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… or, is second-order really?
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Conclusions

The C-N 2nd-order discretization of the semi-implicit 
shallow water continuity equation integrated over 
depth at time ‘n’ is not formally 2nd order accurate

However, a correction term can be derived and applied.

The effect of the correction term is insignificant unless 
a/D >> 1/100 and the barotropic CFL < 1

At practical grid and time scales (for inland waters), the 
C-N method is typically 1st order convergent
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Continuity for the shallow-water equations
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conservation of surface 
height with water column 
fluxes:
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…nothing new here
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The simplest approach is backwards Euler
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Note the hn is used in the limit – not hn+1, which 
means this isn’t exactly backwards Euler.  
However, it can be shown that between hn and hn+1
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…so “fudging” the limit of integration doesn’t 
affect the discretization accuracy
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Fudging the integration limit is critical in 
efficient semi-implicit methods

Continuity

Momentum
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substituting gives
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This is a banded matrix problem 
that is linear in time n+1
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if limit had hn+1, 
term would be 
implicit nonlinear!
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Key point

For 1st order semi-implicit, we can take a 
depth integration over time ‘n’ and obtain 
first order accuracy in a linear implicit free 
surface solution
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There’s lots of efficient ways 
to solve this banded matrix 
(nothing new here either!)
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2nd order:  Crank-Nicolson discretization
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Substituting and combining time ‘n’ 
terms into a single source
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Again, we have an 
implicit nonlinearity in 
time (n+1) depth
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Fudging the limits changes things…
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…resulting in
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A nice banded matrix –
but is it second order?
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Key point
A semi-implicit shallow water approximate C-N 
scheme integrated over the time ‘n’ depth neglects 
3 terms
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So it loses formal 2nd order accuracy! 
due to a term that is linear in time n+1
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What do we do?
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banded matrix…
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…becomes:
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Effect of the 2nd order correction
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Cosine wave
a = 0.1 m
λ = 21 km 
D = 1.35 m

Navier-Stokes model using hydrostatic, 
Boussinesq, 2D (x-z), inviscid assumptions
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Examine a range of space and time scales

grid cells per 
wave length time steps per 

wave period

more

control cases for 

convergence tests
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Accuracy as the time step is refined

11 horizontal 
grid cells for 
½ of a cosine 
wave
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CFLb>1
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Accuracy as the time step is refined

33 horizontal 
grid cells for 
½ of a cosine 
wave
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CFLb>1
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Accuracy as the time step is refined

99 horizontal 
grid cells for 
½ of a cosine 
wave
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CFLb>1
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Results over space and time scales

grid cells per 
wave length

time steps per 
wave period

1st order convergence

near 2nd order with 

correction term dominated by 
spatial error
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Analysis

At coarse grid scales, the spatial error dominates 
and the temporal correction term is unimportant

At finer grid scales, 2nd order requires the 
temporal correction term when a/D > 1/100

At practical grid and time scales (CFLb> 1), the 
correction term is irrelevant as the convergence 
is 1st order in all cases
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…what about 1st order 
methods?
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Theta method
The arbitrary weighting of ‘n’ and ‘n+1’ terms is 
often used to reduce C-N numerical dispersion

1st order accuracy is only obtained for 
barotropic CFL < 1

Theoretically 1st order accurate

… as one might expect, the 2nd order correction 
has no significant effect on accuracy
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Accuracy for the theta method

33 horizontal 
grid cells for 
½ of a cosine 
wave
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CFLb>1
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Conclusions

The C-N 2nd-order discretization of the semi-implicit 
shallow water continuity equation integrated over 
depth at time ‘n’ is not formally 2nd order accurate

However, a correction term can be derived and applied.

The effect of the correction term is insignificant unless 
a/D >> 1/100 and the barotropic CFL < 1

At practical grid and time scales (for inland waters), the 
C-N method is typically 1st order convergent
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