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Abstract

We discuss the performance of a family of local and weakly-non-local in space and time absorbing boundary con-

ditions, prescribed on truncation boundaries of elliptical shape for the solution of the two-dimensional wave equation in

both the time- and frequency-domains. The elliptical artificial boundaries are derived as particular cases of general

convex boundaries for which the absorbing conditions have been developed. The conditions, via an operator-splitting

scheme, are shown to lend themselves to easy incorporation in a variational form that, in turn, leads to a standard

Galerkin finite element approach. The resulting wave absorbing finite elements are shown to preserve the sparsity and

symmetry of standard finite element schemes in both the time- and frequency-domains. Numerical experiments for

transient and time-harmonic cases attest to the computational savings realized when elongated scatterers are surrounded

by elliptically-shaped boundaries, as opposed to the more commonly used circular truncation geometries.
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1. Introduction

The need for the mathematical modeling and computational simulation of wave phenomena in un-
bounded media stems from a plethora of engineering problems that can be modeled mathematically as

structures (or obstacles, scatterers, radiators, etc.) surrounded by an unbounded wave-supporting medium.

In simulating numerically the propagating waves in an unbounded medium, the need for truncation

boundaries that limit the infinite or semi-infinite extent of the physical domain to a finite computational

one, typically arises when domain discretization methods provide the semi-discrete forms (e.g. FEM, FDM,

FVM, etc.). On such an artificial boundary (the physical problem has no boundary), appropriate conditions

need to be prescribed to allow for the safe passage of waves, with, ideally no, or at worse, minimal

reflections, while simultaneously taking into account the behavior of the part of the physical domain,
hereafter excluded from the computations.
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The central difficulty with domain discretization methods and the associated truncation boundaries
stems from the need to satisfy an instantiation of the Sommerfeld radiation condition at the truncation

boundary instead of at infinity. This condition is exact, and is typically referred to as the DtN map, for it

relates the Dirichlet datum with the Neumann datum on the truncation boundary; it is however, non-local

in both space and time. Local constructs of the DtN map that relax the spatial or the temporal non-locality,

or both, are capable of reducing the computational cost associated with non-local conditions at the expense

of accuracy.

By contrast, standard integral equation formulations, giving rise to boundary element methods, long

dominant in frequency domain applications, satisfy a priori the radiation condition and thus bypass, by
construction, the need for a truncation boundary. That is, the Green’s functions present in the kernel of the

integrals, satisfy automatically the radiation condition; however, classical integral equation formulations fall

short due, at least, to: (a) non-locality of the formulations in both space and time, (b) difficulties in dealing

with interior non-linearities, (c) lack of common time- and frequency-domain formulations, and (d) diffi-

culties in dealing efficiently with domain sources. By far though, the primary difficulty with classical boundary

element solutions in the frequency domain (Helmholtz) is due to the large size of the resulting algebraic

equations: with increasing wavenumber, as in finite elements, the boundary surface discretization need also

increase to resolve the underlying physics of wave propagation. By contrast though to the sparse systems
resulting from finite element-type formulations, here the matrices are dense and often unsymmetric. In three

dimensions, the solution of the resulting boundary element-based systems, may quickly become intractable in

the large-frequency regime, even for modern hardware architectures. For cost comparisons, that shed a

favorable light on finite elements versus boundary elements in the context of acoustics, see [1]. Therefore,

despite the attractiveness of boundary element methods in reducing (in the absence of domain sources) the

dimensionality of the problem by requiring only surface discretization, the shortcomings are too onerous. For

the cited reasons, in this work, we favor a local treatment of the exact non-local truncation boundary con-

dition, with an eye to the easy incorporation of the local absorbing conditions in finite element-based schemes.
2. Background

Whereas early treatments of truncation boundaries date back to the fifties [2], developments over the last

decade allow for a loose classification of absorbing boundary conditions (ABCs) into local and non-local.

In this context, non-locality implies the coupling of the observed response of one boundary point with the

time histories of the response of every other point on the boundary, thus leading to conditions that, for the
most part, can be thought as exact wave absorbers (exact DtN maps). By contrast, local conditions relax

the spatial and temporal coupling to arrive at approximants of the exact truncation condition. The primary

benefit of non-local conditions is accuracy at the expense of algorithmic simplicity and computational

efficiency, whereas local conditions are typically computationally attractive at the expense of accuracy. A

typical measure of computational attractiveness is the ease by which the conditions are coupled with the

underlying domain discretization scheme of choice.

Recent renewed interest in devising local conditions of improved accuracy has also been fueled by the

increased role that wave propagation simulations play in the characterization of the seismicity of a given
geographic area. Furthermore, the computational power afforded by present day hardware architectures

increasingly allows for the solution of otherwise intractable large-scale inverse problems aiming at the

recovery of the skeletal properties of a wave-supporting medium. Such simulations are typically handled on

distributed-memory parallel architectures, where minimizing processor-communication cost is of impor-

tance. In these cases, even if the implementation difficulties were to be overcome, the temporal and spatial

coupling of non-local conditions typically dominate the communication patterns and tax heavily the total

computational cost.
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In the literature, several approaches to the construction of local ABCs have been followed (surveys on
various absorbing boundaries, both early and recent, include the works by Kausel and Tassoulas [3], Wolf

[4], Kausel [5], Givoli [6], and a recent fairly extensive and comprehensive review by Tsynkov [7]). Local

constructs can be roughly classified in two categories: those based on rational approximations of the dis-

persion relation, and those based on asymptotic expansions of the far-field solution or the solution exterior

to the computational domain.

Among the best-known hierarchies of local boundary conditions, representative of the first classification,

are the sequences presented by Engquist and Majda [8,9] for the scalar wave equation. Starting with the

dispersion relation that characterizes wave equations in dimensions higher than one, it is possible to show
that the exact condition on the artificial boundary can be expressed via a pseudo-differential operator

applied on the field variable(s). As mentioned, its non-local form (both spatial and temporal) makes it

unsuitable or, at best, cumbersome for computations. Engquist and Majda’s idea was to approximate the

non-local operator by a local one; they approximated the irrational dispersion relation by rational Pad�e
approximations, thus obtaining a sequence of absorbing boundary conditions, both in cartesian and polar

coordinates in two dimensions.

A classical example of the second classification is the work of Bayliss and Turkel [10,11]; they devel-

oped a family of absorbing boundary conditions based on asymptotic expansions of the radial distance.
Their conditions are applicable only to circular (in two dimensions) and spherical (in three dimensions)

absorbing boundaries. Various implementations of the Bayliss and Turkel’s conditions in the time- and

frequency-domains have also been presented starting with the authors’ comments in [12] (together with

Gunzburger), where they considered the coupling of their first- and second-order conditions to finite ele-

ments.

Finite element implementations of the Bayliss’ and Turkel’s conditions have also appeared in works by

Bossut, Decarpigny and co-workers [13,14], which, however, were limited to frequency-domain unsym-

metric formulations. Later, Abboud and Pinsky [15] and Pinsky and Abboud [16,17] used the Bayliss and
Turkel radiation conditions in conjunction with finite elements; the resulting formulations were either

fourth-order symmetric or second-order unsymmetric when the second-order conditions were used.

To date the majority of the local ABC developments have been limited to circular or spherical truncation

geometries. In practical applications, most notably those arising in underwater acoustics where the typical

scatterer shape is of elongated geometry, circular or spherical artificial boundary geometries surrounding

the scatterer typically result in large computational domains that are still costly to resolve. Thus, elliptically

shaped, or, more generally, arbitrarily shaped convex geometries hold the promise for computational

efficiency.
Non-local treatments of the exact DtN have also received considerable attention, and primarily so

during recent years. The idea is to derive the exact boundary condition, or DtN map at the truncation

boundary, based on a priori knowledge of the behavior of the solution in the domain exterior to a trun-

cation boundary. The DtN is an exact condition, typically non-local in both time and space; the idea seems

to have originated from the work of MacCamy and Marin [18]. Later, Keller and Givoli [20] and Givoli and

Keller [19] presented DtN conditions based on circular and spherical absorbing boundaries in two and three

dimensions, respectively. The method has been used predominantly for frequency-domain problems due to

its non-local temporal character; finite element formulations involving the DtN have also appeared [21–23].
It is noteworthy that DtN approaches typically require a canonical geometry, usually circular or spherical;

then it is possible to use the separation of variables apparatus to derive the associated harmonics in order to

express the solution in the exterior domain. Such geometric restrictions however, may be onerous, primarily

in three-dimensional time-dependent problems. We remark that recent developments on fast convolution

evaluations (e.g. [24,25]) to an extent alleviate the temporal non-locality difficulty associated with DtN

maps (for example, in [24], the cost is OðN logNÞ, for N time-steps); the requirement for a circular or

spherical boundary, however, remains.
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Alternative treatments to the non-local DtN or to its local counterparts are offered by the, so-called,
infinite elements, and the more recently developed PMLs (Perfectly Matched Layers).

The key concept in infinite elements is the representation of the decaying waves exterior to a truncation

boundary by special elements extending in the radial direction and penetrating the infinite exterior domain.

The idea seems to have originated from the pioneering work of Bettess [26,27]. Typically the truncation

boundary is limited to a canonical geometry––circular, spherical, ellipsoidal, spheroidal, etc. (e.g. [28–30]

for acoustic infinite elements); the elements can accommodate approximations of varying order of the exact

decaying wave pattern along the radial direction. The majority of applications, however, are limited to the

frequency-domain, with the notable exception of the work on wave envelope elements of Astley [31,32].
Wave envelope elements are particular cases of infinite elements; the interpolation functions used to

approximate the decaying wave patterns are similar, or identical, to those used in infinite elements.

However, the numerical implementation is cast in the context of a Petrov–Galerkin scheme where the test

functions are complex conjugates of each other: this readily allows for the treatment of transient cases. It

appears that these elements present the best challenge to local absorbing boundaries in terms of compu-

tational efficiency, but comparisons of relative performance characteristics have not yet appeared in the

literature.

A recent method that strictly cannot fall under either the local or non-local classification pertains to the
PML method. B�erenger [33] pioneered the idea for electromagnetic waves; it was later extended to the

acoustics case by Qi and Geers [34]. To date there are two PML versions, a split and an unsplit version,

where the splitting refers to the original idea [33] of splitting a wavefield into non-physical components.

Accordingly, a buffer zone or layer is attached to the truncation boundary within which the waves are

forced to die out by numerically controlling a damping coefficient. Despite the growing body of work and

the early adoption of PMLs by the applied electromagnetics community, there still remain several open

issues. Chief among them is the stability of the PMLs in transient cases: for example, in [35], it was shown

that the split version (including the first acoustics implementation [34]) is ill-posed leading to exponential
error growth for transient applications.

In the context of two-dimensional elliptically-shaped local boundaries we mention ad hoc (as opposed to

systematic) developments [36–41] largely based on generalizations of the Bayliss–Turkel conditions to

elliptical or general convex geometries without, however, the benefit of generalization to higher-order

conditions, and the systematic works of Grote and Keller [42], Antoine et al. [43], Barry et al. [44], and

Kallivokas et al. [45,47,48]. Finite element implementations of up to second-order conditions have recently

appeared for elliptical and arbitrarily shaped geometries [49,50] for frequency-domain applications only,

whereas comparisons of elliptical boundary developments up to 1996 have also been reported [51,52]. A
comparison of these recently derived conditions with the ones presented herein is included in Section 3.2.2.

In this paper, we extend past work [45,47,48] that is based on a systematic development of ABCs for

arbitrarily shaped convex artificial boundaries applicable to both the time- and frequency-domains by: (a)

developing a third-order condition, (b) developing a new finite element based on the third-order condition

fully characterized in terms of symmetric, time-invariant element mass, damping, and stiffness matrices that

are tantamount to the effect of the artificial boundary (high-order ‘‘dampers’’); and (c) presenting results for

elliptically shaped boundaries that result in computational savings over their circular counterparts, using

the higher-order conditions in both the time- and frequency-domains for scattering and radiation problems.
3. Mathematical formulation

To fix ideas we restrict the discussion to the exterior acoustics problem where the primary variable is the

acoustic fluid pressure. However, a variety of other problems described by the scalar wave equation (e.g. the

propagation of SH-waves) are identically treated (Fig. 1).
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Fig. 1. (a) Scatterer surrounded by infinite fluid and (b) reduced model with finite computational region and truncation boundary in

the presence of domain discretization.
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3.1. The exterior problem

Let C be a closed surface with exterior X � R2 (Fig. 2a). X is occupied by a linear, inviscid, and com-

pressible fluid. Without loss of generality, we consider the radiation problem in which C is subjected to a

prescribed Neumann condition. Let us state the associated initial-and-boundary-value (IBVP) problem:

Find pðx; tÞ such that

€pðx; tÞ ¼ c2Dpðx; tÞ; x 2 X; t > 0; ð1aÞ

pmðx; tÞ ¼ fNðx; tÞ; x 2 C; t > 0; ð1bÞ

lim
r!1

ffiffi
r

p
pr

�
þ 1

c
_p
�

¼ 0 and ð1cÞ

pðx; 0Þ ¼ 0; _pðx; 0Þ ¼ 0; x 2 X: ð1dÞ
In these equations p denotes pressure; x is the position vector, t is time; m is the outward unit normal on C; c
is the velocity of wave propagation; D is the Laplace operator, and an overdot denotes derivative with

respect to time. pm denotes the normal derivative of the pressure p, and fN is the prescribed Neumann datum
Fig. 2. (a) Model of scatterer surrounded by infinite acoustic fluid and (b) reduced model with finite fluid region Xa and absorbing

boundary Ca.
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on C. Condition (1c), in which r is radial distance and pr the derivative of the pressure along the radial

direction, is the Sommerfeld radiation condition. Condition (1d) indicates that the system is taken to be

initially at rest.

The main difficulty associated with the solution of (1) is the need to ensure that the radiation condition

(1c) is satisfied at infinity. To solve this problem using numerical methods based on the spatial discreti-

zation of the domain would require that, in the limit, one consider the complete, unbounded region X, a

requirement that renders this approach infeasible. One way to make this problem manageable is to truncate

the exterior region by introducing an artificial boundary Ca that contains C in its interior; this gives rise to a
bounded subdomain Xa, as shown in Fig. 2b. In order for the solution p to coincide with that of the original

problem within the truncated region Xa, it is necessary to specify a boundary condition on Ca that will

ensure that the outgoing waves crossing Ca are undisturbed by the presence of this boundary. This

boundary condition, which can be determined in terms of the actual solution p on Ca, as will be shown in

Section 3.2.1, is of the form

pmðx; tÞ ¼ F½ptð�; �Þ�ðxÞ; x 2 Ca; ð2Þ

in which x is position vector, the dots following pt indicate dummy variables and F is an integral operator

that depends on pt, the time history of p, i.e.,

ptðtÞ ¼ pðt 
 sÞ 8s : 06 s6 t: ð3Þ
3.2. The absorbing boundary

3.2.1. Development

To determine the exact form of the operator F we consider the following problem associated with the

original problem (1). The starting steps follow closely earlier developments [44,45] and are repeated here for

completeness; departures and differences are noted as appropriate. We Laplace-transform (1a) with respect

to time to obtain

s2p̂ðx; sÞ ¼ c2Dp̂ðx; sÞ; x 2 X; ð4Þ

where s is the Laplace-transform variable and a caret over a variable such as p denotes its Laplace

transform. Suppose now that the surface Ca is smooth and convex, and let Xþ be the exterior of Ca (Fig.

2b). We focus on p̂ in Xþ and formulate the following auxiliary Dirichlet problem in Xþ for an auxiliary

field P̂ :

s2P̂ ðx; s; tÞ ¼ c2DP̂ðx; s; tÞ; x 2 Xþ; ð5aÞ

with the boundary condition

P̂ ðx; s; tÞ ¼ pðx; tÞ; x 2 Ca: ð5bÞ
In (5) the use of a semicolon before t implies that t acts merely as a parameter. Then, by virtue of Duhamel’s
principle, one can show that (see Appendix A):

p̂ðx; sÞ ¼
Z 1

0

e
stP̂ ðx; s; tÞdt; x 2 X
þ
; ð6aÞ

and hence also

p̂mðx; sÞ ¼
Z 1

0

e
stP̂mðx; s; tÞdt; x 2 Ca: ð6bÞ
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Eq. (6a) together with Eqs. (5) ensure that the solution p̂ in Xþ will coincide with the solution p̂ in X from

(4). From (5b) it can also be seen that the normal derivative P̂m on Ca will be a linear functional of pð�; tÞ on
Ca. Let us denote this dependency by

P̂mðx; s; tÞ ¼ cF½pð�; tÞ�ðx; sÞ; x 2 Ca; ð7aÞ

where cF denotes a functional. By substituting (7a) into (6b) there results

p̂mðx; sÞ ¼ cF½p̂ð�; sÞ�ðx; sÞ; x 2 Ca: ð7bÞ

Then, translation of (7b) back to the time-domain yields

pmðx; tÞ ¼ F½ptð�; �Þ�ðxÞ; x 2 Ca: ð7cÞ

Thus, in (7c) we recovered the form anticipated in (2). F denotes the functional (or DtN map) of the values

of the pressure pðy; fÞ for y ranging over Ca and f from 0 to t. In other words, F merely expresses the fact

that at any given instant t the motion at every point on the artificial boundary Ca is coupled with the time

histories of all other points on Ca. The non-local character of the exact F makes it unsuitable for
implementation in the context of domain methods. It is, thus, only natural to seek approximations to the

exact F aiming primarily at reducing the temporal non-locality. It will be shown that this procedure also

reduces automatically the spatial non-locality. To this end, we turn again to the auxiliary Dirichlet problem

defined by (5) and introduce, borrowing from geometrical optics (p. 640 in [55]), an asymptotic expansion

for bP of the form

bP ðx; s; tÞ � e
ðs=cÞvðxÞ
X1
k¼0

c
ðsþ cðxÞÞa

� 	k

AðkÞðx; tÞ; x 2 Xþ; ð8aÞ

where a is a characteristic length of the absorbing boundary (e.g. in the case of a circular Ca, a is the radius),
and vðxÞ and AðkÞðx; tÞ are as yet unknown functions. Without c in (8a), the expansions are identical to the

classical form provided in, e.g., [55]. However, as first noted in [44], and later also in, e.g., [57], higher-order

absorbing boundary conditions resulting from (8a) without the c correction are hopelessly unstable, that is,
the use of the conditions will will lead to exponential error growth in time-dependent applications. Thus, c
in (8a) is introduced to alleviate the stability issue; in fact, cðxÞ is a, spatially variable, nonnegative

parameter (see [45,47,48] for a detailed discussion). Through cðxÞ we attempt to ensure the dissipativity of

the conditions for the continuous problem (prior to discretization). From a physical point of view, c
controls the amount of numerical damping introduced through the boundary Ca. The spatial variability of

the control parameter c is introduced here for the first time and it reflects the fact that the absorption

characteristics depend also on the local geometry of the truncation boundary.

We require that the functions vðxÞ and AðkÞðx; tÞ satisfy the following conditions on Ca:

vðxÞ ¼ 0; Að0Þðx; tÞ ¼ pðx; tÞ and AðkÞðx; tÞ ¼ 0 for kP 1; x 2 Ca: ð8bÞ
Eqs. (8) ensure that bP is outgoing and that (5b) is satisfied automatically for any functions vðxÞ and
AðkÞðx; tÞ. Eq. (8a), by virtue of (8b), yields for bPm on Ca

bPmðx; s; tÞ ¼ 
 s
c
vmA

ð0Þðx; tÞ þ
X1
k¼0

AðkÞ
m ðx; tÞ c

ðsþ cðxÞÞa

� 	k

; x 2 Ca: ð9aÞ

Substitution of (9a) in (6b) will therefore yield

p̂mðx; sÞ ¼ 
 s
c
vm
bAð0Þðx; sÞ þ

X1
k¼0

bAðkÞ
m ðx; sÞ c

ðsþ cðxÞÞa

� 	k
; x 2 Ca: ð9bÞ
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From (9b) and (6b) it can be seen that, once the unknown functions vðxÞ and AðkÞðx; tÞ are determined, an

expression for the normal derivative pm on Ca will be possible by translating (9b) back to time-domain. By

introducing (8a) into (5a) and matching the coefficients of the various powers of the monomial ðsþ cÞ one
obtains:X1

k¼0

ck

ak
1

c2
½j$vj2

�(

 1�AðkÞ

	
1

ðsþ cÞk
2
þ 1

c2
2c½j$vj2

�

 1�AðkÞ þ 1

c
½DvAðkÞ þ 2$v � $AðkÞ�

	
1

ðsþ cÞk
1

þ 1

c2
c2½j$vj2

�

 1�AðkÞ þ c

c
½DvAðkÞ þ 2$v � $AðkÞ� þ DAðkÞ

�
þ 2k

c
$v � $cAðkÞ

		
1

ðsþ cÞk


 k
c

2c$v � $cAðkÞ�"
þ 2$c � $AðkÞ þ DcAðkÞ
 1

ðsþ cÞkþ1

#
þ kðk

"
þ 1Þj$cj2AðkÞ 1

ðsþ cÞkþ2

#)
¼ 0:

ð10Þ

By setting to zero the coefficients of the various powers of the monomials ðsþ cÞ in (10), there result the

following differential equations for the unknown functions vðxÞ and AðkÞðx; tÞ, ðkP 0Þ with x 2 X
þ
:

j$vj2 ¼ 1; ð11aÞ

2$v � $Að0Þ þ DvAð0Þ ¼ 0; ð11bÞ

2$v � $Að1Þ þ DvAð1Þ ¼ aDAð0Þ; ð11cÞ

2$v � $Að2Þ þ DvAð2Þ ¼ a DAð1Þ
�

þ 2

c
$v � $cAð1Þ

	
þ ca

c
½2$v � $Að1Þ þ DvAð1Þ�; ð11dÞ

ckþ3

akþ3

1

c
½2$v � $Aðkþ3Þ þ DvAðkþ3Þ� þ ckþ1

akþ1

1

c
ðk þ 1Þ 2c$v � $cAðkþ1Þ�

þ 2$c � $Aðkþ1Þ þ DcAðkþ1Þ

¼ c

c
ckþ2

akþ2
½2$v � $Aðkþ2Þ þ DvAðkþ2Þ� þ ckþ2

akþ2
DAðkþ2Þ

�
þ 2ðk þ 2Þ

c
$v � $cAðkþ2Þ

	
þ ck

ak
kðk þ 1Þj$cj2AðkÞ; kP 0: ð11eÞ

The differential equations (11a)–(11d), as well as the recursive set (11e) can be used to determine the un-

known functions vðxÞ and AðkÞðx; tÞ for any k. To this end, we introduce a Fermi-type coordinate system in

X
þ
to aid in subsequent calculations (Fig. 3). Let Ca be described by the parametric representation XðkÞ,

where X denotes the position vector on Ca and k is an arc-length parameter. Then a new coordinate system

is introduced in X
þ
by the description

Rðk; nÞ ¼ XðkÞ þ nmðkÞ; n P 0; ð12Þ
where R denotes position vector in Xþ, n is a scalar and m is the outward normal to Ca (Fig. 3). With the

proviso that Ca is convex and smooth, the new system is global in Xþ. Notice that for n ¼ 0, (12) provides

the parametric representation of Ca. By expressing the gradient, the Laplacian and the normal derivative in
the new system (see appendix) one obtains for the normal derivatives of the unknown functions v, Að0Þ, Að1Þ

and Að2Þ

vmðxÞ ¼ vnðxÞ ¼ 1; x 2 Ca; ð13aÞ

Að0Þ
m ðx; tÞ ¼ Að0Þ

n ðx; tÞ ¼ 1
2
jðxÞAð0Þðx; tÞ; x 2 Ca; ð13bÞ



Fig. 3. A Fermi-type coordinate system characterized by the planar curve parameter k and scalar distance metric n.
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Að1Þ
m ðx; tÞ ¼ Að1Þ

n ðx; tÞ ¼ 1
2
a Að0Þ

kk ðx; tÞ
h

þ 1
4
j2ðxÞAð0Þðx; tÞ

i
; x 2 Ca; ð13cÞ

Að2Þ
m ðx; tÞ ¼ Að2Þ

n ðx; tÞ ¼ ca2

2c
Að0Þ

kk ðx; tÞ
�

þ 1

4
j2ðxÞAð0Þðx; tÞ

	
þ a2

2
jðxÞAð0Þ

kk ðx; tÞ
�

þ 1

4
j3ðxÞAð0Þðx; tÞ þ 1

4
jkkðxÞAð0Þðx; tÞ þ jkðxÞAð0Þ

k ðx; tÞ
	
; x 2 Ca:

ð13dÞ

Letter subscripts above denote partial derivatives and j denotes the curvature of Ca.
1 Next, by truncating

the series in (8b) one can construct successive approximations to p̂m and hence to the functional cF½p̂� in
(7b). It can, therefore, be shown that by substituting the Laplace transforms of functions (13) into (9b),

while taking into account (8b) and (7b), and keeping none, one, two or three terms from the series in (9b),

the first four approximations for p̂m on Ca are given as

0th-order : p̂m ¼ cF0½p̂� ¼ 
 s
c
p̂; ð14aÞ

1st-order : p̂m ¼ cF1½p̂� ¼ 
 s
c
p̂ þ 1

2
jp̂; ð14bÞ

2nd-order : p̂m ¼ cF2½p̂� ¼ 
 s
c
p̂ þ 1

2
jp̂ þ c

2ðsþ cÞ p̂kk

�
þ 1

4
j2p̂

�
; ð14cÞ

3rd-order : p̂m ¼ cF3½p̂� ¼ 
 s
c
p̂ þ 1

2
jp̂ þ c

2ðsþ cÞ p̂kk

�
þ 1

4
j2p̂

�
þ c2

2ðsþ cÞ2
jp̂kk

�
þ jkp̂k þ

1

4
jkkp̂ þ

1

4
j3p̂ þ c

c
p̂kk

�
þ 1

4
j2p̂

�	
; ð14dÞ

where cFk ðk ¼ 0; . . . ; 3Þ denotes the approximate functional of kth order. Translation of (14) back to the

time-domain yields:

0th-order : pm ¼ 
 1

c
_p; ð15aÞ
1 The closed convex planar curve Ca is oriented such that jðxÞ < 0, 8x 2 Ca.
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1st-order : pm ¼ 
 1

c
_p þ 1

2
jp; ð15bÞ

2nd-order : _pm þ cpm ¼ 
 1

c
€p þ 1

2
j

�

 c
c

�
_p þ 1

2
cpkk þ

1

8
j2c

�
þ 1

2
jc

�
p; ð15cÞ

3rd-order : €pm þ 2c _pm þ c2pm ¼ 
 1

c
p
��� þ 1

2
j

�

 2c

c

�
€p

þ 1

8
j2c

�
þ jc 
 c2

c

�
_p þ 1

2
jc2

�
þ 1

4
j2cc þ 1

8
j3c2 þ 1

8
jkkc2

�
p

þ 1

2
jc2

�
þ cc

�
pkk þ

1

2
jkc2pk þ

1

2
c _pkk: ð15dÞ

Remarks

(1) Conditions (15) are the desired approximations of the operator symbol in (2). Notice that all con-

ditions are such that at the limit, as the truncation boundary approaches infinity, they reduce to the

Sommerfeld radiation condition (1c): (14a) is obvious, whereas in (14b)–(14d) all curvature and tangential

derivative terms vanish at the limit allowing only the first term to survive.

(2) Notice further that the lower-order conditions (15a) and (15b) are completely local in space and time,
whereas the second- and third-order conditions (15c) and (15d) are only weakly non-local due to the

presence of second-order tangential derivatives and higher-order time derivatives. It is possible to obtain

even higher in order conditions following the systematic process outlined above (solutions to the recursive

set (11) will lead to arbitrarily high-order conditions); however, as evidenced by (15), higher-order con-

ditions will be characterized by increasing complexity and increasing loss of the local character attained by

(15). Indeed, as can be seen from (15c) and (15d), the temporal locality is already affected; whereas (15a)

and (15b) involve only the normal derivative of the pressure pm, the last two introduce time derivatives of pm

as well. For conditions of order higher than the ones considered herein and despite the anticipated com-
plexity it is possible to maintain the local character by introducing auxiliary functions on the boundary to

replace the higher-order tangential derivatives; the process is systematic lending itself to implementation of

higher-order conditions. For canonical geometries (circles and spheres) the auxiliary-function framework

has been recently applied to the time-dependent two- and three-dimensional wave equations (see [56–59]).

To address the mixed derivatives of the left-hand-side of (15), we follow a process similar to the auxiliary-

function framework that also leads to the introduction of auxiliary variables on the truncation boundary.

Our process is based on a decomposition or operator-splitting approach, first introduced in [45], and is

addressed in detail in Section 3.2.3.
(3) Conditions (14a)–(14c) and their time-domain counterparts (15a)–(15c) derived here for a spatially

variable c turn out to be identical to conditions obtained before (e.g. [45,53,54]) for constant c, whereas the
third-order conditions (14d) and (15d) appear here for the first time.

(4) The introduction of the absorbing boundary Ca and the restriction of the infinite domain X to the

finite domain Xa alters IBVP (1); accordingly, there results the following modified IBVP statement: Find

pðx; tÞ such that

€pðx; tÞ ¼ c2Dpðx; tÞ; x 2 Xa; t > 0; ð16aÞ

pmðx; tÞ ¼ fNðx; tÞ; x 2 C; t > 0; ð16bÞ
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pmðx; tÞ ¼ F3½pt�ðxÞ; x 2 Ca; t > 0; and ð16cÞ

pðx; 0Þ ¼ 0; _pðx; 0Þ ¼ 0; x 2 Xa; ð16dÞ

where, for example, the third-order condition has been used on Ca. We remark that the solution p to (16)

should be such that its stability in time-domain applications be ensured, that is, we are interested in pre-

cluding exponential error growth, often associated with local approximate conditions such as (15). To study
the stability of the solution to (16), we argue as follows (borrowing from similar arguments first cast in [44]

and also used in [46] and [48]): let p̂ be a solution of the Laplace-transformed IBVP (1), and let q̂ be a

solution of the Laplace-transformed IBVP (16). Then the error bE ¼ p̂ 
 q̂ will satisfy

s2bEðx; sÞ ¼ c2DbEðx; sÞ; x 2 Xa; ð17aÞ

bEmðx; sÞ ¼ 0; x 2 C; ð17bÞ

bEmðx; sÞ ¼ cF3½bE�ðx; sÞ þ bWðx; sÞ; x 2 Ca; ð17cÞ

where

bWðx; sÞ ¼ cF½q̂�ðx; sÞ 
 cF3½q̂�ðx; sÞ; x 2 Ca: ð17dÞbWðx; sÞ for the above BVP (17) represents Neumann data on Ca. If problem (17) admits no non-zero

solutions for Re s > 0 2 (no poles in the right complex halfplane), then there will be no solutions for the

error E of the form E ¼ egt, g > 0, and therefore no exponential error growth. The proof hinges on the

definition of dissipativity for an operator such as the exact cF and/or the approximant cF3 given in [44].

In addition, therein the authors provided sufficient conditions for the dissipativity of the operators. We

repeat them here (they were also used later in [48] for the three-dimensional case), using the third-order

approximant cF3 of (14d):

Re
Z

Ca

cF3½p̂�ðx; sÞ�̂pðx; sÞdCa < 0; for s ¼ a > 0; ð18aÞ

Im
Z

Ca

cF3½p̂�ðx; sÞ�̂pðx; sÞdCa
< 0
> 0

for s ¼ a þ ib; a > 0;
b > 0;
b < 0:

ð18bÞ

Substituting (14d) in (18a) yields


 s
c

Z
Ca

jp̂j2dk þ
Z

Ca

1

2
j

"
þ j2c
8ðsþ cÞ þ

c2jkk þ c2j3 þ cj2c

8ðsþ cÞ2

#
jp̂j2dk


 c
2

Z
Ca

1

sþ c

"
þ jcþ c

ðsþ cÞ2

#
jp̂kj2dk þ c

Z
Ca

ck

ðsþ cÞ3
½jcþ c�p̂k

�̂pdk < 0 8s > 0: ð19Þ

Whereas it is possible through a judicious choice of c to ascertain the sign of all but the last term in (19), the

last term is cumbersome. To overcome, we set

cðxÞ ¼ 
cjðxÞ: ð20Þ
2 The case of s ¼ 0, that would lead to constant in time solutions, can be easily shown that it is not possible (see [44]).
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With this choice, Eq. (20) forces the last term in (19) to vanish; there results


 s
c

Z
Ca

jp̂j2dk þ 1

8

Z
Ca

1

ðs
 cjÞ2
4js2
�


 7cj2sþ c2ð3j3 þ jkkÞ


jp̂j2dk 
 c

2

Z
Ca

jp̂kj2

s
 cj
dk < 0 8s > 0:

ð21Þ
Clearly the first and third integral in (21) are negative (for s > 0). The first and second terms of the second
integral are also negative, and thus, to ensure that (21) is true, it suffices to show that 3j3 þ jkk < 0; the

latter is true for all possible values of the aspect ratio of any ellipse (the proof is given in the appendix).

Thus, condition (18a) is satisfied for the third-order approximant F3 of (14d). It is further trivial to show

that the lower-order conditions (14a) and (14b) also satisfy (18a). Furthermore, in [44] it was shown that

(18a) is satisfied for the second-order condition (14c), but (18b) is violated; (18b) is also violated by the

third-order condition (14d) derived herein. However, numerically in, e.g., [45,53,54], no instability was

observed using (14c) for any of the time-domain applications, even though the imaginary part of the

dissipativity conditions (18b) was not satisfied. Similarly, in the three-dimensional counterpart of the
second-order condition (see [48]), the real part of the dissipativity conditions (18a) was again satisfied, but

the imaginary (18b) was violated with no observable error growth in numerical applications. Moreover, in

[48] it was shown, via alternative means, that the second-order three-dimensional condition was stable for

spherical boundaries. We remark that here too for both the second- and third-order absorbing conditions,

the imaginary part of the dissipativity conditions (18b) is violated, yet no error-growth is observed

numerically. To this date, we have not been able to provide a theoretical justification for relaxing (18b), and

this remains an open issue. 3

In summary, with (20), all conditions (14) satisfy the dissipativity condition (18a). Using (20), the sec-
ond- and third-order conditions (14c) and (14d) reduce to:

p̂m ¼ 
 s
c
p̂ þ 1

2
jp̂ þ c

2ðs
 jcÞ p̂kk

�
þ 1

4
j2p̂

�
; ð22aÞ

p̂m ¼ 
 s
c
p̂ þ 1

2
jp̂ þ c

2ðs
 jcÞ p̂kk

�
þ 1

4
j2p̂

�
þ c2

2ðs
 jcÞ2
1

4
jkkp̂

�
þ jkp̂k

	
: ð22bÞ

(5) As mentioned, in deriving conditions (14) and (15) we have assumed that c varies spatially. This need
not be the case: indeed, in, e.g. [53,54] numerical results in excellent agreement with exact solutions have

been presented for conditions derived with the proviso of a constant c and for circular boundaries.

However, we expect, that the accuracy will be improved if c were to reflect the spatial variability of the

artificial boundary since, locally, c controls the amount of damping introduced on the boundary. In Section
4 we provide numerical evidence that this is indeed the case.

3.2.2. Comparisons to other boundaries

We compare conditions (14) and their time-domain counterparts (15) to past and recent developments.

A comparison with all developments pertaining to elliptically-shaped boundaries escapes the scope of this

paper and thus the comparison here is limited to a few well-known sequences of absorbing boundaries on

circular, elliptical, or arbitrarily convex boundaries. A detailed analysis of several conditions for elliptical

or convex geometries up to 1996 can be found in the works of Meade et al. [51,52].
3 In [44], it was shown that for (18a) to be satisfied using the second-order condition (14c) c should be such that c P 
 cj
4
; in

[45,53,54] we showed that, for circular boundaries, the use of c ¼ 
cj results in fewer reflections and is thus preferable for numerical

calculations.
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We consider first the well known Bayliss, Gunzburger, Turkel family of boundaries [10–12]. The authors
proposed boundaries strictly for circular truncation geometries in the form

Bmp ¼ 0; where Bm ¼
Ym
l¼1

1

c
o

ot

�
þ o

or
þ 4l
 3

2r

�
: ð23Þ

The operator Bm annihilates the first m terms of the asymptotic expansion that is valid in the far-field,

i.e., for large values of the radial distance r. Applying (23) for m ¼ 1 and m ¼ 2 yields (the l ¼ m term is

the leftmost in the product in (23)):

m ¼ 1 : pr ¼ 
 1

c
_p 
 1

2a
p; ð24aÞ

m ¼ 2 : _pr þ
c
a
pr ¼ 
 1

c
€p 
 3

2a
_p þ c

2a2
phh 


3c
8a2

p: ð24bÞ

Conditions (15b) and (15c) are identical to (24a) and (24b) respectively, provided that dk ¼ adh and j ¼ 
 1
a

are used in (15), and c from (20) is taken as c
a, where a is the radius of the circular boundary and r, h denote

polar coordinates. Higher-order conditions using (23) depart from the ones derived herein.

In [8] Engquist and Majda were primarily concerned with straight-line boundaries. Using polar coor-

dinates they provided the following first- and second-order conditions:

pr ¼ 
 1

c
_p 
 1

2a
p; ð25aÞ

€pr ¼ 
 1

c
p
��� þ 1

2a
€p 
 c

2a2
_phh þ

c2

2a3
phh: ð25bÞ

Clearly, (25a) coincides with (15b), while (25b) departs considerably from either (15c) or (15d) for any value

of the control parameter c.
Two-dimensional first- and second-order conditions also appeared in the work of Kriegsmann et al. [36].

Therein the conditions were first derived for a circular boundary and then, by an ad hoc reasoning, they

were recast for a general convex geometry. The first-order condition is identical to (24a) (circular case) or to

(15b) (general convex case). The second-order circular boundary condition coincides with the second-order
(24b); in its general convex form the second-order condition in [36] can be written as

_pm 
 jcpm ¼ 
 1

c
€p þ 3

2
j _p þ 1

2
cpkk 


3

8
j2cp: ð26Þ

Condition (26) coincides with (15c) provided c ¼ 
jc (as in (20)). The authors in [36] used (26) as an on-

surface boundary condition, i.e., they placed the absorbing boundary directly on the surface of the scatterer
and obtained results for a number of TM (transverse magnetic) and TE (transverse electric) cases in the

frequency-domain. We remark, that in [36] the conditions appeared only in the frequency-domain; we

converted them here to the time-domain to ease the comparison.

In [42] Grote and Keller derived conditions for elliptically-shaped boundaries by using an approach

similar to [10]. That is, they obtained the asymptotic expansions for the far-field solution valid for large

values of the ‘‘radial’’ elliptical coordinate l (r in the polar case) and constructed an operator product

similar to (23) but cast in elliptical coordinates. Accordingly

Bmp ¼ 0; where Bm ¼
Ym
l¼1

1

c
o

ot

�
þ 1

f sinh l
o

ol
þ 4l
 3

2f cosh l

�
: ð27Þ
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Using (27), the first-order condition, after appropriate coordinate transformations, can be written in the

time-domain as

pm ¼ 
 f sinh l
l1

1

c
_p 
 1

2

tanh l
l1

p; ð28Þ

with l1 ¼ f ðcosh2 l 
 cos2 /Þ1=2, l and / denoting elliptical coordinates and f being the focal length of the

ellipse. Though (28) can be shown to coincide with (24a) when the ellipse reduces to a circle, clearly (28)

departs significantly from (15b): both coefficients on the right-hand side differ from the corresponding ones
in (15b). Higher-order conditions are farther apart.

There are very few attempts to develop conditions in a systematic way for arbitrarily convex truncation

geometries: chief among them is the work of Antoine at al., in [43] the authors developed three-dimensional

conditions using the formal apparatus of pseudo-differential calculus. Whereas no details are given for the

construction process by which two-dimensional conditions may arise, the authors in [43] provide a second-

order two-dimensional condition by a suitable notational intervention to its three-dimensional counterpart.

Using the notation employed herein, their second-order condition (Eq. (27) in [43]) reads

p̂m ¼ 
 s
c
p̂ þ 1

2
jp̂ þ c

2ðs
 jcÞ p̂kk

�
þ 1

4
j2p̂

�
þ c2

2ðs
 jcÞ2
jkp̂k þ

c2

8s2
jkkp̂: ð29Þ

Notice that (29) differs from (22b), the third-order condition developed herein, in the last term only.

Interestingly, (29) coincides with (22a) and the second-order (24b) for the case of a circle. We further re-

mark that numerical results pertaining to (29) for time-harmonic problems have recently appeared in [49].

However, it appears that the authors in [49] have implemented, without justification or reference, a

modified version of (29), where the last term in (29) has been dropped.

3.2.3. Condition decomposition––auxiliary variables

In order to discretize the problem within Xa using a Galerkin approach, we return to the strong

statement (1), in order to recast it into a weak form. Notice, that the infinite domain X in (1) will now be

replaced by the finite annular region Xa, as per (16). To construct the corresponding weak form we first

multiply (16a) by a test function dp not subject to any boundary condition on C or Ca, integrate the result

over Xa, and apply the divergence theorem to the term that contains the Laplacian operator. We then

subtract the integral over C of (16b) multiplied by the restriction of dp to C. This process results in the

classical form

1

c2

Z
Xa

dp€pdXa þ
Z

Xa

$dp � $pdXa 

Z

Ca

dppm dCa ¼ 

Z

C
fNdpdC: ð30Þ

Replacing pm in the third integral in (30) by conditions (15a) or (15b) is trivial; on the other hand, the higher-

order conditions (15c) and (15d), while expected to yield improved accuracy and computational economy

due to the need for a smaller buffer region (Xa), cannot be readily implemented since they involve both the

normal derivative of the pressure pm as well as first and second time derivatives of pm, respectively. Our aim is

to make the conditions yield standard semi-discrete forms that are typical for interior problems. We show

that this can be achieved via a wave- or operator-splitting approach realized through the introduction of

additional degrees of freedom on the artificial boundary. We illustrate using the third-order condition (15d)
or equivalently (22b); the procedure for condition (15c), for constant c, can be found, e.g., in [53,54].

Let qð1Þ, qð2Þ, and qð3Þ denote auxiliary variables on Ca. Then, it is straightforward to show that the

following set of four equations is tantamount to (22b):


p̂m ¼
s
c
p̂ 
 1

2
jp̂ 
 c

2j
ðjq̂ð1Þk Þk þ

c
2j

jkq̂
ð1Þ
k 
 c

8
j2q̂ð2Þ 
 c2

8
jkkq̂ð3Þ; ð31aÞ
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q̂ð1Þk ¼ p̂k

s
 jc
; ð31bÞ

q̂ð2Þ ¼ p̂
s
 jc

; ð31cÞ

q̂ð3Þ ¼ p̂

ðs
 jcÞ2
: ð31dÞ

With the decomposition (31), incorporating the absorbing boundary condition (22b) in the variational

statement is now substantially eased: multiply (31a) by dp, (31b) by dqð1Þ, (31c) by dqð2Þ, and (31d) by dqð3Þ,
where dp, dqð1Þ, dqð2Þ, and dqð3Þ are appropriate test functions, and integrate by parts. There results (after

translation in the time-domain)



Z

Ca

dppm dCa ¼
1

c

Z
Ca

dp _pdCa 

1

2

Z
Ca

jdppdCa þ
c
2

Z
Ca

dpkq
ð1Þ
k dCa


 c
8

Z
Ca

j2dpqð2Þ dCa 

c2

8

Z
Ca

jkkdpqð3Þ dCa; ð32aÞ

c
2

Z
Ca

dqð1Þpk dCa 

c
2

Z
Ca

dqð1Þ _qð1Þk dCa þ
c2

2

Z
Ca

jdqð1Þqð1Þk dCa ¼ 0; ð32bÞ


 c
8

Z
Ca

j2dqð2ÞpdCa þ
c
8

Z
Ca

j2dqð2Þ _qð2Þ dCa 

c2

8

Z
Ca

j3dqð2Þqð2Þ dCa ¼ 0; ð32cÞ


 c2

8

Z
Ca

jkkdqð3ÞpdCa þ
c2

8

Z
Ca

jkkdqð3Þ€qð3Þ dCa 

c3

4

Z
Ca

jjkkdqð3Þ _qð3Þ dCa

þ c4

8

Z
Ca

j2jkkdqð3Þqð3Þ dCa ¼ 0: ð32dÞ

We remark that the presence of first-order derivatives in (31) or (32) increases the usual smoothness and

continuity requirements on the truncation boundary Ca: we seek p and dp in H 1ðXaÞ � H
1
2ðCaÞ, but

qð1Þk ; qð2Þ; qð3Þ; dqð1Þ; dqð2Þ; dqð3Þ in H 0ðCaÞ. Eq. (29) can then be used to complete the weak-form formulation:

the right-hand side of (32a) replaces the third term in (30), and (32b)–(32d) are added to the resultant

functional. It is important to observe that with the decomposition (31), (30) will lead, upon spatial dis-

cretization, to a symmetric system of ordinary differential equations valid for both the frequency- and time-
domains. In other words, the contributions from the absorbing boundary maintain both the symmetric

structure of the interior problem and the sparsity of the associated system matrices.

A similar process can be followed for the second-order condition (22a); specifically, let


p̂m ¼
s
c
p̂ 
 1

2
jp̂ 
 c

2
q̂ð1Þkk 
 c

8
j2q̂ð2Þ; ð33aÞ

q̂ð1Þkk ¼ p̂kk

s
 jc
; ð33bÞ

q̂ð2Þ ¼ p̂
s
 jc

: ð33cÞ
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Eqs. (33) are tantamount to (22a) and allow for the ready incorporation of the second-order (22a) (with

variable c) in the variational statement. Accordingly, multiply (33a) by dp, (33b) by dqð1Þ, (30c) by dqð2Þ,
where dp, dqð1Þ, and dqð2Þ are appropriate test functions, and integrate by parts (again we seek p and dp in

H 1ðXaÞ � H
1
2ðCaÞ, and qð1Þ; dqð1Þ in H

1
2ðCaÞ, qð2Þ; dqð2Þ in H 0ðCaÞ. There results (in the time-domain)



Z

Ca

dppm dCa ¼
1

c

Z
Ca

dp _pdCa 

1

2

Z
Ca

jdppdCa þ
c
2

Z
Ca

dpkq
ð1Þ
k dCa 


c
8

Z
Ca

j2dpqð2Þ dCa; ð34aÞ

c
2

Z
Ca

dqð1Þk pk dCa 

c
2

Z
Ca

dqð1Þk _qð1Þk dCa þ
c2

2

Z
Ca

ðjdqð1ÞÞkq
ð1Þ
k dCa ¼ 0; ð34bÞ


 c
8

Z
Ca

j2dqð2ÞpdCa þ
c
8

Z
Ca

j2dqð2Þ _qð2Þ dCa 

c
8

Z
Ca

j3dqð2Þqð2Þ dCa ¼ 0: ð34cÞ

Notice that, by contrast to the symmetric form (32) for the third-order condition (22b), the variational

equations (34) are not symmetric. A symmetric scheme does not seem to exist to alleviate the problem in
this case. However, in numerical experiments, we have found that if the derivative of the curvature term

arising in (34b) were to be eliminated in favor of rendering (34) symmetric, there will be a marginal, if at all

noticeable, effect to the error metrics. We have thus opted to drop the relevant term in favor of symmetry,

and replace (34b) by

c
2

Z
Ca

dqð1Þk pk dCa 

c
2

Z
Ca

dqð1Þk _qð1Þk dCa þ
c2

2

Z
Ca

jdqð1Þk qð1Þk dCa ¼ 0: ð35Þ
3.3. Element matrices––new local absorbing finite elements

Standard finite element piecewise polynomial approximations (denoted here by w) are used for

approximating the geometry and for the spatial discretization of the pressure p in Xa and on Ca, and of the

auxiliary variables on Ca. Introduce

p ¼ wTðxÞp; dp ¼ dpTwðxÞ; ð36aÞ

qð1Þk ¼ wTðxÞqð1Þ; dqð1Þ ¼ dqð1Þ
T

wðxÞ; ð36bÞ

qð2Þ ¼ wTðxÞqð2Þ; dqð2Þ ¼ dqð2Þ
T

wðxÞ; ð36cÞ

qð3Þ ¼ wTðxÞqð3Þ; dqð3Þ ¼ dqð3Þ
T

wðxÞ: ð36dÞ

With the definitions (36) the element contributions of the absorbing boundary to the final semi-discrete
form can be cast in terms of element mass ma, damping ca, and stiffness ka element matrices, as it can be

seen readily from (32), i.e., Third-order absorbing element



Z
e

dpepem dCe
a ¼

dpe
dqð1Þe

dqð2Þe

dqð3Þe

266664
377775

T

ma

€pe

€qð1Þe

€qð2Þe

€qð3Þe

26666664

37777775

8>>>>>><>>>>>>:
þ ca

_pe

_qð1Þe

_qð2Þe

_qð3Þe

26666664

37777775þ ka

pe

qð1Þe

qð2Þe

qð3Þe

266664
377775

9>>>>>>=>>>>>>;
; ð37Þ
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where the element matrices are given as

ka ¼


 1

2

Z
e

jwwT c
2

Z
e

wkw
T 
 c

8

Z
e

j2wwT 
 c2

8

Z
e

jkkwwT

c
2

Z
e

wwT
k

c2

2

Z
e

jwwT 0 0


 c
8

Z
e

j2wwT 0 
 c2

8

Z
e

j3wwT 0


 c2

8

Z
e

jkkwwT 0 0
c4

8

Z
e

j2jkkwwT

266666666664

377777777775
; ð38aÞ

ca ¼

1

c

Z
e

wwT 0 0 0

0 
 c
2

Z
e

wwT 0 0

0 0
c
8

Z
e

j2wwT 0

0 0 0 
 c3

4

Z
e

jjkkwwT

266666666664

377777777775
; ð38bÞ

ma ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0
c2

8

Z
e

jkkwwT

26664
37775: ð38cÞ

The subscript e denotes a line element on the truncation boundary Ca and the line differential (dCe
a) has been

dropped throughout for brevity. Element matrices (38) define a new finite element which is capable of
absorbing the waves that reach the artificial boundary while simulating the effect of the truncated infinite

domain. The element defined by (38) is a surface-only element (Fig. 4); one need only mesh the finite region

Xa and simply attach the absorbing element on the boundary Ca without any further discretization within

the infinite exterior region. Notice that all matrices are frequency-independent and symmetric, thus readily

allowing for applications in either the time- or frequency-domain, while maintaining the overall symmetry

of the algebraic systems resulting from the discretization of the interior computational domain.

If the second-order condition (22a) were to be used, using the decomposition (33), the corresponding

approximants are

p ¼ wTðxÞp; dp ¼ dpTwðxÞ; ð39aÞ

qð1Þ ¼ wTðxÞqð1Þ; dqð1Þ ¼ dqð1Þ
T

wðxÞ; ð39bÞ

qð2Þ ¼ wTðxÞqð2Þ; dqð2Þ ¼ dqð2Þ
T

wðxÞ; ð39cÞ

with second-order absorbing element



Z
e

dpepem dCe
a ¼

dpe
dqð1Þe

dqð2Þe

264
375

T

ca
_pe
_qð1Þe

_qð2Þe

2664
3775

8>><>>: þ ka

pe

qð1Þe

qð2Þe

264
375
9>>=>>;; ð40Þ
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Fig. 4. Representation of the absorbing boundary element.
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where the element matrices take the following form ([45,53,54]):

ka ¼


 1

2

Z
e

jwwT c
2

Z
e

wkw
T
k 
 c

8

Z
e

j2wwT

c
2

Z
e

wkw
T
k

c2

2

Z
e

jwkw
T
k 0


 c
8

Z
e

j2wwT 0 
 c2

8

Z
e

j3wwT

26666664

37777775; ð41aÞ

ca ¼

1

c

Z
e

wwT 0 0

0 
 c
2

Z
e

wkw
T
k 0

0 0
c
8

Z
e

j2wwT

26666664

37777775: ð41bÞ

We note that the element matrices (38) and (41) were obtained using the particular instances of the second-

and third-order conditions derived in (22a) and (22b) respectively, for the value of the control parameter

c ¼ 
cj shown in (20). However, the symmetry and sparsity of the element matrices is not affected if

constant values for c were to be chosen. All that is required is that c is such that the dissipativity criteria

discussed in [44] and herein be satisfied.

Substitution of either (32) or (34) in the weak form (30), while taking into account the element semi-

discrete forms (37) or (40) will result in the standard second-order semi-discrete matrix equation:

M€pðtÞ þ C _pðtÞ þ KpðtÞ ¼ FðtÞ; ð42Þ
where p includes both the interior nodal pressure values and the additional degrees-of-freedom values on

the absorbing boundary. We remark that the system matrices are symmetric, but not positive-definite, due

to the contributions of the absorbing boundary. Beyond the stability analysis discussed in Section 3.2.1 that

ensures that the resulting (continuous) IBVP will not admit solutions that grow exponentially in time, we

have not formally analyzed the spectral properties of the matrices involved in (42). However, we have used

standard time-integration schemes to obtain time-domain solutions to (42) and have not observed insta-
bilities.



Fig. 5. Model of rigid scatterer and elliptical absorbing boundary.
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4. Numerical results

Both the second- and third-order conditions were implemented on elliptically-shaped boundaries, as per

the details of the preceding section. For the numerical implementation we have chosen bilinear 4-noded

elements for the discretization of the finite domain Xa, and their traces on Ca (2-noded linear elements) as

the absorbing boundary elements (Fig. 4). In all reported cases herein, the numerical results correspond to

converged solutions. We remark that the theoretically expected convergence rates in, e.g., the L2ðXaÞ norm
remain unaffected by the use of the absorbing boundary conditions, at least for those cases for which an

exact solution to the approximate problem was possible. 4

Numerical experiments to assess the performance of the conditions and the associated discrete forms

(elements (37)–(38) and (40)–(41)) were conducted for both radiation and scattering problems in the fre-

quency- and time-domains. We report here on a subset of our numerical experiments focusing primarily on

the second-order condition on elliptical boundaries. Results pertaining to the third-order condition are also

included for the radiation problems.

4.1. Radiation problems

To assess the performance of the boundaries we consider first the radiation problem arising from pre-

scribing an acceleration field on the surface of a circular scatterer (Fig. 5) of radius a; specifically, let

pr ¼ qA0 cos nheixt; ð43Þ
where pr denotes radial pressure derivative, q denotes the surrounding fluid’s density, A0 is the amplitude of

the prescribed field, h is polar angle, n denotes the order of the circumferential harmonic, and x is the
driving circular frequency. In this case, the exact solution for the radiated field in the domain exterior to the

scatterer (rP a) is

pexðrÞ ¼
qA0a

nH ð2Þ
n ðkaÞ 
 kaH ð2Þ

nþ1ðkaÞ
H ð2Þ

n ðkrÞ cos nh; ð44Þ
4 Such a case, for example, corresponds to circular boundaries surrounding a rigid circular scatterer; prescribing any order condition

on the truncation boundary allows for an exact solution to the approximate problem––the problem defined over the finite domain Xa.

This allowed us to compute the convergence rates.



Table 1

Total degrees-of-freedom per configuration––computational cost

Major semi-axis sM=a Minor semi-axis sm=a Semi-axes ratio g ¼ sM=sm Total DOF

3.0 3.0 1.0 68,064

3.0 2.5 1.2 57,158

3.0 2.0 1.5 41,496

3.0 1.5 2.0 29,114

6.0 6.0 1.0 292,972

6.0 5.0 1.2 239,820

6.0 4.0 1.5 186,176

6.0 3.0 2.0 140,056

6.0 1.5 4.0 65,354
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where k ¼ x=c is the wavenumber, and H ð2Þ
n denotes the second-kind Hankel function of order n. We

surround the circular cavity with co-centric ellipses of various sizes and semi-axes ratios, and solve the

boundary value problem in Xa using zero- to third-order conditions on Ca. We measure the relative error

(for the response amplitude) using L2 norms on the scatterer’s boundary C (Fig. 5) as

E ¼

R
C kpex 
 pappk2 dC

h i1=2
R

C kpexk
2
dC

h i1=2 � 100%; ð45Þ

where papp is the approximate solution obtained by solving (42) in the frequency-domain.

Denoting the major semi-axis with sM, the minor semi-axis with sm (Fig. 5), and the ratio of the two axes

with g ¼ sM=sm, Table 1 summarizes the computational cost associated with the various cases in terms of

the total number of degrees-of-freedom. In all cases, the mesh density has been kept the same, resulting in a

typical mesh size h ¼ 0:02a. We consider frequencies between ka ¼ 0:5 and ka ¼ 7 (low and medium range);
with these choices the smallest wavelength kx is 0:9a. Thus, for the highest frequency the mesh density

corresponds roughly to 45 points per wavelength––more than enough to resolve locally the waves. 5 We

observed no noteworthy change in the results by doubling the number of elements.

First, we are interested in establishing numerically the expected improved accuracy higher-order con-

ditions are capable of attaining versus the lower-order conditions. To this end, Fig. 6 depicts the relative

error (45) for conditions ranging from zero- to third-order for the considered frequency range and for

values of the circumferential harmonic n between 0 and 7. The left column in Fig. 6 shows clearly the

unacceptable error levels associated with the lower-order conditions. By contrast, both the second- and
third-order conditions result in substantially lower errors and are thus preferable. The right column shows,

in magnification, the curves corresponding to the second- and third-order conditions for the same set of

parameters as in the left column: as it can be seen there is little, if anything, to be gained by the use of the

third-order condition over the second-order condition, at least in the context of the particular radiation

problem that we considered herein. Motivated by these observations, in the discussion of the remaining

numerical experiments we focus exclusively on the performance of the second-order condition. We also

remark that the worst error attained by the second-order condition (and also the third-order), as per Fig. 6,

is about 4% for a frequency of ka ¼ 0:5; moreover, as the frequency increases there is substantial error
reduction. We attribute the higher errors associated with the lower frequencies to the fact that, by con-

struction, our conditions are based on high-frequency expansions.
5 Dispersion, as in all numerical simulations of propagating waves, remains an open issue; it is not addressed here and no schemes

have been implemented to alleviate the dispersion error.
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As mentioned in Section 3.2.3 we chose a spatially variable value for the stability parameter c (20), partly
motivated by physical intuition that the local absorption character of the boundary ought to reflect its

geometry, and partly due to the stability analysis. However, a constant value for c would also satisfy the

stability criterion and is therefore a potential candidate. Fig. 7 provides numerical evidence that solutions

to the same radiation problem and for various constant values of c, and for the same range of frequencies
and harmonic modes all underperform our variable c choice (20). The relative errors shown in Fig. 7 were

obtained using the second-order condition. 6 All subsequently reported results employ c ¼ 
cj as per (20).

Figs. 8–11 summarize the errors for discrete frequencies ranging from ka ¼ 0:5 to ka ¼ 7 and for a

harmonic mode sweep ranging from n ¼ 0 to n ¼ 7 corresponding to the first four cases reported in Table 1:

that is, for ellipse semi-axes ratios ranging from 1 to 2, and for placement of the boundary at a maximum

distance of 3a. Similarly, Figs. 12–16 depict the errors for the last five cases of Table 1, for ellipse semi-axes

ratios ranging from 1 to 4, with 6a being the maximum distance at which the boundary is placed (we keep

the same frequency and harmonic ranges).
As it can be seen from Figs. 8–15, in nearly all cases both elliptical and circular boundaries perform well.

We observe, however, that at the low frequency and low harmonic regime: (a) the circular boundary for the
6 For this condition, the stability criterion mandates that cP 
 c jmax

4
; all constant c values shown in Fig. 7 satisfy the criterion.
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same mesh density performs better than the elliptical ones (Fig. 8), though at increased computational cost
(Table 1), and (b) the errors are greater at low frequencies as the semi-axes ratio g increases, i.e., as the

ellipse departs increasingly from a circular configuration. For example, for g ¼ 4 and ka ¼ 0:5, the errors

are clearly unacceptable (Fig. 12). We site two reasons: first, in this case, the absorbing boundary, at its

closest point to the scatterer, is at a distance of only 0.04 of the dominant wavelength from the scatterer.
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At such small distances, or equivalently, for such small dimensionless wavenumbers, and irrespective of the
mesh resolution, the conditions are defeated; again, this is so by construction. We recall that we used high-

frequency expansions to construct the conditions and thus expect the boundaries to perform well at the

medium to high frequency range, as indeed is shown to be the case. Our observations here are in tandem

with earlier experiments with very-low frequencies in the frequency-domain and with transient pulses
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exhibiting strong zero-frequency components (e.g. [45]) that have shown that the second-order circular

boundaries perform surprisingly well even at near-static cases (ka ’ 0:05), provided that they are not used

extremely close to the scatterer or as on-surface conditions. Secondly, the closeness of the boundary to the

scatterer is also responsible for larger errors on the absorbing boundary––tantamount to reflections. Due to

the elongated boundary shape at high g ratios, the multiple reflections tend to form focusing regions where
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the errors are exacerbated, thus further polluting the solution on the scatterer’s boundary. As it appears
from the numerical results, despite this shortcoming at the low frequency-small distance regime, in all cases

there are ellipses (various g ratios) for which the accuracy is comparable to the circular boundaries, thus

realizing moderate to significant computational savings. In the higher frequency regime (e.g. Fig. 15),

clearly, any of the tested elliptical configurations exhibit comparable performance to the circular boundary.



Table 2

Relative L2ðCÞ errors ðEÞ in percent for harmonic mode n ¼ 5

ka g ¼ 1:0 g ¼ 1:2 g ¼ 1:5 g ¼ 2:0 g ¼ 4:0

sM ¼ 6a
0.5 0.3009 0.3009 0.3010 0.3025 3.3592

1.0 0.3012 0.3012 0.3011 0.3008 2.8841

3.0 0.3244 0.3242 0.3228 0.3338 2.2534

7.0 0.1231 0.2053 0.1005 0.1338 0.7341

sM ¼ 3a
0.5 0.3016 0.3053 0.4084 2.6062 N/A

1.0 0.2988 0.2977 0.3765 2.4018 N/A

3.0 0.3243 0.3003 0.6345 2.1412 N/A

7.0 0.2606 0.2148 0.2755 0.7329 N/A

a

0.5a0.5a 4.5a 4.5a

Traveling
Plane Wave

α0

(0,0)
θ

Fig. 16. Geometry of cigar-shaped rigid scatterer; length-to-width ratio ’10:1.
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Moreover, as the driving frequency increases and/or the harmonic mode increases, thus giving rise to
wave fronts that depart significantly from a purely radial form (n ¼ 0), the elliptical boundaries display

excellent agreement with the exact solution at substantial savings compared to the circular boundaries.

Notice that, as shown in Table 1 the elliptical boundaries require anywhere between 82% and 22% of the

degrees-of-freedom of the circular boundaries. For example, in Table 2 we summarize the errors for a

higher mode (n ¼ 5) and various frequencies and ellipse ratios. Clearly, for the same level of accuracy, i.e.,

for the same error E, in most cases shown in Table 2, the elliptical boundaries perform as well as the circular

boundaries. The computational savings however are substantial: for g ¼ 2 one needs only 47% of the

degrees-of-freedom alloted to the circular case for comparable accuracy.

4.2. Scattering problems––frequency-domain

The potential computational savings, as indicated already by the preceding simple radiation test cases,

are expected to be greater in the presence of elongated scatterers, where an elliptical boundary can better
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circumscribe the insonified obstacle. To this end, we discuss the performance of a cigar-shaped scatterer
(Fig. 16) subjected to an incoming plane wave impinging obliquely on the scatterer (angle of incidence a0).

In this case there is no exact solution to compare against. We thus measure the relative error against a

reference solution, which we obtain as follows: we first place a circular boundary endowed with the second-

order condition, at a distance of R ¼ 9a, using a mesh with h ¼ 0:025a. We compute the trace of the

scattered pressure on the boundary of the cigar-shaped scatterer and treat it as the reference solution.

Different ellipses with sM ¼ 6a and various g ratios ranging from 1 (circle) to 4 were used as boundaries.

Figs. 17 and 18 depict the real and imaginary part, respectively, of the trace of the normalized scattered

pressure on the boundary of the cigar-shaped scatterer against the polar angle h for an incident wave
impinging at an angle a0 ¼ 60� and for a relatively low frequency ka ¼ 1. Clearly, the depicted agreement

between the reference solution and the various ellipses is quite satisfactory; Table 3 reports the degrees-of-
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Table 3

Total degrees-of-freedom per configuration (cigar-shaped scatterer); all ellipses with sM ¼ 6a; reference solution with circular boundary

at 9a

Semi-axes ratio g ¼ sM=sm Total DOF

4.0 32,252

3.0 48,416

2.0 80,760

1.5 114,076

1.2 147,796

1.0 182,384

Reference 423,180
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freedom used in each of the shown cases. Notice again that, for example, for g ¼ 3 one needs less than one-
fourth of the degrees-of-freedom of a circular boundary for comparable accuracy.

Similarly, Fig. 19 depict the distribution of the amplitude of the scattered pressure within the entire

computational domain for a higher dimensionless frequency of ka ¼ 15. Specifically, Fig. 19a depicts the

projection of the reference solution (obtained with a boundary at 9a) onto a circular domain with radius 6a

in order to ease the comparison with the elliptical domains shown in Fig. 19b–d. Again, the agreement (in

the visual norm) is quite satisfactory.
Fig. 19. Distribution of normalized scattered pressure amplitude due to an incident plane wave; ka ¼ 15; reference solution and ellipse

ratios g ¼ 1; 2; 3; 4.
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Fig. 20. Normalized scattered pressure traces; transient response to a traveling plane wave (Ricker pulse).
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4.3. Scattering problems––time-domain

To illustrate the applicability of the absorbing elements to time-domain applications, Fig. 20 pertain to a

direct time-domain solution of (42) for the scattered pressure field due to the insonification of the cigar-

shaped scatterer by a traveling plane wave at four points denoted by the solid dots on the cigar-shaped

schematic. To formally define the corresponding IBVP problem we set the normal derivative of the scat-

tered pressure equal to the negative of the normal derivative of the incident pressure on the scatterer. We
use the implicit trapezoidal rule to integrate in time the semi-discrete form (42) with a time-step

Dtc=a ¼ 0:1. Finally, the time signal for the plane wave is given by a modified Ricker pulse (see Appendix

A). 7 The reference solution against which the traces in Fig. 20 are compared was obtained by placing a

circular boundary endowed with the second-order condition at a radial distance of 9a.

Fig. 21 depicts a pointwise error measure eðtÞ, whereas Fig. 22 depict both the absolute and relative

L2-norm errors EaðtÞ and EðtÞ, defined, respectively, as:
eðtÞ ¼ pexðx; tÞ 
 pappðx; tÞ; ð46aÞ
7 The Ricker pulse (Fig. 23a), often used in seismology, is such that its Fourier transform has well-defined user-controllable

spectrum support that is characterized by a peak central frequency xr (Fig. 23b). For the cases shown in Fig. 20 we used xra=c ¼ 1.
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with x one of the four characteristic points as per the inset in Fig. 21, and

EaðtÞ ¼
Z

C
½pexðx; tÞ

�

 pappðx; tÞ�2 dC

	1=2
; x 2 C; ð46bÞ
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EðtÞ ¼ EaðtÞR
C p

2
exðx; tÞdC

� 
1=2 ; x 2 C: ð46cÞ

Overall, the same qualitative behavior and features already identified in the frequency-domain characterize

the response in time as well. Specifically, from Fig. 20 the agreement between all elliptical configurations

and the reference solution appears quite satisfactory. However, as it is evident from Figs. 21 and 22 the

higher ellipse ratios result in higher errors. Still, the agreement between the reference solution and, e.g., the

g ¼ 1:5 elliptically-shaped boundary is excellent (higher relative errors past time 20–25 in Fig. 22 are due

to very low response amplitudes).
5. Conclusions

In this paper, we presented results pertaining to second- and third-order absorbing boundary conditions

prescribed on elliptically-shaped boundaries for the numerical simulation of scalar waves in either the time-

or the frequency-domains. The local wave absorption properties of the condition depend on the curvature

of the truncation boundary, and terms accounting for the curvature variations appear explicitly in the

developed conditions. We have shown the equivalence of the conditions, upon discretization under a

Galerkin scheme, to simple wave absorbing finite elements fully described by symmetric frequency-inde-
pendent element matrices. We have derived the element matrices for both second- and third-order condi-

tions; the elements can be readily implemented to any general-purpose finite element code.

Based on the obtained numerical results we conclude that significant computational savings are

attainable by the use of the proposed elliptically-shaped boundaries endowed with second- or third-order

conditions compared to the corresponding circular boundaries for a wide range of frequencies. The savings,

measured in the number of unknowns in the resulting algebraic system, are of the order of four to five times

over the circular boundaries. We have observed performance deterioration at the low end of the spectrum

and in particular in cases where the boundaries are placed at a distance that corresponds to a tiny fraction
(in the hundredths) of the dominant wavelength. We thus recommend their use, even at high ellipse ratios,

provided that the boundaries are placed at distances from the surface of the scatterers that do not fall below

0.1 of the dominant wavelength.
Appendix A

A.1. Proof of (6a)

We prove (6a), i.e., we show that

p̂ðx; sÞ ¼
Z 1

0

e
stbP ðx; s; tÞdt; x 2 X
þ
; ðA:1Þ

is indeed a solution to the following initial and boundary value problem for the exterior wave equation:

€pðx; tÞ ¼ c2Dpðx; tÞ; x 2 X
þ
; t > 0; ðA:2aÞ

pðx; tÞ ¼ bP ðx; s; tÞ; x 2 Ca; t > 0; ðA:2bÞ

pðx; 0Þ ¼ 0; _pðx; 0Þ ¼ 0; x 2 X
þ
: ðA:2cÞ
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To this end, we consider the same problem (A.2) with, however, a unit step function as the Dirichlet datum

on Ca. Accordingly, let qðx; tÞ be the solution to

€qðx; tÞ ¼ c2Dqðx; tÞ; x 2 X
þ
; t > 0; ðA:3aÞ

qðx; tÞ ¼ 1; x 2 Ca; t > 0; ðA:3bÞ

qðx; 0Þ ¼ 0; _qðx; 0Þ ¼ 0; x 2 X
þ
: ðA:3cÞ

Then, by direct application of Duhamel’s principle [55], one obtains

½pðx; tÞ�
x2X

þ ¼ ½qðx; 0Þ�
x2X

þ ½bP ðx; s; tÞ�x2Ca
þ

Z t

0

½bP ðx; s; tÞ�x2Ca

oqðx; t 
 sÞ
ot

� 	
x2X

þ
ds: ðA:4Þ

Application of the Laplace transform on (A.4), while taking into account the initial conditions (A.3c), leads

to

p̂ðx; sÞ ¼ s½q̂ðx; sÞ�
x2X

þ

Z t

0

e
st½bP ðx; s; tÞ�x2Ca
dt ¼

Z t

0

e
st s½q̂ðx; sÞ�
x2X

þ ½bP ðx; s; tÞ�x2Ca

h i
dt

�
Z t

0

e
st½bP ðx; s; tÞ�
x2X

þdt; ðA:5Þ

where we defined

½bP ðx; s; tÞ�
x2X

þ ¼ s½q̂ðx; sÞ�
x2X

þ ½bP ðx; s; tÞ�x2Ca
: ðA:6Þ

Notice that (A.6) holds also for x on Ca, since, by virtue of (A.3b), q̂ðx; sÞ ¼ 1=s on Ca. Eq. (A.5) completes

the proof. Alternatively, it can also be seen, by inspection, that (A.1) (or (8a)) satisfies the field equation (4)

and the boundary condition (5b).

A.2. Metrics of the Fermi-type coordinate system

We derive next expressions for the gradient, Laplacian, and normal derivative for the coordinate system

defined in (12). Accordingly, the components gij of the Euclidean metric tensor that characterizes the

transformation from a cartesian coordinate system to the coordinate system defined by (12), are given as

(subscripts denote partial derivatives)

g11 ¼ Rk � Rk ¼ Xk � Xk þ 2nXk � mk þ n2mk � mk; ðA:7aÞ

g22 ¼ Rn � Rn ¼ m � m ¼ 1; ðA:7bÞ

g12 ¼ g21 ¼ Rk � Rn ¼ ðXk þ nmkÞ � m: ðA:7cÞ
Moreover, the tangent unit vector t, the unit normal m and the curvature j of a plane curve such as Ca are

related as follows:

t � Xk; ðA:8aÞ

mk ¼ 
jt: ðA:8bÞ
By virtue of (A.8), (A.7a) and (A.7c) become

g11 ¼ 1
 2nj þ n2j2 ¼ ð1
 njÞ2 � Q2; ðA:9aÞ
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g12 ¼ g21 ¼ 0; ðA:9bÞ

while the determinant of the metric tensor is

g ¼ g11g22 
 g212 ¼ Q2: ðA:10Þ
It can be further shown that for any scalar field U, one has

$U ¼ g22
g

UkRk þ
g11
g

UnRn ¼
1

Q2
UkRk þ UnRn; ðA:11aÞ

DU ¼ 1ffiffiffi
g

p
g22ffiffiffi
g

p Uk

� �
k

"
þ g11ffiffiffi

g
p Un

� �
n

#
¼ 1

Q
1

Q
Uk

� �
k

�
þ ðQUnÞn

	
: ðA:11bÞ

By virtue of (A.11a) the following also holds true:

Um ¼ $U � m ¼ Un: ðA:11cÞ
Finally, from (A.9a) one also has

Qk ¼ 
njk; ðA:12aÞ

Qkk ¼ 
njkk; ðA:12bÞ

Qn ¼ 
j; ðA:12cÞ

Qnn ¼ 0; ðA:12dÞ

Qkn ¼ 
jk: ðA:12eÞ
A.3. A proof on the ellipse’s curvature

We prove that

3j3 þ jkk < 0; ðA:13Þ
for all ellipses, as we claimed in Section 3.2.1. Let sM, sm denote the major and minor semi-axes of an ellipse

respectively, and g ¼ sM
sm

the semi-axes ratio (g P 1); then any point ðx; yÞ on the ellipse is defined by the

parametric representation x ¼ sM cos h and y ¼ sm sin h. Moreover:

dk ¼ jdh with j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2M sin2 h þ s2m cos2 h

q
¼ sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 sin2 h þ cos2 h

q
; ðA:14aÞ

j ¼ 
 sMsm
j3

¼ 
 g

smðg2 sin2 h þ cos2 hÞ3=2
; ðA:14bÞ

jkk ¼
3gðg2 
 1Þ½4ð1
 g2Þ sin2 h cos2 h þ cos2 h 
 g2 sin2 h�

s3mðg2 sin2 h þ cos2 hÞ9=2
: ðA:14cÞ

Then

3j3 þ jkk ¼
12s6mgð1
 g2Þ2

j9
ðsin2 h 
 r1Þðsin2 h 
 r2Þ ðA:15Þ
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with

r1;2 ¼

5g2 þ 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25g4 
 30g2 þ 25

p
8ð1
 g2Þ : ðA:16Þ

It can be easily seen now that the first two terms in parentheses in (A.15) are always positive, whereas the

last term is always negative, for all values of the semi-axes ratio gP 1, and thus (A.13) holds.

A.4. Modified Ricker pulse

In the numerical results Section 4 we introduced a modified Ricker pulse as the time signal for the time-

domain simulations. The pulse is defined by

frðzÞ ¼
ð0:25u2 
 0:5Þe
0:25u2 
 13e
13:5

0:5þ 13e
13:5
with 06 z6

6
ffiffiffi
6

p

xr
; ðA:17aÞ

where

u ¼ xrz
 3
ffiffiffi
6

p
ðA:17bÞ

with xr denoting the characteristic frequency of the Ricker pulse. Fig. 23 depicts the Ricker signal and

the amplitude of its Fourier transform.
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