

American Society Of Civil Engineers 16th Engineering Mechanics Conference

July 16-18, 2003 University of Washington, Seattle

A Second-Order Correction for Semi-Implicit Shallow Water Methods

... or, is second-order really?

Supported by the Office of Naval Research Young Investigator Program

N00014-01-1-0574

Ben R. Hodges, Asst. Prof. Dept. of Civil Engineering University of Texas at Austin

Conclusions

The C-N 2nd-order discretization of the semi-implicit shallow water continuity equation integrated over depth at *time 'n'* is not formally 2nd order accurate

However, a correction term can be derived and applied.

The effect of the correction term is insignificant unless a/D >> 1/100 and the barotropic CFL < 1

At practical grid and time scales (for inland waters), the C-N method is typically 1st order convergent

Continuity for the shallow-water equations

$$\frac{\partial h}{\partial t} = - \frac{\partial}{\partial x} \int_{b}^{h} u \, dz - \frac{\partial}{\partial y} \int_{b}^{h} v \, dz$$

which is simply conservation of surface height with water column fluxes:

$$\frac{\Delta h}{\Delta t} = (Uh)_{back} - (Uh)_{front} + (Vh)_{right} - (Vh)_{left}$$

...nothing new here

The simplest approach is backwards Euler

$$\mathbf{h}^{n+1} = \mathbf{h}^{n} - \Delta t \frac{\partial}{\partial \mathbf{x}} \left\{ \int_{0}^{\mathbf{h}^{n}} \mathbf{u}^{n+1} \, \mathrm{d}\mathbf{z} \right\} + \mathbf{O}\left(\Delta t^{2}\right)$$

Note the hⁿ is used in the limit – not hⁿ⁺¹, which means this isn't *exactly* backwards Euler. However, it can be shown that between hⁿ and hⁿ⁺¹

$$\Delta t \frac{\partial}{\partial x} \int_{h^n}^{h^{n+1}} u^{n+1} dz \sim \Delta t \frac{\partial}{\partial x} (h^{n+1} - h^n) u^{n+1}_{(h^{n+1})} \sim O(\Delta t^2)$$

...so "fudging" the limit of integration doesn't affect the discretization accuracy

Key point

For 1st order semi-implicit, we can take a depth integration over time 'n' and obtain first order accuracy in a linear implicit free surface solution

$$\mathbf{h}^{n+1} + \alpha \frac{\partial^2 \mathbf{h}^{n+1}}{\partial \mathbf{x}^2} = \mathbf{S}^n + O(\Delta \mathbf{t}^2)$$

There's lots of efficient ways to solve this banded matrix (nothing new here either!)

2nd order: Crank-Nicolson discretization

$$h^{n+1} = h^{n} - \frac{\Delta t}{2} \frac{\partial}{\partial x} \left\{ \int_{0}^{h^{n}} u^{n} dz + \int_{0}^{h^{n+1}} u^{n+1} dz \right\} + O(\Delta t^{3})$$
$$u^{n+1} = F(u^{n}) - g \frac{\Delta t}{2} \left\{ \frac{\partial h^{n}}{\partial x} + \frac{\partial h^{n+1}}{\partial x} \right\}$$

Substituting and combining time 'n' terms into a single source

$$h^{n+1} = S^{n} - \frac{\Delta t}{2} \frac{\partial}{\partial x} \begin{cases} \int_{h^{n}}^{h^{n+1}} F(u^{n}) dz & \text{Again, we have an} \\ \int_{h^{n}}^{\text{implicit nonlinearity in}} time (n+1) depth & \\ -\frac{g\Delta t}{2} \left[\left(h^{n+1} - h^{n} \right) \frac{\partial h^{n}}{\partial x} + h^{n+1} \frac{\partial h^{n+1}}{\partial x} \right] + O\left(\Delta t^{3}\right) \end{cases}$$

next

Fudging the limits changes things...

$$h^{n+1} = S^{n} - \frac{\Delta t}{2} \frac{\partial}{\partial x} \left\{ \int_{h^{n}}^{h^{n+1}} F(x^{n}) dz - \frac{g\Delta t}{2} \left[\left(h^{n+1} - u^{n} \right) \frac{\partial h^{n}}{\partial x} + h^{n+1} \frac{\partial h^{n+1}}{\partial x} \right] \right\} + O\left(\Delta t^{3} \right)$$

...resulting in
$$h^{n+1} - \frac{g\Delta t^{2}}{4} h^{n} \frac{\partial^{2} h^{n+1}}{\partial x^{2}} = \tilde{S}^{n} + O\left(\Delta t^{??} \right)$$

A nice banded matrix – but is it second order?

Key point

A semi-implicit shallow water approximate C-N scheme integrated over the *time 'n'* depth neglects 3 terms

So it loses formal 2nd order accuracy! due to a term that is *linear* in time n+1

What do we do?

... it can be shown that

$$\frac{\Delta t}{2} \frac{\partial}{\partial x} \int_{h^n}^{h^{n+1}} F(u^n) dz = \frac{\Delta t}{2} \frac{\partial}{\partial x} (h^{n+1} - h^n) F(u^n)_{h^n} + O(\Delta t^3)$$

So the former banded matrix...

$$\mathbf{h}^{n+1} - \alpha_1 \Delta t^2 \frac{\partial^2 \mathbf{h}^{n+1}}{\partial x^2} = \tilde{\mathbf{S}}^n + O\left(\Delta t^2\right)$$

$$h^{n+1} + \alpha_2 \Delta t \frac{\partial \beta h^{n+1}}{\partial x} + \alpha_1 \Delta t^2 \frac{\partial^2 h^{n+1}}{\partial x^2} = \hat{S}^n + O(\Delta t^3)$$

Effect of the 2nd order correction

Cosine wave a = 0.1 m λ = 21 km D = 1.35 m

Navier-Stokes model using hydrostatic, Boussinesq, 2D (x-z), inviscid assumptions

Examine a range of space and time scales

$\frac{1}{2}$ of a cosine

Results over space and time scales

Analysis

At coarse grid scales, the spatial error dominates and the temporal correction term is unimportant

At finer grid scales, 2nd order requires the temporal correction term when a/D > 1/100

At *practical* grid and time scales (CFL_b> 1), the correction term is irrelevant as the convergence is 1st order in all cases

...what about 1st order methods?

Theta method

The arbitrary weighting of 'n' and 'n+1' terms is often used to reduce C-N numerical dispersion

Theoretically 1st order accurate

1st order accuracy is only obtained for barotropic CFL < 1

... as one might expect, the 2nd order correction has no significant effect on accuracy

Conclusions

The C-N 2nd-order discretization of the semi-implicit shallow water continuity equation integrated over depth at *time 'n'* is not formally 2nd order accurate

However, a correction term can be derived and applied.

The effect of the correction term is insignificant unless a/D >> 1/100 and the barotropic CFL < 1

At practical grid and time scales (for inland waters), the C-N method is typically 1st order convergent

contact info

Ben R. Hodges Dept. of Civil Engineering University of Texas at Austin hodges@mail.utexas.edu