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Abstract We discuss a one-dimensional inverse material
profile reconstruction problem that arises in layered media
underlain by a rigid bottom, when total wavefield surficial
measurements are used to guide the reconstruction. To tackle
the problem, we adopt the systematic framework of PDE-
constrained optimization and construct an augmented mis-
fit functional that is further endowed by a regularization
scheme. We report on a comparison of spatial regulariza-
tion schemes such as Tikhonov and total variation against a
temporal scheme that treats the model parameters as time-
dependent. We study numerically the effects of inexact initial
estimates, data noise, and regularization parameter choices
for all three schemes, and report inverted profiles for the mod-
ulus, and for simultaneous inversion of both the modulus and
viscous damping. Our numerical experiments demonstrate
comparable or superior performance of the time-dependent
regularization over the Tikhonov and total variation schemes
for both smooth and sharp target profiles, albeit at increased
computational cost.
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1 Introduction

The reconstruction of the material profile of layered soils
based on surficial measurements collected as either the
response to dynamic loads imparted on the soil surface, or
as seismic records, is central to geotechnical site character-
ization efforts. The same problem, albeit at considerably dif-
ferent length scales, is also of primary importance to seismic
hazard mitigation efforts, to soil-structure-interaction prob-
lems, and to geophysics applications (e.g., discovery of
hydrocarbon deposits). An often-used frequency-domain
technique for geotechnical site investigations is based on
the SASW method (spectral analysis of surface waves [1]),
which relies on the analysis of surface Rayleigh waves for
determining the dispersion curve that, in turn, leads to the
shear wave velocity profile. The method however is limited
in several ways, not the least of which is the difficulty with the
reconstruction of the soil’s dissipation characteristics, with
the notable exception of the works by Rix et al. [2–4]. Despite
SASW’s and its variants’ adoption and worldwide use, it is
still unclear how the method can be modified so that it does
not rely on a layered medium assumption, and thus account
for arbitrary material heterogeneity.

In this article we discuss a partial-differential-equation
(PDE)-constrained optimization approach for recovering the
material profile of layered soils directly in the time-domain,
including the spatial distribution of elastic modulus as well
as of attenuation parameters; by and large the latter have,
thus far, proved to be elusive to reconstruct. Though herein
too the technical details are restricted to a horizontally
layered medium, thus, effectively, giving rise to a one-
dimensional problem, the methodology, in contrast to SASW,
scales to heterogeneous media in higher spatial dimensions,
and can make use of data collected directly in the time-
domain.
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We start with a conventional misfit functional that descri-
bes the difference between computed and measured response,
and augment it via the weak imposition of the governing
PDEs. Regularization terms are then added to the augmented
functional in an attempt to alleviate solution multiplicity.
The primary intent of this article is to compare classical
approaches such as a Tikhonov [5], and a total variation
(TV) scheme [6], against a time-dependent scheme (TD) [15]
that treats, initially, the model parameters as time-dependent.
Though computationally costly, the TD scheme appears to
lend much needed algorithmic robustness, and typically leads
to better profiles, without being too sensitive to regularization
parameter choices. A partial motivation for the TD scheme
stems from the fact that with both Tikhonov and TV schemes
the quality of the solution depends highly on a user-select-
able regularization parameter (see, e.g., Fig. 9 in [7]), and
may not successfully reconstruct profiles for any value of
the parameter, especially in the presence of sharp disconti-
nuities or inexact initial estimates. Tadi in [15] reported that
he used a TD scheme successfully to inverse problems in
population dynamics, which, subsequently, led to his using
it also in the reconstruction of the density profile of a one-
dimensional rod [15]. Our own motivation for experimenting
with a TD scheme stems from our interest in departing from
spatial schemes, while still imposing some form of regular-
ization; in this sense, the only other logical candidate was
exploring regularization in the “remaining” direction, i.e.,
in time. As it will be numerically shown, the TD scheme is
relatively insensitive to the regularization parameter, and, in
most cases, leads to better profiles than spatial schemes.

The PDE-constrained approach followed herein was orig-
inally inspired by the optimization work in Navier–Stokes
control problems [8], and the similar work on acoustic waves
led by Ghattas and his collaborators [9,10]. In [9,10], the
authors experimented successfully with material inversion
in acoustics using TV regularization schemes. Overall, we
are interested in recovering both sharp and smoothly varying
profiles and treat the material properties as spatially piece-
wise continuous: as it will be seen, sharp discontinuities are
still recoverable. The recovery of sharply varying proper-
ties (or, equivalently, of discontinuous PDE coefficients) has
been addressed for elliptic problems (e.g., [7]), but the liter-
ature is thin on hyperbolic problems (but see, e.g., [11–13]).
Alternatively, the problem could be posed over an arbitrarily
predetermined number of layers, whose thicknesses and elas-
tic properties serve as unknowns. For example, in [14] the
authors used Love waves for probing, and recovered the
(visco)elastic characteristics of the layers; still, the layered
assumption remains an obstacle when generalizations that
include lateral heterogeneity are of interest.

We choose a reduced-space approach to resolve the first-
order optimality conditions associated with stationarity of the
augmented functional, which, in turn, result in state, adjoint,
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Fig. 1 Problem configuration: soil deposits on bedrock

and control problems (from a temporal character perspec-
tive, there result both initial- as well as final-value problems).
We report on our numerical experiments that demonstrate
robustness in the reconstruction of the material profiles, and
the competitiveness of the TD regularization when compared
with spatial schemes. We treat both single and dual-param-
eter systems (modulus and damping), and report on the sen-
sitivity of the reconstructed profiles with respect to inexact
estimates, data noise, and regularization parameter choices.

2 The forward problem

We consider the response of a layered (heterogeneous)
medium (soil deposits) overlying a homogeneous halfspace
(possibly made of rock) to surface excitation. We formally
reduce the problem to a one-dimensional one by consider-
ing, for example, the case of compressional waves emanat-
ing from the surface of the soil due to a uniform excitation
applied throughout the entire (two-dimensional) soil surface.
Similar physical problems arise if one were to consider only
shear waves in the same medium, or compressional waves in
a rod [15]. Here, to fix ideas, we shall henceforth restrict the
discussion to compressional waves, which allow the reduc-
tion of the problem to one dimension; ultimately, our target
application is the three-dimensional inversion of highly het-
erogeneous deposits. In principle, the approach we discuss
herein, can be applied to this more complex problem with
only minor modifications to account for the higher spatial
dimensionality. Let u(x, t) denote the (scalar) displacement
in the direction of the applied excitation (Fig. 1). Let l denote
the depth of the soil deposits, and T the total observation
period. Then, the strong form of the forward problem can be
stated as:
Forward Problem
Find u(x, t), such that:

∂2u(x, t)

∂t2 − ∂

∂x

(
α(x)

∂u(x, t)

∂x

)
+ β(x)

∂u(x, t)

∂t
= 0,

(x, t) ∈ (0, l)× (0, T ), (1)
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with

α(0)
∂u(0, t)

∂x
= f (t), (2)

u(l, t) = 0, (3)

u(x, 0) = ∂u(x, 0)

∂t
= 0, (4)

where x denotes location and t denotes time. In the above
α(x) denotes the soil’s modulus (e.g., λ + 2µ for compres-
sional waves, with λ, µ denoting the Lamé constants), or
the square of the wave propagation velocity. Throughout we
assume that the material density is constant (a reasonable
assumption in geotechnical site investigations); in particular,
in (1), we assume, without loss of generality, that the density
ρ = 1. Furthermore, in (1), β(x) represents viscous damping
(also normalized with respect to the density). The attenua-
tion character of soil deposits is much more complex than
simple viscous damping could ever capture. However, here
the emphasis is on the inversion and profile reconstruction
process; we expect to tackle more realistic attenuation mod-
els in the future. For simplicity, we consider the simple case
in which the bottom of the layered medium is fixed (rigid)
at x = l (condition (3)). The extension to the more realis-
tic case where the depth of the deposits is unknown and the
computational domain need to be truncated will also be com-
municated in the future. We assume further that the system is
initially at rest (condition (4)), and that the source excitation
is at the origin (condition (2)). Whereas in the forward prob-
lem the excitation and the material distributions α(x) and
β(x) are known, in the inverse problem of interest herein,
both α(x) and β(x) are unknown; known, however, is the
response u(0, t), ∀ t ∈ (0, T ).

3 Inverse misfit problem

For the system defined by the forward problem given in (1)–
(4), the inverse problem can be cast as a PDE-constrained
optimization problem using a (least-squares) misfit function-
al, as in:

Minimize:

J = 1

2

∫ T

0
[u(0, t)− um(0, t)]2 dt +Rα(α)+Rβ(β),

(5)

subject to (1)–(4).

Here, J denotes the misfit functional in which um denotes
the response measured at the surface and u is the computed
response obtained for assumed model profiles α(x) and β(x).
The last two terms in (5) represent regularization terms for α

and β, respectively. Their detailed expressions are discussed
in the next section.

4 Regularization schemes

As in all inverse problems, the minimization problem (5)
associated with the misfit term only is inherently ill-posed
due to, at a minimum, the incomplete data set. One way to
overcome or alleviate this difficulty is to impose additional
constraints in an attempt to “regularize” the solution, if it
at all exists. The choice of the regularization scheme is of
paramount importance. We discuss candidate schemes:

4.1 Tikhonov regularization

One of the most widely adopted schemes is Tikhonov regular-
ization [5]. A Tikhonov-type regularization enforces spatial
smoothness on the model parameters. We experiment with
the first-order Tikhonov regularization scheme, according to
which the regularization term RT k

p is typically defined (in
one-dimension), as:

RT k
p (p) := Rp

2

∫ l

0

(
dp(x)

dx

)2

dx, (6)

where Rp is a regularization parameter that controls the
amount of the penalty the regularization term (6) imposes
on the functional (5), and p is a model parameter (e.g., elas-
tic modulus). Clearly, the above Tikhonov scheme favors
smooth profiles since the penalty term becomes smaller
(modulo the regularization parameter) for smooth p distri-
butions, whereas it increases with high (spatial) frequency
perturbations of the model parameters. Therefore, the Tik-
honov scheme works well for smooth target profiles, but is
not well-suited to sharply varying target profiles. In addi-
tion, the Tikhonov scheme requires initial estimates which
are quite close to the target, since the scheme precludes large
perturbations from the initial guesses. Lastly, the regulariza-
tion parameter Rp should be chosen with care, since, as will
be shown, the solution is quite sensitive to the choice of the
regularization parameter.

4.2 Total variation (TV) regularization

The total variation regularization term RTV
p is defined as:

RTV
p (p) := Rp

∫ l

0

√(
dp(x)

dx

)2

+ ε dx . (7)

The scheme is similar to Tikhonov’s in enforcing spatial
smoothness of the model parameters, but exhibits better per-
formance in dealing with discontinuities or sharp profile
changes due to the imposition of a “lesser” penalty asso-
ciated with discontinuities than the Tikhonov scheme. In the
above, we have modified the standard TV form by adding
a positive scalar ε to smoothen parameter functions that are
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not strongly differentiable at discontinuities, as is typically
done in TV implementations.

4.3 Time-dependent (TD) regularization

An alternative choice for the regularization term is to use
time-derivatives of the model parameters [15]. To this end,
we assume that p ≡ p(x, t), thus violating the physical set-
ting of the problem. Then, a possible form for the TD regu-
larization term RTD

p becomes:

RTD
p (p) := Rp

2

∫ T

0

∫ l

0

(
∂p(x, t)

∂t

)2

dx dt. (8)

Even though the model parameter p is assumed to depend on
both time and space, the minimization process enforces it to
be independent of time: clearly, of all the possible trajecto-
ries p(x, t) for times t ∈ (0, T ), the time-independent p(x)

is the one minimizing (8). To this end, we further impose
that:

p(x, 0) = p0,
∂p(x, T )

∂t
= 0, (9)

where p0 is the initial estimate of the model parameter p.
In other words, we force at final time t = T , the material
property distribution to be chosen as time-independent. In
contrast to spatially driven regularizations, such as Tikho-
nov or TV that filter out higher spatial frequencies of the
model parameters, the time-dependent form (8), in principle,
allows them. In this sense, and with an eye towards three-
dimensional problems, where the spatial variability of the
material parameters is greater, and may be unduly penalized
by a spatial regularization scheme, the TD scheme shifts the
emphasis from space to time. As stated, our motivation for
experimenting with (8) stems from our interest in depart-
ing from spatial schemes, while still imposing some form
of regularization; in this sense, the logical candidate was a
temporal scheme. We readily acknowledge that in accepting
(initially) time-dependent moduli, we are possibly widening
the solution feasibility space in unintended ways. However,
the numerical results are, thus far, promising and provide
evidence that the TD scheme regularizes the solution in both
space and time. To date, we know of no formal proof of the
effects or the benefits afforded by the TD scheme, other than
those betrayed by the numerical examples discussed herein.

5 PDE-constrained optimization approach

5.1 Augmented functional

To reconstruct the material profile we seek to minimize (5)
subject to the governing PDE and the boundary and initial
conditions given by (1)–(4). To this end, we first recast the

problem as an unconstrained optimization problem by defin-
ing an augmented functional based on (5), where now the
governing PDE and the boundary/initial conditions have been
imposed (added) via Lagrange multipliers as side constraints
(notice, only Neumann-type conditions need to be added as
part of the side constraints; essential conditions are explicitly
enforced). We then seek to satisfy the first-order optimality
conditions. We discuss first the case of the TD regulariza-
tion; the Tikhonov and TV schemes are simpler. The details
follow: we define the augmented functional as:

A(u, λ, α, β)

= 1

2

∫ T

0
[u(0, t)− um(0, t)]2 dt

+ Rα

2

∫ T

0

∫ l

0

(
∂α

∂t

)2

dx dt + Rβ

2

∫ T

0

∫ l

0

(
∂β

∂t

)2

dx dt

+
∫ T

0

∫ l

0
λ

{
∂2u

∂t2 −
∂

∂x

(
α

∂u

∂x

)
+ β

∂u

∂t

}
dx dt

−
∫ T

0
λ(0, t)

[
α(0, t)

∂u(0, t)

∂x
− f (t)

]
dt

+
∫ l

0
λ(x, 0)

∂u(x, 0)

∂t
dx, (10)

where λ(x, t) is the Lagrange multiplier (or adjoint vari-
able), and, wherever appropriate, functional dependence has
been dropped for brevity. Notice that the originally spatially
dependent parameters α(x) and β(x) have been modified to
α(x, t) and β(x, t) to account for the temporal dependence,
per the TD regularization scheme. For the Tikhonov scheme,
the augmented functional may be defined in a similar way:

A(u, λ, α, β)

= 1

2

∫ T

0
[u(0, t)− um(0, t)]2 dt

+ Rα

2

∫ l

0

(
dα

dx

)2

dx + Rβ

2

∫ l

0

(
dβ

dx

)2

dx

+
∫ T

0

∫ l

0
λ

{
∂2u

∂t2 −
∂

∂x

(
α

∂u

∂x

)
+ β

∂u

∂t

}
dx dt

−
∫ T

0
λ(0, t)

[
α(0)

∂u(0, t)

∂x
− f (t)

]
dt

+
∫ l

0
λ(x, 0)

∂u(x, 0)

∂t
dx . (11)

In the TV case, the augmented functional can be obtained
by replacing the regularization terms in (11) with the corre-
sponding terms given by (7).

Next, the first-order optimality conditions are obtained
from the variation of the augmented functional with respect
to the state variable u, the adjoint variable λ, and the model
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parameters α and β:

⎧⎪⎪⎨
⎪⎪⎩

δλA
δuA
δαA
δβA

⎫⎪⎪⎬
⎪⎪⎭
= 0. (12)

5.2 The first-order optimality conditions

We seek quadruplets (u, λ, α, β) for which the augmented
functional A becomes stationary. Accordingly:

5.2.1 First optimality condition

δλA =
∫ T

0

∫ l

0
δλ

{
∂2u

∂t2 −
∂

∂x

(
α

∂u

∂x

)
+ β

∂u

∂t

}
dx dt

−
∫ T

0
δλ(0, t)

[
α(0, t)

∂u(0, t)

∂x
− f (t)

]
dt

+
∫ l

0
δλ(x, 0)

∂u(x, 0)

∂t
dx = 0, (13)

where δλ denotes an arbitrary variation of λ. By taking into
account the explicitly imposed homogeneous essential
boundary u(l, t) = 0, and the initial condition u(x, 0) = 0,
we recover the state problem:

State problem

∂2u

∂t2 −
∂

∂x

(
α

∂u

∂x

)
+ β

∂u

∂t
= 0, (x, t) ∈ (0, l)× (0, T ),

(14)

α(0, t)
∂u(0, t)

∂x
= f (t), (15)

u(l, t) = 0, (16)

u(x, 0) = ∂u(x, 0)

∂t
= 0. (17)

Clearly the state problem is identical to the forward problem
given by (1)–(4).1

5.2.2 Second optimality condition

The variation of the augmented functional with respect to
the state variable u yields the second optimality condition.

1 When the TD regularization scheme is used, then α(x) ≡ α(x, t),
and β(x) ≡ β(x, t).

Accordingly:

δuA =
∫ T

0
[u(0, t)− um(0, t)] δu(0, t) dt

+
∫ T

0

∫ l

0
λ

{
∂2δu

∂t2 −
∂

∂x

(
α

∂δu

∂x

)
+ β

∂δu

∂t

}
dx dt

−
∫ T

0
λ(0, t)α(0, t)

∂δu(0, t)

∂x
dt

+
∫ l

0
λ(x, 0)

∂δu(x, 0)

∂t
dx . (18)

By integrating by parts, and taking into account the
boundary and initial conditions there results:

δuA =
∫ T

0

∫ l

0
δu

{
∂2λ

∂t2 −
∂

∂x

(
α

∂λ

∂x

)
− ∂

∂t
(βλ)

}
dx dt

+
∫ T

0
δu(0, t)

{
[u(0, t)− um(0, t)]−α(0, t)

∂λ(0, t)

∂x

}
dt

−
∫ T

0
λ(l, t)α(l, t)

∂δu(l, t)

∂x
dt

+
∫ l

0
λ(x, T )

{
∂δu(x, T )

∂t
+ β(x, T )δu(x, T )

}
dx

−
∫ l

0

∂λ(x, T )

∂t
δu(x, T ) dx . (19)

Since δu is arbitrary, by setting δuA = 0 the following adjoint
problem ensues:
Adjoint problem

∂2λ

∂t2 −
∂

∂x

(
α

∂λ

∂x

)
− ∂

∂t
(βλ) = 0,

(x, t) ∈ (0, l)× (0, T ), (20)

α(0, t)
∂λ(0, t)

∂x
= [u(0, t)− um(0, t)] , (21)

λ(l, t) = 0, (22)

λ(x, T ) = ∂λ(x, T )

∂t
= 0. (23)

We remark that the adjoint problem is similar to the state
problem, with, however, two important differences: first, the
right-hand-side of (21), i.e., the source term, depends on the
misfit between the computed and measured values of the state
variable. Secondly, by virtue of (23), the adjoint problem is
a final-value problem; in addition, the damping term’s sign
has changed. If the Tikhonov or TV scheme were used, the
same state and adjoint problem would have been obtained,
with, naturally, α and β being only spatially dependent.
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5.2.3 Third optimality condition

We obtain the third condition as the variation of the aug-
mented functional with respect to α; there results

δαA = Rα

∫ T

0

∫ l

0

∂α

∂t

∂δα

∂t
dx dt

−
∫ T

0

∫ l

0
λ

∂

∂x

(
δα

∂u

∂x

)
dx dt

−
∫ T

0
λ(0, t)

∂u(0, t)

∂x
δα(0, t) dt

= Rα

∫ T

0

∫ l

0

[
∂

∂t

(
∂α

∂t
δα

)
− ∂2α

∂t2 δα

]
dx dt

−
∫ T

0

∫ l

0

[
∂

∂x

(
λδα

∂u

∂x

)
− δα

∂λ

∂x

∂u

∂x

]
dx dt

−
∫ T

0
λ(0, t)

∂u(0, t)

∂x
δα(0, t) dt

= Rα

∫ l

0

[
∂α(x, T )

∂t
δα(x, T )− ∂α(x, 0)

∂t
δα(x, 0)

]
dx

−Rα

∫ T

0

∫ l

0

∂2α

∂t2 δα dx dt

−
∫ T

0

[
λ(l, t)δα(l, t)

∂u(l, t)

∂x

−λ(0, t)δα(0, t)
∂u(0, t)

∂x

]
dt

+
∫ T

0

∫ l

0
δα

∂λ

∂x

∂u

∂x
dx dt

−
∫ T

0
λ(0, t)

∂u(0, t)

∂x
δα(0, t) dt = 0. (24)

By taking into account that δα(x, 0) = 0, ∂α(x,T )
∂t = 0

and λ(l, t) = 0 (per (9)), (24) reduces to:

δαA =
∫ T

0

∫ l

0

{
−Rα

∂2α

∂t2 +
∂λ

∂x

∂u

∂x

}
δα dx dt = 0. (25)

Similarly, the variation of the augmented functional with
respect to α, in the Tikhonov case, results in:

δαA =
∫ l

0

[
−Rα

d2α

dx2 +
∫ T

0

∂λ

∂x

∂u

∂x
dt

]
δα dx = 0, (26)

whereas, in the TV case, results in:

δαA =
∫ l

0

⎡
⎣−Rαε

(
dα

dx

)2
{(

dα

dx

)2

+ ε

}− 3
2

+
∫ T

0

∂λ

∂x

∂u

∂x
dt

⎤
⎦ δα dx = 0. (27)

5.2.4 Fourth optimality condition

The last condition can be obtained similarly to the third one,
by taking the variation of the augmented functional with
respect to β; there results:

δβA = Rβ

∫ T

0

∫ l

0

∂β

∂t

∂δβ

∂t
dx dt +

∫ T

0

∫ l

0
λδβ

∂u

∂t
dx dt

= Rβ

∫ T

0

∫ l

0

[
∂

∂t

(
∂β

∂t
δβ

)
− ∂2β

∂t2 δβ

]
dx dt

+
∫ T

0

∫ l

0
λ

∂u

∂t
δβ dx dt

= Rβ

∫ l

0

[
∂β(x, T )

∂t
δβ(x, T )− ∂β(x, 0)

∂t
δβ(x, 0)

]
dx

−
∫ T

0

∫ l

0
Rβ

∂2β

∂t2 δβ dx dt

+
∫ T

0

∫ l

0
λ

∂u

∂t
δβ dx dt = 0. (28)

By taking into account that δβ(x, 0) = 0, ∂β(x,T )
∂t = 0,

(28) yields:

δβA =
∫ T

0

∫ l

0

{
−Rβ

∂2β

∂t2 + λ
∂u

∂t

}
δβ dx dt = 0. (29)

If the Tikhonov regularization were used, instead of (29), the
last condition would have read:

δβA =
∫ l

0

{
−Rβ

d2β

dx2 +
∫ T

0
λ

∂u

∂t
dt

}
δβ dx = 0. (30)

Lastly, in the TV case, the last condition becomes:

δβA =
∫ l

0

⎡
⎣−Rβε

(
dβ

dx

)2
{(

dβ

dx

)2

+ ε

}− 3
2

+
∫ T

0
λ

∂u

∂t
dt

⎤
⎦ δβ dx = 0. (31)

Conditions (25) and (29) constitute the control problem for
the TD regularization case, whereas (26) and (30) corre-
spond to the Tikhonov case, and (27) and (31) to the TV
case. The control equations are used in order to update the
model parameters. Obviously, they are satisfied only for the
true profiles.

6 Inversion process

In order to satisfy the first-order optimality conditions, we
adopt a reduced-space method. Notice that, in principle, the
state problem (14)–(17), the adjoint problem (20)–(23), and
the control conditions (25) and (29) (or (26) and (30), or
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(27) and (31)) can be solved as a coupled problem (by using
a full-space method). However, the computational cost per
iteration increases, given, upon discretization, the resulting
matrix sizes. We remark that for the solution of the state and
the adjoint problem (either as a coupled system or individu-
ally) any numerical scheme may be used (finite differences,
finite elements, etc.). In contrast to a full-space method, here
we opt for a reduced-space method that maps the optimiza-
tion problem to the space of the model parameters (α and β),
whereby eliminating the state and adjoint variables. We start
by solving the state problem (14)–(17) to obtain the state var-
iable u, given an estimate of the model parameters, thereby
satisfying the first condition δλA = 0. Then, we solve the
adjoint problem using the state variable computed in the first
step, to obtain the Lagrange multiplier λ that satisfies the sec-
ond condition δuA = 0. To solve both the state and adjoint
problems, we employ conventional finite elements. Then,
there remains to seek to update the model parameters, α and
β, so that the third and fourth conditions be satisfied. We
use the control equations to iteratively provide updates to the
model parameters.

6.1 State and adjoint semi-discrete forms

In order to satisfy the first condition for an assumed set of
inversion variables, we use a standard Galerkin approach to
solve the state problem (14)–(17). Accordingly, the weak
form can be obtained by multiplying the state Eq.(14) by an
appropriate test function υ(x) (with υ(l) = 0) and integrat-
ing over the entire domain. Using integration by parts, there
results:

∫ l

0

[
∂2u(x, t)

∂t2 υ(x)+ α(x, t)
∂u(x, t)

∂x

∂υ(x)

∂x

+β(x, t)
∂u(x, t)

∂t
υ(x)

]
dx = −υ(0) f (t), (32)

where the boundary conditions have been taken into account.
With a similar process, where q(x) is now used as a test func-
tion, we obtain the weak form of the adjoint problem:

∫ l

0

[
∂2λ(x, t)

∂t2 q(x)+ α(x, t)
∂λ(x, t)

∂x

∂q(x)

∂x

−q(x)
∂

∂t
(β(x, t)λ(x, t))

]
dx

= q(0) [um(0, t)− u(0, t)] . (33)

We introduce next standard polynomial approximations for
the trial functions of the state u(x, t) and the adjoint λ(x, t),

and their respective test functions υ(x), and q(x); let:

u(x, t) =
N∑

i=1

ui (t)φi (x), υ(x) =
N∑

i=1

υiφi (x), (34)

λ(x, t) =
N∑

i=1

λi (t)φi (x), q(x) =
N∑

i=1

qiφi (x), (35)

where N is the number of nodal points, φ are basis functions,
and ui , λi , υi , qi denote nodal quantities. Then the semi-dis-
crete forms of the state and adjoint problems can be cast as:

M
∂2u(t)

∂t2 +K(t) u(t)+ C(t)
∂u(t)

∂t
= F(t), (36)

M
∂2λ(t)

∂t2 + [K(t)+Q(t)] λ(t)− C(t)
∂λ(t)

∂t
= G(t),

(37)

where:

Mi j =
∫ l

0
φiφ j dx, Ki j =

∫ l

0
α(x, t)

∂φi

∂x

∂φ j

∂x
dx, (38)

Ci j =
∫ l

0
β(x, t)φiφ j dx, Qi j =−

∫ l

0

∂β(x, t)

∂t
φiφ j dx,

(39)

Fi = − f (t)δi1, Gi = [um(0, t)− u(0, t)]δi1. (40)

In the above, δi1 denotes the Kronecker delta, u and λ are
the vectors of the nodal state and adjoint variables, respec-
tively, and customary notation has been used for the matrices.
Notice that, whereas the mass matrix M is independent of
time, the stiffness K , and damping matrices C and Q depend
on time, due to the presence of the (assumed) time-dependent
moduli.

6.2 Temporal discretization

To arrive at a solution first for the state variable and then for
the adjoint variable, the semi-discrete forms (36) and (37)
need next be discretized in time. We note that, whereas (36)
is an initial value problem for which u(0) = ∂u

∂t (0) = 0,

(37) is a final-value problem for which λ(T ) = ∂λ
∂t (T ) = 0.

In the case of the TD regularization scheme, the time-
dependent matrices K (t), C(t), and Q(t) need to be appro-
priately treated. Their temporal dependence stems from the
moduli, which in turn, need also be discretized in both space
and time. Accordingly, let:

α(x, t) =
N∑

j=1

a j (t)ϕ j (x), β(x, t) =
N∑

j=1

b j (t)ϕ j (x), (41)

in which ϕ j are basis functions, and a j and b j denote nodal
values of α and β, respectively. At the first iteration we
start with the initially guessed model parameters, which we
enforce to be constant in time. Upon updating the model
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parameters (see Sect. 6.3), there result time-dependent mod-
uli α(x, t) and β(x, t). Using those, one could formally pro-
ceed by updating K (t), C(t), and Q(t), per (38)–(39); we
refer to this approach as Scheme TD-I. Clearly, this approach
is computationally costly, as it entails the evaluation of var-
ious matrices on a per time-step basis. Alternatively, one
could approximate the temporal dependence of the moduli
by constant values (per inversion iteration); candidate choices
include:

a j (t) � 〈a j (t)〉, or a j (t) � a j (T ), ∀ j = 1, . . . , N ,

(42)

where the former expression refers to the mean value of a j (t)
over the period (0, T ), and the latter expression refers to its
final value (similarly, for the coefficients of β, b j ). We opted
for the second of (42) (piecewise constant in space, as well).
Thus, effectively, over an element e, (41) can be rewritten as:

α(x, t)|e � ae(T ), β(x, t)|e � be(T ). (43)

Consequently, the element matrices ke, ce, and qe corre-
sponding to K , C , and Q in (38)–(39), respectively, are mod-
ified to now read:

ke = ae(T )

∫
e

∂φ

∂x

∂φT

∂x
dx, ce = be(T )

∫
e
φφT dx, (44)

and qe = 0. We refer to this second approach as Scheme
TD-II. Next, standard time integration schemes can be used:
here, we opted for Newmark’s average-acceleration sche-
me. Through the numerical experiments, we tested both the
time-dependent matrices (Scheme TD-I), and the time-inde-
pendent matrices (Scheme TD-II) cases in solving the state
and adjoint problems; we observed only minor differences
in the final estimated model parameters.

6.3 Model parameter updates

By solving the state and adjoint problems, the state variable
u and the adjoint variable λ satisfying the first and second
conditions, respectively, are obtained. Then, the problem is
reduced to a minimization problem with respect to the model
parameters α and β. Here, notice that the variations with
respect to the model parameters of the augmented functional,
δαA and δβA, are tantamount to the gradient components
of the misfit functional ∇αJ and ∇βJ , since the side con-
straints in the augmented functional (10) have already van-
ished owing to the solution of the state problem. Then, what
remains to be done is to provide the mechanism for updating
the model parameters: this can be directly accomplished via
the control equations derived for the TD, Tikhonov, or TV
regularizations. We outline the details below.

6.3.1 Time-dependent (TD) regularization

The control Eq. (25) yields:

∂2α(x, t)

∂t2 = 1

Rα

∂λ(x, t)

∂x

∂u(x, t)

∂x
. (45)

The right-hand-side of (45) can be readily computed, once
u and λ have been obtained. Then, the update for α(x, t),
on a per element basis, can be computed by integrating (45)
as shown below (superscripts to α and a indicate new and
previous values between inversion iterations):

α(k+1)
e (x, t) = a(k+1)

e (t) = a(k)
e (T )

− t

Rα

∫ T

0

∂φT

∂x
λ(τ )

∂φT

∂x
u(τ ) dτ

+ 1

Rα

∫ t

0

∫ s

0

∂φT

∂x
λ(τ )

∂φT

∂x
u(τ ) dτ ds,

(46)

where φ, λ, and u are restricted to element e, and we have
enforced conditions (9) so that:

a(k+1)
e (0) = a(k)

e (T ),
∂a(k+1)

e

∂t
(T ) = 0. (47)

Similarly, for the β updates: we use control Eq. (29) to obtain:

∂2β(x, t)

∂t2 = 1

Rβ

λ(x, t)
∂u(x, t)

∂t
, (48)

and therefore, by analogy to (46):

β(k+1)
e (x, t) = b(k+1)

e (t) = b(k)
e (T )

− t

Rβ

∫ T

0
φT (x)λ(τ ) φT (x)

∂u(τ )

∂τ
dτ

+ 1

Rβ

∫ t

0

∫ s

0
φT (x)λ(τ ) φT (x)

∂u(τ )

∂τ
dτ ds.

(49)

Notice that, as evidenced by the above relations, the use of
large values for the regularization parameters does not distort
the misfit information, since the regularization terms vanish
as the time-derivatives of the inversion variables become or
approach zero. However, as it can be seen from (45) and
(48), the accelerations of the time-dependent coefficients of
the model parameters are inversely proportional to the regu-
larization parameters Rα and Rβ . Therefore, the use of larger
regularization parameters will force the convergence rate to
be slower. It is, thus, beneficial to use smaller regularization
parameter values (as long as the resulting optimization prob-
lem converges). The entire inversion process with the TD
regularization scheme is summarized in the following Algo-
rithm 1, where trivial steps have been omitted. To acceler-
ate convergence it is possible to use a line search scheme
that optimizes the step length: accordingly, in (46) and (49),
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Algorithm 1 Inversion algorithm using TD regularization
(Scheme TD-I or TD-II)
1: Choose Rα, Rβ

2: Set k=0
3: Set initial guess of inversion variables, a(k)

e and b(k)
e

4: Set convergence tolerance TOL
5: Set misfit = TOL + 1
6: while (misfit > TOL) do
7: Solve the state problem to obtain u
8: Solve the adjoint problem to obtain λ

9: Compute ∂2a
∂t2 using:

∂2a(k)
e

∂t2 = 1

Rα

∂λ

∂x

∂u

∂x

∣∣∣∣
e

10: Compute ∂2b
∂t2 using:

∂2b(k)
e

∂t2 = 1

Rβ

λ
∂u

∂t

∣∣∣∣
e

11: Update the model parameters α using:

a(k+1)(t) = a(k)(T )− t
∫ T

0

∂2a(τ )

∂τ
dτ +

∫ t

0

∫ s

0

∂2a(τ )

∂τ
dτ ds

12: Update the model parameters β using:

b(k+1)(t) = b(k)(T )− t
∫ T

0

∂2b(τ )

∂τ
dτ +

∫ t

0

∫ s

0

∂2b(τ )

∂τ
dτ ds

13: k=k+1
14: end while
15: Save final estimates α(x, t) and β(x, t)

the integrals play the role of the search direction, while the
reciprocal of the regularization parameter plays the role of
the step length. Therefore, by combining any gradient-based
scheme with a line search, we could accelerate the conver-
gence rate. We employ the steepest descent method with an
inexact line search scheme; the approach is summarized in
Algorithm 2 below.

6.3.2 Tikhonov or TV regularization

Using the Tikhonov regularization, the inversion process is
similar to Algorithm 2; the primary difference is in the com-
putation of the search direction. Again, by solving the state
and adjoint problems, we obtain the state variable u and the
Lagrange multiplier λ, which satisfy the first and second opti-
mality conditions, under given estimates of the model param-
eters. Then, the remaining third and fourth conditions given
by (26) and (30), or by (27) and (31), respectively, provide,
essentially, the first-order variations (or components of the
gradient) of the misfit functional with respect to the model
parameters. Using these first-order variations, we can adapt
appropriately any gradient-based optimization scheme. Here
we opt again for the steepest descent method combined with
an inexact line search. In other words, we take the search
direction as the negative of the first-order variations. The

Algorithm 2 Inversion algorithm using TD regularization
(accelerated version)
1: Choose θ, ρ, µ, Rα, Rβ

2: Set k=0
3: Set initial guess of inversion variables, a(k)

e and b(k)
e

4: Set p(t) = {a(t) b(t)}T
5: Set convergence tolerance TOL
6: Set misfit = TOL + 1
7: while (misfit > TOL) do
8: Solve the state problem to obtain u
9: Solve the adjoint problem to obtain λ

10: Compute ∂2a
∂t2 using:

∂2a(k)
e

∂t2 = 1

Rα

∂λ

∂x

∂u

∂x

∣∣∣∣
e

11: Compute b̈ using:
∂2b(k)

e

∂t2 = 1

Rβ

λ
∂u

∂t

∣∣∣∣
e

12: Compute the search direction dk(t) =
{

dα(t)
dβ(t)

}

where

dα(t) = −t
∫ T

0

∂2a(τ )

∂τ 2 dτ +
∫ t

0

∫ s

0

∂2a(τ )

∂τ 2 dτ ds,

dβ(t) = −t
∫ T

0

∂2b(τ )

∂τ 2 dτ +
∫ t

0

∫ s

0

∂2b(τ )

∂τ 2 dτ ds.

13: while (J (pk + θkdk) > J (pk)+ µθkpk · ∇J (pk) ) do
14: θ ← ρθ

15: end while
16: Update the estimates pk+1(t) = pk(T )+ θkdk(t)
17: k=k+1
18: end while
19: Save final estimates p(T )

entire inversion process using either the Tikhonov or the TV
regularization is summarized in Algorithm 3.

7 Numerical experiments

We study the efficiency and robustness of the algorithms
described in the previous sections via a series of numerical
experiments. For simplicity, we consider one-dimensional
problems in which several layers lie over the rigid bottom.
Through the numerical experiments, we test the performance
of the studied algorithms for both smooth and sharp target
profiles. In addition, we study the effect of the regularization
parameter, and the algorithmic performance against noisy
data and different initial estimates. In all cases, we use syn-
thetic data produced in a manner that avoids committing clas-
sical inverse crimes. That is, we obtain the measured response
numerically by using the (exact) target profile, the prescribed
source signal, and a very fine mesh that resolves more than
adequately the physics of the problem (e.g., the mesh density
is such that there are approximately 15–20 points correspond-
ing to the smallest wavelength present in the source signal).
The mesh density we use in the inversion process is always
different than the density used to obtain the synthetic data.
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Algorithm 3 Inversion using Tikhonov or TV regularization
1: Choose θ, ρ, µ, Rα, Rβ

2: Set k=0
3: Set initial guess of inversion variables, a(k)

e and b(k)
e

4: Set p = {a b}T
5: while (misfit > TOL) do
6: Solve the state problem and obtain u
7: Solve the adjoint problem and obtain λ

8: Compute the search direction dk =
{

dα

dβ

}

where, for Tikhonov regularization,

dα,e = Rα

d2α

dx2

∣∣∣∣
e
−

∫ T

0

∂λ

∂x

∂u

∂x

∣∣∣∣
e

dt,

dβ,e = Rβ

d2β

dx2

∣∣∣∣
e
−

∫ T

0
λ

∂u

∂t

∣∣∣∣
e

dt,

and for TV regularization,

dα,e=Rαε

(
dα

dx

)2
[(

dα

dx

)2

+ ε

]− 3
2 ∣∣∣∣

e
−

∫ T

0

∂λ

∂x

∂u

∂x

∣∣∣∣
e
dt,

dβ,e=Rβε

(
dβ

dx

)2
[(

dβ

dx

)2

+ ε

]− 3
2 ∣∣∣∣

e
−

∫ T

0
λ

∂u

∂t

∣∣∣∣
e
dt.

9: while (J (pk + θkdk) > J (pk)+ µθkpk · ∇J (pk) ) do
10: θ ← ρθ

11: end while
12: Update the estimates pk+1 = pk + θkdk
13: k=k+1
14: end while
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Fig. 2 A smooth α(x) target profile

7.1 On smooth profiles

As a first example problem, we consider a simple case, in
which only the modulus (or wave velocity) is unknown. We
consider l = 1, and thus x ∈ [0, 1]. The target modulus
profile is a Gaussian bell-like distribution (Fig. 2):

α(x) =
[

1+ exp

(
− (x − 0.5)2

0.04

)]
. (50)

The source excitation is a rapidly decaying pulse-like signal
given below by (51). Both the signal and its Fourier trans-
form are depicted in Fig. 3a, b. For the given target profile
and source excitation, the measured (synthetic) data um(0, t)
are shown in Fig. 3c.

f (t) = exp

[
− (t − 0.1)2

0.0025

]
. (51)

Based on the given measured data, we inverted for the mod-
ulus profile via the TD regularization schemes (Algorithms
1,2), and via the Tikhonov and TV regularization schemes
(Algorithm 3). In the time-dependent case we tested both
Schemes TD-I and TD-II.

7.1.1 Regularization parameter effects

We begin by choosing an initial distribution for the modulus
that is constant throughout the entire domain and observation
period, that is, we set the initial guess to α(x, t) = 1.0. We
study the effect the magnitude of the regularization param-
eters has on the performance of the regularization schemes
we considered. For the TD regularization case, we treat the
same problem by two ways: first, we use the time-dependent
matrices in solving the state and adjoint problems (Scheme
TD-I), and second, we solve them with the modified matrices
given by (44) (Scheme TD-II). Figure 4 a, b, d, e summarizes
the α profiles obtained using the TD regularization schemes
for different regularization parameters Rα = 0.1 and 0.01
(the results are reported for the same level of misfit error
tolerance, set at 2.0 × 10−7). In addition, the differences of
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Fig. 4 Target, initial, and estimated profile of α(x) using the TD regularization schemes

the estimated α(x) obtained using Scheme TD-I and Scheme
TD-II are shown in Fig. 4c, f. Here, the differences D(x) are
expressed in percentage as:

D(x) = αTD−II(x)− αTD−I(x)

αTD−I(x)
× 100 (%), (52)

where αTD−I(x) and αTD−II(x) are the final estimated α(x)

using Scheme TD-I and Scheme TD-II, respectively. As it
can be seen from Fig. 4, only minor differences are observed
between the two schemes. For both cases, the final estimates
are almost identical (the differences are less than 0.15%), and
there is no significant difference in the required number of
iterations. In addition, for both cases, the solution converges
to the target profile, regardless of the value of the regular-
ization parameter, albeit at higher computational cost asso-
ciated with higher parameter choices (notice that, here, we
employed Algorithm 1 in which the line search scheme is not
implemented, and, as a result, the regularization parameter
remains constant throughout the process). Naturally, smaller
parameter values fail to achieve the penalty intent of the reg-
ularization term: for example in this first problem, whereas
for Rα = 0.01 satisfactory results were obtained, for Rα =
0.001 we observed divergence and increased misfit errors.
Figure 5a summarizes the convergence patterns of the misfit
error for the considered values of the regularization
parameters in the TD-II case, whereas Fig. 5b, c depicts the

corresponding convergence patterns for the modulus. We
remark that the convergence patterns using Scheme TD-I
are nearly identical to those obtained using TD-II.

Next, we consider a Tikhonov regularization scheme using
different values for the regularization parameters; the result-
ing estimated profiles are shown in Fig. 6. We continue the
iteration process until the misfit error converges. As it can
be seen in Fig. 6a, when Rα = 0.001, the solution does
not converge to the target profile. However, as smaller val-
ues of the regularization parameter are adopted, the solution
tends closer to the target profile (Fig. 6b, c). We failed to
obtain a solution as close to the target profile (even when
Rα = 0) as that obtained using the TD regularization. We
remark that one could improve on the Tikhonov case results
by, for example, using a source with a higher-frequency con-
tent, or a continuation scheme on the regularization param-
eter, or a number of other approaches (e.g., L-curve) that
aim at the intelligent choice of the regularization parame-
ter. We have not implemented such schemes for either the
Tikhonov, TV, or TD cases (in principle, all schemes stand
to benefit). Nevertheless, the results shown thus far suggest
that the TD regularization performs better than Tikhonov,
for blind, yet broad, choices of the regularization parameter.
Figure 7a shows the misfit error, whereas Fig. 7b, d depicts the
convergence patterns for the modulus, in the Tikhonov reg-
ularization case. The results obtained when the TV scheme
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Fig. 5 Misfit error and convergence patterns of α(x) using the TD regularization scheme (Scheme TD-II)
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Fig. 6 Target, initial and estimated profile of α(x) using the Tikhonov regularization scheme

was used are shown in Fig. 8: no major qualitative differ-
ences are observed between the TV and Tikhonov schemes
for this smooth profile case.

7.1.2 Initial estimates effects

Even though, in the preceding problem, our initial guess for
the modulus distribution is a constant one throughout the
domain, it is still close to the modulus values at the ends of
the domain. To explore the algorithmic performance when the
initial guess, while still constant, is not close to the end val-
ues, we seek to reconstruct the profile starting with α(x, t) =
0.7. We test again using different regularization parameters,
Rα = 1.0, 0.1, 0.01. We set the tolerance to 2.0 × 10−7.
For the TD regularization scheme, we report only the case
in which the modified time-independent matrices (Scheme
TD-II) are used in solving the state and adjoint problems,
given the comparative performance reported in the preceding
section. As it can be seen in Fig. 9, the reconstructed profile
converged to the target when the TD regularization was used,
regardless of the values of the regularization parameter Rα

(for the range considered). The effect of the regularization
parameter on the rate of convergence is shown in Fig. 9d.

Next, we used the Tikhonov regularization scheme,
exploring various values for the regularization parameter, in

an attempt to reconstruct the profile when the initial guess was
again set at α(x, t) = 0.7. In contrast to the case where the
initial guess was closer to the target profile, here all attempts
failed to converge as depicted in Fig. 10. The performance
of the TV scheme was equally problematic, as shown in
Fig. 11.

7.1.3 Noise effects

One of the practical difficulties arising in inversion is asso-
ciated with the presence of noise in the measured response
(and/or on the source) that typically result in contaminated
data. It is thus of interest to study the performance of the algo-
rithms in the presence of noisy data. The problem parameters
are the same as those of the first test case, that is, a smooth
target profile with an initial guess at α(x, t) = 1. However,
now noise-contaminated data are used. To artificially inject
noise in the measured data, we use Gaussian noise (GN) hav-
ing standard deviation of 1, 5, and 10% with respect to the
maximum amplitude of the measured data. The noise-con-
taminated data are shown in Fig. 12.

The reconstructed profiles obtained using the time-depen-
dent regularization scheme are shown in Fig. 13. For all cases,
Rα = 0.01 is employed. As can be seen in the figure, the
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Fig. 7 Convergence pattern of
estimated profile of α(x) using
the Tikhonov regularization
scheme
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Fig. 8 Target, initial, and estimated profile of α(x) using the TV regularization scheme

solution converged satisfactorily to the target in all cases.
However, as the level of the noise in the signal increases,
the estimations show higher level of fluctuations due to the
effects of the noise. If the regularization parameter increases,
similar results to the above can be obtained, albeit at a slower
convergence rate: Fig. 13d summarizes the convergence of
the misfit error for data contaminated with different noise
levels.

Next, we consider again a Tikhonov scheme and study the
performance for a single case with 10% Gaussian noise. We
adopt different values of the regularization parameter. The
inverted profiles are shown in Fig. 14. Figure 14a depicts the
reconstructed profile when no regularization is used (Rα =

0); interestingly, despite the mild oscillations, the profile is
certainly competitive to, or even better than, the one produced
by the TD regularization (see Fig. 13c). With Rα = 10−5,
the reconstructed profile becomes smoother, albeit somewhat
deviating from the target (Fig. 14b) at the neighborhood of the
peak. As the regularization parameter increases, further devi-
ation (or failure) is observed (e.g., Fig. 14c), since the Tikho-
nov regularization begins to weigh heavily on the inversion
process.

When the TV scheme is used, as shown in Fig. 15, the
solutions are more oscillatory than the Tikhonov case and, in
this instance, we could not observe any superior performance
over the TD or the Tikhonov schemes.
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Fig. 9 Target, initial and
estimated profile of α(x), and
misfit error using the TD-II
regularization scheme
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Fig. 10 Target, initial and estimated profile of α(x) using the Tikhonov regularization scheme
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Fig. 11 Target, initial and estimated profile of α(x) using the TV regularization scheme
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Fig. 12 Measured data contaminated by noise

Fig. 13 Target, initial and
estimated profile of α(x) using
the TD regularization scheme
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Fig. 14 Target, initial and estimated profile of α(x) using the Tikhonov regularization scheme
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Fig. 15 Target, initial and estimated profile of α(x) using the TV regularization scheme

7.2 On sharp profiles

In the next series of numerical experiments we study the per-
formance of the algorithms on sharply changing profiles. We
start again by considering α(x) as the sole profile to invert
for, and adopt the following step form for it:

α(x) =
⎧⎨
⎩

1.0 0.0 ≤ x < 0.3
2.0 0.3 ≤ x < 0.7
1.0 0.7 ≤ x < 1.0

. (53)

We choose α(x, t) = 1.0 as the initial guess and reconstruct
the profile using a TD, a Tikhonov, and a TV regularization
scheme. We also study the performance of each scheme with
noise-contaminated data. For each scheme, we tested the per-
formance using 0, 1, 5 and 10% Gaussian noise. In Fig. 16,
the measured noise-contaminated data are shown.

The estimated profiles of α(x) using the TD regularization
scheme are shown together with the target and initial profiles
in Figs. 17 and 18. In particular, Fig. 17a–c are the converged
profiles for different regularization parameters and noise-free
data. Figure 18a–c depict the reconstructed profiles obtained
using the noise-contaminated data; here we chose to report
results only for Rα = 0.01. The results are deemed satisfac-
tory in all cases.

Next, the estimated profiles of α(x) using the Tikhonov
regularization scheme are shown together with the target and
initial profiles in Figs. 19 and 20. In contrast to the TD regu-
larization, here we observe that the solutions depend on the
choice of the regularization parameter. In addition, the results
using the TV scheme are depicted in Figs. 21 and 22: TV’s
performance is similar to the Tikhonov case. For 10% noise
the Tikhonov case appears superior to the TD case (compare
Fig. 18c against Fig. 20c).

We seek to reconstruct the same profile starting with
α(x, t) = 0.7 to explore the algorithmic performance when
the initial guess is not close to the end value. We again invert
using both a TD and a Tikhonov regularization scheme and,
for each scheme, we tested the performance using data con-
taminated with 0, 1, 5 and 10% Gaussian noise.

The estimated profiles of α(x) using the TD regularization
scheme are shown together with the target and initial profiles
in Figs. 23 and 24. Similarly to the previous case, it can
be seen that the profiles converge to the target profile in all
cases, but the convergence rate depends on the magnitude of
the regularization parameter (Fig. 23). In addition, the recon-
structed profiles using noisy data are depicted in Fig. 24; here
we chose to report results only for Rα = 0.01. The results are
again deemed satisfactory in all cases. In contrast, Figs. 25
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Fig. 16 Measured data contaminated by different levels of noise
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Fig. 17 Target, initial and estimated profile of α(x) using the TD regularization scheme; noise-free data
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Fig. 18 Target, initial and estimated profile of α(x) using the TD regularization scheme; noisy data
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Fig. 19 Target, initial and estimated profile of α(x) using the Tikhonov regularization; noise-free data
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Fig. 20 Target, initial and estimated profile of α(x) using the Tikhonov regularization; noisy data
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Fig. 21 Target, initial and estimated profile of α(x) using the TV regularization; noise-free data
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Fig. 22 Target, initial and estimated profile of α(x) using the TV regularization; noisy data

and 26 depict attempts to reconstruct the profile using the
Tikhonov and TV schemes, respectively, which failed in all
cases.

7.3 Simultaneous inversion of modulus and damping

We report next on the performance of the algorithm with the
TD regularization when inverting simultaneously for both
the modulus α, and the attenuation metric β. We tested two
different profiles. In Case I, we choose a sharp modulus pro-
file (multiple layers of different moduli), combined with a
smooth linearly varying damping profile. Case II pertains to
sharply varying profiles for both the modulus and damping.
The target profiles for Case I are:

α(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.5 for 0.0 ≤ x < 0.25
2.0 for 0.25 ≤ x < 0.5
1.0 for 0.5 ≤ x < 0.75
2.5 for 0.75 ≤ x < 1.0

, (54)

β(x) = 1.0− 0.5x, (55)

and for Case II:

α(x) = 1.5, β(x) = 0.6 for 0.00 ≤ x < 0.25,

α(x) = 2.0, β(x) = 0.8 for 0.25 ≤ x < 0.50,

α(x) = 1.0, β(x) = 0.4 for 0.50 ≤ x < 0.75,

α(x) = 2.5, β(x) = 1.0 for 0.75 ≤ x < 1.00.

(56)

We choose constant α(x, t) = 1.2 and β(x, t) = 0.5 as initial
guesses for Case I, and α(x, t) = 1.2 and β(x, t) = 1.0 for
Case II. The profiles are reconstructed using both noise-free
data, and data contaminated with 5% Gaussian noise. The
data for each case are shown in Fig. 27; the regularization
parameters were set at Rα = 0.01 and Rβ = 0.01.

The estimated profiles are shown together with the target
and initial profiles in Figs. 28 and 29. As it can be seen, the
performance is quite satisfactory; notice that the described
process allows, in essence, the recovery of the number of lay-
ers, the material composition of each layer, and the thickness
(or depth) of each layer, without having to explicitly declare
them as model parameters.2

2 It is possible to improve on the damping profile (β), by a judicious
choice of Rβ relative to Rα ; the specifics escape the scope of this article.
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Fig. 23 Target, initial and estimated profile of α(x) using the TD regularization scheme; noise-free data
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Fig. 24 Target, initial and estimated profile of α(x) using the TD regularization scheme; noisy data
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Fig. 25 Target, initial and estimated profile of α(x) using the Tikhonov regularization scheme
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Fig. 26 Target, initial and estimated profile of α(x) using the TV regularization scheme
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Fig. 27 Measured data
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Fig. 28 Target, initial and
estimated profiles of α(x) and
β(x) for Case I using the TD
regularization scheme

0.0 0.2 0.4 0.6 0.8 1.0

α(
x )

0.5

1.0

1.5

2.0

2.5

3.0
Target
Initial
25186th

(a)

0.0 0.2 0.4 0.6 0.8 1.0

β(
x)

0.25

0.50

0.75

1.00

1.25
Target
Initial
25186th

(b)

x

0.0 0.2 0.4 0.6 0.8 1.0

α(
x)

0.5

1.0

1.5

2.0

2.5

3.0
Target
Initial
10000th

(c)

x

0.0 0.2 0.4 0.6 0.8 1.0

β(
x )

0.25

0.50

0.75

1.00

1.25
Target
Initial
10000th

(d)

8 Conclusions

We discussed a PDE-constrained optimization approach for
reconstructing the material profile in a layered medium based

on surficial measurements of its response to surface excita-
tion directly in the time-domain. The primary focus was on
the comparison, via numerical experiments, of spatial reg-
ularization schemes against a TD scheme. To this end, we
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Fig. 29 Target, initial and
estimated profiles of α(x) and
β(x) for Case II using the TD
regularization scheme
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tested the algorithmic performance for both smooth and sharp
profiles, and discussed the effect the regularization param-
eter, noisy data, and initial estimates have on the inversion
process. While the studies are not exhaustive, based on the
reported numerical experiments, our observations are:

– The TD scheme can capture both sharp and smooth pro-
files, while the Tikhonov and TV regularizations exhibit
difficulties when confronted with sharp profiles.

– The solutions obtained using the TD scheme appear less
sensitive to the regularization parameter than the Tikho-
nov and TV schemes.

– The TD scheme appears more robust under inexact ini-
tial guesses when compared to the Tikhonov and TV
schemes.

– In the presence of noisy data, the Tikhonov scheme seems
to outperform the TD scheme only when initial estimates
are close to the target profile.

Lastly, we also extended the development to the case of the
simultaneous inversion for both modulus and damping and
reported on the reconstruction of both smooth and sharp pro-
files. Overall, the TD approach appears robust (no failure
to converge), albeit at a substantial computational cost over
either Tikhonov or TV regularizations. Preliminary results in
two dimensions with highly heterogeneous domains support
similar conclusions. In our opinion, the TD scheme, despite
its higher computational cost, is quite promising in lending

robustness to inversion processes similar to the one discussed
herein.
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