�

�
U�� �k

�
$ L�

�
U�� �k

��
������

Hn�� � Hn $
	

�

�
k $ ��k $ ��k $ �k

�
����	�

where a spatial derivative at location i is discretized as�
U
�k

��

�
i

�
Ui

��

�
ki�� � �ki�� $ �� �ki�� � ki��� $ �ki�� � ki��

�

$
jUij
��

�
ki�� � �ki�� $ 	�ki�� � ��ki $ 	�ki�� � �ki�� $ ki��

�

������

and the discrete Leonard stress operator is�

L� �U�� k� � U�
�k

���
� U

� �k

���
������

To obtain the time �n $ 	� physical space position of a particle on the surface

after numerical solution of equations ���	�� through ����	�� we note that�

�xi � ���
�xi
���

� i � 	� � ������
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which can be discretized as�

xn��
i � xni $

�
Hn�� � Hn

���xi
���

�n

������

This system provides a method for explicitly updating the free surface position from

time �n� to �n$	�� In the simulations presented in chapters � through �� the Leonard

stress operators were not used for reasons discussed in section ������

����� Dynamic boundary condition

Tangential components of dynamic boundary condition

The tangential components of the dynamic boundary condition are used to obtain

the tangential velocities on �	� the free surface �for use in integrating the kinematic

boundary condition�� and ��� the numerical ghost points outside the free surface

�for use in the boundary conditions on the predictor step of the solution method��

We experimented with linear� quadratic� and cubic implementations of the boundary

conditions� and found the simple linear approach worked best when the boundary

layer was well resolved� This follows the advice of MacCormack �	���� who cautions

against the use of higher order interpolations�extrapolations onto a boundary for

values that feed back into a simulation� Such extrapolations can amplify numerical

oscillations in the solution and erroneously reintroduce the ampli�ed error in following

time steps�

The linear approach can be presented as�

U�
surf � U�

surf� �
�

$
	

�

�U�

���






surf

� � � 	� � ������

where the subscript notation �surf� indicates the value at the free surface and the

notation �surf � 	��� indicates the value at the center of a cell face for the �rst cell

inside the surface� The gradient of U� across the boundary is found from a discrete

implementation �using central di�erences� of the tangential dynamic boundary con�

dition� equations ���	��� and ���	���� The U� component at the center of the cell face

on the free surface is computed directly in the corrector step� equation ������ from

the computed pressure �eld and the U�� value at the surface�
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Computation of contravariant velocities on the faces and centers of the ghost

cells outside the free�surface is accomplished in a similar fashion� Once the contravari�

ant velocities are computed� the three components of the Cartesian velocity must be

calculated at the centers of the ghost cells outside the free surface� These values pro�

vide part of the boundary condition for the u� estimated velocity computation using

the approach of Kim and Moin �	����� The Cartesian velocities for each ghost point

are obtained by inverting the � � � matrix of metrics that relates the Cartesian and

contravariant velocities� Since

U q �
��q

�xi
ui summation on i only ������

it follows that

ui �

�
��q

�xi

	��

U q summation on q only ������

Normal component of dynamic boundary condition

The normal component of the dynamic boundary condition� equation ���	��� is dis�

cretized using central di�erence operators� This provides a Dirichlet condition on the

modi�ed physical pressure �p�� A subtle point that is overlooked in some of the liter�

ature is that the numerical pressure variable ��� is an approximation of the physical

pressure that may not be of the same order of accuracy as the solution method� The

relationship between the numerical and physical pressure variables is a function of

the discretization method� and is given by equation ����� for the present approach� In

general� it is not mathematically rigorous to simply substitute � for p in the dynamic

boundary condition �or any other pressure computation�� However� our experience

has been that it is in keeping with the order of accuracy of the simulation method for

the �ows investigated� In test simulations we computed the di�erence between the

right�hand and left�hand sides of the p�� relation� equation ������ with the result that

the di�erence was always of the order �t� or smaller� This conclusion was also reached

by Calhoun�� who conducted a more detailed analysis by numerically integrating the

p�� relation in a �ow with turbulent separation over a wavy boundary�

�R� Calhoun� Env� Fluid Mech� Lab�� Stanford Univ�� personal communication �������
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The normal component of the dynamic boundary condition is used as a Dirich�

let boundary condition on the pressure in the solution of the Poisson pressure equa�

tion� To be numerically consistent in the discretization� all the terms in the normal

component of the dynamic boundary condition� equation ���	��� should be time �n$	�

values� However� unlike a no�slip boundary� the velocity on the free surface at time

�n$ 	� is not known a priori� A precise discretization would involve substituting the

contravariant corrector step� equation ����� into the dynamic boundary condition to

change the Un�� values into U� values plus �n�� gradients� This boundary condition

on � includes both � and second derivatives of �� changing the form of the boundary

condition and making implementation signi�cantly more complicated �especially for

use with a multigrid solver��

Two approaches could be used to obtain formally �nd�order accurate dis�

cretizations of the dynamic boundary condition� equation ���	���� in terms of time

�n� variables while retaining a simple Dirichlet pressure boundary form� First� we

could use the contravariant corrector step� equation ������ along with a Taylor series

expansion for the pressure to write�

�U q�n��
� U�q � �t

�
Gqr

J��

��

��r

�n

$ O ��t�� ������

Substituting equation ������ into a discretization of equation ���	��� provides a

Dirichlet boundary condition on the pressure in terms of the U� velocities and second

derivatives of the time �n� pressure variable� This has the disadvantage of feeding

numerical errors in the time �n� pressure computation back into the computation of

the time �n$	� pressure boundary condition� Such feedback can induce an undesirable

numerical oscillations in the pressure �eld�

An approach �used in the present work� that does not have feedback of the

time �n� pressures into the boundary condition requires a Taylor�series expansion in

for each velocity term on the right�hand side of equation ���	���� so that the resulting

dynamic boundary condition is�
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�n��
S� �

zs�

�Fr��
$ �M �n���	

$
	

Re

��
� �

�U�

���

�n�

$
G��

J��

�
U� �

���

�
J��G��

�
$ U� �

���

�
J��G��

�	�n���
�

$
�t

Re

�
�
�

���

�
U��n� � U��n���

�

$
G��

J��

�
U��n� � U��n���

�
�

���

�
J��G��

��n�

$
G��

J��

�
U��n� � U��n���

�
�

���

�
J��G��

��n� �
$ O ��t�� ������

In our simulations� 	�Re � O ��t�� Without loss of accuracy� we can neglect

terms of order ��t�Re� in our second�order method��� The discrete normal dynamic

boundary condition becomes�

�n��
S� �

zs�

�Fr��
$ �M �n���	

$
	

Re

��
� �

�U�

���

�n�

$
G��

J��

�
U� �

���

�
J��G��

�
$ U� �

���

�
J��G��

�	�n���
�

����	�

Implementation of the Dirichlet pressure boundary condition in the multigrid

solver is accomplished using a linear approach that is consistent with the linear pro�

longation�restriction operators of the multigrid method developed by Zang �	����� In

Zang�s approach� the velocities on physical boundaries are considered to be known a

priori so pressure boundary conditions are only required when a grid is not boundary�

orthogonal��� To implement the pressure boundary condition� we �rst obtain the con�

travariant estimated velocity normal to the free surface �U��� using a linear average

of the interior and ghost point u�i velocities and the boundary metrics� This pro�

vides the U� on the boundary needed for the pressure Poisson equation source term

�	This is an improvement over the P � � boundary condition �used by many authors� that is
O ���Re� or O ��t� accurate�

��Where the boundary velocity is known and the grid is not boundary orthogonal� the pressure
boundary condition is an O ��t� e
ect�
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�see equation %��	&�� The primary di�culty in implementing the pressure boundary

condition is that the boundary condition is de�ned on the edges of computational

cells while the pressures in the interior are de�ned at the centers of computational

cells� Our implementation uses the pressure at the center of the �rst cell inside the

boundary and the boundary condition pressure to compute a ghost point pressure

using linear extrapolation� The ghost point pressure appears in the discrete stencil

for the left�hand�side of the pressure Poisson equation and thus provides for e�cient

implementation in the multigrid solver�

��� Summary of the numerical method

	� Use RK� and �th�order upwind discretization of the kinematic boundary condi�

tion� equations ���	�� through ������ to advance the free surface from time �n�

to time �n $ 	��

�� Compute grid and metrics for time �n $ 	� grid using the Poisson equation

method from the �DGRAPE�AL code�

�� Solve for u�i at center of cells using AB� with quadratic upwind interpolation

�QUICK� Leonard %	���&� discretization for convective terms� CN� for diagonal

viscous terms� and approximate factorization for the implicit solution� This

applies a vectorized tridiagonal solver to equation ���	��

�� Use linear interpolation to obtain the normal component of U� on each cell

face���

�� Solve the Poisson pressure equation for the pressure variable � using the �D

vectorized multigrid solver developed by Zang et al� �	���� which has been

adapted for use with a Dirichlet pressure boundary condition� The normal

component of the dynamic boundary condition is used to provide a Dirichlet

pressure boundary condition on the free surface�

��Higher order interpolation methods were tested� but did not signi�cantly improve the accuracy
of the method� Upwind�biased interpolations are a problem for the U� interpolations since they
require a signi�cant number of �IF � THEN� statements in the implementation� This reduces the
ability of the interpolation method to be vectorized and slows the computation of each time step�
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�� Using the Cartesian corrector step� equation ������ compute the time �n $ 	�

Cartesian velocity �ui� at cell centers�

�� Using the contravariant corrector step� equation ������ compute the time �n $ 	�

contravariant velocity components normal to cell surfaces� U q�

�� Using the tangential components of the dynamic boundary condition� equa�

tions ���	��� and ���	��� along with equation ������� compute the tangential

components of contravariant velocity U q on free surface and ghost points� This

provides the velocities needed to advance the free surface in the next time step�

Transform the contravariant velocities into Cartesian velocities for use in the u�

boundary condition in the next time step�



Chapter �

Numerical implementation issues

��� Introduction

The development and implementation of a moving�grid simulation method presents

a number of obstacles to the numerical analyst� The solutions to some problems are

obvious
 in other cases the solutions may only be found through laborious numerical

experimentation� This chapter will present a summary of some of the issues encoun�

tered in the development of the present simulation method� along with a description

of how the problems were addressed�

��� Grid storage and interpolation

A complication to the grid generation process is the requirement to produce a double�

dense grid for a �nite�volume simulation� In general� whether using a staggered or

a non�staggered grid in the discretization of the Navier�Stokes equations� some grid

metrics are needed on the control volume faces as well as at the center of the control

volume cells� This requires the computation of a �eld of �N � �N � �N grid points

for a simulation with N � N � N computational cells� The obvious �but wrong�

solution is to compute a single�dense grid and the metrics for the centers of the

control volumes� then obtain the metrics on the faces by interpolation from the center

metrics� Experience in the numerical grid�generation community has shown this leads

to unacceptable errors �Thompson et al� %	���&�� It is likely that this approach could

be successfully applied when combined with higher�order stencils for computing the

metrics� However� metric computation in the present work �and most others� is

through second�order central di�erences� which cannot be interpolated and maintain

second�order accuracy in the simulation� An acceptable alternative that reduces the

grid generation e�ort is used in the present work� a single�dense grid is generated

��
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using the Poisson method� while the double�dense grid is computed using cubic�

interpolation from the single�dense grid� Then� the metrics are computed directly

on the double�dense grid without interpolation� This substantially reduces CPU time

and storage requirements for the grid generation code� without degrading the accuracy

of the simulation� Cubic interpolation from the single�dense to the double�dense grid

ensures that the grid is smooth while limiting the overall computational e�ort� On

highly stretched grids� it might be necessary to use even higher orders of interpolation�

Note that the order of interpolation �for a moderately stretched grid� used to produce

the double�dense grid should be at least as high as the order of accuracy of the

simulation method� This follows from the grid generation requirement of Thompson

et al� �	���� that the metrics should be computed using at least of the same order as

the di�erences that are used in the �ow solver�

��� Grid smoothness at boundary edges

One of the di�culties in generating a good grid for an arbitrary free�surface deforma�

tion is that� in general� the free surface is not required to be orthogonal to the bound�

aries of the domain� Thus� grid generation codes have di�culty near the boundaries

as they try to make the interior grid lines orthogonal to the surface� while the bound�

ary grid lines are not� The grid generation process has a choice of either �	� accepting

a non�smooth grid near the boundaries while retaining boundary�orthogonality up

to the last point� or ��� relaxing the boundary�orthogonality condition and obtain�

ing grid smoothness� These approaches are predicated on the usual assumption of

a grid�generation method that the boundaries are �xed a priori� Both approaches

have a tendency to introduce numerical oscillations in the free surface position at the

boundaries� In e�ect� inlet and outlet boundaries become a source of small amplitude

wave forcing which can dominate the turbulent surface deformations�

The simplest approach to controlling this e�ect is to compute simulations in a

wave�following system such that the wave crest or trough is �xed at a boundary� Our

experience shows that it is preferable to �x the wave trough at the boundary since it

�This ensures that the point locations are more accurate than the desired metric accuracy� It
might also be acceptable to use quadratic interpolation� but this could lead to a directional bias in
the grid�
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has smaller curvature than the crest� A more �exible approach has been developed in

the present work for use in simulations with periodic boundary conditions� This new

approach is based upon the recognition that the grid motion terms in the discrete

Navier�Stokes equations can be applied at a moving boundary in the �ow as well as

at the moving free�surface� Thus� we are free to adjust periodic in�ow and out�ow

boundaries so that boundary orthogonality and grid smoothness at the free�surface are

obtained� The only limitations to this method are �	� the motion of a set of periodic

boundaries must be identical� and ��� the grid motion term at the boundaries must be

included in the solution method� Although it would be preferable to have the motion

of the boundaries computed in the Poisson grid generation method� this did not seem

practical for the �DGRAPE�AL code� Instead� the standard grid generation method

was applied using �at surfaces on periodic boundaries� and a post hoc adjustment

was made to add curvature to the periodic boundaries in order to obtain the desired

grid smoothness and boundary orthogonality� The implementation of this method

involves interpolating a smooth boundary position from the grid points on the inside

of the domain�

��� Grid stretching

The 
correct� choice of grid spacing depends on �	� the number of grid points in the

simulation� ��� the minimum spacing required to resolve the boundary layer� and ���

the maximum allowable stretching of the grid� The �rst of these is generally �xed by

the available computational power
 the second is determined by the choice of �ow
 the

third requires numerical investigations to determine the e�ect of the stretching that

results from the input conditions� For the numerical method developed by Zang et al�

�	����� grid stretching has a direct e�ect on the truncation error through the multigrid

pressure Poisson solver �which uses linear interpolation of metrics between multigrid

levels�� Grid stretching must be carefully chosen to prevent the truncation error in

the multigrid interpolation from becoming higher than second order� Grid stretching

problems are manifest in the convergence rate for the multigrid pressure Poisson

solver� Inconsistency between the stretched grid metrics and the linear interpolations

between multigrid levels causes a small �but di�erent� error signal to be introduced at

each multigrid level� Because the error signal is di�erent on each level� the multigrid
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method cannot e�ciently smooth it out� Additional problems can arise due to ill�

conditioning of the pressure Poisson equation� The coe�cients of the pressure Poisson

equation �see eq� %���&� are the Gqr metric terms de�ned in equation ���	���� Grid

stretching can result in a matrix for the Poisson solver with large disparities in the

magnitude of the metric terms between �ne grid and coarse grid areas� This ill�

conditioning can result in slow convergence of the Poisson solver�

Rai and Moin �	��	� derived the allowable stretching for a grid in a second�

order accurate �nite�volume code� Their results showed that stretching was limited

by a requirement that the second derivative of the grid spacing must be smooth and

continuous� Our experience has been that in practice� the grid stretching is also

limited by the magnitude of local stretching relative to the grid size� Arm�eld� has

shown that a �rst�order truncation error can arise for stretching that exceeds 	�+ of

the local grid spacing� This limit is consistent with experience of numerical researchers

at the Environmental Fluid Mechanics Laboratory at Stanford University��

��� Wave�following coordinate system

In simulating a turbulent channel �ow with a progressive wave� it is desirable to use

a wave�following coordinate system to �	� minimize boundary motion for stability

reasons described in section ���� and ��� so that phase�averages of �ow variables at

di�erent points in time can be easily compared� Implementation of a wave�following

coordinate system requires that the no�slip boundary at the bottom of the domain

be given a velocity exactly equal to and opposite of the wave speed� The di�culty

in implementing a wave�following coordinate system is that the exact velocity of the

wave is not known a priori� If we are conducting a simulation of a wave without a

current� we can get close to the wave speed using Stokes theory taken to the third

order�� Unfortunately� obtaining a close approximation of the wave speed does not

ensure that the wave will remain �xed in the coordinate system� If the wave does

�S� Arm�eld� Dept� of Mech� Eng�� Sydney Univ�� Australia� personal communication �������

�L� Yuan� Env� Fluid Mech� Lab�� Stanford Univ�� personal communication �������

�To the second�order� the wave speed using Stokes expansions is identical to �rst�order theory�
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not remain �xed in the domain� then computing temporal means of phase�averages of

simulation data requires spatial interpolation since the position of the grid points is

changing relative to the wave phase� This problem becomes more complicated when

a surface wave is propagating over a turbulent current� Superposition of the wave

speed without a current and the bulk current speed provides a rough approximation

of the actual wave speed� but again� this is not su�cient to ensure that the wave will

remain �xed in the domain�

Our problem is that we need to move the domain at the exact numerical

wave speed� The solution taken in the present work is to compute the wave speed

at each time step �based on the position of the wave crest� and adjust the bottom

boundary speed to coincide with the wave speed� In e�ect� this is an adjustment of

the speed of our moving frame of reference� This approach is potentially a source of

trouble since it implies that we are no longer in an inertial reference frame and our

governing equations are not formally valid� In actual use� the change in the speed of

the reference frame is initially of the order of a few percentage points per time step�

Over the �rst few wave periods� the reference frame undergoes an oscillatory decaying

adjustment about the actual wave speed as the wave�induced velocity �eld adjusts

from the irrotational initial conditions� After the �rst three wave periods� the changes

in the reference frame speed in each time step are less than ���	+ of the wave speed�

Since the e�ect remains oscillatory rather than cumulative� the small changes from

one time step to the next do not appear to be of any practical signi�cance in the �ow

computation� When su�cient computational power is available� a �xed coordinate

system with a translating wave can be simulated and compared to the wave�following

system to quantify the e�ects of the reference�frame oscillations� This is not currently

possible due to stability limitations on simulations using a �xed reference frame �see

section �������
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��	 Boundary condition on the pressure

In section ����	 we de�ned the modi�ed pressure as

p � P

�
$ g� x� ���	�

so that our pressure Poisson solver uses a boundary condition� equation ������� which

contains� �	� the hydrostatic pressure� ��� the dynamic pressure� and ��� the gravity

body force� This approach presents a numerical problem for simulations with �nite�

amplitude surface waves� the di�erence between the hydrostatic pressure and the

gravitational body force can become the predominant pressure e�ect in the �ow �see

equation %����& and accompanying discussion�� This creates extra work for the Poisson

solver as it must propagate the hydrostatic pressure e�ect through the domain as a

part of the solution method�

As demonstrated by Mahadevan �	����� a preferable approach is to separate

the dynamic pressure from the hydrostatic pressure and the gravitational force so that

the Poisson equation only works on the dynamic pressure� The di�erence between

the hydrostatic term and the gravitational term can be computed directly from the

grid� Mahadevan�s implementation of this approach was on a simulation domain with

vertical grid lines so that the hydrostatic pressure was easily computed at any point

in the �ow from the height of the point on the surface directly above� The use of

a boundary�orthogonal grid complicates the implementation of Mahadevan�s method

because the curvature of the grid means that there is not a grid point on the surface

located exactly over a grid point in the �ow� Because the hydrostatic�gravitational

force term can be a primary driver for the velocity �eld in a �ow with a �nite�

amplitude wave� one must be careful of any approximations made in computation of

the hydrostatic�gravitational balance� Errors in computing this term can become a

direct source of spurious advective motion in the simulation�

Because of these problems� the present work has not implemented Mahade�

van�s method� However� experience with the slowness of the Poisson solver for the

modi�ed pressure leads us to the conclusion that Mahadevan�s method would be ad�

vantageous� Accurate implementation of Mahadevan�s method for three�dimensional

motion of the free surface with a boundary�orthogonal grid is not a trivial matter

since it requires interpolation of the free surface position to compute a hydrostatic
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height for the center of every grid cell in the �ow�� Linear interpolation of the free sur�

face will introduce an unacceptable error into the hydrostatic term� while quadratic

interpolation will introduce a directional bias into the surface interpolation� Local

cubic interpolation has the potential of introducing unwarranted numerical oscilla�

tions into the free surface� It would seem that the only reasonable approach is to use

two�dimensional cubic splines that will ensure the smoothness of the surface and the

required order of accuracy� The splines themselves need only be created once �and in

fact are already a part of the present code used in the evaluation of the surface mo�

tion�� The di�cult part of the implementation is developing an e�cient� vectorizable�

computational method to decide which splines are to be used to evaluate the surface

position above each point� The simplest algorithm that could be used �checking each

point in the volume and searching the surface for the appropriate spline location�

would require an order of N� operations with 
IF � THEN� statements that would

not vectorize�

��
 Conservation of space

In an interior �ow simulation� we are typically concerned that our simulation should

conserve mass according to the continuity equation� Non�conservation of mass �even

at the level of numerical truncation error� results in spurious source terms in the

momentum equation that can destroy numerical accuracy� For a simulation with a

moving grid we must recognize that we are changing our computational space both

on a local scale �as grid cells expand� contract� and translate�� and on a global scale

�as the free surface moves in response to the �ow kinematics�� It is obvious that on

a global scale� any net change in the total volume of the domain must be exactly

balanced by a net in�ow or out�ow of �uid� It is less obvious that in any change to

a local grid cell� the �ux of the sides of the grid cell �an important convective term�

must be exactly balanced by the change in the volume of the grid cell�

�The ability to compute directly the hydrostatic e
ects on a grid with vertical grid lines is an
advantage in the use of a non�boundary orthogonal grid that has not been explored in this research�
It would appear that for waves of limited steepness� the ability to easily compute a restricted grid
and decompose the hydrostatic pressure term should compensate for the disadvantages caused by
the complications in the dynamic and kinematic boundary conditions and grid skewness for a non�
boundary�orthogonal system�
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����� Local space conservation

As discussed by Thompson et al� �	���� and Demirdzic and Peric �	����� local con�

servation of space can be derived in the curvilinear form shown in equation ���		���

which could be written in a discrete form as�

�

��

�
J��

�
� �

��q

�
J��  Xq

�
�����

This requires that the change in the inverse Jacobian of a cell must be identical to the

divergence of the grid �uxes� The appropriate implementation of this can be written

as� �
J��

�n��
�

�
J��

�n
$ ��

�

��q

�
J��  Xq

� 





n��

n

�����

Once we have computed the grid volume �ux �J��  Xq� on each cell face for the mo�

tion from the time n to n $ 	 grids� the inverse Jacobian is updated from equation

����� rather than recomputed directly from the grid� Failure to use this approach

introduces a spurious source term into the momentum equation due to the inconsis�

tencies between the computed cell volumes and the grid �uxes� In essence� the local

conservation of space requires that any numerical approximation in computing the

grid �ux must be exactly duplicated in the computation of the grid cell volume� If

this condition is not met� a moving grid simulation cannot maintain the desired order

of accuracy� To demonstrate that our moving grid method is second�order accurate

in both space and time� numerical simulations of a decaying vortex �without a free

surface� have been conducted and are reported in Appendix A�

����� Global conservation of volume

In the temporal advance of the free surface using the kinematic boundary condition

�described in section ������ we do not make any global limitations on the movement

of the surface� As pointed out by Ferziger	� an undesirable numerical event that is

not explicitly prevented can be expected to always occur� Indeed� we �nd that our

simulation method may have a tendency to either globally increase or decrease its total

volume in each time step in a small amount that is consistent with the numerical error

�J�H� Ferziger� Dept of Mech� Eng�� Stanford Univ�� personal communication ����	��
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of the method� We monitored this e�ect in test simulations and the increase�decrease

in each time step was less than O �	��	� times the total volume of the grid� If the

change in the surface height simply oscillates around the true mean� then it can be

argued that global conservation is achieved in the mean� Such local oscillations do

not seem to have any signi�cant kinematic e�ects on the �ow �eld� However� where

the surface was deformed by �nite�amplitude progressive waves� our method had a

tendency to produce a mean rise in the surface elevation� For a ���� time step

simulation� this could result in a ���+ net change of the mean free surface height for

the type of domain simulated in this work� We believe this bias in the free surface

advance is due to the upwind biased discretization used in the kinematic boundary

condition combined with the natural asymmetry between the forward and trailing

sides of a �nite�amplitude wave� In simulations of standing waves� and free�surface

open�channel �ows without �nite�amplitude waves� we did not observe accumulations

of error in the surface position� Instead� the small error oscillated about the mean�

This problem could be �xed in a formal manner by invoking a Green�s function

for global volume conservation as part of the governing equations� This creates signif�

icant complication in the solution of the kinematic boundary condition� and does not

appear to be necessary where an explicit method is used for the free�surface advance
�

We argue that the change in the mean free surface height is simply a numerical artifact

that is in the range of the truncation error for our free�surface advance� Therefore�

with no loss in accuracy �and no change in the kinematical behavior of the surface��

we are free to adjust the mean position of the free surface after the solution of the

kinematic boundary condition to obtain global conservation� That is� once we have

computed the new free surface position� we can integrate the volume under the surface

and compute the global non�conservation� This e�ect can be distributed evenly over

the entire surface so that the surface shape is not changed� merely its mean position�

This is done to adjust the time �n $ 	� surface before the time �n $ 	� velocity �eld

is computed� so the �ow solver always sees a wave shape that satis�es the discrete

kinematic boundary condition and a �ow volume that numerically satis�es a global

�Note that for a fully�implicit method where the kinematic boundary condition is solved in an
implicitly�coupled system with the Navier�Stokes equations� the Green�s function approach would
be necessary� This is because the kinematics at the time �n � �� step are being used in the free
surface advance� so a change in the global volume is re�ected in the kinematics of the time �n� ��
�ow �eld�
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conservation constraint� This approach is consistent with our study of periodic and

wall�bounded motions
 the issue is not so clear for non�periodic in�ow and out�ow

boundaries�

��� Bottom boundary�layer resolution

The simulation of open�channel free�surface �ows with surface waves is not the proper

venue for investigating the performance of subgrid�scale turbulence models with re�

gards to resolving boundary�layer structure at the channel bottom� Due to the com�

putational demands of the moving grid method it is simply not possible to apply a

large number of grid points and compute simulation runs for a range of conditions

and turbulence models as would be required for a complete investigation� For the

purposes of the present research� the bottom boundary layer can be considered as

simply the mechanism by which we produce sheared turbulence that interacts with

the wave �eld� so that the precision with which the production and dissipation of

turbulence in the bottom boundary�layer is simulated is not of primary importance�

However� it is worthwhile to record our experience and observations of the perfor�

mance of the subgrid�scale model as a reference for future work on the interaction of

waves and boundary layers�

Our simulations placed the greatest number of grid points in the vertical direc�

tion to allow resolution of the shear layers at the free�surface and bottom boundaries�

The number of grid points in the free�surface boundary layer varied from � to 	�

depending on the speed of the wave� For the bottom boundary layer� we were able to

place � grid cells within �ve z� units �where z� � z�Re��� and three grid cells within

z� � 	� While this resolution is close to DNS scales in the vertical direction� it was

achieved at the expense of spanwise and streamwise resolution� In the spanwise di�

rection the grid spacing was about 	� z� units� while the streamwise grid spacing was

approximately �� z� units� Similar grid spacing was used by Salvetti et al� �	���� in

their simulations of decaying turbulence in an open�channel with a rigid� free�slip lid�

The coarse resolution in the spanwise and streamwise directions presented

problems in accurately resolving the slow�speed streaks in the bottom boundary layer

that are a ubiquitous characteristic of turbulent �at�plate boundaries �see Nezu and
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Nakagawa %	���& for a comprehensive discussion of this phenomena�� Both experi�

ments and well�resolved DNS simulations have found that the slow�speed streaks in

the bottom boundary layer are typically� �	� transient in time� ��� �nite in streamwise

length �on the order of 	��� z� units�� ��� narrow in the spanwise direction� and ���

spaced approximately 	�� z� units apart in the spanwise direction� With a spanwise

resolution of 	� z�� the physical spacing of the slow�speed streaks means that they are

only �ve grid cells apart in our computational domain� Given the gradients involved

in the slow�speed streaks� it is impossible for a second�order �nite�volume method to

accurately reproduce this phenomena in a space of only �ve grid cells�

In reviewing data from the simulations� we noted four problems related to

the bottom boundary layer� �	� wide streak spacing� ��� in�nite streak length� ���

temporal persistence of streaks� and ��� reduced dissipation� The spanwise spacing

of the slow�speed streaks in our simulations was approximately 	� grid cells �	�� z�

units�� This is better than the ��� z� unit spacing seen in the large�eddy simula�

tions of channel �ows by Moin and Kim �	����� and Horiuti �	����� but not as good

as the physically�accurate spacing seen in DNS simulations �e�g� Kim et al� %	���&��

The resulting slow�speed streaks were wider than those typically seen in the bottom

boundaries of well�resolved channel �ows� The coarse resolution �relative to the tur�

bulent scales� in the spanwise and streamwise directions and the short domain length

�	��� z� units� served to make the slow�speed streaks in our simulation in�nite in

length� There was insu�cient space in the computational domain for the streaks to

develop signi�cant spanwise 
wandering� as seen in DNS simulations and physical

experiments� As a result� when a streak crossed the periodic boundary� it wrapped

around on its tail and e�ectively re�initialized itself� The streaks became in�nite in

length� temporally persistent� and relatively stable in position�

Along with the instantaneous behavior of the slow speed streaks� we observed

that the mean �ow was faster than the results of either laboratory experiments or

DNS simulation would indicate for our applied pressure gradient� Since our simulation

produced the correct wall shear� it appears that the simulated �ow is not su�ciently

dissipative to match experiments and DNS simulations� The dynamic two�parameter

model �DTM� used in this simulation is currently being tested by Shah�� whose

preliminary results show that the model is not su�ciently dissipative� While the

�K� Shah� Dept� Mech� Eng�� Stanford Univ�� personal communication �������
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results of Salvetti et al� �	���� indicate that the DTM handles dissipation in decaying

sheared turbulence reasonably� they have shown �Salvetti et al� %	���&� that there

are di�erences between their LES and the Pan and Banerjee �	���� DNS that are

consistent with Shah�s conclusion� Problems in the DTM related to its ability to

simulate turbulent production in the boundary layer are under investigation�

Since the focus of the research has not been on the bottom boundary layer

e�ects of subgrid�scale modeling� we have not developed the simulation data that

would provide a conclusive evaluation of the DTM subgrid�scale model�� However� at

this point we can o�er a hypothesis as to why the DTM does not seem to be su�ciently

dissipative in our simulation� In the DTM� the scale�similarity term dominates the

Smagorinsky term in the dynamic modeling process� The scale�similarity term relies

on the grid�scale turbulent structures to produce an estimate of the subgrid�scale

dissipation and and energy backscatter� Thus it can argued that the ability of the

DTM to capture the correct dissipation is a function of the ability of the DTM to

obtain the correct grid�scale structures�

In the simulations of Salvetti et al� �	����� the DTM was used in a simu�

lation of decaying turbulence where the grid�scale structures were part of the initial

conditions��� With the correct grid�scale structures the method performed well� How�

ever� with a bottom boundary layer� the model must be able to create the grid�scale

structures as well as dissipate them� We have already seen that a coarse grid cannot

generate the correct slow�speed streaks in the bottom boundary layer��� To the extent

that we understand the production of turbulent structures through the 
burst� and


sweep� process� it appears that such production is tied to the slow speed streaks

and the development of hairpin vortices �Nezu and Nakagawa %	���&�� If our grid

resolution is too coarse to obtain the correct number and types of structures in the

boundary layer� then we are unlikely to produce the correct numbers and types of

�It appears the ongoing work of Shah as well as that of Salvetti may provide the answers�

�	The initial velocity �eld for Salvetti et al� ������ was an instantaneous velocity �eld from the
DNS simulation of an open channel �ow by Pan and Banerjee �������

��This is true with any coarse grid and is not related to the turbulence model used�
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grid�scale turbulent structures in the �ow��� This brings us back to the DTM� without

the correct grid�scale structures� the DTM is unlikely to produce the correct dissipa�

tion� Thus� it would seem that DNS levels of resolution are a requirement for regions

of turbulent production when using the DTM�

The success of other subgrid�scale models in obtaining the correct dissipation

in channel �ows may be a result of their reliance on the Smagorinsky eddy�viscosity

model rather than the Bardina�type scale�similarity model� In essence� the DTM may

be a victim of its own success� The results of Salvetti et al� �	���� leave no doubt

that the scale�similarity model can accurately reproduce both turbulent dissipation

and backscatter e�ects for a given grid�scale turbulence structure� and do so better

than a Smagorinsky�type model� However� Smagorinsky models are tied directly

to the strain rates through an eddy�viscosity rather than to the structure of the

strain�rates used in the scale�similarity term� Thus� it can be argued that for a

Smagorinsky model to obtain the correct dissipation requires the existence of the

strain�rates� but not the coherence of the structures� A Smagorinsky�based model that

is not producing enough turbulent structures may still obtain su�cient dissipation

through eddy�viscosity ampli�cation of the strain rates in the bottom boundary layer�

This would seem to indicate that application of the DTM requires DNS resolution

in the regions where turbulent structures are being produced� while allowing coarse

resolution in the mean �ow where the structures are being dissipated��

��� Simulation scaling limits

Most numerical analyses proceed by de�ning the characteristics of the �ow to be

investigated� followed by a determination of the appropriate grid and time scales

suitable to resolve the �ow� This in turn leads to a statement of the required computer

memory and speed to conduct a simulation� We will take an unconventional approach

and �rst de�ne the capabilities of our computer and then investigate the limits that

��This is not to say turbulent structures will not be produced� but rather that there will not be
enough of them or perhaps they will be of the wrong scale�

��The �ne�coarse grid resolution requirement is probably better obtained using domain decom�
position methods rather than grid stretching�
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this places on our �ow simulations� This approach is desirable because a free�surface

simulation sees a number of limitations that do not occur in an interior �ow� and it

is not obvious how the limitations interact� The �ow domain� mean �ow� wave height

and gravitational force can all be varied independently� and it is not a trivial matter

to �nd a combination which can be practically and accurately simulated�

For the present work we had available a Cray J�� mini�supercomputer with

	�� mega�words �MW� of memory� Because we shared this computer with a number

of other users� there were limitations on the amount of memory we could access� In

theory� we had available up to �� MW� which would allow us to conduct a simulation

with approximately �� � �� � �� grid points� The large memory requirements were

partly due to the research nature of the code which �for debugging purposes� made it

desirable to retain some variables that could have been dropped from memory after

use� However� even the elimination of these variables would leave the code demanding

almost twice the memory of an equivalent non�moving grid code� The extra storage

requirements for two time levels of the grid and metrics is the source of the memory

problem for moving grid codes� Future research should include development of inno�

vative methods to handle computation of grid motion so as to minimize the storage

required�

In theory we could run simulations as large as ��� ��� ��� but in practice we

were limited to simulations of ��������� There were two reasons for this limitation�

the �rst being a matter of computer architecture and system usage� this was the

largest grid we could run and keep our memory usage below 	� MW� which allowed

us to run our simulations in a queue on the Cray J�� that had fast turnaround times

and very little time spent swapped out of memory during job sharing� The second

reason to keep our grid scale at the ��� ��� �� scale was a matter of computational

time� The combination of the Poisson solver for the pressure term in the Navier�

Stokes equations and the Poisson solver for the grid made for a simulation method

whose computational�time per time�step increased dramatically as the number of grid

points increased� This was a special problem for the grid generation method because

the Poisson solution for the grid requires iterative evaluation of the source terms of
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the grid Poisson equation��� The computational time required for the grid generation

method was a function of the number of grid points� the local and global curvatures

of the free�surface� and the amount of free surface motion from one time step to the

next� Unfortunately� there does not seem to be any practical way around these limits�

so larger simulations simply require larger computers�

����� Summary of scaling limitations

Because our numerical approach is explicit in the convective terms� the simulation

scaling is limited by the convective Courant�Friedrichs�Lewy �CFL� condition which

can be written in a general form as�

U �t

�X � C �����

where U ��t��X are velocity� time� and grid scales in the simulation� and C is a

constant that is generally O�	�� but whose exact value depends upon the numerical

method used for the convective terms�

In addition� our simulation scale is limited by� �	� a convective CFL condition

on the grid motion
 ��� a gravitational stability condition on the minimum Froude

number
 ��� a minimum grid�spacing requirement to resolve free�surface boundary

layer
 and ��� a maximum limit on the bulk Froude number� Each of these limits is

discussed in detail in the following sections�

����� Surface wave characteristics

Before considering the simulation scaling limits� it is useful to de�ne the characteristics

of large and small�scale progressive waves on a free surface�

Consider an open�channel of depth D with a progressive surface wave having

a wavenumber K� a frequency "� and an amplitude A that are imposed at t � � with

��A full investigation of convergence rates vs� number of grid points has not been completed� but
our experience has shown that the number of Poisson iterations required to adequately smooth the
grid increases with the number of grid points� Thus� there are more computations per iteration� and
more iterations per time step� It could be argued that this is nominally an N� relationship�
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an appropriate �uctuating velocity �eld� As the numerical solution develops� smaller

parasitic waves �gravity and�or capillary waves depending on scaling� will appear on

the surface� The smallest resolvable parasitic waves on the free surface may be said

to have characteristic amplitudes a� wavenumbers k� and frequency ��

The simulation domain is scaled so that the primary waves are gravity waves

which obey the dispersion relation�

"� � gK tanhKD �����

The secondary waves on the surface may be gravity or capillary waves depending on

the wavenumber and surface tension coe�cient �	�� These waves are small in relation

to the depth so they can be considered deep�water waves� with the dispersion relation�

�� �

�
gk $

	k�

�

�
�����

If we non�dimensionalize by a length scale L� the gravitational constant g� a time

scale T � and take the velocity scale to be the ratio of the length scale to the time

scale� then

" �
"�

T �����

� �
��

T �����

K �
K�

L �����

k �
k�

L ���	��

D � D� L ���		�

	

�
� 	�

L�
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���	��

Froude and Weber numbers can be de�ned as�

Fr �
pL
T pg ���	��

We � 	

	�
�

�L�

	 T �
���	��
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Then in non�dimensional terms �but dropping the stars� equations ����� and �����

become�

"� �
K

Fr�
tanhKD ���	��

�� �
k

Fr�

�
	 $

Fr�

We
k�
�

���	��

The numerical simulation is governed by three non�dimensional parameters� the

Reynolds number� the Froude number� and the Weber number� However� since a

clean free surface with a constant surface tension is assumed and the velocity and

length scales are �xed by the Reynolds number and the Froude number �see section

������� the Weber number can be considered a function of the �uid rather than the

�ow� In a full simulation with gravity and capillary e�ects it is important to ensure

that the Weber number and the Froude number are scaled properly so as not to in�

troduce an unnecessary variable into the problem� This can be done by de�ning a


relative capillarity� for the smallest resolved waves� The square of the phase speed

�c� of a gravity�capillary wave can be written as�

�cgrav�cap�
� �

g

k
$

	

�
k ���	��

For a pure gravity wave we have simply�

�cgrav�
� �

g

k
���	��

so the relative capillarity �C� of a particular wave �
� could be measured as�

C� �
�
cgrav�cap
cgrav

��

� 	 ���	��

�
	

�g
�k��� ������

In non�dimensional terms�

C� �
Fr�

We
�k��� ����	�

where C� � � indicates a predominantly capillary wave� while C� � � indicates a

predominantly gravity wave�

This allows the dispersion relation for gravity�capillary waves� equation ���	���

to be written as�

�� �
k

Fr�

�
	 $ C�k

�

k��

�
������

The subscript 
 is used so that the relative capillarity is a function of a particular

wavelength that is used for scaling purposes�



CHAPTER �� NUMERICAL IMPLEMENTATION ISSUES ��

����� Grid motion CFL condition

As might be expected from the formulation of the grid motion in the convective term

of the momentum equation �see equation %��		�&�� stable numerical solution of the free

surface motion has an associated convective CFL condition� The normal approach

would be to consider the CFL condition as a limit on the time step and grid size for

a particular wave� The di�culty with this approach is that in setting up a simulation

of a turbulent channel �ow with a wave� both the CFL on the grid �associated with

the wave motion� and the CFL of the turbulent �ow need to be considered� Finding

a simulation set�up that satis�es both conditions for limited computer resources can

be a challenge� Our approach is to use the physics of wave theory to determine the

maximum wave slope that can be simulated for a given grid resolution and time step�

Of course� these are not the limits of the simulation method� but are the practical

limits associated with �nite computer resources and the convective stability of the

method� The limits are derived separately for �	� a �xed reference frame �where the

waves translate through the domain� and ��� a wave�following reference frame�

Fixed reference frame with translating waves

Consider the movement of the primary wave in relation to the numerical grid where

the wave moves through the domain �rather than a wave�following coordinate system��

Because we have formulated the moving�grid problem with a convective grid term�

there is a limit on the movement of the grid similar to the velocity CFL number

�U�t��X �� Experience has shown that to avoid instability we require that a grid

CFL number be less than 	���

 X �t

�X �
	

�
������

where  X is the scale of the grid velocity�

Because of the re�ned mesh near the free surface� this becomes an important

limit on the time step for movement of the free surface in a surface�normal direction�

The important scale of grid motion can be taken as the surface�normal velocity of the

free surface� In terms of a boundary�orthogonal coordinate system where Un is the

normal velocity and Z is the surface�normal coordinate�

Un �t

�Zmin
�

	

�
������
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In order to obtain an estimate of the surface�normal velocity we can apply linear wave

theory and a little trigonometry to write

Un 	 A" cos
�
tan��AK

�
������

or

Un �
A"p

	 $ A�K�
������

where A is the wave amplitude� The introduction of the wave amplitude into our

analysis of the grid motion CFL condition allows us to de�ne the maximum wave

slope AK that can be simulated with any particular combination of grid spacing and

time step� Since we have used linear �small�amplitude� wave theory� this can still be

only considered a rough guide to the grid resolution required to simulate a particular

wave� For large wave slopes or overturning waves� the grid scale and time step size

will undoubtedly be required to be smaller than this analysis would predict�

Applying equation ������ to equation ������ gives the grid CFL condition in

terms of the wave amplitude� wave number and wave frequency�

A"p
	 $ A�K�

�t

�Zmin
�

	

�
������

The CFL condition is an approximation so the denominator is ignored �being of O%	&��

If the primary waves are not shallow�water waves the hyperbolic tangent term can be

dropped from the dispersion relation� The grid CFL can then be written as�

A

p
K

Fr

�t

�Zmin
�

	

�
������

This can be seen as a limitation on the wave slope �AK� for a given set of simulation

conditions�

AK �
Fr
p
K

�

�Zmin

�t
������

The above inequality shows that for a practical simulation of �nite�amplitude waves

in a �xed frame of reference �where waves move through the domain�� we require

a small time step� a large Froude number� or a coarse grid� In section ����� it is

demonstrated that boundary�layer considerations mandate a �ne grid in the surface

normal direction� In section ����� it is demonstrated that the Froude number has a

maximum size limitation for subcritical �ows� It follows that for large wave slopes at

a given grid resolution� the time step will have to �ner than that required for small

wave slopes�
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Wave�following reference frame

The previous derivation is applicable to a computational domain that is not wave�

following� and demonstrates that there are strict time step limitations associated

with the �xed frame of reference and progressive wave motion� For a wave�following

domain the situation is di�erent since the primary movement of the grid is due to

small�scale waves� The previous limitation on the slope of the primary wave becomes

a limitation on the slope �ak� of the small�scale waves�

ak �
Fr
p
k

�

�Zmin

�t

�
	 $ C� k

�

k��

� �
�

������

In practice� this limitation is not severe since the ak of the resolved parasitic waves is

small��� Thus� the wave�following domain has a signi�cant advantage over the �xed

domain with regards to the grid motion CFL� Of course� there is no free lunch� a

wave�following system has velocities along the streamlines beneath the wave that are

the order of the primary wave speed �c�� Thus� the wave�following domain has a

convective CFL that can be written as�

c
�t

�Xmin
� O �	� ����	�

where Xmin is a minimum spacing scale in the streamwise coordinate system� Since

c � "�K� we can apply the dispersion relation� equation ������ Dropping the hyper�

bolic tangent term �which is generally O%	&�� this becomes

r
g

K

�t

�Xmin
� O �	� ������

In non�dimensional terms�

	

Fr
p
K

�t

�Xmin
� O �	� ������

This is a limitation on the minimum Froude number in a wave�following system�

Fr�wave�following� �
	p
K

�t

�Xmin

������

��If parasitic waves are steep or near breaking �as may be the case with pure capillary waves on
a wind�ru�ed surface� extremely �ne grid resolution in the streamwise direction will be required to
resolve the capillary waves� and a grid CFL with respect to the streamwise coordinate spacing must
be derived� This will result in an extremely small time step�
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For comparison to a �xed domain with translating waves� equation ������ could be

written as�

Fr�fixed� � �A
p
K

�t

�Zmin

������

The ratio of equation ������ to equation ������ is�

Fr�limit wave�following�

Fr�limit fixed�
�

	

�AK

�Zmin

�Xmin
������

For resolution of small parasitic waves with �X and �Z of similar magnitudes�

the R�H�S� of equation ������ may be greater than 	� indicating the �xed domain is

preferable �having a lower limit on the minimum Froude number�� Conversely� for

simulating large waves with �X � �Z �as in the present work�� a wave�following

system is preferred�

Gravitational stability condition

An important consideration in a free�surface simulation is the response of the nu�

merical method to small perturbations of the free surface� In particular� it can be

shown that small�amplitude� short�wavelength perturbations can cause numerical in�

stabilities due to violation of the grid motion CFL condition unless the simulation

parameters are chosen to satisfy a gravitational stability limit� This applies whether

the simulation is in a wave�following or a �xed coordinate system�

Consider a �at free surface with a non�dimensional vertical coordinate spacing

of �z�� The surface is given a small perturbation with an amplitude �a� and a non�

dimensional wavelength of ��x�� Then for a predominantly gravity wave� equation

������ can be written as

��t���

�x�
�

�
�z�

�a

�� Fr�

�
������

Again� we can write this as a lower limit on the Froude number such that�

Fr� � �
�

�a

�z�

�� ��t���

�x�
������

This implies that the minimum Froude number has a dynamic dependence on the

size of small perturbations to the free surface� If we set the Froude number of the

simulation� then the condition on the allowable perturbation amplitude is�

a� �
	

	��
Fr��z�

�x�

��t���
������
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Thus� if our �ow causes a local ���x� perturbation with an amplitude greater than

allowed by equation ������� it can be expected that the grid motion CFL condition

will be violated and the simulation may become unstable�

It is instructive to consider a perturbation having an amplitude of one�fourth

the vertical grid spacing so that a 	 �z���� Then equation ������ can be written as

Fr� � �
��t���

�x�
������

If we return this equation to dimensional terms� we �nd that

	

g
� �

��t��

�x
����	�

which we can write as�

g
��t��

�x
�

	

�
������

This form is similar to the general forms for the viscous stability condition and the

convective CFL conditions� which are typically written as�

�
�t

��x��
� O �	� ������

u
�t

�x
� O �	� ������

The former applies to numerical simulations that treat the viscous terms explicitly�

while the latter applies to numerical simulations that treat the convective terms ex�

plicitly� From this viewpoint� the response of the simulation to small�amplitude per�

turbations can be viewed as being controlled by a gravitational stability condition

when the free�surface is advanced using an explicit method�	�

In actual application� the gravitational stability condition is a function of the

Froude number� grid size� time step� and the small�scale perturbations of the free�

surface� If there are no small�scale perturbations� then the gravitational stability

condition can easily be met� However� if turbulence in the �ow or numerical oscilla�

tions in the solution induce small�scale perturbations� then the gravitational stability

��Where a fully�implicit method is used so that the free�surface motion� �ow solution� and grid
generation are solved as a coupled set of equations� the gravitational stability condition would not
apply since it is based on the grid motion CFL condition �which is only applicable for explicit
free�surface advance��
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number can become important� Because of the dynamic nature of the stability limit

illustrated in equation ������� it is possible to have a seemingly stable simulation

suddenly become unstable due to a violation of the gravitational stability condition�

Such an occurrence requires that the time�step� grid spacing� or Froude number be

modi�ed to obtain a stable simulation�

Stability e
ects of wave decay

There is one further limitation on grid motion that can occur in a wave�following

system� since viscosity causes waves to decay� the relationship between the rate�of�

decay and the time and grid scales must not violate the grid CFL condition� From

Lamb�s �	���� presentation of �rst�order theory� the amplitude decay�rate for viscous

e�ects is�
�A

�t
� ��K��A ������

If we de�ne the Reynolds number in terms of the same scales used in section ������

then

Re �
L�

� T ������

It follows from the grid CFL limitation that �in non�dimensional terms�

�K�A

Re

�t

�Zmin
�

	

�
������

or

AK �
Re

�K

�Zmin

�t
������

This limitation is typically not constraining since Re is generally large� However�

for application of this method to highly viscous �ows this restriction could become

important�

����� Boundary layer thickness

The thickness of the free�surface boundary layer is generally approximated by ����

where � � ���������� �see Lamb %	���&� Longuet�Higgins %	���&� or Batchelor %	���&

for derivation of ��� The smallness of ��� presents challenges for both physical and

numerical experiments� We would like to get at least �ve grid points in the free�surface



CHAPTER �� NUMERICAL IMPLEMENTATION ISSUES ��

boundary layer� so�

�Zmin �
	

�

�
��

�

��
�

������

where Zmin is the minimum spacing of the surface�normal coordinate in physical

space�

Using equations ���	��� and ������� the dispersion relations for both the pri�

mary wave �A�K�"�� and the smallest resolved waves �a�� k�� ���� it follows �in non�

dimensional terms� that either�

�Z�
min �

	

�

�
�Re� Fr�

K tanhKD

� �
�

������

or�

�Z�
min �

	

�

�
�Re� Fr�

k� f	 $ C�g

� �
�

����	�

These relations can also be written as lower limits on the Froude number allowed

while maintaining adequate boundary�layer resolution�

Fr �
��

�

���min��

Re

�
K tanhKD

� �
�

������

Fr �
��

�

���min��

Re

�
k� f	 $ C�g

��
�

������

Note that as k� gets larger �i�e� the smallest wavelength gets smaller�� it becomes

more di�cult to resolve the free surface boundary layer� Since k� is related to the

horizontal resolution of the simulation method� it follows that to resolve the viscous

e�ects of the smallest resolvable waves becomes an increasingly di�cult task as the

grid is re�ned the streamwise direction�

����	 Bulk Froude number restriction

In setting up the relationships between the governing parameters in an open�channel

�ow� we want to keep the bulk Froude number �Frb� subcritical to prevent the de�

velopment of a bore� In one experiment we did run at a supercritical bulk Froude

number� As the surface began to develop into a bore� the steep surface deformation

could not be adequately resolved with the modest number of grid points we had avail�

able� To compute a smooth grid� the grid generation code was force to reduce the



CHAPTER �� NUMERICAL IMPLEMENTATION ISSUES ��

grid spacing at the front of the bore and eventually the CFL condition was violated�

From this experience we believe that our numerical method is suitable for use with

supercritical �ows as long as su�cient streamwise resolution and a small enough time

step can be maintained�

The bulk Froude number is de�ned as�

Frb �
ubp
gD

������

where D is the domain depth� and ub is the bulk velocity� The bulk velocity for a

combined wave�current system in an open�channel �ow can be de�ned as�

ub � 	

D 


Z x
�

x
�

Z z
�

z
�
u� dx dz ������

where 
 is the wavelength and � is the height of the free surface measured from the

bottom of the channel� From equation ������ it follows that

g �
u�b

D Fr�b
������

where Frb represents a limit on the bulk Froude number which is imposed to keep the

simulation subcritical� If we apply the de�nition of our simulation Froude number

based on the length and time scales L and T �equation %��	�&�� and de�ne the non�

dimensional depth and bulk velocity as�

ub � L
T u

�
b ������

D � LD� ������

then we can write equation ������ as

Fr � Frb

p
D�

u�b
������

to ensure subcritical �ows� we set the limit on the bulk Froude number �Frb� equal

to one and write�

Fr �

p
D�

u�b
������

����
 Setting up a practical simulation

By applying the scaling limits derived in the previous sections one can obtain a

simulation that is stable and practical� By now it may be obvious why it is preferable
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to �rst pick a time step and a grid size then determine the �ow that can be computed�

If both the �ow Reynolds number and Froude number are selected �rst� then one has

the tedious task of trying to �nd a combination of time step size and grid spacings

that do not violate any of the minimum Froude number limits� the maximum Froude

number limit� or the CFL condition� However� if the grid size and time step are chosen

to �t a desired Reynolds number� then it is a straightforward matter to compute the

Froude number limit for each e�ect� One then arrives at a range of Froude numbers

that can be practically simulated with the chosen domain� computational scales� and

�ow�

Unfortunately� in translating practical� non�dimensional �ow scales back into

a physical domain� it becomes apparent that for the present work we do not currently

have the computational power to simulate a true water �ow at normal laboratory

scales�
� The problem with resolving laboratory scale �ows lies in the relationship

between the Reynolds number and the Froude number� The Reynolds number is a

function of the �uid properties and the �ow conditions� while the Froude number

is a function of the gravitational �eld and the �ow conditions� Once the velocity

and length scale of a �ow have been decided� there is a �xed *physical� relationship

between the appropriate Reynolds number and Froude number� just as there is a �xed

relationship between the viscosity of a �uid and gravity�

When the only non�dimensional parameter in a �ow is the Reynolds number�

it can be argued that a simulation at a �xed Re covers a range of physical scales�

So a low Reynolds number is either due to a slow velocity �ow with a large length

scale� or a high speed �ow with a small length scale �or some combination between

these limits�� However� when the Froude number becomes a parameter� it eliminates

a degree of freedom so as to limit the range of applicability of a particular simulation�

If we non�dimensionalize the Navier�Stokes equations using a single length scale� a

single velocity scale� and a time scale that is their quotient� then our equations admit

two non�dimensional groups� the Froude number and the Reynolds number�

Re �
U L
�

����	�

���Laboratory scales� might be reasonably de�ned as wavelengths and depths on the order of ���
m to ��� m� With the computational power currently available for the present work we are at the
very low end of this range�
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Fr �
Up
g L ������

If we �x the Reynolds number� we �nd that the velocity scale U � in terms of the

viscosity� Reynolds number and length scale �L�� is�

U �
� Re

L ������

The Froude number is then

Fr �
� Re

L �
� g

�
�

������

Since viscosity and gravity have physical values and the Reynolds number has been

�xed� the above equation implies that setting the Froude number serves to �x the

length scale of the �ow �or �xing the length scale serves to �x the Froude number��

So a water �ow that is de�ned by both a Reynolds number and a Froude number has

exactly one physical length scale for which the �ow is representative�

For simulation purposes� a su�ciently low Reynolds number is an Re� �based

on the boundary shear velocity� u�� of O�	���� Unfortunately� a low Reynolds num�

ber in a laboratory water �ow with a length scale O���	m� implies a velocity scale

of O�	��� m�s�� Since gravity is O�	�m�s��� the corresponding Froude number is

O�	����� This illustrates the importance of the lower limits on the Froude number

developed in the previous sections� As long as we are computationally constrained

to the simulation of �ows at low Reynolds numbers� the Froude number based on

the turbulent scaling will be small��� This implies that gravity is extremely strong

relative to the turbulent scales of the �ow�

In the simulations presented in chapters � through � of this dissertation� the

maximumphysical wavelength that could be simulated was a ��	� mwave on a domain

depth of ���� m� Simulation of �� wave periods of this wave took approximately one

week on a Cray J�� mini�supercomputer� The simulation wave is about half of the

wavelength of the smallest wave in the laboratory experiments of Cowen �	����� with

a depth about one�third of the experimental �ume� Simulations of longer waves �on

a proportionally deeper domain� can be accomplished with the present method by

��Note that in the development of the simulation scaling arguments we did not specify what length
scale and time scale were to be used� Thus� as long as the scales are applied consistently� we are free
to use the turbulent scales of motion �or any other scales� to compute the �ow Froude number and
determine the upper and lower bounds based a chosen time step and grid size�
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decreasing the simulation Froude number and decreasing the time step� Thus� the real

limit on the ability to simulate laboratory�scale waves is the amount of computational

power one is able to apply to a problem�

���
 Foundations for an LES model of the kine�

matic boundary condition

The development and validation of a subgrid�scale model for the cross terms and

Reynolds terms of the kinematic boundary condition is an interesting challenge that

is a likely candidate for a Ph�D� dissertation on its own� To develop such a model�

the dynamic boundary condition will have to be considered in conjunction with the

kinematic boundary condition� When the kinematic boundary condition is viewed

as only one part of the total boundary condition� it becomes obvious the advective

subgrid�scale e�ects of the kinematic boundary condition cannot be modeled alone�

������ Linking the boundary conditions

The chain rule of partial di�erentiation and the continuity equation can be used

to write the kinematic boundary condition� equation ���	��� in a quasi�conservative

form�
�H
�t

� U� � �

���

�
U�H

�
� �

���

�
U�H

�
$ H�U�

���
������

This provides a new term� the product of the surface height and the surface normal

gradient of the U� velocity� This velocity gradient is the basis of the viscous term in

the dynamic boundary condition �see section ����� and therefore provides a linkage

between the two equations� If we neglect the gradients of the covariant metric G�� in

equation ���	���� then the kinematic boundary condition could be written as�

�H
�t

� U� � �

���

�
U�H

�
� �

���

�
U�H

�

$ HRe

�
ps�
�

� x�

� �Fr��
� M

We

�
������

Filtering this equation provides nonlinear terms that include the surface pressure� dis�

placement and curvature� The dynamic boundary condition term in equation ������
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is made up of the dynamic pressure at the free surface �ps � x��Fr
�� and the surface

tension e�ect �M�We�� These terms are expected to be small relative to the other

terms in the equation� but they are multiplied by the Reynolds number �which is

large�� and so cannot be neglected�

������ Comparison of di�erent equation forms

The quasi�conservative form of the kinematic boundary condition provides a basis

for another approach to modeling the subgrid�scale terms in the kinematic boundary

condition� The �ltered form of equation ������ is

�H
�t

� U
� � �

���

�
U

�H
�

$ H�U
�

���
$ ,�

� $
�-�

���
� � � 	� � ������

where

,�
� � H�U�

���
� H�U

�

���
������

-� � U�H � U�H ������

One can also manipulate the non�conservative �ltered kinematic boundary condition�

equation ���	���� into the quasi�conservative form�

�H
�t

� U
� � �

���

�
U

�H
�

$ H�U
�

���
$ ��

� � � � 	� � ������

A comparison of equations ������ and ������ leads to the identity

��
� $ ��

� � ,�
� $

�-�

���
$

�-�

���
����	�

This demonstrates that the two approaches �non�conservative and quasi�conservative�

should produce the same subgrid�scale e�ects using di�erent terms� It remains to be

seen whether test �ltering of one or both of these equations in conjunction with

the dynamic boundary condition will produce a scale�similarity method for dynamic

modeling the cross and Reynolds terms of the kinematic boundary condition�

������ Linear wave theory

One interesting avenue for the development of a subgrid�scale model for the kinematic

boundary condition is the use of linear wave theory� If subgrid�scale e�ects are small



CHAPTER �� NUMERICAL IMPLEMENTATION ISSUES ��

enough to be modeled using linear wave theory��� it follows that the subgrid�scale

deformation� h� and subgrid�scale velocity u� �from equations %��	��& and %��	�	&�

are�

h � a cos �k�� ������

u� �
gak

�
cos k� ������

where a is a subgrid�scale wave amplitude� k is a subgrid�scale wave number� � is

the subgrid�scale frequency� g is gravity� and � is a distance measure from the start

of a subgrid�scale wave� For ease of illustration� we shall neglect capillary e�ects�

and develop a subgrid�scale model in terms of gravitational waves� The subgrid scale

frequency is�

� �
q
gk ������

where we have assumed any subgrid�scale deformation is a deep water wave� This

gives us�

u� � a
q
gk cos kx ������

The modi�ed Reynolds term for the kinematic boundary condition� equation ���	���

can be written as�

R�
� � a�k

�
� g

�
� cos �k�� sin �k�� �

�
ak

�
� g

�
� cos �k��

� n
ak sin �k��

o
������

Similar derivations can be made for the cross term� equation ���	���� The importance

of this approach lies in recognizing that the subgrid�scale deformation and velocity

can be changed into an amplitude and a wavenumber �or length�� This simpli�es

the search for an appropriate subgrid�scale model� If we assume that the subgrid�

scale e�ects are dominated by the largest wavelengths that are not resolvable on the

grid� then we can say k 	 ���x� The modeling problem is reduced to �nding an

appropriate amplitude �a� of the subgrid�scale e�ects�

Further work is this area is necessary to �nd an appropriate approach to dy�

namically modeling the subgrid�scale e�ects in the kinematic boundary condition�

Any attempt to develop a sophisticated subgrid�scale model for the kinematic bound�

ary condition needs to be done in tandem with well�resolved DNS experiments for

identical �ows� This level of development is beyond the scope of the current work�

��This is not necessarily a good assumption since small capillary waves may be very steep and
may be breaking on a microscale� However� understanding and parameterizing such e
ects requires
DNS�scale simulations�
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Simulation approach

��� Introduction

The simulation method developed in the preceding chapters is suitable for simulat�

ing almost any type of free�surface �ow �assuming the availability of su�cient com�

putational power�� Our particular interest in this dissertation is in examining the

interaction of a sheared turbulent velocity �eld with a progressive wave in and near

the free�surface boundary layer� This has application to a wide number of �ows in

ocean� estuarine� and engineering systems� The most convenient way to generate a

�ow �eld of sheared turbulence is by using a turbulent bottom boundary layer� Our

interest is not focused on the bottom boundary layer per se� but in the manner in

which turbulence generated by the boundary layer interacts with a progressive wave

in the near�surface region�

This chapter examines� �	� validation of the numerical method� ��� set�up

of numerical experiments� ��� data collection� and ��� analysis techniques that are

applied in chapter � to investigate the interactions of waves and sheared turbulence

in an open�channel �ow�

��� Validation of the numerical method

The simulation of unsteady� viscous� turbulent �ows with a free surface is a computa�

tionally demanding exercise that provides ample room for the introduction of coding

errors or degradation of accuracy due to poor selections of numerical algorithms� As

such� the ability of free�surface method to simulate simpler �ows �both free surface

and internal �ows� needs to be demonstrated before results of the more complicated

simulations can be believed�

��
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Our simulation method is built around the Navier�Stokes solver developed by

Zang et al� �	����� which has been implemented for and tested on a number of di�er�

ent �ows by researchers at the Stanford Environmental Fluid Mechanics Laboratory�

Zang �	���� includes tests with a decaying vortex� �ow under a lid�driven cavity� �ow

over a backward�facing step� duct �ow with a �� degree bend� and an axisymmetric

cavity �ow� Ongoing work with Zang�s method at the laboratory includes turbulent

�ow over topography� simulation of a turbulent jet in a cross��ow� and upwelling in a

rotating strati�ed annulus� From the work of Zang �	���� we can consider the funda�

mental Navier�Stokes solver to be proven and without need of further demonstration�

However� there are two major parts to the present addition to Zang�s method whose

accuracy needs to be demonstrated� �	� the ability to correctly simulate a �ow on

a moving grid� and ��� the ability to correctly simulate �ow with three�dimensional

free surface motion� Validation of these abilities is presented in the appendices of this

dissertation�� The accuracy of the grid movement algorithm is demonstrated using the

decaying vortex �ow with an arbitrary moving grid �Appendix A�� The free�surface

method is demonstrated in two space dimensions for a standing wave problem �Ap�

pendix B�� and in three space dimensions for the oscillations of two standing waves

superposed at a �� degree angle �Appendix C��

��� Approach

	���� Simulation set�up

Our simulations of turbulent channel �ows with progressive surface waves are con�

ducted on a three�dimensional rectangular domain with a free surface on the upper

boundary� The dimensions of the domain are �� � � � 	 when non�dimensionalized

by the channel depth� A typical simulation domain of �� � �� � �� grid points is

shown in �gure ���	�� In this �gure it may appear that the coordinate system has

vertical grid lines� but this is not the case� The curvature of the vertical grid lines

to obtain boundary�orthogonality occurs in the near�surface region where the grid is

compressed to resolve the free surface boundary layer� On any scale large enough to

�The results in the appendices are culled from Hodges et al� ������ and Hodges and Street �������
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 L = 2 π
 W = π

 D
 =

 1

Figure ���� Computational domain�

view the entire domain� the curvature of the vertical grid lines seems to disappear�

The boundary conditions on the �ow are �	� periodic in the streamwise and

spanwise directions� ��� Dirichlet on the bottom boundary� and ��� the nonlinear

kinematic and dynamic boundary conditions on the free surface� The Dirichlet con�

dition on the bottom boundary is enforced as a no�slip condition on a boundary that

is moving at the wave speed� The turbulent �ow through the domain is driven by a

streamwise pressure gradient� computed from the relation�

d!

dx�
� � u��

D
���	�

where u� is the shear velocity �or friction velocity� at the bottom boundary� D is the

depth of the domain� and ! is the modi�ed pressure discussed in section ����	� The

Reynolds number of the �ow based on the bottom boundary shear is de�ned as

Re� �
u�D

�
�����

This dissertation examines three di�erent nonlinear waves� each propagating

over a turbulent current produced with the same �non�dimensional� streamwise pres�

sure gradient� Each wave has a wave slope �or ak� of ��	�� For consistency with

the work of Cowen �	���� and convenience of notation we refer to the ak as �� In

physical space� the waves are of di�erent wavelengths and therefore propagate at

di�erent velocities� In a non�dimensional wave�following coordinate system� all the
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waves are of the same wavelength� so the Froude number is changed to obtain dif�

ferent wave velocities�� An additional simulation of the turbulent current without a

surface wave was conducted for comparison purposes� Tables ���	�� and ����� provide

the simulation wave data in non�dimensional terms and in physical space�

The initial conditions for our simulations are �	� an instantaneous turbulent

open�channel �ow velocity �eld for case C� an open�channel �ow without a surface

wave� and ��� a linear combination of the turbulent current with a second�order Stokes

wave pro�le and velocity �eld for the wave�current simulations� W	� W�� and W��

The velocity �eld for the open�channel �ow was developed from an instantaneous

velocity �eld produced in the DNS simulations of Pan and Banerjee �	����� This

data was developed in a simulation with a rigid� shear�free lid� so we started by

running a simulation with a similar upper boundary condition� When the mean �ow

appeared to have converged�� the free surface boundary conditions were invoked and

the simulation was run until it reached a statistically steady state� An instantaneous

velocity �eld from the end of this simulation was used in the initial conditions for all

the simulations reported in this dissertation�

	���� Comparison to laboratory experiments

Cowen �	���� conducted a series of laboratory experiments studying turbulent open�

channel �ows with surface waves that have some similarities with the waves in the

present numerical simulations� A comparison of the dimensional parameters� for

the simulations and experiments is provided in Table ������ It can be seen that

the simulation dimensions are close to being comparable to the TWCF experiments

of Cowen �	����� The RWCF experiments used a signi�cantly deeper laboratory

�ume so that comparisons with the simulations are more di�cult� As discussed in

section ������ the major di�culty in comparing free�surface numerical simulations

�The wave velocity is simply the negative of the bottom boundary velocity in a wave�following
system� so the simulations have di
erent bottom boundary velocities�

�As discussed in section ���� the mean �ow converged at a larger bulk velocity than the Pan and
Banerjee ������ simulation due to insu�cient dissipation in the subgrid�scale model�

�The dimensions in table ���	� have been rounded o
 for ease of comparison� Exact values are
found in table ����� and Cowen �������
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Current Wave 	 Wave � Wave �
�C� �W	� �W�� �W��

PARAMETERS�
Re� 	�	 	�	 	�	 	�	
Fr ���	�� ������ ���	�� ���	��

DOMAIN�
length �L� �� �� �� ��
width �W� � � � �
depth �D� 	 	 	 	

FLUID�
viscosity ���� ������� ������� ������� �������
gravity�g�� ���� ��� ���� ����

WAVE�
�theory� w�o current�

speed n�a ���� ���� ����
frequency n�a ���� ���� ����

period n�a ����� ��	�� ������
amplitude �a� n�a ��	� ��	� ��	�

wave number �k� n�a 	 	 	
wavelength �
� n�a �� �� ��
slope �� or ak� n�a ��	� ��	� ��	�

� n�a ���� ���� ���	
� �or ���� n�a ����		 ���	�	 ���		�

CURRENT AND WAVE�
�numerical results�

Ubulk 	��	� 	���� 	���� 	����
wave speed �C� n�a ���� ���	 		��

wave frequency ��� n�a ���� ���	 		��
wave period �T � n�a ��	�� ������ ������

� n�a ���� ���� ����
� �or ���� n�a ���	�� ���	�� ���	�	

Table ���� Non�dimensional open�channel simulation parameters�
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Current Wave 	 Wave � Wave �
�C� �W	� �W�� �W��

PARAMETERS�
Re� 	�	 	�	 	�	 	�	
Fr ���	�� ������ ���	�� ���	��
u� ����e�� 	���e�� ����e�� ����e��

DOMAIN�
length �L�� m ��	�� ������ ��	�� ��	��
width �W�� m �����	 ������ �����	 ������
depth �D�� m �����	 ���	�� �����	 ������

FLUID�
viscosity ���� mm��s 	���� 	���� 	���� 	����

gravity �g�� m�s� ���	 ���	 ���	 ���	

WAVE�
�theory� w�o current�

speed� m�s n�a ����� ����� �����
frequency rad�s n�a ���� 	��� 	���

period� s n�a ����	 ����� �����
amplitude �a�� m n�a ������	 ������	 �������

wave number �k�� rad�m n�a �	�� ���� ����
wavelength �
�� m n�a ������ ��	�� ��	��

slope �� or ak� n�a ��	� ��	� ��	�
�� 	�mm n�a ���� ��	� ����

� �or ����� mm n�a ����� ����� �����

CURRENT AND WAVE�
�numerical results�

Ubulk� m�s ��	�� ����	 ��	�� ��		�
wave speed �c�� m�s n�a ����� ����� �����

wave frequency ���� rad�s n�a �	�	 ���� �	��
wave period �T �� s n�a ��	�� ����� ����	

�� 	�mm n�a ���� ���� ����
� �or ����� mm n�a ����	 ����� �����

Table ���� Dimensional open�channel simulation parameters�
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ak wave wave wave current �ow
amplitude length speed speed depth

�mm� �mm� �mm�s� �mm�s� �mm�

Simulations�
W	 ��	� ��� �� ��� ��� 	�
W� ��	� ��� 	�� ��� 	�� ��
W� ��	� ��� 	�� ��� 		� ��

Experiments�
TWCF ����� ��� ��� ��� 	�� 	��

RWCF I ��	� �� 	�	� 	��� �� ���
RWCF II ����� 	� 	�	� 	��� �� ���

Table ���� Comparison of simulation and experiment parameters�

with laboratory experiments is that the choice of a Reynolds number and a Froude

number for a �ow �xes the physical length scale of the �ow� Thus� the simulation of

a particular combination of mean �ow and wave size is only directly comparable to

exactly one laboratory experiment� However� based on the insights developed in the

non�dimensionalization of the governing equations in section ���� we can expect that

di�erent aspects of the data will be comparable across various experiments�

Even if we had su�cient computational power to model a wave and cur�

rent of exactly the same dimensions as the TWCF experiment of Cowen� this would

not necessarily provide a perfect comparison of simulation and experiment� In the

laboratory experiments� the data collected are for a spatially�decaying wave train

propagating over either a developing turbulent boundary layer �TWCF�� or decaying

grid�generated turbulence �RWCF�� In contrast� the numerical simulations are for a

temporally�decaying wave over a temporally�developing boundary layer �which has

already reached a statistically steady�state before introduction of the wave�� The

spatial decay of a wave train implies� �	� in a wave�following coordinate system� a

single wave amplitude decays in time� and ��� the amplitude decay of the wave train

over space is a continuous gradient� so the amplitude of a single wave decays over

its wavelength� Thus� the spatially�decaying wave can have mean spatial gradients

of velocity over a single wavelength caused directly by the wave decay� However�

a temporally�decaying in�nite train of waves is a series of waves that are identical
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over every wavelength at a particular instant of time� Thus� simulation of a single

wavelength of a temporally�decaying wave train will have mean temporal gradients

of velocity due to the wave decay� without mean spatial gradients of velocity caused

by the primary wave� The importance of this di�erence is shown in analysis of the

wave�induced velocity and vorticity �elds for the near free�surface region discussed in

sections ����� and ������

	���� Data collection

The interaction of a decaying wave and a turbulent current is a temporally�evolving

phenomena� so meaningful time�averages of �ow variables cannot be computed during

the simulation run� Instead� it is necessary to collect the instantaneous simulation

data throughout the simulation run and use statistical detrending techniques �e�g�

Bendat and Piersoll %	���&� to analyze the �ow �see section ������� The need to store

time�accurate data is a problem for a four�dimensional moving�grid simulation since

a minimum of � pieces of data� per grid point for each time step is required to retain

the full velocity and pressure �elds for the �ow� For a modest simulation run of ����

time steps on a ��� ��� �� grid �about 	�� hours of computational time on a Cray

J��� storage requirements for full simulation data is ��� gigawords per simulation run�

If held in binary form at 	� bits per word this is �	 gigabytes of data� If we increase

the grid resolution to �� � �� � ��� storage of ���� time steps of data would require

	�� gigabytes	�

With the continued forward march of computational power� our ability to

conduct time�accurate simulations of temporally�evolving �ows is outstripping our

ability to store all the data produced� This leads to a dilemma� when storage is

limited� how does one decide what data is important to store prior to the analysis of

the stored data� There does not seem to be a good answer to this question� In the

present work� it has been necessary to re�run several simulations to collect data that

�Not only do we have to store the primitive �ow variables� but we also have to store the grid at
each time step� Signi�cantly more storage is required if the subgrid�scale strain rates developed in
the turbulence model are kept for analysis of subgrid�scale dissipation and turbulence budgets�

�Of course� increasing the number of grid points will require a reduced time step size� and more
time steps to simulate the same number of wave periods� This can quickly lead to a requirement for
the storage of terabytes of data�
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was previously thought to be unnecessary
� The �rst practical step in data reduction

is to cut down the number of time steps in which data is stored� For the present

work� cases C� W	 and W� stored data every 	� time steps� while case W� �which

used a smaller time step� stored data every �� time steps� In doing this� we lost the

ability to look at the small�time�scale �uctuations in the �ow�

Reducing the number of time intervals for data storage dropped the theoretical

storage requirements for the four simulations from 	�� gigabytes to 	� gigabytes�

Since this was still too large for the available disk storage� we were forced to reduce

our data collection to a limited number of grid points in the domain� This could be

done either by �	� collecting data on some coarser grid scale� such as a 	� � 	� � ��

grid� or ��� collecting the full grid resolution on a limited number of two�dimensional

surfaces� The �rst approach would reduce the data storage requirements to about 	��

gigabytes �a di�cult� but achievable strain on the available storage capacity�� with the

undesirable side�e�ect of smoothing out small�space�scale �uctuations� The second

approach leaves large areas of the �ow for which no instantaneous data is available� but

allows analysis of small�space�scale �uctuations and provides a dramatic reduction in

the storage requirements� We chose the second approach so as not to lose the ability

to look at small�space�scale �uctuations while keeping our data storage requirements

to a minimum�

The data from the simulation runs were stored in two ways� �	� time�evolving�

spanwise�averaged �ow statistics and grid coordinates were computed and stored for

a vertical �x � z� plane beneath the wave� and ��� instantaneous �elds of velocity�

pressure� vorticity� grid coordinates and turbulence model coe�cients were stored on

four curvilinear surfaces �x �z� x �y� and y �z sections at at the middle of the domain

plus the free surface� as illustrated in �gure ������ One disadvantage of storing the �ow

data on a limited number of surfaces is that during the simulation we must compute

the non�primitive variables which are dependent on non�stored grid locations� For

example� to obtain the streamwise vorticity ���� on a vertical x�z plane requires the

velocities and grid points on two planes parallel to the stored plane� This leaves the

choice of either storing three surfaces for every surface on which data is desired� or

computing and storing the vorticity in the data output� We chose the latter approach�

�This is a prime motivation for keeping simulations small and relatively short for initial investi�
gations with new numerical methods �such as developed in the present work��
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y−z surface

free surface

x−y surface

x−z surface

Figure ���� Instantaneous data collection surfaces�

which results in smaller storage requirements at the cost of extra computations in each

data output time step�

��� Data analysis techniques

	���� Computation of phase�averaged statistics

Because the open�channel �ow and the monochromatic progressive wave are homo�

geneous in the spanwise direction� we can use the ergodic hypothesis to compute

instantaneous spanwise statistics of the �ow �uctuations from the full instantaneous

�ow �eld at each output time step� In the wave�following coordinate system these

statistics are instantaneous averages beneath di�erent phases of the wave and will be
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referred to as instantaneous phase�averaged data��

The means of velocity and vorticity in the spanwise �y� direction for each

�x� z� pair in the �ow �eld are subtracted from the full instantaneous �ow �eld to

obtain the �uctuations from spanwise means at every point in the �ow� The mean

squares in the spanwise direction for these �uctuations are stored as the instantaneous�

phase�averaged components of the �uctuating enstrophy and turbulence intensities�

for each �x� z� position in the �ow� This approach collapses the temporally�evolving

three�dimensional spatial data into temporally�evolving two�dimensional spatial data�

Using this data� we can develop animations of the temporal changes in phase�averaged

e�ects� This allows us to look at the temporal changes of the large�scale structures

in the �ow �see chapter ���

	���� Computation of wave�induced e�ects

Wave�induced e�ects can be de�ned as the di�erence between the statistics for a wave�

current simulation and the current�only simulation� By subtracting the current�only

statistics from the wave�current statistics we can arrive at the wave�induced e�ect���

�The mean or average value of a quantity �u� over a distance W is de�ned as

�u �
�

W

Z
u dW

For the spanwise direction� the grid is essentially uniform and an average can be computed from a
simple discrete sum


�u �
�

W

X
u�W

In the streamwise direction� the stretching of the grid due to the wave requires computation of
averages using the integral form� For the present work� this was done using trapezoidal numerical
integration�

�This de�nition of the turbulence intensities as the di
erence between the instantaneous �ow
�eld and the instantaneous spanwise mean has implications on the �ow e
ects that are included in
the �turbulence�� This is discussed in detail in sections ����� and ����

�	Subtracting the currently�only pro�le from the wave�current pro�le is based on the assumption
that the current�only data follow the surface� This is a reasonable assumption that is often used in
the study of wind�generated water waves �see Harris ��������



CHAPTER �� SIMULATION APPROACH 	��

A formal decomposition of a quantity �such as a vorticity �uctuation compo�

nent� into a current�e�ect and a wave�induced e�ect can be written�

�� � ��
c $ ��

w �����

The phase�averaged product of the �uctuations is�

� ���� � � � ��
c�

�
c � $ � ���

c�
�
w � $ � ��

w�
�
w � �����

Since the current�only simulation contains only the term � ��
c�

�
c �� it follows that

subtraction of this term from the phase�averaged product �the de�nition of the wave�

induced e�ects� leaves both the �uctuations caused directly by the wave� and the

�uctuations that result from the interaction of the wave and the current� Since we

are in a wave�following coordinate system� the wave�induced velocity �eld is essen�

tially steady �except for decay e�ects due to wave attenuation� viscous conduction

e�ects from the boundary layers� and small�scale perturbations near the free surface��

The products of wave�induced �uctuations such as � ��
w�

�
w � are small� so the com�

puted wave�induced e�ects are predominantly the e�ect of the cross�terms such as

� ���
c�

�
w �� which result from the interactions of the wave and the current���

	���� Detrending data

Since there is no surface forcing� the simulated waves decay due to the viscous e�ects of

�	� the bottom boundary� ��� free�stream turbulence and ��� the free�surface boundary

layer� and ��� wave�induced shear in the �ow interior� As such� we cannot temporally�

average data from di�erent time steps unless the decay trend is removed� To the

extent that wave�induced e�ects are driven by the wave amplitude� it is appropriate

to use the wave amplitude decay as the decay scale for detrending� However� where

wave�current interactions are strong� the wave decay cannot be assumed to be the only

temporal scale for the �ow� In particular we �nd that the temporal evolution of wave�

induced turbulence intensities and enstrophy do not scale simply on the wave decay�

However� the wave�amplitude decay rate does provide a reasonable approximation

of the temporal evolution of the mean wave�induced velocities and vorticities� This

result is in accordance �rst�order wave theory �Phillips %	���&��

��The predominance of the � ���w�
�

c � term could be demonstrated by simulating a wave over qui�
escent �uid and subtracting this from equation ������ This remains a subject for future investigations�
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Since the wave�induced enstrophy components and turbulence intensities are

mean square �uctuations from the mean vorticities and mean velocities� a naive ex�

pectation might be that they should decay as the square of the wave amplitude�

Indeed� for the vertical velocity �uctuations this proved to be the case� However�

the other terms either decay at a di�erent rate� or have no decay at all� The wave�

induced streamwise and spanwise turbulence intensities do not show any consistent

decay trend� but instead have oscillations in the pro�les over the course of the simula�

tions� It appears that the wave�current interactions for the streamwise and spanwise

turbulence intensities are likely a function of wave speed and�or the di�erence be�

tween the wave speed and the current speed �which remain constant over the course

of the simulation�� This is consistent with the developments of rapid distortion theory

for waves that propagate signi�cantly faster than the turbulent scales of motion �see

section ������� A further complication to determining the appropriate decay trend

for the wave�induced turbulence intensities is the velocity e�ects of smaller parasitic

surface waves��� These waves are fed by nonlinear interactions in the �ow and exhibit

an initial growth in the �rst �ve to 	� wave periods of the primary wave� followed by

decay in the remainder of the simulations� The decay rate for the amplitude of the

parasitic waves is less than the decay rate for the primary wave�

The decay of the enstrophy components appears to scale on the wave am�

plitude� which implies that there is a growth trend in the wave�current enstrophy

interactions that is smaller than the decay induced by the wave attenuation� As

demonstrated analytically by Longuet�Higgins �	����� a viscous wave has a temporal

conduction of vorticity from the boundaries into the interior of the �uid� Our initial

conditions for the simulation method are for an irrotational wave �eld superposed on

a turbulent current� so we can expect a temporal growth for the wave�induced vor�

ticity in the interior of the �uid� Since our simulations are turbulent� the boundary

vorticity will be convected into the interior rather than conducted� with a a time scale

of the order D�u� �i�e� between 	� to �� wave periods for the simulations conducted��

Thus� the observed result �that the net decay of wave�induced enstrophy is less than

the square of the wave amplitude� is reasonable�

To determine the wave amplitude decay rate� the instantaneous wave am�

plitude was computed for each simulation case� then �tted �using a least�squares

��See section ����� for a discussion of parasitic waves�
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Figure ���� Wave attenuation� ���� W�� ���W�� ���� W��

W	 W� W�

� ����		 ������ ������

Table ���� Exponential wave amplitude decay rate�

approach� with an exponential curve of the form

a � a� exp
�
�� t

T

�
�����

where a� is the non�dimensional initial wave amplitude� t is the simulation non�

dimensional turbulent time scale �D�u� �� T is the non�dimensional wave period� and �

is the decay rate determined by the equation �t� The resulting amplitude decay curves

are plotted against the simulation time �non�dimensionalized by the wave period� in

�gure ������ The � coe�cients of the decay trends are shown in table ������ Where

the simulation data had an identi�able decay trend that was well represented by

the decay of the wave amplitude� the data was detrended back to the original wave

amplitude so that temporal averages could be computed �see Bendat and Piersoll

%	���& for a discussion of data detrending��
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	���� Rede
nition of the coordinate system

In chapters � and �� it was convenient to de�ne the origin of the z coordinate as the

bottom boundary for purposes of numerical implementation� However� for compar�

isons to experiments and the literature on water waves� it is convenient to rede�ne

the origin of z as the still water level so that the bottom boundary coincides with

z � �D �where D is the domain depth�� This coordinate system is the one used by

Cowen �	����� as well as in most of the literature on linear and �nite�amplitude wave

theory�

	���	 Computation of wave�averaged statistical pro
les

The mean e�ect of the wave and the wave�current interactions can be reduced to

a single vertical pro�le for each statistical quantity by computing a spatial average

of the temporally�averaged �detrended� data across a wavelength� As discussed by

both Cowen �	���� and McDonald �	����� a direct Cartesian average along planes of

constant z becomes problematic in the region above the trough for computation of

the streamwise velocity pro�le�

McDonald �	���� extended a method by Norris and Reynolds �	���� that maps

the free�surface onto a �at plane so that the z coordinate is transformed into the z�

coordinate� where z� � � is on the free surface �rather than at the still water level

which is the z � � origin� and the coordinate spacing is stretched or compressed so

that z��D � �	 at the bottom of the domain� Cowen �	���� adapted McDonald�s

numerical approach to interpret his laboratory�developed� experimental data� Mc�

Donald �	���� presents a relationship for z� and z that is second order�� in the wave

slope ����

z� � z � �

k

sinh k �D $ z�

sinh kD
cos kx $

��

�k

sinh �k �D $ z�

� sinh� kD
cos� kx

� ��

�k
�coth kD�

�
	 $ coth� kD $

�

sinh� kD

�
sinh �k �D $ z�

sinh �kD
cos �kx

$ O
�
��
�

�����

��The initial transformation presented by McDonald ������ is an exact transformation from z� to
z� the reverse transformation that McDonald derived �our equation ������ is an approximation�
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where k is the wave number� and D is the domain depth� All variables are non�

dimensionalized by the physical domain depth �so D � 	� and the equation is valid

in a wave�following coordinate system�

McDonald �	���� showed that computation of the mean streamwise Eulerian

velocity pro�le beneath a wave in a z� coordinate includes a streamwise velocity e�ect

that is due to the vertical grid stretching� A velocity pro�le for an irrotational wave in

the z coordinate system that has a zero Eulerian mean �integrated beneath the wave

on lines of constant z� will show a positive Eulerian mean velocity in a z� coordinate

system due to the e�ects of grid stretching� The pro�le of this e�ect �which Cowen��

called �u�ES� can be presented as�

�u�ES �
c

�

sinh� k �D $ z��

sinh� kD
�����

Cowen �	���� obtained his experimental data in a z� coordinate system� then sub�

tracted �u�ES from the pro�le of the z� mean streamwise velocity to obtain a mean

Eulerian velocity pro�le beneath the wave in the z coordinate�

Our numerical simulation uses a wave�following coordinate system with a

stretching function developed by the Poisson grid generation system� This is sim�

ilar to McDonald�s �	���� approach in its e�ect� and makes it unnecessary to apply

McDonald�s �	���� formal transformation to obtain data in a z� coordinate system�

If we average the value of z along a curvilinear coordinate line with constant �� we

obtain a mean value of z for that line� which we will call zm� Figure ����� shows the

di�erence between the zm of the simulation and z� computed from equation ����� over

the depth of the domain at various phase angles beneath the wave� It can be seen

that the di�erence between McDonald�s z� and the simulation zm is third�order in

the wave slope� Since our zm corresponds to McDonald�s z�� we can use z� in place of

zm to display the results of our simulations� This provides consistency with the work

of Cowen �	�����

For direct comparisons to data developed by Cowen �	���� we can use equation

����� to compute the e�ect of grid stretching on the mean Eulerian velocity and

subtract it from our computation of the mean velocity in the z� coordinate system�

This is done for the results presented in section ����

��The presentation of the McDonald ������ formula in Cowen ������ contains a typographical
error�
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Figure ���� Comparison of McDonald�s depth�normalized z� to the simulation depth�

normalized zm averaged along a �� curvilinear coordinate line� The ordinate axis is scaled

by the cube of the wave slope ���� ��� kx 	 �� �trough�� � kx 	 ����� ��� kx 	 
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	���
 Computation of parasitic wave e�ects

The combination of wave and current produces a parasitic wave on the free sur�

face that can be approximated using linear wave theory for short�crested waves�

The parasitic wave shape can be de�ned as the instantaneous perturbation from a

monochromatic wave for every point on the surface��� This process removes the pri�

mary monochromatic wave in the domain and leaves the surface perturbations� The

short�crested parasitic wave shape is not seen in simulations of the wave without a

current or in simulations of the current without a wave�	� Thus� we can conclude that

the parasitic waves are caused by interactions between the wave and current and�or

nonlinear wave�wave interactions that may occur once the wave shape signi�cantly

��This de�nition of the parasitic wave shape neglects monochromatic parasitic waves� However�
the phase�averaged wave pro�le and the surface spectrum show that monochromatic parasitic waves
do not occur in the simulations conducted�

��Simulations of a wave without a current have been conducted� but have not been fully analyzed
and are not presented here�
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departs from monochromatic� A typical example of the instantaneous surface per�

turbation is shown in �gure ������ The perturbation amplitude ���� of the parasitic

wave is normalized by the amplitude of the monochromatic wave� and can be seen to

be on the order of ��+ of the wave amplitude�
� Since the wave amplitude�� is ��	��

it follows that the parasitic waves are of second�order in the primary wave amplitude

�i�e� O %a�&��

The parasitic surface wave can be compared qualitatively to a wave shape ob�

tained using linear theory�� shown in �gure ������ Linear and nonlinear short�crested

wave theory was developed by Fuchs �	����
 it can also be found in an abbreviated

form in Wiegel �	����� The wave shape in �gure ����� is developed from the linear

surface deformation equation�

�� � ap sin �mx� cos �ny� �����

where ap is the amplitude of the short�crested wave and m and n are wave numbers in

the x and y directions �based on the streamwise and spanwise and distance between

crests�� For consistency� the amplitude� wave numbers and �x� y� coordinates of the

wave are non�dimensionalized by the domain depth� For the surface perturbation

shown in �gure ������ the streamwise wave number�� is m � � and the spanwise wave

number is n � �� Due to the periodicity of the boundary conditions� these wave

numbers correspond to the largest wave lengths �besides the primary monochromatic

wave� that are supportable in the domain�

A quantitative comparison between the parasitic waves and linear short�crested

wave theory can be made by subtracting the wave forms shown in �gures ����� and

��The maximumperturbation height does not exceed 	�� of the wave amplitude in the simulations
conducted�

��We have conveniently designed our non�dimensional domain such that the wave number �k� is
�� so our wave amplitude is equal to the wave ak�

��While it is possible to compare the surface perturbation to nonlinear theory� the additional
complexity does not provide any �better� results� The comparison of theoretical waves to parasitic
components of a nonlinear wave is a heuristic approach since a nonlinear wave is not a linear super�
position of its components� However� to the leading order� we expect the behavior of the parasitic
components of a nonlinear wave to have their analogue in the behavior of small�amplitude waves�

�	The wave number �k� of the primary wave is � and the domain width is half of the domain
length� so the resulting short�crested waves have identical wavelengths in the x and y directions�
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Figure ���� Instantaneous perturbation of surface height for monochromatic wave� Vertical

axis normalized by monochromatic wave amplitude �horizontal axes not to scale��
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Figure ���� Short�crested wave shape using linear theory� Vertical axis normalized by

monochromatic wave amplitude �horizontal axes not to scale��
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������ The standard deviation of the di�erence for the two �gures shown is approxi�

mately �+ of the maximum perturbation height of the parasitic wave� It follows that

linear short�crested wave theory is a reasonable approximation of the parasitic waves

seen in the �ow simulations�

The use of linear wave theory for the parasitic waves allows us to estimate the

wave speed �cp� and sub�surface velocity e�ects of the parasitic waves� The theoretical

wave speed is obtained from�

c�p �
gr

m�
tanh �rD� �����

where g is non�dimensional gravity� D is the domain depth �D � 	�� and r is the

magnitude of the resultant wave number vector� de�ned as r� � m� $ n�� As

demonstrated by Fuchs �	����� this wave speed is larger than the wave speed of

a monochromatic wave with the same streamwise wavelength� The speed of the

short�crested waves is very close to the speed of the primary wave in the simulations

conducted� This results in a surface perturbation that moves with the primary wave

and appears almost stagnant in the wave�following coordinate system�

The velocities beneath an irrotational� small�amplitude� short�crested wave

can be determined from�

u �
gap
cp

cosh r �D $ z�

cosh rD
sin �mx� cos �ny� ���	��

v �
gapn

cpm

cosh r �D $ z�

cosh rD
cos �mx� sin �ny� ���		�

w �
gapr

cpm

sinh r �D $ z��

cosh rD
cos �mx� cos �ny� ���	��

where z is the vertical coordinate measured from the still water level� Of particular

interest is the existence of a spanwise velocity v that is associated with a short�crested

wave moving in the streamwise direction� This component does not have an analogue

in the solution of an irrotational monochromatic wave�

Since the parasitic waves are not monochromatic� their velocity �eld will ap�

pear as �uctuations from the spanwise phase�average in the simulation results� As

noted in section ������ we can obtain wave�induced e�ects by subtracting the time�

and wave�averaged mean pro�les of current�only simulation results from similar pro�

�les for the wave�current case� For the turbulence intensities� we can also subtract the



CHAPTER �� SIMULATION APPROACH 		�

mean e�ects of the parasitic waves �based on linear theory� to arrive at wave�induced

e�ects due solely to the interaction of the waves and the current� This approach pro�

vides further insight into the wave�current interaction without the �uctuation signal

caused by the parasitic waves���

The parasitic waves have a growth and decay behavior that is not consistent

with the decay of the primary wave� To prevent the behavior of the parasitic waves

from contaminating the detrending process� we computed the parasitic wave e�ect

from the instantaneous data and subtracted this from the computed wave�induced

data before the detrending� The parasitic wave velocity �eld �from equations %��	�&

through %��	�&� was computed based on the instantaneous RMS amplitude of the par�

asitic surface perturbation� The square velocities of this �eld were averaged beneath

the wave to obtain the mean e�ect of the parasitic waves�

��Removing the irrotational e
ect of the parasitic waves does not remove the interaction e
ects
�if any� of the parasitic waves with the current�
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Time�averaged simulation results

	�� Introduction

The data developed in our simulations are analyzed using the techniques outlined

in chapter �� In this chapter we concentrate on analyzing the simulation results

for the time�averaged mean velocity� vorticity� turbulence intensities and enstrophy�

By comparing this data to experimental results of Cowen �	���� we gain con�dence

in the validity of our simulation method and provide further insight into the mean

interactions of waves and turbulence�

It will be convenient to divide the �ow domain into three layers� de�ned as�

�	� bottom boundary layer� �	�� � z��D � ����

��� �ow core� ���� � z��D � ���	

��� near�free�surface region�� ���	 � z��D � �

Our interest lies in analysis of the �ow in the core region and the near�free�surface

region� For the present work� the bottom boundary layer will not be discussed in

detail�

�The near�free�surface region we have de�ned is approximately � to �� times the thickness of the
free surface boundary layer ����� see Table ������� depending upon the wave speed� A more precise
de�nition of the near�free�surface region would use a consistent scaling from the free surface based
on the boundary layer thickness rather than a non�dimensional depth� For our purposes� the choice
of ���� � z��D � � provides an approximation of the region where the e
ects of the small surface
waves and viscous forces are concentrated�

		�
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	�� Wave�induced velocity


���� Introduction

Reports on experimental investigations of �ows with surface waves have often noted

a net�negative� wave�induced� mean Eulerian current with a negative shear pro�le��

Cowen �	���� demonstrated that the negative shear in the wave�induced velocity pro�

�les seen in his experiments could not be attributed to advection from the horizontal

boundaries since the arrival of the velocity de�cit was based on the wave group ve�

locity rather than the mean current velocity� In addition� he provides convincing

arguments that the laboratory waves can be approximated as Gerstner waves �rota�

tional waves with closed particle orbits� Kinsman %	���&�� Monismith� has noted that

the negative shear appears to be a fundamental feature of laboratory waves�


���� Comparison of simulation and experiments

We expected to con�rm that a spanwise� and streamwise�unbounded numerical �ow

would not show a negative Eulerian�mean shear in the wave�induced velocity� This

would indicate that the negative shear seen in laboratory experiments is due to �	� the

convection of vorticity from the side and end walls� ��� the establishment of Gerstner

waves in laboratory experiments as proposed by Cowen �	����� or ��� some unknown

laboratory�scale e�ect� However� as illustrated in �gure ���	� the wave�induced mean

streamwise velocity pro�les for the numerical simulations show a distinct negative

shear up to the lower edge of the near free�surface layer� For comparison purposes�

the velocity pro�le developed by Cowen in the Tilting Wave�Current Flume �TWCF�

at the Stanford Environmental Fluid Mechanics Laboratory is presented in �gure

���	� as a dashed line� The data is non�dimensionalized on the wave scale for second�

order e�ects �c���� and has had the e�ect of the grid stretching on the mean velocity

pro�le removed �see section �������

The negative shear in the core of the �ow turns into positive shear in the

�See Cowen ������ for a detailed discussion�

�S�G� Monismith� Dept� Civ� Eng�� Stanford Univ� personal communication ������
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Figure ���� Wave�induced Eulerian�mean streamwise velocity compared to Cowen�s data

�TWCF�� ��� Cowen� ������ W�� ������ W�� ������ W�

near�surface region� and then �for the simulations� into zero shear at the free surface�

Figure ����� shows a close view of the velocity pro�les in the near�surface region� As

the free�surface is approached� the velocity shear for the numerical simulations goes

to zero as required by the dynamic boundary condition for a �ow that is not spatially

decaying �see section ������� The pro�le for Cowen�s �	���� TWCF experiment in

�gure ����� appears� to show a slight positive shear which is consistent with the

computation of the mean pro�le beneath a spatially�decaying wave�

The results of Cowen �	���� presented in �gure ���	� show the data exceeding

	�� c�� as the bottom of the domain is approached� According to Cowen� the pro�le

does reverse and return to zero at the bottom
 however the experiment was not

designed to look at bottom boundary e�ects� so the bottom boundary layer was

not fully resolved in the data presented� Because the bottom boundary layer in the

TWCF �ume was signi�cantly thinner than in the present numerical simulations� any

comparisons in that region would be suspect�

�The TWCF data of Cowen is not well resolved in the near free surface region� so the magnitude
of the shear should be considered approximate �E� Cowen� Env� Fluid Mech� Lab�� Stanford Univ��
personal communication �������� Cowen developed well�resolved data in the near�surface region for
his RWCF I and RWCF II experiments� but the scaling of those experiments is signi�cantly di
erent
than that of the numerical simulations�

�E� Cowen� Env� Fluid Mech� Lab�� Stanford Univ�� personal communication �������
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Figure ���� Wave�induced Eulerian�mean streamwise velocity in the near�surface region�

���Cowen� ������ W�� ������ W�� ������ W�


���� Discussion of negative velocity shear

That both the simulations and the experiments result in negative shear is interesting�

but may be coincidental� As pointed out by Cowen	� a reasonable explanation for the

negative shear in the simulations is a momentum de�cit developed when slow�speed

�uid is ejected out of the bottom boundary layer in bursting events� while the negative

shear in the experiments of Cowen �	���� appears to be a property of the Gerstner

waves developed at the wave maker� From temporal animations of the data �see

chapter �� it can be seen that one of the e�ects of the simulation waves is an increase

in the turbulence intensity in the core of the �ow due to entrainment of slow�speed

�uid from the bottom boundary layer� Unfortunately� the present data cannot be

used to conclusively demonstrate that the transport of the turbulent �uctuations into

the near surface region is accompanied by a transport of low momentum �uid so as

to provide a momentum de�cit with a negative shear� Future simulations with scalar

transport equations implemented in the numerical method may be able to determine

if the negative shear is a momentum de�cit e�ect�

�ibid�
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Similar to the experimental results of Cowen �	����� Nepf �	����� and others
�

our results show a net�negative Eulerian�mean wave�induced velocity when the veloc�

ity pro�les in �gure ���	� are integrated over the depth� From the data animations

�chapter �� and the analysis of the turbulence intensities �section ���� it can be ar�

gued that the net�negative result is caused by the rotation of streamwise �uctuations

�and their momentum� into the spanwise and vertical directions as the result of rapid

distortion e�ects� A task for future research is to determine conclusively whether this

result is a coincidence due to the close proximity of the bottom boundary layer� or a

necessary result for waves over a sheared current�


���� Evidence of simulation Gerstner waves�

The previous arguments provide a reasonable picture of the wave�induced streamwise

velocity �eld as a result of the interaction between the waves and the bottom boundary

layer� However� we can also conjecture that our simulation may have developed

trochoidal Gerstner waves through the interactions of the rotational current with the

irrotational Stokes wave used as the initial conditions� It is not clear how this would

occur since a Gerstner wave requires a particle local rotation that is opposite to the

orbital rotation� As noted by Wiegel �	����� this condition is most likely to be met

where a wave is propagating against a sheared current
 however� our simulations are

of waves propagating with the sheared current�

The Eulerian velocity pro�le for a Gerstner wave �uG� can be presented as

�Wiegel %	���&��

uG � �c ��e�kz ���	�

Since the simulation data for the wave�induced velocity pro�les in the core of the

�ow collapse fairly well� we can de�ne a 
composite� velocity pro�le by averaging the

pro�les of the three waves� Figure ����� shows a plot of the Gerstner wave velocity

pro�le against the composite velocity pro�le for the simulation waves in the �ow

core� It can be seen that the trend of the simulations is very similar to the trend

of the Gerstner wave pro�le� The positive o�set of the simulation pro�le may be

attributable to the viscous streaming e�ects of the bottom boundary layer which are

�See Cowen ������ for more discussion of experimental results�
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Figure ���� Wave�induced Eulerian�mean streamwise velocity in �ow core ��
�
 � z�D �

�
��� for a composite average of numerical simulations compared to Gerstner wave velocity

pro�le� ����� Gerstner pro�le� ������ composite simulation pro�le

not accounted for in the theory of Gerstner waves� While this evidence cannot be

considered convincing on its own� in section ����� it is demonstrated that the vorticity

�eld in the core of the �ow also shows correspondence with the expected pro�le of

a Gerstner wave� Further investigations are needed to determine �	� the mechanism

of wave�current interaction that results in the negative shear for the Eulerian mean

velocity pro�le� and ��� whether or not the simulation is developing Gerstner waves�


���	 Discussion of near�free�surface velocity

Cowen�s detailed RWCF results show a positive vertical shear of the streamwise veloc�

ity ���uE��z� very close to the free�surface when averaged over a wave�length� Cowen

attributes this to the spatial wave decay� which he analyzes through the vorticity

expected to be generated by the decay� That the shear is attributable to spatial

decay could also be argued from the tangential component of the dynamic boundary

condition� which can be written for a two�dimensional� orthogonal� boundary��tted

curvilinear system ��� �� as�
�U

��
$

�W

��
� � �����
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If a �ow sees a mean vertical �Cartesian� shear in the horizontal �Cartesian� velocity�

then it can be argued that the �ow should also see a surface�normal shear in the

surface�tangential velocity� If this is not the case� then the apparent mean Cartesian

shear is an artifact of the coordinate system and does not indicate an actual strain

rate in the �ow in the near surface region�� A mean normal shear of the tangential

velocity implies that� Z
�U

��
d� � � �����

In conjunction with equation ��� this implies thatZ
�W

��
d� � � �����

If a wave train decays spatially in amplitude while maintaining the same wavelength�

then� at any particular phase of the wave� the magnitude of the vertical velocity

�and thus the surface normal velocity� will be forced to decrease along the wavetrain�

resulting in a mean negative gradient of the vertical and surface normal velocities�

It follows that satisfaction of the inequality in equation ����� at the free surface

implies that the wave is decaying� Thus a positive� mean� surface�normal shear of

the tangential velocity is necessary for a spatially decaying wave that maintains a

constant wavelength� A more succinct way of stating the above is�

The mean tangential stress on a free surface must vanish� which implies

that a mean� negative� horizontal strain�rate of the vertical velocity must

be balanced by a mean� positive� vertical strain�rate of the horizontal

velocity�

For the numerical simulations� a mean horizontal strain of the vertical velocity can�

not be maintained with the periodic boundary conditions� so the vertical strain of the

horizontal velocity must vanish� This e�ect is shown in the near�surface region for

the streamwise velocity pro�les in �gure ������ This result indicates a fundamental

di�erence between the near�surface behavior of a spatially�decaying wave in a lab�

oratory and a temporally�decaying wave in a numerical simulation� This di�erence

appears to be small
 however� it may e�ect the generation of free�surface vorticity�

This e�ect remains a subject for future investigation�

�Cowen�s ������ results account for the coordinate system� so that the shear appears to be
physical rather than coordinate�based�
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���
 Phase�dependent mean velocity pro
les

Figures ����� and ����� show the wave�induced� phase�averaged Eulerian velocity pro�

�les for various phases of case W� in the near surface layer� These �gures provide a

good qualitative comparison to similar graphs in Cowen �	���� �his �gures %���a& and

%���b&�� Direct quantitative comparison is di�cult due to the di�erent scales of his

RWCF I wave and the numerical simulations�

The strong negative shear in the streamwise velocity pro�le for the crest shown

in �gure ����� is a result of the requirement that the velocity at the free surface satis�es

the tangential dynamic boundary condition� At the crest this can be written as�

�u

�z
$

�w

�x
� � �����

Since the term �w��x is positive at the crest �for a wave moving in the positive x

direction�� it follows that a negative shear in the streamwise velocity is required� The

same argument �but with opposite signs� explains the positive shear in the streamwise

velocity beneath the trough� The magnitude of the negative shear beneath the crest

is larger than the positive shear beneath the trough due to the steepening of the wave

near the crest and the �attening of the trough� The nonlinear wave shape requires

sharper horizontal gradients of the vertical velocity near the crest� which means a

stronger shear in the streamwise velocity near the crest�
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Figure ���� Phase�dependent� Eulerian streamwise velocity pro�les in the near�surface

region for case W��
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Figure ���� Phase�dependent� Eulerian vertical velocity pro�les in the near�surface region

for case W��
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Figure ���� Wave�induced Eulerian�mean spanwise vorticity compared to Cowen�s data

�TWCF�� ��� Cowen� ������ W�� ������ W�� ������ W�

	�� Wave�induced vorticity


���� Comparison to experiments

Figure ����� shows a comparison of the wave�induced spanwise vorticity for the sim�

ulations and the TWCF �ume data of Cowen� As with the velocity pro�les� the

agreement between experiment and theory is poor in the bottom boundary layer due

to the di�erent boundary layer thicknesses� A closer view of the data above the

bottom boundary is provided in �gure ������ This �gure shows a distinct negative

shear of the mean spanwise vorticity through the �ow core with a sharp positive spike

of the spanwise vorticity in the near�free�surface region�


���� Comparison with Gerstner waves

The good agreement of the experimental and numerical results in the core region

was unexpected since the negative shear in the vorticity pro�le for the experiments
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Figure ���� Wave�induced Eulerian�mean spanwise vorticity compared to Cowen�s data

�TWCF� above the bottom boundary layer� ��� Cowen� ������ W�� ������ W��

������ W�

was attributed to the establishment of Gerstner waves at the mechanical wave maker�

The correspondence between the simulation� experiments and Gerstner waves can be

seen more clearly by graphing a composite wave�induced vorticity pro�le �the average

of the three wave simulations� against the vorticity pro�le found in the experiments

and the vorticity pro�le produced by Gerstner waves� as shown in �gure ������ The

vorticity pro�le for the Gerstner wave can be found from Kinsman �	�����

�g � � ����e�kz

	 � ��e�kz
�����

where � is the wave radian frequency� and � is the wave slope �ak��

Based on the above results and the wave�induced velocity pro�les in �gure

����� it appears that the interaction between the initial Stokes wave and turbulent

current in the numerical simulations may be producing rotational Gerstner waves�

The mechanism that would produce this result is still unclear� and it may be that the

correspondence between the experiment� simulation and Gerstner wave theory is coin�

cidental� Alternatively� it may be that the interaction of a turbulent shear current and

a waveform may produce Gerstner waves as a necessary consequence of interactions

that are not yet understood� This remains a matter for future investigation�
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Figure ��	� Wave�induced Eulerian�mean spanwise vorticity for composite�average of wave

simulations compared to Cowen�s data �TWCF� and Gerstner wave vorticity pro�le in �ow

core ��
�� � z�D � �
��� ��� Cowen� ������ composite simulation� ����� Gerstner

wave


���� Discussion of of near�surface vorticity

Vorticity pro�les in �gure ����� show a sharp spike in the wave�induced vorticity in

the free�surface boundary layer that is not present in the TWCF experimental data

of Cowen� In the simulation data� the spike in the vorticity can be seen to have

a maximum that increases with the wave speed �case W� having the highest wave

speed�� with the peak getting closer to the free surface� Since Cowen�s experiments

were run with signi�cantly faster waves than the numerical simulations� we might

expect the laboratory results to show a very strong vorticity spike quite close to the

free surface� This does not show up in the TWCF experimental data� However� as

noted by Cowen �	�����

The TWCF measurements are relatively coarse� and due to the uncertainty

associated with the wave maker vorticity� it is di�cult to evaluate the near�

surface vorticity pro�le quantitatively�

Because of these di�culties with the TWCF� Cowen used the Recirculating Wave�

Current Flume �RWCF� at the Environmental Fluid Mechanics Laboratory at Stan�

ford University to investigate the near�surface vorticity and velocity pro�les� The
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Figure ��
� Wave�induced Eulerian�mean spanwise vorticity compared to Cowen�s curve�

�t to experimental data in the near�surface region� ��� Cowen �RWCF I� curve �t��

������ W�� ������ W�� ������ W�

results of these simulations are reported as RWCF I and RWCF II in Cowen �	�����

In �gure ������ the curve��t computed by Cowen for the viscosity�induced vorticity in

RWCF I is compared to the wave�induced vorticity in the simulations �in this �gure

the vertical scale is kz for consistency with the results of Cowen %	���&�� Note that

Cowen�s experimental data �not shown� contains a sharp drop in the vorticity for

kz � ����	 that is not captured in the curve �t� but is consistent with the behavior

of the numerical simulation�


���� Phase�dependent vorticity e�ects

The near�surface� phase�dependent� wave�induced vorticity pro�les for case W� shown

in �gure ���	�� provide reasonable qualitative comparison to Cowen�s results �his �g�

ure %��	�b&��� The simulation data show a greater asymmetry of the vorticity pro�les

than the results of Cowen due to the larger ak in the simulation� The additional

steepening near the crest and the �attening at the trough in the simulation causes

the magnitude of the phase�averaged spanwise vorticity at the crest to be larger than

�We have scaled the vorticity by 	
 rather than 	
� used by Cowen� The former appears to be a
better scale of the phase�averaged vorticity in the near�surface region for the numerical simulations�
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Figure ����� Phase�dependent� spanwise vorticity pro�les for case W� in near�surface

region �
�
� � z��D � 
�� ����� kx 	 �� �trough�� ����� kx 	 �����

����� kx 	 
 �crest�� ����� kx 	 ����

the magnitude of the vorticity at the trough�

A better picture of the spanwise vorticity generation on the surface can be

obtained by plotting the surface vorticity versus the wave phase as shown in �gure

���		�� For reference� the wave shape is shown at the top of the �gure and an arrow

indicates the direction of wave propagation� It is not clear why there is a small spike

in the wave�induced vorticity at the trough near the boundary� It was observed in

the simulation data that the low point of the trough did not actually occur on the

boundary� but was instead located about three grid cells inside the boundary at the

trailing edge of the wave� This is coincident with the start of the spike in the spanwise

vorticity� While it is possible that this phenomena has a physical cause� the more likely

explanation is that this is a numerical manifestation of the di�culties in obtaining a

smooth boundary�orthogonal and periodic grid in a moving grid simulation� Further

investigation is required to determine the cause of the vorticity spike�

By looking at the evolution of the vorticity beneath the wave� we can see that

the e�ect of the spike in the surface vorticity is contained in the free�surface boundary

layer and does not signi�cantly a�ect the interior �ow� Figure ���	�� provides a plot

of the spanwise vorticity versus the wave phase for a series of curvilinear coordinate

lines inside the free surface for case W�� The line with the largest magnitude is the
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Figure ����� Wave�induced spanwise vorticity at the free surface plotted against the wave

phase� Arrow indicates direction of wave propagation� ������ W�� ������ W�� ������

W�

free surface� the next line is 	 z$ unit inside the free surface� and the following lines

are the succeeding grid lines beneath the free surface� It can be seen that the wave�

induced free�surface spanwise vorticity vorticity has decayed to zero within the �rst

ten grid cells beneath the free surface� which is the approximate thickness of the free

surface boundary layer�

Figure ���	�� provides a picture of the wave�induced vorticity in the bottom

boundary layer in a fashion similar to �gure ���	��� In the bottom boundary� the wave

induces an oscillation in the generation of vorticity that has its maximum values before

the crest and before the trough rather than at the crest and trough as is seen in the

free�surface boundary layer�
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Figure ����� Wave�induced spanwise vorticity in bottom boundary layer plotted against

wave phase� Lines are vorticity on successive curvilinear coordinates above the bottom

boundary� Arrow indicates direction of wave propagation�
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���	 Generation of vorticity at crest and trough

We can demonstrate that the vorticity directions at the crest and the trough shown in

�gures ���	�� and ���		� are correct by following the argument presented by Longuet�

Higgins �	������� The de�nition of the spanwise vorticity is�

�� �
�u�
�x�

� �u�
�x�

�����

If we note that the exact crest and trough have tangent lines that are horizontal� then

the tangential component of the dynamic boundary condition can be written as�

�u�
�x�

$
�u�
�x�

� � �����

It follows that

�� � � �
�u�
�x�

�����

At the crest� in the direction of wave propagation along the x� axis� the u� component

of velocity has a positive gradient� so the vorticity is necessarily negative at the crest�

At the trough� the gradient is reversed� so the vorticity is necessarily positive�

�	Note that Longuet�Higgins used an x � y coordinate system rather than an x � z coordinate
system� which results in the vorticity being of the opposite sign when a right�hand rule is used�
However� the actual direction of rotation associated with the surface vorticity will be the same�
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	�� Turbulence and velocity �uctuations

Turbulence is generally de�ned as the �uctuations of the velocity from a time�averaged

mean� If this de�nition is applied by an observer in a �xed frame of reference for a

wave�current system� then the entire wave�induced velocity �eld will be considered

part of the turbulent �uctuations� However� the �mostly� irrotational velocity �eld

produced by periodic wave motion is a di�erent type of velocity �uctuation than is

typically associated with turbulence�

Ideally� we would like to be able to decompose an instantaneous velocity �eld

into �	� a temporal mean� ��� periodic �uctuations due to surface waves and ���

non�periodic �uctuations �which can be de�ned as turbulence�� This approach was

taken by Jiang� et al� �	���� in decomposing experimental results to examine the

interaction of waves and turbulence for a spectrum of two�dimensional waves� Cowen

�	���� extended the temporal linear �ltration technique of Benilov and Filyushkin

�	���� to spatial measurements using the assumption that the wave�induced velocity

��u� can be computed by averaging the velocity �eld at discrete phases of the wave�

Neither of these techniques is entirely satisfactory for the present simulations due

to the presence of three�dimensional short�crested waves on the surface that make

signi�cant contributions to the �uctuating velocity �eld�

In the present work� the use of a wave�following coordinate system allows the

de�nition of turbulence as the �uctuations from the phase�averaged velocity beneath

the wave� This follows the approach of Cowen �	���� in removing the periodic motions

induced by the primary wave from the de�nition of turbulence� Using linear theory for

short�crested waves �see section ������� we can estimate the mean velocity �uctuations

caused by the largest parasitic waves and remove this e�ect from the computation of

the mean turbulence averaged over a wavelength� An e�ective method of decomposing

the velocity �uctuation e�ects for the entire spectrum of three�dimensional surface

perturbations remains to be developed�
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Figure ����� Mean total turbulent kinetic energy of velocity �uctuations� ����� W��

����� W�� ����� W�� ����� C �current only�


���� Total turbulent kinetic energy

Pro�les of the total turbulent kinetic energy �averaged over a wavelength� are shown in

�gure ���	��� The pro�les are normalized by the square of the turbulent shear velocity

�u�� so an increasing trend with increasing wave speed�� in the core of the �ow is not

unexpected� the higher�speed wave should have a more energetic interaction with the

current�

Unfortunately� there is not a single scale by which the turbulence data can be

normalized to obtain a collapse to a single line for various wave speeds� When the

data in �gure ���	�� is scaled by the appropriate wave scale �c����� the relationship

�not shown� between the pro�les for the waves is reversed and the scaled data are not

collapsed� Slightly better agreement occurs �not shown� when the scaling is on the

square of the di�erence between the wave speed and the mean current� These results

indicate that the appropriate scaling requires some combination of the turbulent and

wave scales to properly collapse the data� and the proper scales may be a function of

the vertical position in the �ow� Scaling on the product of the wave speed and u� � was

��The slowest wave is W�� the fastest is W	� In relative terms� cW� � ��� cW�� and cW� �
��� cW��
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also investigated� but the data collapse was not consistently improved� The variations

of wave�induced turbulence with wave speed seen in the simulations is consistent with

Cowen�s �	���� observation of increased viscous streaming in a turbulent boundary

layer compared to the laminar solution� These e�ects can be attributed to three�

dimensional interactions between the wave and the turbulent boundary layer�

By subtracting the turbulent pro�le of the current from the wave�current

pro�les� we arrive at the wave�induced turbulent pro�les shown in �gure ���	��� It

can be seen the the wave induced e�ects do not go to zero at the surface� but collapse

towards u�� � It is interesting to compare the pro�les in �gure ���	�� to a pro�le

of the turbulent �uctuations when the parasitic waves have not been removed� as

shown in �gure ���	��� The �uctuations due to the parasitic short�crested waves

have a signi�cant e�ect on the pro�les for the upper third of the domain beneath

the surface� From a comparison of these two graphs� it appears that there may be

additional higher�mode parasitic waves on the surface that are responsible for some

of the increased �uctuations in the range of ���� � z��D � �� Such higher�mode

waves would have velocity e�ects that decay faster than the e�ect of the low�mode

parasitic waves�
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Figure ����� Mean wave�induced turbulent kinetic energy of phase�averaged velocity �uc�

tuations �short�crested wave e�ects removed�� ����� W�� ����� W�� ����� W�
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Figure ����� Mean wave�induced turbulent kinetic energy of phase�averaged velocity �uc�

tuations �short�crested wave e�ects included�� ����� W�� ����� W�� ����� W�
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Figure ����� Mean total streamwise turbulent intensity of velocity �uctuations� ����� W��

����� W�� ����� W�� ����� C �current only�


���� Streamwise turbulence intensity

Comparison of the total turbulent kinetic energy in �gure ���	�� and the streamwise

contribution to the kinetic energy shown in �gure ���	�� reveals that the streamwise

�uctuations are the primary source of turbulence in both the current�only �ow and

the wave�current �ows� The most obvious conclusion that can be drawn from �gure

���	�� is that the primary e�ect of the wave on the streamwise �uctuation is in the

viscous streaming e�ect in the bottom boundary layer� However� the behavior of the

streamwise �uctuations in the �ow core is also interesting and can be better seen in a

plot of the wave�induced streamwise �uctuations shown in �gure ���	��� In this �gure

the reduction of the intensity of the streamwise �uctuations in the core for �ow W	

and W� is obvious� Normally� a negative value for mean square �uctuations indicates

an error in the data processing methods
 however� in this case� the pro�les in �gure

���	�� are the di�erence between the �uctuations in the wave�current �ow �minus

the e�ect of the parasitic waves� and the current�only �ow� As such� the region of

negative net turbulent energy indicates that the monochromatic wave is redistributing

a portion of the kinetic energy from the core of the �ow�
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The fastest wave� W� seems anomalous in that the intensity in the core is

larger than the intensity of the current�only simulation except for a very small region

in the core� Further investigation is required to determine if the physical processes

associated with the wave�turbulence interactions of the faster wave are di�erent from

that of the slower waves�

Figure ���	�� is a plot of the wave�induced streamwise turbulence e�ects with

the short�crested wave �uctuations included� As before� we see that the e�ect is

con�ned to the upper third of the domain where there is a signi�cant increase in the

computed streamwise �uctuations�
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Figure ���	� Mean wave�induced streamwise turbulence intensity of phase�averaged ve�
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Figure ���
� Mean wave�induced streamwise turbulence intensity of phase�averaged ve�

locity �uctuations �short�crested wave e�ects included�� ����� W�� ����� W�� ����� W�
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���� Spanwise turbulence intensity

The total spanwise turbulence intensity for the wave and current is shown in �gure

������� Note that the e�ect of the parasitic waves has been removed from these

pro�les� but there remains a signi�cant increase in the turbulence intensity in the near

surface region� In the bottom boundary layer we see that the wave in the streamwise

direction causes an increase in the spanwise turbulence intensity� In �gure ����	� the

wave�induced spanwise turbulence intensities are scaled by the product of the square

of the turbulent shear velocity and the ratio of the wave speed to the current speed�

This scaling collapses the data throughout the domain for this component of the

turbulence��� From this scaling it can be argued that the spanwise intensi�cation of

the turbulence by the wave is at least partially due to three�dimensional interaction

of the spanwise turbulence of the current with the streamwise and vertical strains of

the wave� Additional contributions to the spanwise turbulence intensity appear to

arise from the decay of the vertical turbulence intensity in the near�surface region

shown in section ������ Figures ������ and ������ show the wave�induced portions of

the spanwise turbulence intensity scaled by the square of the turbulent shear velocity�

��This scaling was applied to other turbulence components with no signi�cant improvement in the
collapse of the data�
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Figure ����� Mean total spanwise turbulent intensity of velocity �uctuations� ����� W��

����� W�� ����� W�� ����� C �current only�
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Figure ����� Mean wave�induced spanwise turbulence intensity of phase�averaged velocity

�uctuations� scaled on product of the turbulence shear velocity and a ratio of the wave

speed and current �short�crested wave e�ects removed�� ����� W�� ����� W�� ����� W�
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Figure ����� Mean wave�induced spanwise turbulence intensity of phase�averaged velocity

�uctuations �short�crested wave e�ects removed�� ����� W�� ����� W�� ����� W�
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Figure ����� Mean wave�induced spanwise turbulence intensity of phase�averaged velocity

�uctuations �short�crested wave e�ects included�� ����� W�� ����� W�� ����� W�
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Figure ����� Mean total vertical turbulent intensity of velocity �uctuations� ����� W��

����� W�� ����� W�� ����� C �current only�


���� Vertical turbulence intensity

The total vertical turbulence intensity shown in �gure ������ and the wave�induced

vertical turbulence intensity shown in �gure ������ are similar since the vertical �uc�

tuations in the current�only case are small� From these graphs we can see that the

wave�current interactions have a dramatic e�ect on the vertical turbulence intensity

in the the core of the �ow���

As one might expect� the vertical turbulence intensity decays as the surface is

approached� The apparent negative turbulence intensity �relative to the current�only

�ow� shown in �gure ������ is an artifact of the approximations used in removing the

e�ect of the parasitic waves�

The increase in the maximum vertical �uctuations with increasing wave speed

shown in �gure ������ can be collapsed �to some extent� by scaling on the wave speed

as shown in �gure ������� In this �gure we see that the scaling on the wave speed is

��Recall that our calculation of mean turbulence intensities is from phase�averaged data so the
mean motions of the primary wave are removed�
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Figure ����� Mean wave�induced vertical turbulence intensity of phase�averaged velocity

�uctuations �short�crested wave e�ects removed�� ����� W�� ����� W�� ����� W�

not entirely satisfactory since since the trend in the upper half of the �ow shows a

reversal of the original trend shown in �gure ������� Relative to wave speed scaling�

the faster wave has less wave�induced turbulence than the slower wave� The use of

wave scaling accentuates the near�surface positive shear of the vertical turbulence

intensities� In �gure ������� the wave�induced vertical turbulence intensities with the

parasitic wave e�ects included are shown based on the same wave scaling used in

�gure ������� A comparison of �gures ������ and ������ supports the conjecture that

there are smaller parasitic waves on the surface that have not been removed and are

causing the near�surface shear of the vertical turbulence intensity
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	�� Wave�induced �uctuating enstrophy

By subtracting the current�only �uctuating enstrophy components from the

wave�current �uctuating enstrophy components for phase�averaged data at di�er�

ent points beneath the wave� we can examine the the e�ect of the waves on the

vortical �eld in the �ow �see section ����� for a discussion of the product of wave

�uctuations and the product of wave �uctuations with current �uctuations that are

present in the wave�induced �eld�� Our primary interest in this dissertation lies in

the wave�turbulence interactions in the area between the lower shear layer and the

free�surface Stokes layer� This is roughly a range of ���� � z��D � ���	� where

z��D is the nondimensional distance measured from the free surface� In the following

analysis� we will limit the vertical axes of our graphs to this range so that the strong

enstrophy gradients in the boundary layers do not distract us from our analysis of

the data in the core of the �ow�


�	�� Wave�induced streamwise enstrophy

Figures ������� ������ and ������ show the wave�induced streamwise �uctuating en�

strophy for the three wave�current cases� These pro�les are similar for all three cases�

showing that all the waves induce a net increase in the streamwise enstrophy� with

the strongest increases being beneath the trough� and the weakest being beneath the

crest� This indicates that as the �ow goes beneath the trough� the vortex lines are

stretched in the streamwise direction� As is discussed in most �uid dynamics texts

�e�g� Batchelor %	���&�� it can be argued that the stretching of vortex lines should

cause an increase in the vorticity component in the direction of the stretching so as

to conserve angular momentum� Since we are periodically expanding and contracting

the �ow as waves pass over a point in the �ow� the stretching of the vortex lines

should show up primarily as an increase in the enstrophy �rather than in the mean

vorticity�� This is consistent with our argument in section ������� that the product

of the wave �uctuations with themselves � ��
w�

�
w � should be small and the pri�

mary wave�induced e�ect is in the product of the wave �uctuations with the current
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Figure ���	� Wave�induced streamwise �uctuating enstrophy pro�les in �ow core for case
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Figure ���
� Wave�induced streamwise �uctuating enstrophy pro�les in �ow core for case
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Figure ����� Wave�induced streamwise �uctuating enstrophy pro�les in �ow core for case

W�� ��� kx 	 �� �trough�� ����� kx 	 ����� ��� kx 	 
 �crest�� ��� kx 	 ���

�uctuations� � ��
w�

�
c �� The wave�straining �eld interacts with the vortical �eld pro�

duced by the bottom boundary
 this interaction provides the wave�induced enstrophy

e�ects�

There are two points that are particularly noteworthy in the streamwise en�

strophy data� �	� there is a net streamwise enstrophy increase beneath the wave crest

as well as beneath the trough �albeit the crest increase is smaller�� and ��� the data

shows an asymmetry about the crest in the ��� and ���� lines� These observations

are discussed in the following paragraphs�

The enstrophy increase beneath the wave crest is interesting because a vor�

tex line compression argument beneath the crest would lead one to expect that the

streamwise enstrophy should be reduced in this region when compared to the current�

only �ow �resulting in a negative value for the wave�induced vorticity�� Since the

wave�induced vorticity is positive beneath the crest� this implies one or more of the

following causes� �	� the streamwise vortex stretching beneath the trough is stronger

than the streamwise vortex compression beneath the crest� ��� streamwise enstrophy

is transported from the lower or upper boundary layers into the near�surface region�

��� the wave strains are transforming spanwise or vertical enstrophy into streamwise

vorticity� The most likely cause is �	�
 since the pro�les through all phases of the wave
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are the same and all are positive� it can be argued that the shape of the pro�le is due

to dominant stretching e�ects in the streamwise direction beneath the trough� The

o�set of the pro�les under other phases of the wave is due to the reduced stretching

in these areas� These e�ects will be discussed in greater detail in conjunction with

analysis of a time�series of the phase�averaged data in section ������

The asymmetry of the streamwise enstrophy about the crest for the points

��� and ���� is due to the asymmetry in the wave� Although it is not directly

apparent in the animations� the initial wave shape �which is symmetrical� undergoes

a steepening along the wave front so that there is a slight asymmetry to the wave

shape� Although the asymmetry is small� we can see from �gures ������� ������ and

������ that it has a signi�cant e�ect on the wave�induced enstrophy pro�les on either

side of the crest�
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Figure ����� Wave�induced vertical �uctuating enstrophy pro�les in �ow core for caseW��
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�	�� Wave�induced vertical enstrophy

In �gures ����	�� ������� and ������ the mean� phase�averaged� wave�induced� vertical

�uctuating enstrophy is shown for the wave�current simulations� Qualitatively the

graphs are similar� showing that the vertical enstrophy is reduced under the trough

and increased beneath the crest due to the passage of the wave� There is an interesting

quantitative anomaly in �gure ������ which shows the data for the fastest wave� case

W�� For the other wave cases� the wave�induced enstrophy beneath the forward

and reverse slopes of the wave goes to zero as the free�surface boundary layer is

approached� and the e�ect of the trough is to reduce the vertical enstrophy below

that seen in the current�only �ow� However� for the fastest wave we see the vertical

enstrophy goes to a positive value as the free�surface boundary layer is approached�

This indicates that the higher speed wave has a greater vertical enstrophy beneath

the trough than the current�only case� so there is another mechanism besides vortex

stretching at work for this wave� This additional mechanism appears to be related to

the spanwise wave�induced enstrophy discussed below�
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Figure ����� Wave�induced vertical �uctuating enstrophy pro�les in �ow core for caseW��
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Figure ����� Wave�induced vertical �uctuating enstrophy pro�les in �ow core for caseW��
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�	�� Wave�induced spanwise enstrophy

Figures ������� ������ and ������ present the mean� phase�averaged� wave�induced

spanwise enstrophy for the current�wave simulations� The wave�induced spanwise

enstrophy shows some weak phase�dependent e�ects for the low and medium speed

waves �cases W	 and W��� while the high speed wave does not have any signi�cant

phase�dependent e�ects� From these graphs it appears that the wave causes a redis�

tribution of spanwise enstrophy from the upper edge of the bottom boundary layer

into the core of the �ow� This e�ect does not appear to scale on the wave vorticity

scale� but shows an e�ect that increases with the wave speed� For case W� the span�

wise enstrophy transported from the bottom boundary connects with the spanwise

enstrophy produced in free�surface boundary layer
 thus� this is the only one of the

three cases where the spanwise vorticity is non�zero at the lower edge of the bottom

boundary layer�
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Chapter �

Analysis of instantaneous data


�� Introduction

The time�averages of the instantaneous data developed by the simulation provide a

quantitative understanding of the mean interactions of the waves and current� How�

ever� the temporal kinematics and dynamics of mixing and stirring processes are lost

in the temporal averaging� To obtain a better understanding of the temporal evolu�

tion of the �ow �eld� we have developed a series of video animations of the simulation

data� A VHS format video tape with �� minutes of animations is included as an

attachment to the hard�bound printings of this dissertation��

This chapter presents narrations of the animations followed by a discussion of

insights gained from analyzing the temporal evolution of the �ow �eld� To supplement

the video� a selection of still frames has been extracted and are provided as color

�gures at the end of this chapter�


�� Data animations

����� Introduction

The video animations of selected simulation data are from wave�current case W� and

current�only case C� Computer animations of cases W	 and W� were analyzed� and

were found to be qualitatively similar to the results in case W�� The animations

begin about one�third of the way through the simulation� when the wave and current

�Readers with a soft�bound copy of this work can obtain a copy of the video from the author for
a nominal fee to cover copying and shipping�

	��
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have interacted for 	� wave periods� The animations run for 	� wave periods�� Un�

fortunately there is an error in the time counter on the video so that the clock runs at

half the correct rate� Thus� the video shows the simulation beginning near t�T � �

and ending at t�T � 	��

����� Observer�s reference frame

The observer is in a wave�following system for all of the animations� To provide a

similar visual reference� the current�only animations �case C� are shown in a reference

frame moving at the speed of the wave used in case W�� For animations of data on

the central �x �z� plane� the wave is propagating to the right on the television screen�

Because the wave is faster than the mean �ow� the animations show the turbulent

structures in the �ow being swept to the left� The inlet and outlet conditions are

periodic� so that a structure that moves out of the left side of the screen will appear

on the right side� For �y �z� cross�planes� the observer is riding the wave and looking

in the negative �upstream� direction so that the positive y direction is to the right of

the screen� A vortex structure that begins in the bottom boundary layer and rises

to the free surface in the streamwise direction will be seen as a rising vortex as the

cross�plane moves over the length of the vortex in the streamwise direction�

����� Data presentation

Data is presented in two forms� �	� phase�averaged statistics� where the averaging is

done in the homogeneous spanwise direction to produce a single �x � z� plane that is

representative of the entire �ow �eld� and ��� instantaneous primitive variables for

selected data planes�

����� Color scales

For the phase�averaged data� the color spectrum ranges from dark blue �zero value�

to red�brown �maximum value�� For instantaneous velocity vectors� the color is

�The simulation ran for an additional �� wave periods beyond the length of the video animations�
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used to represent the velocity perpendicular to the viewing plane� and ranges from

black �negative maximum� through red and yellow to white �positive maximum�� For

streamwise planes� the black areas of the screen represent a strong velocity moving

towards the viewer ��y direction�� while the white areas represent a strong velocity

moving away from the viewer �$y direction�� In spanwise planes� the black areas are

slow�speed �uid �relative to the instantaneous phase�averaged velocity� and the white

areas are high�speed �uid�

The temporal wave decay in�uences the magnitude of statistical e�ects over

time so the color scale in the animations is adjusted to remove the decay trend for

the animations of the statistical �turbulence�enstrophy� data for the wave�current

simulations� This provides the animations with a consistent color scale so that the

structures in the �ow can be better visualized�

There was a limited range of color spectrum available for showing the anima�

tions� The e�ective visualization of �ow structures is a function of the range rep�

resented by the color spectrum since the choice of where red�yellow�blue contrasts

appear will de�ne the structures that are visualized� Our interest in this dissertation

lies in the wave�turbulence interactions above the bottom boundary layer� therefore

the color scales were set to emphasize the structures in this region� As a result�

where strong e�ects occur in the bottom boundary layer� the color scale saturates in

a red�brown color and the detail of the boundary layer structures is generally lost�

If the color scale were de�ned so that the maximum color only appears for the very

largest values� then good resolution is obtained in the bottom boundary layer� but

the structures in the core of the �ow are lost��

The turbulence intensities and enstrophy intensities in the wave�current �ow

are larger than those in the current�only �ow� so the color scales are not identical�

In order to visualize the structures in the current�only �ow� the color scale covers a

range of approximately ��+ of the wave�current �ow�

In general� an attempt was made to keep the color scales consistent between

similar animations �within the guidelines above�� However� in some cases it was

necessary to readjust the color scales to obtain better de�nition of the structures�

�One example of scaling to see the bottom boundary layer structures is provided to illustrate the
structure in the current�only bottom boundary layer that is intensi�ed by the wave�
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In these cases� the video animations have labels such as� 
	�� color scale�� This

indicates that the range of the color scale was reduced by half when compared to the

other similar components of data� For example� the spanwise turbulence intensity

has an interesting structure� but is smaller than the streamwise turbulence intensity�

Without rescaling the color the structures in the spanwise �uctuations would be lost�

Colorbars were generally not included on the video� but are provided in �gures ���	�

through ����� which are similar to the video�

In some of the animations �particularly those of the wave�current x �z plane�

there are anomalous pixels of color that appear �xed in relation to the wave and are

inconsistent with the color contours in the �ow� These spots are a 
noise� signal in

the graphics program that produced the PostScriptTM �les that were the basis of the

video animations� These anomalies are not part of the simulation data� but appear

to be caused by the inability of the PostScriptTM driver in MatlabTM to produce a

precise color plot for data presented in the wavy domain� Note that these anomalies

do not occur in the current�only domain where the underlying grid for the data is

rectangular�

����	 Contents of the video

Each animation segment lasts approximately �� seconds and shows 	� wave periods of

data� This represents approximately ��� s of real time for a 	�� mm wave on a channel

depth of �� mm �wave�current case W� shown in table %���&�� For consistency� the

time clock on the current�only case is non�dimensionalized by the same wave time

scale as the wave�current case�� The video presents an animation of data for a

wave�current case followed by an animation of data for a current�only case�� The

animations are sequenced in the following order�

	� total turbulent kinetic energy�

�� streamwise turbulent �uctuations�

�As previously noted� the time scale on the clock is actually t��T rather than t�T as shown in
the video�

�The video segment on free�surface deformation is reversed� showing the current�only data before
the wave�current data�
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�� spanwise turbulent �uctuations�

�� vertical turbulent �uctuations�

�� total �uctuating enstrophy�

�� streamwise �uctuating enstrophy�

�� spanwise �uctuating enstrophy�

�� vertical �uctuating enstrophy�

�� instantaneous velocity �eld in x �z plane �� components�

	�� instantaneous velocity �eld in y �z plane �� components�

		� free�surface deformation

	�� instantaneous horizontal velocity �eld on free surface �� components�

	�� instantaneous velocity �eld in x �z plane �� components�

	�� instantaneous velocity �eld in y �z plane �� components�

����
 Description of video animations

To describe the animations� it is useful to remember that we are in the reference frame

moving with the wave� which is moving faster than the mean �ow� Thus� the turbulent

�ow below the wave appears to be swept from right to left beneath the wave� Our

intuition says that if things are moving from right to left� then the left side must be

downstream� Of course� to observer that is �xed� the right side is downstream� This

e�ect makes the terms upstream and downstream somewhat confusing� so they will

not be used in our descriptions of the �ow� It will be convenient to use two di�erent

approaches to discuss the animations� First� where the wave�turbulence interaction

causes temporal events that are not periodic with the wave �such as bursting events

or connections between the bottom boundary layer and the surface�� it is useful to

describe these events in terms of the e�ect of the wave passing over the turbulence

�i�e� a reference frame moving with the mean �ow�� For turbulent structures that

are persistent and are in�uenced by the passage of more than one wave� we see a

periodicity that is linked to the wave� This makes it more convenient to discuss

the �ow in terms of turbulent structures that enter the domain beneath the leading

trough� pass under the forward slope of the wave� the wave crest� the back side of the

wave� and �nally exit beneath the trailing trough �i�e� our wave�following system��
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From this viewpoint� the turbulent structures undergo a rapid expansion from the

leading trough to the crest� followed by a rapid contraction from the crest to the

trailing trough� Since we are using periodic boundary conditions� a structure exiting

beneath the trailing trough re�enters the domain at the leading trough�

����� Turbulent kinetic energy

The video animations for the turbulent kinetic energy include animations of the total

turbulent kinetic energy� and the mean square �uctuations of the velocity �turbulence

intensities� in the streamwise� spanwise and vertical directions�

The technique we developed for removing the mean wave�induced velocity�

�uctuation e�ects of the short�crested parasitic waves �described in section ������

cannot be used to remove the phase�dependent �uctuation e�ects for the instanta�

neous turbulence intensities� Thus� the video animations of the wave�current �ows

include the e�ects of the parasitic waves�

Total turbulent kinetic energy� wave�current

The animation of the total turbulent kinetic energy for the wave�current case shows

temporal connection events between the bottom boundary layer and the free surface

that are the result of the wave passing over an intense patch of turbulent kinetic

energy� Turbulent kinetic energy appears to be pulled o� the bottom boundary layer

as the turbulent structures in the bottom boundary approach the �ow expansion

caused by the forward slope of the wave� The connection to the surface is a short

temporal event� and it leaves behind a turbulent patch in the near surface region�

The connection occurs just before the crest� As the crest moves over the turbulence�

the turbulent patch seems to disappear �or be reduced� then it reappears as the

�ow is contracted on the back side of the wave� After a surface connection event�

the turbulent patch will be trapped in the near free surface region and will undergo

alternate strengthening and reduction in the successive progression of waves� We see

that the turbulent patch is intensi�ed slightly before the trough and slightly before

the crest� with reductions in intensity after the crest and after the trough�
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Total turbulent kinetic energy� current�only

The animation of the total turbulent kinetic energy for the current�only case shows

the slow speed of the turbulence produced by the mean �ow at the bottom boundary�

Initially� the turbulence �eld in the core of the �ow is the decaying result of a previous

bursting event from an earlier time� By the end of this animation segment� we see

another bursting event occurring� While some weak connections to the free surface

appear� there are no strong e�ects as seen in the the animation of the wave�current

system�

Streamwise turbulence intensity� wave�current

This animation shows the temporal connections of the streamwise turbulence intensity

with the forward slope of the wave� In a manner similar to the total turbulent kinetic

energy� we see the streamwise �uctuations connect and are intensi�ed on the forward

slope� then are reduced beneath the crest� However� rather than reappearing on

the back side of the wave �in the contraction� before the trailing trough �as is the

case for the total turbulent kinetic energy�� the streamwise �uctuations reappear

directly beneath the trough� On some occasions� it can be seen that the streamwise

�uctuations do not completely disappear on the back side of the wave� Instead they

appear to be ejected from the crest and follow an arc down to the trough so that

there remains an area with little or no streamwise �uctuations near the surface on

the back side of the wave� Beneath the trough we see the streamwise �uctuations are

intensi�ed� then rapidly disappear at the start of the expansion on the forward slope

of the wave� Figure ���	a� shows a typical connection event between the free surface

and the bottom boundary layer�

Streamwise turbulence intensity� current only

A comparison of this animation to the total turbulent kinetic energy for the current�

only �ow shows that the streamwise �uctuations are the primary component of the

total turbulent kinetic energy� Again� we see the residual of a prior bursting event

that has a weak connection with the surface� This is followed by another bursting

event toward the end of this segment� The bursting event can also be seen in �gure

����a��



CHAPTER �� ANALYSIS OF INSTANTANEOUS DATA 	�	

Spanwise turbulence intensity� wave�current

The structure of the spanwise velocity �uctuations is shown with a color scale that is

��+ of the color scale used for the total turbulent kinetic energy and the streamwise

turbulence intensity� In this segment� we see that the front and back sides of the

wave have periodic intensi�cation of spanwise �uctuations� This e�ect is also shown in

�gure ���	b�� There are no strong connection events between the spanwise �uctuations

in the bottom boundary �which are less intense� and the spanwise �uctuations near

the free surface �which are more intense�� Toward the end of this segment we see the

periodic intensi�cation of a patch of spanwise turbulent �uctuations near the bottom

boundary as the patch passes beneath the wave trough�

Spanwise turbulence intensity� current only

The spanwise velocity �uctuations in the current�only �ow are very weak and are only

revealed by reducing the color scale to 	���+ of the scale used for the streamwise

�uctuations� This segment shows the slow evolution of spanwise �uctuations from a

prior bursting event� These �uctuations have weak connections with the surface that

are shown in �gure ����b�� In the bottom boundary layer we see intensi�cation of the

spanwise �uctuations as the next bursting event is initiated�

Vertical turbulence intensity� wave�current

The vertical velocity �uctuations are shown on the ��+ color scale used for the

spanwise velocity �uctuations for the wave�current case� Here we see that the vertical

�uctuations are periodically strong from the crest to slightly behind the crest� and

from the trough to slightly behind the trough as seen in �gure ���	c�� When the

vertical turbulence intensity grows large beneath the crest or trough� it appears to

be ejected into the core of the �ow� In some cases the patches of vertical �uctuations

reconnect with the trough� in other cases they appear to remain in the core of the

�ow� with alternating intensi�cation �beneath the trough and crest� and reduction

�beneath the front and back sides of the wave��
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Vertical turbulence intensity� current only

In order to see any structure in the vertical velocity �uctuations for the current�only

case� it was necessary to use a color scale that is only �+ of the color scale used for

the streamwise �uctuations� The vertical �uctuations appear only in the core of the

�ow and are completely suppressed at the free surface and the bottom boundaries�

Figure ����c� shows the structure of these �uctuations�

����� Fluctuating enstrophy

The video animations for the �uctuating enstrophy include animations of the to�

tal �uctuating enstrophy� and the mean square �uctuations of the vorticity in the

streamwise� spanwise and vertical directions�

Total �uctuating enstrophy� wave�current

In viewing the total �uctuating enstrophy we see that the wave crest lifts the vortical

�uctuations from the bottom boundary into the near�surface region� We see that

the enstrophy is produced in the bottom boundary but is intensi�ed beneath the

crest and the trough� After the initial bursting event� the enstrophy appears to be

dissipating due to viscous e�ects in the core of the �ow while periodic intensi�cation

of patches of enstrophy continues beneath the crest and trough� Figure ����a� shows

the distribution of enstrophy above the bottom boundary layer due to the vortex

stretching e�ects of the wave�

Total �uctuating enstrophy� current�only

In the current�only �ow� the total enstrophy remains trapped in the lower half of the

domain� Even as the bursting event occurs near the end of the animation� regions of

high enstrophy do not appear to approach the surface� This is shown in �gure ����b��
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Streamwise �uctuating enstrophy� wave�current

This animation shows strong patches of streamwise enstrophy that are intensi�ed

beneath the trough and reduced beneath the crest� In �gure ����a� this e�ect can

be seen with a strong dark red patch of streamwise enstrophy beneath the trough� a

weak yellow patch beneath the forward slope of the wave� and a a slightly stronger

red�orange�yellow patch on the reverse slope of the wave�

A thin area of strong streamwise enstrophy is seen in the free�surface Stokes

layer and the viscous sublayer of the bottom boundary� These e�ects do not appear

to connect directly to the streamwise enstrophy in the core of the �ow� For the

bottom boundary layer� this apparent lack of connection is likely due to the choice

of color scaling� There does appear to be a relationship between the intense areas of

streamwise enstrophy in the lower central section of the �ow and �ngers of streamwise

enstrophy being ejected from the viscous sublayer�

Streamwise �uctuating enstrophy� current�only

The streamwise enstrophy in the current�only animation is initially the decaying

remnants of a previous bursting event� We see the beginning of intensi�cation of the

enstrophy in the viscous sublayer of the bottom boundary as another bursting event

occurs� There does not appear to be any signi�cant interaction between streamwise

enstrophy and the free surface� Figure ����a� shows the structure of the streamwise

enstrophy� which is primarily in and near the bottom boundary layer�

Spanwise �uctuating enstrophy� wave�current

The ejection of spanwise enstrophy from the bottom boundary can be seen in the

early stages of this animation� The enstrophy in the core of the �ow either decays

or is collected in a patch that becomes trapped in the near�surface region� This

patch is stretched in the streamwise direction beneath the trough and compressed

in the streamwise direction beneath the crest �these e�ects could also be considered

as compression in the vertical direction beneath the trough and stretching in the

vertical direction beneath the crest�� These alternating e�ects appear to prevent the

enstrophy from decaying in the near�surface region� Figure ����b� shows a typical
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distribution of the enstrophy through the �ow� The spanwise enstrophy in the Stokes

layer can be seen in the early part of the animation� but it becomes obscured by the

enstrophy convected from the bottom boundary�

Spanwise �uctuating enstrophy� current�only

The spanwise enstrophy generated by the prior bursting event is visible in the core of

the �ow� however it never reaches the surface with any signi�cant magnitude� Some

small structures of the spanwise enstrophy in the core of the �ow can be seen in �gure

����b��

Vertical �uctuating enstrophy� wave�current

The vertical enstrophy shows strong intensi�cation as it passes beneath the crest� We

see it develop into a periodically oscillating structure that is occasionally connected

to the free surface� This structure can be seen in �gure ����c��

Vertical �uctuating enstrophy� current�only

The vertical enstrophy in the current�only �ow shows the typical slow evolution seen

for other quantities in the open�channel �ow without a surface wave� The connection

of the vertical enstrophy with the free surface appears to be with very small magni�

tudes� The remants of the previous burst from the bottom boundary layer can be

seen in �gure ����c��

����� Instantaneous three�component velocity 
elds

The three�component video animations of instantaneous velocity �elds on x � z and

y � z cutting planes provide arrows illustrating the magnitude and direction of the

two components of the �uctuating velocity in the plane with a color contour plot of

the velocity component perpendicular to the plane� Color scales for the animations

are described in section �������� The streamwise and vertical velocity �elds have had

the phase�averaged velocity removed at each point� This allows us to visualize the
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velocity �uctuations without the distortion of the mean �ow �elds of the current and

the wave�

Velocity �uctuations in streamwise plane� wave�current

The instantaneous velocity �uctuations at the streamwise mid�plane show the slow

evolution of the turbulent structures produced by the bottom boundary layer� At

�rst glance� it is di�cult to see the e�ect of the wave� It is immediately obvious

that the primary turbulent �uctuations in the �ow in this plane are due to ejections

of slow�speed �uid from the boundary layer� As can be observed in the cross�plane

animations �which follow the streamwise animations on the videotape�� the mid�plane

in the x �z direction is on the edge of a slow speed streak� Upon careful examination

and comparison of this segment of animation to the current�only case �shown in the

next segment�� two wave�induced e�ects emerge� �	� the primary velocity structures

near the bottom boundary �in the lower third of the domain� are alternately expanded

and compressed in the vertical direction as they pass under a sequence of crest and

trough regions� and ��� a small oscillating streamwise velocity �eld beneath the crest

that moves with the wave can be seen� The expansion and contraction caused by

the crest and trough appear to slightly compress and elongate the structures in the

bottom boundary without signi�cantly altering their shape� However� as a tall vertical

structure passes below the crest� the streamwise �uctuations that move at the wave

speed can be seen to be distorting the structure and forcing it up into the core of

the �ow� This appears similar to the classic 
sweep�burst� events seen in bottom

boundary layers� only in this case the sweeping velocity is periodic with the wave

crest� Figure ����� provides a time series of velocity data on the streamwise mid�

plane�

Velocity �uctuations in streamwise plane� current only

Without the wave forcing� the instantaneous velocities undergo a slow evolution� A

portion of a coherent structure cut by the x �z plane can be seen slowly rising toward

the surface as part of a sweep�burst event in the lower boundary layer� A time series

of the velocity vectors is shown in �gure ������
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Velocity �uctuations in spanwise plane� wave�current

The instantaneous velocity vectors in the cross�plane appear to be more energetic

than the velocity vectors seen in the streamwise x �z plane� However� this is an e�ect

produced by our wave�following coordinate system� which is moving at a rapid speed

through a velocity �eld that is evolving slowly with time and has signi�cant spatial

structure	� The black and dark red areas of the color contours represent areas of slow

speed �uid in the �ow �relative to the instantaneous phase�averaged velocity�� while

the white areas represent high�speed �uid in the �ow� We see that the right�hand side

of the animation is dominated by a large slow�speed streak that provides a vertical

upwelling of bottom�boundary �uid that connects with the free surface� On the left�

hand side we see a corresponding downwelling and a dominant high�speed streak� A

small� transient slow�speed streak occurs on the left�hand side of the domain and

a medium�size persistent slow�speed streak occurs near the center of the domain�

The spacing between the streaks is around 	� grid cells �which is approximately 	��

z� units�� with a transient bias that seems to move the medium and small streaks

towards the large streak� There are two important points to note� �	� the shape of the

slow�speed streaks seen in the cross�plane are the classic 
mushroom cap� shapes that

have been linked to the ejection of hairpin vortices from the bottom boundary layer

�see Nezu and Nakagawa %	���&�� and ��� the upwelling and downwelling provide

a dominant counter�clockwise circulation in the center of the �ow with a weaker

clockwise circulation across the periodic boundary� The upwelling and downwelling

are persistent and extend up to the free surface� Figures ����a� and ����a� are two

typical instantaneous velocity plots for the spanwise plane�

Velocity �uctuations in spanwise plane� current only

The current�only data appears very similar to the wave�current data with one very

important di�erence� The strong and persistent upwelling�downwelling e�ects that

are seen in the near surface region for the wave�current velocity data appear only as

weak transient e�ects that do not extend to the free surface� For the current�only

case the slow�speed streaks appear more evenly spaced� and do not appear to be

�This is actually a useful way to get a picture of the entire turbulence �eld with a two�dimensional
animation of a plane�
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signi�cantly drawn toward the large slow�speed streak� The velocity �elds for the

current�only case are also shown in �gures ����b� and ����b��

������ Free�surface deformation

The deformations of the free surface are shown in a three�dimensional view looking

from the true upstream side of the domain� Thus� in the wave�following coordinate

system we see surface deformations due to the turbulence moving from right to left

as the wave passes over the turbulent structures� The color scale in the animations

is set by the height of the deformation so as to provide emphasis of the surface

shape� Black areas are depressions in the surface while white or yellow areas are local

positive increases in the surface deformation� Unfortunately� the colorbar scale shown

on the video is actually o� by a factor of � �dividing the scale by � gives the correct

non�dimensional surface deformation relative to the �ow depth��

Surface deformation� current�only

The current�only surface deformation is shown before the wave�current surface defor�

mation in order to to illustrate the small nature of the surface deformations associated

with the turbulence� This animation also shows the slow rate of evolution of the tur�

bulence at the free surface�

Surface deformation� wave�current

Because the wave is large and deformations of the wave are small� an animation of

the wave in the wave�following coordinate system does not provide any signi�cant

insights into the behavior of the wave�current system� For this segment of the video�

the phase�averaged free�surface height was subtracted from the instantaneous free�

surface height to leave the free�surface deformation� This phase�averaging removes

the primary wave
� As is the case for the previous animation� the colorbar is incorrect

by a factor of �� so the actual non�dimensional deformations are half of what the color

�This would also remove any small plane waves �in the streamwise direction� that were at �xed
phases on the primary wave however� our analysis showed there were none in the simulations�
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scale indicates� This animation is particularly interesting because it shows a persistent

set of short�crested small�amplitude parasitic waves that are moving with the primary

wave� The small oscillations of the waves are best seen by viewing the videotape in

a fast�forward mode� As can be seen in animations of the surface velocity vectors �in

the next video segment�� the upper�left side of the domain is dominated by a slow�

speed �ow that is caused by the connection of the boundary�layer slow�speed streak

to the free surface� The lower�right side of the domain is dominated by a high�speed

streak� This shear in the surface velocities appears to interact with the primary wave

to produce the short�crested waves�

������ Instantaneous surface velocity vectors

Surface velocity vectors� wave�current

As with previous velocity animations� the phase�averaged mean is removed from the

instantaneous velocity vectors so the �uctuations in the velocity �eld due to the

turbulence can be seen �in a wave�following system the phase averaging removes both

the mean �ow of the current and the mean �ow induced by the wave�� This animation

clearly shows the dominant low�speed and high speed streaks at the free surface that

account for the shape of the parasitic waves seen in the animation of the surface

deformation� Note that behind the wave crest �which is at x � �� there is a narrow

region across the width of the domain where the slow�speed and high�speed streaks

appear to be reduced� This e�ect is seen more clearly by comparisons with the surface

velocity vectors in the current�only animation that follows�

Surface velocity vectors� current�only

In comparison with the surface velocity vectors in the wave�current system� this

animation shows velocity a �eld that does not undergo any rapid oscillations� Only

if observers carefully follow a single vortex shape will they be convinced that this is

an evolving velocity �eld� If our interest lies in examining the interactions of large�

scale turbulent structures with a non�wavy free surface then the time�scale for the

simulations and the animations need to be increased so that distortions of the surface

velocity �eld can be seen� For the present work� the wave time�scale is large compared
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to the time scale of the large eddies that connect with the free surface� Thus� if a

wave is not included in the �ow� the surface velocity �eld appears almost stagnant�

The important observation that can be obtained by comparing the current�only and

wave�current velocity �elds is that the surface wave has a signi�cant e�ect on the

shape and oscillations of the surface velocity �eld�

������ Instantaneous two�component velocity 
elds

For reference purposes� velocity �elds in the x � z and y � z planes without the color

contours of the perpendicular velocity are provided as the last four segments of the

video� The velocity vectors in these animations are identical to those shown in parts

��� and �	�� as listed in section ������ The elimination of the color contours in the

��component animations provides a clearer picture of some of the velocity e�ects in

the planes�
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�� Evolution of turbulence and enstrophy

����� Transport and transformation of turbulence

The most interesting phenomena seen in the animations of turbulence intensities is

the manner in which turbulent �uctuations in the near surface region are transformed�

We see initially a connection event �during the expansion under the leading slope of

the wave� with transport of a discrete packet of streamwise turbulent �uctuations

from the bottom boundary region up to the surface� The streamwise �uctuations

are transformed into vertical �uctuations beneath the crest� and then into spanwise

�uctuations as the packet encounters the back side of the wave� In the trough we

see the transformation of the �uctuation packet repeated� streamwise� vertical� then

spanwise� This transformation is not entirely clear�cut� there are signi�cant overlaps

between the sections� and the e�ect is periodic so that the intensities vary�

It can be argued that at least part of the mechanism for this e�ect is a rota�

tion of the axis of the turbulent �uctuations to align with the wave�induced strain�

The turbulent kinetic energy in the bottom boundary layer is carried primarily in the

streamwise velocity �uctuations� The animations of the instantaneous �ow �eld in a

spanwise plane show that large streamwise velocity �uctuations are due to slow�speed

streaks in the bottom boundary layer that throw bursts of slow�speed �uid out into

the �ow core and toward the free surface� As the slow�speed �uid in the core enters

the region under the crest there is a tendency for the velocity �uctuations to align

themselves along the axis of the primary strain� To �rst order� this is strongest at

a ��� angle in the direction of the surface slope at a point that is ��� in front of

the crest �on the leading wave slope�� The strain tends to rotate the strong velocity

�uctuations from the streamwise direction toward the vertical axis� This accounts for

the transformation of the �uctuations from streamwise to vertical seen in the anima�

tions� as well as the negative values of the mean wave�induced turbulent intensities

illustrated in �gure ���	���

It is not entirely clear how the vertical �uctuations beneath the crest are

transformed into spanwise �uctuations on the back side of the wave� It may be that

this is due to the action of the spanwise shear in the streamwise velocity caused by

the low�speed streak at the surface on one side of the domain in combination with
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the high�speed streak on the other side� From the animation of the instantaneous

velocities on the free surface it is evident that this spanwise shear is relatively small

in the region immediately behind the crest� but intensi�es on the back side of the

wave as the �uctuations move from the crest to the trough� It could reasonably be

argued that the intensi�cation of the the spanwise �uctuations in this region is due to

the action of this spanwise shear� Another plausible explanation is that the spanwise

turbulence intensi�cation is related to vortex stretching in the contraction that is

strengthening streamwise vorticity�

����� Enstrophy transport and intensi
cation

The enstrophy animations show that the wave induces two major changes to the

vortical structure of the �ow� �	� the expansion of the leading edge of the wave serves

to pull vortical structures out of the bottom boundary layer and into the core of the

�ow� and ��� the vortical structures in the �ow core are periodically intensi�ed by the

vortex stretching actions of the crest and trough� Without these stretching actions�

vortical structures that are ejected into the core would rapidly decay �as shown by

the current�only simulations after a bursting event�� Thus� the wave �	� increases

the vertical stirring of the turbulence from the shear layer in the bottom boundary

toward the surface region� and ��� causes the vortical structures in the �ow to persist

for a longer time than would otherwise be expected�

����� Discussion of instantaneous velocity �uctuations

The instantaneous velocity �uctuations in the streamwise x � z plane support the

evidence of the turbulence and enstrophy animations that the wave e�ects the �ow

�eld by �	� stretching and compressing structures� and ��� by pulling structure on

the bottom boundary up into the core of the �ow�

Of particular interest is the strong upwelling and downwelling in the the span�

wise y � z plane that occurs in the wave�current case� but not in the current�only

case� This gives the appearance of being a Langmuir circulation whose direction is

initiated by the ejection of the slow�speed streak� However� we do not have enough

data available from these simulations to demonstrate conclusively whether or not
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this is a Langmuir circulation� Monismith and Magnaudet �	���� demonstrated that

Craik�Leibovich �CL� forcing of Langmuir circulations can be interpreted with rapid

distortion theory �RDT�� and that CL forcing should be present if the conditions for

RDT are satis�ed� They also developed scaling arguments for the application of RDT

based on the time scales of the turbulence and the distortions by the wave strains�

Based on their analysis� RDT will describe the wave�turbulence interactions in the

simulations when the turbulence length�scale L� is larger than a 
Leibovich� length

scale� LL� de�ned as�

LL � �ak����� ����

����
���	�

where � is the dissipation and � is the wave frequency� For our purposes� all variables

can be considered to be non�dimensionalized by the bottom friction velocity �u�� and

the domain depth� D� Since our simulation domain is only 	�	 z� units in depth�

our entire �ow is in the inner�layer of the bottom boundary layer and the turbulent

length scale is L� 	 �z� where � � ��� is the von K)arm)an constant� The dissipation

can be approximated as

� 	 u��
�z

�����

Using the full depth of the �ow we have �in non�dimensional units� L� 	 ��� and

� 	 ���� For the di�erent wave cases we have�

W	� LL � �����

W�� LL � �����

W�� LL � ���	�

For all the wave cases we have L� � LL� Based on the arguments of Monismith and

Magnaudet� this result indicates that RDT applies to the wave�turbulence interactions

and the CL forcing should be present�

We can also use the scaling arguments of Belcher et al� �	����� to show that

RDT should apply to the �ow� They demonstrated that rapid distortion theory can

be expected to be applied to the 
outer� region of the �ow beneath a wave if�

k u��w� T

���
� 	 �����

where u��w� is the friction velocity at the free surface boundary� T is the wave period�

k is the wave number and � � ��� is the von K)arm)an constant� The inner layer of
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the �ow �relative to the free surface� is de�ned by Belcher et al� �	���� as the ����

thin layer in the water near the interface where the turbulent stresses signi�cantly

a	ect �ow perturbations���
� and is shown to scale on u��w�T � The scaling arguments

they developed are based on a coupled air�water �ow where a turbulent shear stress

is developed at the free�surface� As we demonstrated in section �������� the mean

shear at the free surface must be zero for our temporally�decaying wave� so u��w� does

not exist at the surface� However� just below the free surface our simulations have a

mean positive shear in the wave�induced streamwise velocity� We can use this shear

to estimate the e�ective u��w� in the near�surface regions from

u��w� �

s
�
�u�
�x�

�����

The non�dimensional velocity shear in the near�surface region can be approximated

from �gure ���	� as� ��� for W	� 	�� for W�� and ��� for W�� Using � � 	�Re and

the wave periods and wave numbers from table ���	�� the values for u��w� are ����� for

W	� ����� for W�� and ��	� for W�� This results in the scaling parameter �computed

from equation %���&� of approximately ���� for each of the simulations� Since this is

much less than one� the inequality of equation ����� holds and RDT can be expected

to apply outside of the near�surface region�

Based on these two entirely di�erent scaling arguments� we can reasonably

state that the wave�turbulence interactions in our simulations should behave accord�

ing to rapid distortion theory� According to Monismith and Magnaudet �	����� this

implies that the Craik�Leibovich forcing is present and we might expect to �nd Lang�

muir circulations in our �ow� There is visual evidence in the velocity �elds in the

cross�plane beneath the crest that we are developing some type of persistent circu�

lations� However� we have two problems that prevent us from concluding that these

are Langmuir circulations� �	� we only have data for the cross�plane beneath the

crest� and ��� the dominant e�ect of the persistent slow�speed streak ejected from the

bottom boundary layer may be distorting the actual CL forcing� The lack of data

in cross�planes beneath the trough and the wave slopes prevents us from seeing the

full structure of the cross�plane circulations beneath a wave� Thus� we are unable to

determine whether these circulations are seen beneath other parts of the wave or if

they are a �uctuating �eld that is con�ned to the region beneath the crest�

It is possible �in fact� it is likely� that the circulations we are seeing are being

driven by the slow�speed streak as it interacts with the wave�strain
 however� it is
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unclear as to whether this could be properly classi�ed as a Langmuir circulation� As

discussed in section ����� the dominant slow�speed streak in our �ow is temporally

persistent and in�nite in length due to less�than�optimum streamwise and spanwise

resolution in our domain� As such� its importance in the upwelling seen in the cross�

plane velocity animation makes the resulting circulation suspect� A numerical inves�

tigation into Langmuir circulations with the bottom boundary layer producing the

turbulence �eld would be best done in a domain that has good resolution in all direc�

tions and a domain depth large enough so that there is at least a depth of k�� between

the top of the constant stress layer and the still water level�� This would ensure that

any Langmuir circulations would be in the log�law region of the bottom boundary

layer and would not be a�ected by the strong shear near the bottom boundary�

����� Wave�induced stirring

The results of the numerical simulations show that the wave�induced strains in the

�ow lift the turbulent structures out of the turbulent shear region of the bottom

boundary into the core of the �ow� This wave�induced stirring� is an important

phenomena since it does not require wave�breaking� From the data available in the

present work� it is unclear whether the stirring is being driven by �	� the circulation

seen in cross�plane velocity �eld beneath the crest �which may or may not be a

Langmuir circulation�� or ��� by the interaction of the wave strains with the strong

shear of the current at the bottom boundary� Langmuir circulations are usually seen

as the primary agent of vertical stirring in a turbulent� wavy �ow
 however� in the

present work there is some evidence that rapid distortion of the shear layer by the

wave strains is actually transporting the turbulence up into the near�surface region�

This e�ect seems to be tied to bursting events initiated in the �ow expansion under the

leading slope of the wave� The argument in support of this hypothesis is that transport

caused by Langmuir circulations should not appear as strong bursting events that drag

�In the present work� the domain depth provides only a distance of ��� k�� between the top of
the constant�stress layer and the still water level�

�As pointed out by J� Kose
 �Dept� Civil Eng�� Stanford Univ�� personal communication� ��������
our present simulations do not provide su�cient data to analyze the actual mixing of the �uid due
to the wave�current interactions� but we can provide qualitative analysis on the stirring of the �uid
through the transports of the turbulence and enstrophy�
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turbulence from the sheared current into the near surface region� Since the Langmuir

circulations have both downwelling and upwelling zones� it can be argued that in a

phase�averaged view the net e�ect of the Langmuir circulation on the distribution of

the turbulence intensity should be close to zero� For this shallow domain� we expect

that a Langmuir circulation would take turbulent �uctuations up into the near surface

region through the upwelling zone� then return them in the downwelling zone� The

di�erence between the turbulence intensities in the downwelling and upwelling should

be the dissipation minus any turbulence intensi�cation that occurs in the near surface

region due to vortex stretching e�ects� Thus� the phase�averaged appearance of a

Langmuir circulation should be a mild transport of the turbulent �uctuations since

only the net transport would be seen� The strong� event�driven �bursting� transport

of turbulence from the bottom boundary layer seen in the phase�averaged animations

is evidence that the transport of the turbulent �uctuations may not be a Langmuir

circulation e�ect�
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Figure ���� Instantaneous turbulence intensities for wave�current �ow� case W�� t�T �
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Figure ���� Instantaneous turbulence intensity for current
only �ow� case C� t�T � ���	
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Figure ���� Instantaneous enstrophy� t�T � ���	
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Figure ���� Instantaneous enstrophy components for wave�current �ow� case W�� t�T �
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Figure ���� Instantaneous enstrophy components for current
only �ow� case C� t�T � ���	
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Figure ���� Instantaneous plots of velocity variation in vertical plane �with color

scale showing spanwise velocity component variation�� x 
 z streamwise mid
plane for

wave�current� case W��
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Figure ���� Instantaneous plots of velocity variation in vertical plane �with color scale

showing spanwise velocity component variation�� x 
 z streamwise mid
plane for current


only� case C�



CHAPTER �� ANALYSIS OF INSTANTANEOUS DATA ���

−4 −2 0 2 4 6
  u’1 / uτ

�a� wave�current �ow� case W	

−4 −2 0 2 4 6
  u’1 / uτ

�b� current
only �ow� case C

Figure ��	� Instantaneous plots of velocity variation in vertical plane �with color scale

showing streamwise velocity component variation�� y 
z cross
plane� t�T � ����
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Figure ��
� Instantaneous plots of velocity variation in vertical plane �with color scale
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z cross
plane� t�T � ����



Chapter �

Conclusions

This dissertation has a major focus on numerical methods for viscous free�surface

�ows� The simulation results are less comprehensive� but perhaps are of interest

to a wider audience than the details of the numerical work� This �nal chapter is

an attempt to� �	� reduce our observations on the development of the numerical

method to a few key points� ��� summarize our primary insights into wave�turbulence

interactions� and ��� provide some recommendations for future improvements of the

numerical method and avenues for research into wave�turbulence interactions�

��� Free�surface numerical methods

The complexities involved in the development and implementation of free�surface

numerical methods were explored and discussed in detail in this dissertation� The

analysis of stability conditions associated with free�surface simulations will hopefully

prevent future researchers from being stalled by seemingly unexplainable catastrophic

blow�ups in their simulation runs� The problems associated with grid�generation

methods and the limitations of the present state�of�the�art were investigated and

documented� The fundamental basis for LES �ltering of the kinematic boundary

condition was developed� along with a method for implementing the modi�ed Leonard

term in the free�surface advance� Possible approaches to de�ning subgrid�scale models

for the Reynolds term and cross term in the �ltered kinematic boundary condition

were analyzed and discussed�

	��
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��� Demonstration of free�surface method

The results of the simulations presented in this dissertation demonstrate the e�ec�

tiveness of the numerical method for accurately simulating free�surface �ows with

�nite�amplitude waves in both laminar and turbulent regimes� Especially impor�

tant is the good agreement attained with the experimental data of Cowen �	���� for

the turbulent �ow in the near�surface region of an open�channel �ow with a �nite�

amplitude surface waves� Cowen�s DPTV method and the present numerical method

provide an e�ective set of tools for investigating the �ow in and near the viscous

Stokes� layer of �nite�amplitude waves� The demonstrated agreement between the

laboratory experiments and numerical simulations for the demanding near�surface

�ow regime has not been shown in the work of any other research laboratory��

��� Wave�induced stirring

The results of the simulations show that the wave causes turbulent �uctuations to

be stirred up from the bottom boundary layer and into the near surface region� This

is an important phenomena since it does not require wave�breaking� From the data

available in the present work� it is unclear whether this stirring is being driven by �	�

the circulation seen in cross�plane velocity �eld beneath the crest �which may or may

not be a Langmuir circulation that extends through the length of the �ow�� or ��� by

rapid distortion interaction of the wave�strains with the strong shear of the current

at the bottom boundary� The e�ect of the wave�current interactions on the vertical

transport and mixing of the �uid remains an area for future investigation�

�Dommermuth and Mui ������ developed a two�dimensional simulation of gravity�capillary waves
that showed qualitative agreement with the experiments of Duncan et al� ������� However� as
noted by Duncan in the discussion of Dommermuth and Mui� there was a ��
� ratio between the
wavelengths of the laboratory experiments ����� m� and the numerical experiments ����� m�� which
makes comparisons di�cult� In contrast� the TWCF wave in Cowen�s ������ laboratory experiments
was only twice the length of the W	 wave in our numerical simulation� This makes our quantitative
comparisons possible�
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��� Persistence of near�surface turbulence

Animations of the numerical simulations show that some of the turbulent� vortical

structures which are extracted from the sheared current become trapped in the near�

surface region� These structures can connect with the surface through the Stokes�

layer and are intensi�ed by vortex�stretching e�ects as successive wave troughs and

crests are encountered� The e�ects of the stretching on the structures can be visualized

by examining the �uctuating enstrophy components� Once a structure is trapped in

the near surface region� the intensi�cation by vortex stretching allows the structures

to persist for long periods relative to more transient� wave�induced e�ects� Due to

their persistence� these structures appear in wave�averaged data as large increases

in the wave�induced turbulence intensities near the surface� The interaction of the

turbulent structures with the wave strains in the near free�surface region may be part

of the explanation for the persistence of ship wake signatures that remain on the

ocean surface long after a ship has passed�

��� Recommendations for the numerical scheme

��	�� Coding improvements for more e�cient operation

The code developed to implement the numerical scheme is e�ective� but it does not

operate at its potential maximum e�ciency� The free�surface algorithm was imple�

mented on top of the code developed by Zang �	����� which was not optimized for

a moving�grid simulation� Before any further modi�cations are attempted on the

present code� it needs to be re�written in a form that minimizes the memory usage

and CPU time required to perform grid�generation computations for each time step�

Porting the code to FORTRAN �� with the use of dynamic memory allocation is

likely to provide signi�cant improvement in this area�

An important improvement that could be made to the present implementation

of the free�surface method is the development of an e�cient approach to implement

Mahadevan�s �	���� separation of the hydrostatic pressure from the dynamic pressure

�see section ����� This should signi�cantly speed up the pressure Poisson solution�
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Further work and investigation is needed to optimize the interface between

the �DGRAPE�AL grid�generation code and the Navier�Stokes solver� The present

approach relies on written �les to transfer data due to fundamental incompatibilities

in the way in which Zang�s code stores data and the approach used by Sorenson and

Alter in �DGRAPE�AL� This is another problem that could be addressed most easily

by porting the code to FORTRAN �� with a consistent set of data structures�

��	�� Extension of the code to simulate other �ows

The �rst step towards extending this numerical code to practical applications in naval

hydrodynamics is to develop simulations of the temporal evolution of a turbulent �ow

past an in�nite surface�piercing �at plate� This type of �ow maintains the present

periodic boundary conditions in the streamwise direction while changing the spanwise

boundary conditions to Dirichlet on one side and free�slip on the opposing boundary��

The bottom boundary could be made either Dirichlet or free�slip� The primary dif�

�culties that will be encountered in implementing this �ow are� �	� simulating the

edge of the domain where the free surface and the �at plate intersect� ��� adapting

the present implementation of the grid�generation method to handle grid stretching

in multiple directions so that the boundary layers of the �at plate and the free surface

can both be resolved� and ��� supplying the extra computational power required for

this more complicated domain� The �rst problem is related to our relatively poor

understanding of the physics and appropriate modeling of a contact line� This is

an area of research unto itself� The second problem is related to the inherent di��

culty of developing a smooth grid with boundary�orthogonality at the juncture of a

three�dimensional wavy surface and a perpendicular �at surface� The third problem

is related to the increased number of grid points that will be required to simulate this

�ow due to the need for coordinate stretching in two directions instead of one� In

general� it is di�cult to get a smooth stretching that provides good boundary layer

resolution with less than �� grid points �unless the domain is severely truncated�� In

a boundary�piercing �at plate simulation it is preferable to place the free�slip span�

wise boundary as far from the Dirichlet spanwise boundary as is practical� Thus� it

�An interesting �but not trivial� task is the development of a spanwise boundary condition that
would allow waves to propagate freely out of the spanwise boundary without re�ection�
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is likely that a surface piercing �at plate will require �� grid points in the spanwise

direction as well as �� grid points in the vertical direction� Even if the present �less

than optimum� streamwise resolution using �� grid points is maintained� the number

of grid points in the �ow will have been doubled� Since the grid and pressure Poisson

solvers have an execution time that is a function of the number of grid points� it can

be argued that this will at least double the computational time per time step� In

addition� while the memory requirements for the �ow variables will also double� the

memory requirements for the grid will go up by a factor of �� For these reasons� it is

recommended the simulation method be made more e�cient before it is adapted to

other �ows�

Once the simulation method is coded in a more e�cient form� it would be

useful to develop a set of e�ective non�periodic inlet and outlet boundary conditions

for the simulation of spatially�evolving �ows� This would bring the simulations closer

to laboratory experiments and allow greater control over the turbulent velocity �eld

at the �ow inlet� With e�ective inlet and outlet conditions� the turbulence�producing

Dirichlet bottom boundary condition could be replaced by a free�slip boundary con�

dition for the simulation of �ows on a deep ocean current� Similarly� e�ective inlet

and outlet conditions could allow the simulation of a �nite�length surface�piercing �at

plate for the study of the boundary�layer developing at the bow or separating at the

stern of a ship�

The extension from surface�piercing �at plates to ship hull forms is primarily

a problem of grid generation� The computation of a smooth grid with boundary�

orthogonality to both the free surface and a curved ship hull for a continuously�

varying free surface is not a straightforward matter� Since boundary orthogonality

will undoubtedly be lost to some extent� the boundary conditions for the free�surface

near the ship hull will require adjustment�

Further investigation into e�cient implementation of a subgrid�scale model for

the kinematic boundary condition is recommended� The approach proposed in the

present work for the modi�ed Leonard term requires computation of a new modi�ed

Leonard term for each step of the RK� scheme used in the free�surface advance�

Combining this approach with dynamic subgrid�scale models for the Reynolds term

and the cross term could become both unwieldy �from a code writing and debugging

point of view� and computationally expensive�
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��	 Recommendations for wave�current studies

The present results provide interesting qualitative and quantitative insights into the

wave�turbulence interactions in an open�channel �ow� However� it cannot be said that

this dissertation has provided an exhaustive analysis of this �ow� As demonstrated by

the non�dimensionalization of the governing equations in section ���� the parameters

that govern the an open�channel �ow with a surface wave provide for a complicated

set of interactions between the terms� The interactions depend on the scaling of

the �ow� To develop a full understanding of the �ow requires an understanding of

how each of these parameters a�ects the �ow �eld� Such an undertaking will not be

practical until some of the improvements in the code described in section ��� have

been made�

In this work we have concentrated on examining the e�ects of the wave on

the �uctuating enstrophy and the turbulence intensities in the core of the �ow and

the near�free surface region� This provides insight into the stirring and transport of

turbulent kinetic energy from the sheared current into the near�surface region� and

provides evidence of the intensi�cation of vortical structures by vortex stretching�

Further work remains to be done in examination of �	� wave�induced e�ects on the

dissipation rate� ��� wave decay and its e�ect on the surface shear� ��� wave�induced

e�ects in the bottom boundary layer� ��� connection of turbulent vortical structures to

the free�surface� and ��� the mechanism that produces negative shear pro�le for the

mean wave�induced streamwise velocity� The limited data collected in the present

work is not su�cient to address any of these issues with any degree of qualitative

or quantitative con�dence� Due to the limitations on data collection and analysis

outlined in section ������ the practical application of the numerical code requires

developing a set of subroutines to collect selected data as the simulation is running

rather than trying to dump and analyze all the data� It will not be practical to try

to address all of issues outlined above in one or two simulation runs� Instead� it is

likely that a number of runs obtaining di�erent types of data and using di�erent wave

characteristics will be required to obtain a complete understanding of these e�ects�

It is recommended that future work be done in close conjunction with labo�

ratory experiments� The choice of output data should be driven by �	� developing

data which con�rms agreement between the simulation and experiments� and ��� ob�

taining data which complements the experiments and provides insights that are not
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obtainable in the laboratory� It is hoped that the video animations developed in this

dissertation will enable future researchers to start work with a better understanding

of the structure of wave�turbulence interactions� This should enable research to be

directed more e�ciently at the regions of interest�



Appendix A

Decaying vortex with a moving

grid

The use of second�order accurate discretizations does not guarantee second�order ac�

curacy in a numerical simulation �Kim and Moin %	���&�� This is especially true with

boundary��tted curvilinear coordinates and moving grids� We have conducted sev�

eral simulations of a decaying vortex to demonstrate that our Navier�Stokes solution

method is second�order accurate in time and space with both �xed and moving grids

The decaying vortex is an analytical solution of the two�dimensional Navier�Stokes

equations over the domain of �� � x�� x� � ��that can be written as�

u� � � cos �x�� sin �x�� e
��t �A�	�

u� � sin �x�� cos �x�� e
��t �A���

p � �����
�

cos ��x�� $ cos ��x��
�
e��t �A���

Figure �A�	� provides simulation results showing the reduction of the RMS

velocity error with the increase in grid points from � � �� to 	� � 	�� to �� � ���

Three di�erent error lines are shown� the �rst represents the results for a �xed grid


the second is for a grid that is �xed in shape� but translates through the decaying

vortex domain
 the third is for a grid that has boundaries which remain �xed� but

whose interior grid lines are stretched with each time step� It can be seen that

accuracy is approximately second�order in all these cases�

	��
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Monochromatic standing waves

To test the ability of our code to simulate a free surface� we performed simulations of

standing waves in a two�dimensional rectangular basin� Free�slip boundary conditions

were used for the sides and bottom of the �� x �� cell domain so that the simulations

could be compared to nonlinear and linear standing wave theory� The grid points

were distributed evenly in both directions� Using the wavelength 
 � 	 to non�

dimensionalize the domain� the length �L� is ���� and the depth �D� is ���� Simulations

were run for small�amplitude waves with a non�dimensional wave height �or steepness�

of ���	 and for �nite�amplitude waves with a non�dimensional wave height of ��	�

Using the wave amplitude a and the wave number k� these cases have ak values

of ����	 and ���	� respectively� We conducted simulations at Reynolds numbers of

	�� 	��� and 	��� to illustrate capabilities of the simulation code with the relatively

coarse grid� The Reynolds number is de�ned as�

Re �
LU
�

�B�	�

with � as the kinematic viscosity� and U as the characteristic Cartesian �uid velocity

based upon the wave amplitude �a� and the wave frequency ����

U � a� �B���

From Lamb �	����� the damping of a free wave due to viscosity as a function

of time can be approximated from�

a�t� � a���e���k�t �B���

Note that this is based upon an energy dissipation argument for linear waves in deep�

water� so we can only expect this to provide a rough guide to our expected damping

because the simulation waves are nonlinear with 
�D � �� which places the waves in

the intermediate water regime�

	��
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From Wiegel �	���� we can obtain predictions of wave period and shape for

linear and non�linear standing waves� Both linear and non�linear irrotational wave

theory predict the wave period �T � for an inviscid wave as�

T �

s
��


g
�tanh kD��� �B���

For our simulation domain this provides a theoretical period of 	�	� seconds�

According to linear theory for small amplitude waves� the wave shape should

be a sinusoid� where the surface height �H� above the still water level is�

H �x� t� � a sin �kx� sin ��t� �B���

where � is the wave frequency ����T �� Nonlinear theory for �nite amplitude standing

waves predicts a wave shape given by�

H �x� t� � a sin �kx� sin ��t�

� 	

�
ka� coth �kD� cos ��kx�

�
sin� ��t� � � cos ���t� $ tanh� �kD�

� sinh� �kD�

�

�B���

For a small amplitude standing wave� the wave shape predicted by linear and non�

linear theory are practically indistinguishable�

We have run simulations using both the linear and non�linear free�surface shape

as an initial condition in order to examine the ability of the method to move toward the

correct free�surface shape� A summary of the simulation conditions and comparisons

between simulation results and theory are presented in table �B�	�� The results show

excellent agreement for both the nonlinear wave shape and viscous damping of the

wave height� In all cases� the wave shape is closer to the theoretical nonlinear shape

than to the linear shape� The wave shape di�erence was computed independently of

the e�ects of viscous damping by using the simulated wave amplitude in equations

�B��� and �B��� instead of the theoretical amplitude from equation �B���� Similarly�

an adjustment was made for the di�erence between the theoretical period and the

simulation period by applying a small time shift to adjust the theoretical crest to

the same time as the simulation crest� The simulations show an increase in the wave

period with increasing viscosity� which is a realistic physical result�

To provide a better picture of the simulation accuracy� we present two types of

graphs which compare the results of typical simulations to linear and nonlinear theory�
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comparison of simulation and theory

case ak Re initial period wave height linear wave nonlinear wave

wave shape di
erence� di
erence� shape di
erence� shape di
erence�

�a ���	� �� linear ��	� � ��� � ��	� � ��	� �
�b ���	� �� non�linear ��	� � ��� � ��	� � ��	� �
�a ���	� ��� linear ���	 � ���� � ��� � ���� �
�b ���	� ��� non�linear ���	 � ���� � ��� � ���� �

	a ��	� �� linear �� � ���� � ��		 � ���� �
	b ��	� �� non�linear �� � ���� � ��		 � ���� �
�a ��	� ��� linear ���� � ��� � ��� � ���� �
�b ��	� ��� non�linear ���� � ��� � ��� � ��	� �
�a ��	� ���� linear ��	� � ��� � ��� � ���	 �
�b ��	� ���� non�linear ���� � 	�� � ��� � ��	� �

NOTES

�� �period di
erence� is the mean di
erence between the simulation wave period and
theoretical period for the four oscillations simulated� and is expressed as a percentage
of the theoretical period�
�� �wave height di
erence� is RMS di
erence between the simulation and theoretical wave
height for crests at x � � from the �rst through fourth periods� and is expressed as percent
of wave height�
	� �wave shape di
erence� is RMS di
erence between the simulation wave shape and theory
for one wave� expressed as a percentage of the wave height� and measured at the second
wave period for case 	 and the fourth wave period for all other cases�

Table B��� Two�dimensional standing wave simulation summary�

Figures �B�	�� �B���� �B���� �B���� and �B��� show the height of the free surface at

the wall x � � as a function of non�dimensional time �which is obtained using the

theoretical period computed from equation B���� The lines for linear and nonlinear

theory are based on equations �B��� and �B��� with equation �B��� used to compute

the theoretical amplitude as a function of time� Figures �B���� �B���� �B���� �B����

�B�	��� and �B�		� compare the wave shape for the simulation wave and theory�

Figures �B�	� and �B��� present results for case 	b� showing that the simulation

of a small amplitude standing wave at a low Reynolds number maintains the correct

wave pro�le and is damped as predicted by theory� The results for case 	a �using a

linear initial wave shape�� are indistinguishable from the results from case 	b �using

the non�linear initial wave shape�� Figures �B��� and �B��� present results for the

small amplitude standing wave at a Reynolds number of 	��� case �b� These graphs

demonstrate that the simulation of viscous� small�amplitude wave still follows the

linear and nonlinear theory both in wave shape and in period�

Figures �B��� and �B��� present results for the �nite�amplitude standing wave

at Re � 	�� case �b� In this case� the wave is rapidly damped out� It can be seen
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that the period for the simulation is signi�cantly greater than that for the theory�

This result is not unreasonable� as one would expect that a highly viscous �ow will

oscillate at a slower period than that predicted by inviscid theory�

Figures �B��� and �B��� present results for the �nite�amplitude standing wave

at Re � 	�� with an initial nonlinear wave shape� case �b� It can be seen that

linear and non�linear theory are not coincident and the simulation wave shape follows

nonlinear theory very closely�

Figures �B��� and �B�	�� present results for case �b �Re � 	���� for an initially

nonlinear wave shape� It can be seen that this case is at the limit of our ability to

resolve the viscous e�ects with the coarse grid used in the simulation�

To show that the simulation can evolve a nonlinear wave from an initially

linear pro�le� �gure �B�		� presents the wave shape for case �a� which is similar to

case �b� �shown in �gure %B��&�� except that the initial wave shape is a sinusoid from

linear theory�
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Three�dimensional standing waves

C�� Introduction

Simulations of standing waves in a rectangular basin were conducted to demonstrate

the ability of the numerical method to simulate �nite�amplitude surface deformations

in three dimensions� The initial free surface position is computed from two identical

standing waves that are linearly superposed at a �� degree angle� Each individual

wave is monochromatic� nonlinear� and of �nite amplitude �using a second�order

approximation from Wiegel� 	����� This provides the initial free surface shape shown

in Figure �C�	��

The simulation grid contains �� � �� � �� grid cells �for clarity� only one�

quarter of the grid cells on the surface are shown�� The horizontal coordinates are

non�dimensionalized by the lowest mode wavelength� while the surface deformation � �

or eta � measured from still free�surface level� is non�dimensionalized by the combined

amplitudes of the two superposed waves�

The simulation domain is one�half of a wavelength in length and breadth and

one�tenth of a wavelength in depth ����m � ���m � ��	m�� The depth of the sim�

ulation was chosen in conjunction with the viscosity of the �uid ����� � 	���m��s�

so that the free�surface boundary layer could be resolved using �ve grid cells with�

out requiring excessive computational time or memory� While the viscosity is still

signi�cantly larger than that of water� it is approximately one��fth of that used in

the linearized free�surface simulations of Borue et al� �	����� A proportionally scaled

diagram of the domain is shown in �gure �C���

The initial velocity �eld is the irrotational solution at the maximum displace�

ment of a standing wave �i�e� zero for all velocity components�� At the start of the

simulation� the upper surface is set free and is allowed to evolve in response to the

nonlinear kinematic and dynamic boundary conditions as applied to the Navier�Stokes

���
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equations� Each of the superposed waves has the following initial characteristics� the

wave number �k� is ���� 	�m� the wave Reynolds number ���� k�� is approximately

����� the wave ak is ����	�� the wavelength is 	�� cm� and the individual component

wave amplitude is ��� cm� The frequency ��� of the component waves is ���� rad�sec�

as computed from the dispersion relation �Wiegel %	���&��

�� � gk tanh �kD� �C�	�

where g is gravity� D is the depth� and k is the wave number�

The combination of the two waves has a sloshing amplitude of ���	m along

a diagonal axis of �����m� Since the initial conditions are a linear superposition of

the two waves� we expect that the primary oscillation of the system should be at

the same frequency as the individual waves until the nonlinear interactions have had

enough time to act upon the system� However� we should see some nonlinear e�ects

occurring at wavelengths equal to the diagonal axis and twice the diagonal axis� These

dimensions have wave k values of ���� 	�m and ���� 	�m� respectively� The system ak

based on the diagonal sloshing is ����� From the dispersion relation� we might expect

nonlinear e�ects occurring at frequencies of ���� and ���� rad�sec� corresponding

to the two primary diagonal modes� The sidewall and bottom boundary conditions

are free�slip �no boundary layer�� This is appropriate for this simulation since the

presence of sidewall boundary layers would obscure the free�surface viscous e�ects

which we seek to capture�

C�� Approach

The simulation was carried out for seventeen wave periods ����� time steps�� For anal�

ysis� we ran an additional simulation of viscous �D sloshing of one of the monochro�

matic initial component waves� Both the �D and the �D simulations oscillated with

a primary period equal to the theoretical period �for a �D �nite�amplitude standing

wave� with an uncertainty of ����+� The uncertainty was not surprising since the

wave period was not evenly divisible by the simulation time step� There was no per�

ceptible increase or decrease of the period over the course of the simulation� so we can

conclude that the duration of the simulation was insu�cient for nonlinear interactions

to have any signi�cant e�ect on the overall period of the sloshing� The waves are in
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linear superposition to the �rst order
 therefore it should require a relatively large

number of wave periods for the higher�order nonlinear terms to have a large�scale

e�ect on the dispersion relation�

The e�ect of wave�wave interactions on the surface deformation ��� in the �D

simulation is de�ned by subtracting the wave surface ���D� formed from a �� degree

superposition of two of the �D monochromatic simulations from the wave surface of

the �D ���D� simulation�

��total� � ��D � ��D �C���

Since the simulation of the �D component wave is also nonlinear� this approach re�

moves the nonlinear interactions of each wave with itself� leaving only the interactions

between the two waves� Note that this analysis technique is designed to elucidate the

di�erences between nonlinear �D and nonlinear �D waves� and should not be con�

strued as a physical superposition of nonlinear e�ects� Figure �C��� shows a plot of

the di�erence between the �D wave and the superposition of the �D waves after 		��

periods have been simulated� This is the total nonlinear e�ect of wave�wave inter�

actions on the surface deformation �which we will call the 
surface di�erence��� In

Figure �C���� the overall surface di�erence for the nonlinear interactions is less than

	+ of the wave amplitude in either direction�

To provide a quantitative understanding and analysis of the nonlinear wave�

wave interactions� we can decompose the total nonlinear e�ects �shown in �gure C���

using symmetries and asymmetries around four cutting planes illustrated in �gure

�C���� These planes can be identi�ed by the following axes�

d	 the main diagonal axis along which the overall sloshing is approximately sym�

metrical

d� the secondary diagonal axis along which the overall sloshing is asymmetrical

x an axis where x�wavelength � ����

y an axis where y�wavelength � ����

The asymmetrical component of the surface deformation ���a�� at a point �p�

about a cutting plane �c�� is de�ned as�

��a�c��
p � 	

�

�
�p � �

�c��
i

�
�C���
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where �p is the surface deformation at point p� and �
�c��
i is the surface deformation of

the image point of p relative to the cutting plane c�� The symmetrical component of

the surface deformation ���s�� is de�ned as�

��s�c� �
p � 	

�

�
�p $ �

�c��
i

�
�C���

It follows that ��a�c��
p $��s�c��

p � �p� If we substitute ��s�c��
p for �p and the image

point of ��s�c� �
p with respect to a second cutting plane �c�� for �

�c��
i � then equations

�C��� and �C��� become�
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Using further recursions of equations �C��� and �C��� about each of the cutting

planes decomposes the surface into sixteen components� The sum of the sixteen

components is equal to the original surface deformation� Fortunately� it turns out

that only three of the components are of any signi�cance �with deformations larger

than ���	+ of the wave amplitude�� The surface di�erence and the three primary

modes are shown in �gure �C���� The modes are�

	� First Damping mode� an oscillation which opposes the current wave position and

can be seen as additional damping in the �D simulation� This is a reasonable

and expected e�ect since viscous e�ects should increase with wave steepness�

and the �D wave has steeper surface gradients along the diagonal than are seen

in the �D waves�

�� Second Mode� this is the second fundamental mode of oscillation supported by

the domain and is a combination of standing waves along the diagonal�

�� First Cross Mode� an oscillation across the domain along the diagonal that is

perpendicular to the initial direction of sloshing� The mode is one of the two

lowest fundamental modes that are supported by the domain� but its existence

in this simulation is purely numerical in origin�
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C�� Fundamental modes of oscillation

The sloshing in a square basin can be analyzed for an inviscid� irrotational� in�nites�

imal wave using the approach in Mei �	����� The equation that governs the surface

deformation from still water ��� is�

r�� $ k�� � � �C���

where k is the wave number and r� is the Laplacian di�erential operator�

The solution to equation �C��� for k�m�n � ��

L� �m� $ n�� is�

� � Anmcos
n�x

L
cos

m�y

L
� n�m � �� 	� �� � �C���

where n and m indicate linear wave modes in the x and y direction respectively�Anm is

the amplitude of the n�m mode� and L is the length of a side of the basin� We can see

that the fundamental modes are n � 	� m � � and n � �� m � 	� which correspond

to �D waves in the x and y directions� The modes of our numerical solution that we

have identi�ed as the �rst damping mode and the �rst cross mode are combinations

of fundamental mode x and y waves that are oscillating out of phase� The largest

second mode supported by the basin is for n � 	�m � 	� This corresponds to the

second mode deformation shown in �gure �C����

C�� Analysis of second mode of oscillation

The solution to the Helmholtz equation found in equation �C��� has modes of constant

amplitude since there are no viscous e�ects or nonlinear interactions between modes�

However a data animation of the second mode deformation from �gure �C��� shows

that the maximum amplitude of the second mode is modulated by interactions with

the other wave components� This can be seen also be seen by graphing the RMS

displacement of the second mode as against time shown in �gure �C���� In this �gure�

the RMS displacement of the entire surface is shown on a reduced scale �divided by

	��� as a reference to the actual wave simulation period� It can be seen that the

second mode does not oscillate at the period of the free surface� This is because

the free�surface period is that of two rectilinear modes� while the second mode is a

true diagonal mode� The diagonal nature of the second mode is more apparent in
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the expanded view of �gure �C���� The period of the second mode is based on the

diagonal length rather than the rectilinear length� The resulting oscillation frequency

of the second mode in the simulation is ���� rad�s� which is in reasonable agreement

with the theoretical value of ���� rad�s for a wavelength measure on the diagonal�

Note in �gure �C��� that whenever the second mode would be precisely out of

phase with the free surface� we see severe damping of the second mode� This indicates

an energy exchange between the rectilinear and diagonal components of the wave�

The existence of this second mode is physical� as attested to both by theory and the

presented numerical results� We also ran simulations with varying convergence levels�

di�erent free�surface advance methods� and di�erent grid resolutions� all resulted

in the production of second modes that were both qualitatively and quantitatively

comparable�

The second mode is attributable to the Navier�Stokes� vertical velocity nonlin�

ear term �w �w��z� where w is the vertical velocity and z is the vertical coordinate��

The nonlinear vertical velocity term is included in the superposed component waves�

but its �D e�ect is di�erent from the sum of the e�ects of the �D component waves�

since�

�w� $ w��
�

�z

�
w� $ w�

�
�� w�

�w�

�z
$ w�

�w�

�z
�C���

where the subscripts 	 and � indicate the monochromatic waves in the x and y direc�

tions� respectively� We note that if w� � w� then the nonlinear term on the left�hand

side of equation �C��� is twice as big as the nonlinear term on the right�hand side�

Thus� if the velocity �eld is linearly superposed to the �rst order� then the vertical

velocity nonlinear terms at the d	 corners of the �D simulation �see �gure %C��&� will

be approximately twice that of the superposed waves �or four times that of a single

wave�� For example� in the �rst half�period of the sloshing� along the vertical line

at the corner ��� �� z� we have w � � and �w��z � � � while at the corner where

����� ���� z� we have w � � and �w��z � � � It follows that in the Navier�Stokes

equations� along the line of ��� �� z�� the nonlinear term is accelerating the free surface

downward
 while along the line of ����� ���� z�� the nonlinear term is retarding the up�

ward motion of the free surface� This is exactly the e�ect illustrated in Figure �C����

Note that in the corners of the d� diagonal the w� and w� terms are approximately

equal and in opposite directions� Therefore� e�ect of the nonlinear term in the �D

simulation is close to zero� whereas the nonlinear terms in a superposition of the �D

simulations are of the same sign and will accumulate rather than cancel� Thus� the
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�D simulation has less damping in the corners of the d� diagonal than there is in the

�D nonlinear waves� resulting in the surface deformation e�ect being positive at these

corners� Again� this is clearly shown in �gure �C����

As a further validation of the physical nature of the mode� we can look at the

decay rate of the maximum amplitude of the second mode ��gure %C��&�� The second

mode decays at the rate predicted by 	st order damping theory �which admittedly

can only be applied heuristically to an individual wave mode��

C�� Analysis of cross mode

The cross mode shown in �gure �C��� is a numerically�induced mode of oscillation�

Since we are starting with a perfectly symmetrical �ow �with reference to a diagonal

plane� we should expect that our solution to the Navier�Stokes equations should

provide a symmetrical solution with no cross�mode� This would be so if the numerical

methods were all applied isotropically� In the real world� we might expect the cross�

mode to exist in an experiment due to the inability to get a perfectly symmetrical

initial condition�

Our approach has an anisotropy in the numerics that is the result of using an

approximate factorization technique in the computation of the estimated �u.� velocity

�eld of the fractional step method� The application of the approximate factorization is

to change a �D solution requiring a large sparse matrix into the successive inversion

of � tridiagonal matrices� This is also known as an ADI� or alternating direction

implicit method� Although this approach retains the formal order of accuracy of the

simulation method� it results in the equations being treated anisotropically in the

di�erent coordinate directions� This allows the cross mode to be established from

nonlinear interactions at the level of truncation error�

The important question with this numerical mode is whether or not its e�ect

will grow� and dominate the simulation� or whether it will decay� In our initial simula�

tions �reported in Hodges and Street %	���&�� this mode grew dramatically� The cause

of this growth was the initial numerical method used to solve the kinematic boundary

condition and advance the free surface� a Crank�Nicolson method with a �D approx�

imate factorization� Although this approach retains the formal order of accuracy of
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the simulation method� it results in the equations being treated anisotropically in the

di�erent coordinate directions� This allows the cross mode to be established from

nonlinear interactions at the level of truncation error� We can see from �gure �C���

that this resulted in a linear growth rate of the cross mode� In comparison to the

second mode decay� �gure �C���� it appears that the growth of the cross mode could

eventually dominate the nonlinear e�ects� However� when the simulation was allowed

to run out to complete damping �about 	�� periods�� it was seen that the cross mode

would not grow inde�nitely� but would begin to decay� Its decay rate was less than

that of the free surface wave� so at about 	�� periods� the cross mode became the

dominant free surface mode�

Upon discovering the source of the cross�mode� we switched our free surface

advance to an RK� method that could be applied in an e�cient isotropic manner�

We can see from the data shown in the �gures �C��� and �C��� that the cross�mode

decays for the RK� case and remains an order of magnitude smaller than the second

mode nonlinear e�ects� For comparison we see that its decay rate is somewhat less

than the theoretical damping of a wave �again heuristically applied�� This is probably

attributable to the continual feeding of the mode by the anisotropy of the numerics�

Figure �C�	�� shows the RMS of the displacement of the cross mode as a

function of time� As in �gure �C��� the RMS of the total free surface displacement

is shown on a reduced scale for comparison of the wave periods� In this �gure we see

a rather confused adjustment period for the �rst � or � wave periods� then the cross

mode settles down to be almost exactly in phase with the total free surface sloshing�

C�	 Analysis of �rst damping mode

The �rst damping mode shown in �gure �C��� is similar in appearance to the free

surface shape� but opposes the free surface� This represents additional damping of

the �D free surface� that is caused both by nonlinear e�ects and by numerical e�ects�

That this e�ect is physical can be argued from the nonlinear vertical velocity terms

in the Navier�Stokes equations� Since the velocities at the diagonal corner crest and

�The additional damping is through comparison to the �D superposed solution rather than to
theory�
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trough points are not exactly equal and opposite� their nonlinear terms will not be

exactly equal and opposite� Thus� we expect that the �D simulation should not damp

identically to the �D simulation�

Figure �C�		� provides a comparison of the magnitude of the damping e�ects

of the �rst damping mode compared to the total damping of the wave� Here we

can see that the Crank�Nicolson approach accrued more damping from this mode

than the RK� approach� indicating that there are numerical e�ects in the damping

mode� It appears that the increasing magnitude of the cross�mode was driven by

energy extracted �numerically� from the main sloshing through the damping mode�

Figure �C�	�� provides a closer view of just the Crank�Nicolson and RK� method

damping e�ects� We can see that the damping e�ect in the RK� method appears to

be fairly stable� small and linear� while the Crank�Nicolson method is damping at a

signi�cantly greater rate�

C�
 Viscous e�ects

To analyze the viscous e�ects� we compare the maximum crest�to�trough wave height

�as a function of time� to the viscous�damping theory of Lamb �	�����

h�t� � h��� e���k�t �C�	��

where h �t� is the wave height as a function of time� Figure �C�	�� shows the results

for the �D monochromatic sloshing� the �D sloshing� and Lamb�s theory� The results

for the wave decay are in reasonable agreement with the theory for the �D simulation

and for the �D simulations� Results are shown for two �D simulations with di�erent

methods used for the free surface advance� �	� Crank�Nicolson with approximate

factorization� and ��� �th�order Runge�Kutta with �th�order upwinding of Komori et

al� �	����� We should not expect the simulations to agree perfectly with the theory

since Lamb�s derivation is based on an energy argument for a steady� linear� �D

monochromatic wave which is characterized by a single wave number� while we are

applying it to a nonlinear �D case that has at least three signi�cant wave numbers

with e�ects that are time�dependent� Despite this� our results are consistent with

Lamb�s theory� although not as dissipative�
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