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ABSTRACT 
Modeling of dynamic pressure appears necessary to achieve a more robust simulation of the events 

within a stratified basin; however, its effects are typically spatially and temporally limited.  The overall 
computational expense associated with the dynamic pressure can be reduced if the non-hydrostatic regions 
can be identified prior to the dynamic pressure calculation.  In this work, we seek to define an appropriate 
criterion that can be computed from a hydrostatic solution and used as an indicator of the possible 
magnitude of non-hydrostatic effects.     
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INTRODUCTION 
The inclusion of dynamic pressure in hydrodynamic models can increase a model’s skill in 

capturing the small-scale phenomena of internal wave evolution.  However, the dynamic pressure 
solution can significantly increase computational expense (approximately two orders of 
magnitude longer than the computational time for a similarly-scaled hydrostatic model), thus 
making the inclusion of non-hydrostatic effects impractical for many systems.  Most basins of 
interest (lakes, estuaries and coastal oceans) typically conform to the hydrostatic condition and 
deviate only in select regions of the basin and for limited periods of time.  It would be 
advantageous if a non-hydrostatic model is applied only in regions that deviated from the 
hydrostatic condition, while a more economical hydrostatic model is applied to the remaining 
portion of the domain.  This could reduce computational expense and increase the model’s skill in 
capturing internal wave evolution.  Stansby and Zhou (1998) proposed this idea, however they 
did not implement or test any algorithm for spatially or temporally isolated pressure solutions.  
The present work investigates the practicality of isolating the dynamic pressure calculation to 
non-hydrostatic regions of a computational domain. 

DISCUSSION 
The governing equations used are the incompressible, Reynolds-averaged Navier Stokes 

equations with the Bousinessq approximation and a free-surface solution.  The model used in this 

                                                 
1 Corresponding author: Department of Civil Engineering, The University of Texas at Austin, Austin, TX 78712, USA, 
email: bwadzuk@mail.utexas.edu, fax: 512-471-0072 
2 Department of Civil Engineering, The University of Texas at Austin, Austin, TX 78712, USA 



study is the Centre for Water Research Estuary and Lake Computer Model, CWR-ELCOM 
(Hodges, 2000a).  This model is a three-dimensional hydrodynamic model that simulates fluid 
flows for stratified bodies with the hydrostatic approximation. CWR-ELCOM was modified by 
the authors to include a dynamic pressure solver.  The fractional step method (Kim and Moin, 
1985) was used to incorporate the dynamic pressure solver into the existing model.  The first step 
applies the hydrostatic CWR-ELCOM to resolve the hydrostatic velocity field.  The resulting 
hydrostatic velocity field is used to solve a pressure Poisson equation in the second step; 
subsequently the pressure, velocity, and free-surface fields are updated.  It is between the two 
steps of the fractional step method that the non-hydrostatic regions can be identified and isolated, 
thus not requiring the pressure Poisson solution over the entire domain.   

For a system to meet the hydrostatic condition, the dynamic pressure term must be 
significantly smaller than the other terms (specifically, acceleration) in the horizontal equations of 
motion (Hodges, 2000b).  The system is considered non-hydrostatic when the dynamic pressure 
term is of equal or greater magnitude than the other terms in these equations.  Assuming the local 
horizontal acceleration term is the leading term in the horizontal momentum equation, a “non-
hydrostatic factor” is proposed as: 
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The hydrostatic velocity is used in the denominator, while it is desirous to approximate the 
expected dynamic pressure gradient so that the non-hydrostatic factor can be estimated prior to 
the Poisson solution.  The non-hydrostatic factor captures the physical behavior of the basin, as 
well as the spatial discretization.  It is necessary to capture both of these aspects because an 
internal wave may behave non-hydrostatically (i.e. steepening wave front), however the grid scale 
chosen may dwarf the effect of the non-hydrostatic behavior.  In example, a wave may be 
nonlinearly steepening and dynamic pressure present, however if the grid scale is such that the 
horizontal grid length is much larger than the vertical grid length, than the steepened wave front 
may not be properly captured.   

To approximate the dynamic pressure gradient, we note that the vertical momentum equation 
for inviscid flow is: 
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The hydrostatic approximation neglects vertical acceleration and dynamic pressure in the Navier-
Stokes equations, essentially eliminating the vertical momentum equation.  The hydrostatic 
vertical velocity is determined by diagnostically satisfying continuity based on the hydrostatic 
horizontal velocity, so the vertical velocity reflects divergence in the horizontal flow field.  Two 
approaches were examined to model the vertical dynamic pressure gradient: the total acceleration 
term, as in eq. (2), and the nonlinear acceleration term.  When the hydrostatic velocities are used 
in eq. (2), the local vertical acceleration, /∂ ∂w t , dominates the total acceleration term and clearly 
shows the accumulation of error in the calculation of vertical velocity from continuity.  The local 



acceleration term does not compare well to the vertical pressure gradient resulting from the non-
hydrostatic model.  The second approach used the nonlinear component as the model to the 
vertical dynamic pressure gradient: 
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When the hydrostatic velocities are applied to eq. (3), the nonlinear term did compare well with 
the vertical dynamic pressure gradient from the non-hydrostatic model.  Fig. (1) shows the 
comparison of the vertical dynamic pressure gradient from the non-hydrostatic model and the 
hydrostatic model vertical dynamic pressure gradient when the nonlinear approach is used.   
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FIG. 1. Comparison of vertical dynamic pressure gradient from the non-
hydrostatic model and the hydrostatic model with nonlinear approach.  In each 
panel, the top figure is the non-hydrostatic model, the lower panel is the 
hydrostatic model.  (a) wave amplitude / epilimnion depth (η0/h1) = 0.5 and grid 
of 0.5m x 0.5m, (b) (η0/h1) = 0.5 and grid of 0.25m x 0.25m, (c) (η0/h1) = 1.0 and 
grid of 0.5m x 0.5m, (d) (η0/h1) = 0.5 and grid of 0.25m x 0.25m.  The colorbar 
represents the dynamic pressure gradient, as in eq. (3), units are m/s2. 



 
The nonlinear, hydrostatic model with a larger wave amplitude / epilimnion depth ratio (η0/h1) 
compares better with the non-hydrostatic model than the smaller η0/h1.   Additionally, as the grid is 
refined, the nonlinear, hydrostatic model better captures the vertical dynamic pressure gradient, in 
terms of magnitude and spatial incidence.  In all cases, the nonlinear, hydrostatic model under 
predicts the vertical dynamic pressure gradient from the non-hydrostatic model.  

The hydrostatic, nonlinear model for the vertical dynamic pressure gradient yielded an 
adequate model which could then be applied to the non-hydrostatic factor.  Eq. (3) was vertically 
integrated over a single cell and differentiated with respect to the horizontal direction, x, to yield a 
definition of the dynamic pressure gradient in the x-momentum equation with the known 
hydrostatic vertical velocity.  This definition was then applied to the non-hydrostatic factor in eq. 
(1).   

A two-dimensional domain (10m long and 7.5m water depth), with two different grid 
resolutions (0.5m x 0.5m and 0.25m x 0.25m), initialized with a non-hydrostatic internal wave of 
sinusoidal shape (epilimnion depth/ total depth = 0.5 and wave amplitude / epilimnion depth = 
1.0) was used.  This wave was chosen in accordance with the study of Horn, et al (2001) which 
classified internal wave behavior; the wave produces Kelvin-Helmholtz billow formations.  To 
verify the ability of the non-hydrostatic factor to isolate where the dynamic pressure gradient is 
large, the non-hydrostatic factor was computed with the dynamic pressure derived from the 
hydrostatic velocity field using the nonlinear approach (“model non-hydrostatic factor”) and 
compared to the non-hydrostatic factor computed with the actual dynamic pressure gradient from 
the non-hydrostatic model (“actual non-hydrostatic factor”).  For both grid resolutions, the model 
non-hydrostatic factor basically matched the actual non-hydrostatic factor, as seen in fig. (2); 
however, it tended to under predict where the non-hydrostatic factor is large as did the nonlinear, 
hydrostatic model for the vertical dynamic pressure gradient.  Additionally, in both cases when 
the billow formed and over-turned the non-hydrostatic factors had a very random pattern across 
the domain; this yields a non-hydrostatic factor that is only able to be used prior to billowing.  
The non-hydrostatic factor as it is currently evaluated, does not provide a complete picture of the 
domain with which regions where dynamic pressure affects the flow can be isolated.          

CONCLUSIONS 
The results presented above are preliminary, but show insight into how dynamic pressure is 

distributed through a domain.  Although the results are currently inconclusive, they provide a 
platform from which the non-hydrostatic factor can be more completely examined and modified.  
This work, along with further investigation into the non-hydrostatic factor, will enable a domain 
to be separated into regions where dynamic pressure has an affect and where it does not, thus 
allowing the computational efficiency of the non-hydrostatic model to increase.   
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FIG. 2. Comparison of non-hydrostatic factor from non-hydrostatic model and 
hydrostatic model with nonlinear approach.  (η0/h1) = 1.0, (a) and (c) gave a grid 
of 0.5m x 0.5m, (b) and (d) have a grid of 0.25m x 0.25m.  (a) and (b) are the 
density profiles.  In panels (c) and (d) the top figure is the actual non-
hydrostatic factor and the bottom figure is the model non-hydrostatic factor.  
The colorbar for (c) and (d) represents the log of the non-hydrostatic factor.   
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APPENDIX I. NOTATION 
pd dynamic pressure 
u horizontal velocity 
w vertical velocity 
γ non-hydrostatic factor 
ρ density 
ηo wave amplitude 
h1 epilimnion depth 

 
 
 
 
 


