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Abstract

We are concerned with high-fidelity subsurface imaging of the soil, which commonly arises in geotechnical site characterization
and geophysical explorations. Specifically, we attempt to image the spatial distribution of the Lamé parameters in semi-infinite,
three-dimensional, arbitrarily heterogeneous formations, using surficial measurements of the soil’s response to probing elastic
waves. We use the complete waveform response of the medium to drive the inverse problem, by using a partial-differential-equation
(PDE)-constrained optimization approach, directly in the time-domain, to minimize the misfit between the observed response of
the medium at select measurement locations, and a computed response corresponding to a trial distribution of the Lamé parameters.
We discuss strategies that lend algorithmic robustness to our proposed inversion scheme. To limit the computational domain to the
size of interest, we employ perfectly-matched-layers (PMLs).

In order to resolve the forward problem, we use a recently developed hybrid finite element approach, where a
displacement–stress formulation for the PML is coupled to a standard displacement-only formulation for the interior domain, thus
leading to a computationally cost-efficient scheme. Time-integration is accomplished by using an explicit Runge–Kutta scheme,
which is well-suited for large-scale problems on parallel computers.

We verify the accuracy of the material gradients obtained via our proposed scheme, and report numerical results demonstrating
successful reconstruction of the two Lamé parameters for both smooth and sharp profiles.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Seismic inversion refers to the process of identification of material properties in geological formations [1–3]. The
problem arises predominantly in exploration geophysics [4–7] and geotechnical site characterization [8]; it belongs

∗ Corresponding author at: Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX,
USA.

E-mail addresses: arash.fathi@utexas.edu (A. Fathi), loukas@mail.utexas.edu (L.F. Kallivokas), babakp@utexas.edu (B. Poursartip).

http://dx.doi.org/10.1016/j.cma.2015.07.008
0045-7825/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.07.008&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.07.008
http://www.elsevier.com/locate/cma
mailto:arash.fathi@utexas.edu
mailto:loukas@mail.utexas.edu
mailto:babakp@utexas.edu
http://dx.doi.org/10.1016/j.cma.2015.07.008


40 A. Fathi et al. / Comput. Methods Appl. Mech. Engrg. 296 (2015) 39–72

to the broader class of inverse medium problems: waves, whether of acoustic, elastic, or electromagnetic nature, are
used to interrogate a medium, and the medium’s response to the probing is subsequently used to image the spatial
distribution of properties (e.g., Lamé parameters, or wave velocities) [9–11]. Mathematically, algorithmically, and
computationally, inverse medium problems are challenging, especially, when no a priori constraining assumption
is made on the spatial variability of the medium’s properties. The challenges are further compounded when the
underlying physics is time-dependent, and involves more than a single distributed parameter to be inverted for, as
in seismic inversion.

Due to the complexity of the inverse problem at hand, most techniques to date rely on simplifying assumptions,
aiming at rendering a solution to the problem more tractable. These assumptions can be divided into five categories:
(a) assumptions regarding the dimensionality of the problem, whereby the original problem is reduced to a two-
dimensional [12,13,8,14], or a one-dimensional problem [15]; (b) assuming that the dominant portion of the wave
energy on the ground surface is transported through Rayleigh waves, and thus, disregarding other wave types, such as
compressional and shear waves, as is the case in the Spectral-Analysis-of-Surface-Waves (SASW) and its variants
(MASW) [16]; (c) inverting for only one parameter, as is done in [17–20], where inversion was attempted only
for the shear wave velocity, assuming the compressional wave velocity (or an equivalent counterpart) is known;
(d) assumptions concerning the truncation boundaries, which are oftentimes, grossly simplified due to the complexity
associated with the rigorous treatment of these boundaries [21]; and (e) idealizing the soil as a lossless medium, thus
neglecting its attenuative properties; exceptions, which account for material attenuation, albeit in a simplified setting
include the works in [22,23]. Over the past decade, continued advances in both algorithms and computer architectures
have allowed the gradual removal of the limitations of existing methodologies. However, a robust methodology,
especially for the time-dependent elastic case remains, by and large, elusive.

Among the recent works on inversion, which are similar to ours, we refer to Pratt et al. [24] who considered
two-dimensional acoustic inversion in the frequency domain, and Epanomeritakis et al. [18] where full-waveform
inversion was attempted for three-dimensional time-domain elastodynamics with a simple dashpot for domain
truncation, but results were shown only for a single-parameter inversion. Kang and Kallivokas [11] considered the
problem for the two-dimensional time-domain acoustic case, and used PMLs to accurately account for domain
truncation. Kucukcoban [14] extended the work of Kang and Kallivokas to two-dimensional elastodynamics, and
reported successful reconstruction of the two Lamé parameters for models involving synthetic data. Bramwell [25]
used a discontinuous Petrov–Galerkin (DPG) method in the frequency domain, endowed with PMLs, for seismic
tomography problems, advocating the DPG scheme over conventional continuous Galerkin methods, since it results
in less numerical pollution.

In this paper, we discuss a systematic framework for the numerical resolution of the inverse medium problem,
directly in the time-domain, in the context of geotechnical site characterization. The goal is to image the arbitrarily
heterogeneous material profile of a probed soil medium, using complete waveforms1 of its response to interrogating
elastic waves, originating from the ground surface. To this end, the response of the soil medium to active sources
(Vibroseis equipment) is collected by receivers (geophones) dispersed over the formation’s surface, as shown in
Fig. 1(a). Arriving at a material profile is then accomplished by minimizing the difference between the collected
response at receiver locations, and a computed response corresponding to a trial distribution of the material parameters.
Imaging near-surface deposits brings additional difficulties, typically not encountered in exploration geophysics. In
geophysical explorations, the probing is over large length scales; thus, an accurate domain termination tool may not
play a critical role. However, in geotechnical site characterization, one, typically, deals with a much smaller domain.
Moreover, obtaining a high-fidelity image of the near-surface deposits has practical significance for the safe founding
of infrastructure components; thus, having accurate termination conditions becomes critical. In this vein, and in the
presence of heterogeneity, using PMLs for domain termination is the best available option, and is thus used in this
work. The PML is a buffer zone that surrounds the domain of interest, and enforces the decay of outgoing waves.
Fig. 1(b) shows a computational model, obtained through the introduction of PMLs at the truncation boundaries.

In order to address all the difficulties outlined earlier, we integrate recent advances in several areas. Specifically,
we use (a) a recently developed state-of-the-art parallel wave simulation tool for domains terminated by PMLs, which
renders the computational model associated with the near surface geotechnical investigations finite [26]; (b) a partial-
differential-equation (PDE)-constrained optimization framework through which the minimization of the difference

1 Using the complete waveform (complete recorded response) results in a full-waveform inversion approach.
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Fig. 1. Problem definition: (a) interrogation of a heterogeneous semi-infinite domain by an active source; and (b) computational model truncated
from the semi-infinite medium via the introduction of PMLs.

Fig. 2. A PML truncation boundary in the direction of coordinate s.

between the collected response at receiver locations and a computed response corresponding to a trial distribution of
the material properties is achieved [27]; (c) regularization schemes to alleviate the ill-posedness inherent in inverse
problems; (d) continuation schemes that lend algorithmic robustness [11]; and (e) a biasing scheme that accelerates
the convergence of the λ-profile for robust simultaneous inversion of both Lamé parameters [14].

The remainder of this paper is organized as follows: first, we discuss the numerical resolution of the forward
problem. Next, we discuss the mathematical and numerical aspects of the underlying inverse medium problem, where
we derive the adjoint and control problems, and discuss strategies that invite robustness. We then verify the accuracy of
the material gradients that we compute, by comparing them with directional finite differences. We report on numerical
experiments, using synthetic data, targeting the reconstruction of both smooth and sharp profiles. Lastly, we conclude
with summary remarks.

2. Forward wave simulation in a 3D PML-truncated medium

In the forward problem, we are concerned with the propagation of elastic waves in a three-dimensional, semi-
infinite, arbitrarily heterogeneous elastic medium. To keep the computation feasible, one needs to limit the extent of
the computational domain. This can be accomplished by placing PMLs at the truncation boundaries. Theoretically, the
truncation boundary is reflectionless, and when outgoing waves pass through the interface, they get attenuated within
the PML buffer zone. This concept is schematically captured in Fig. 2.
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Fig. 3. PML-truncated semi-infinite domain.

For the numerical resolution of the forward problem, we use a recently developed hybrid approach that uses a
displacement–stress formulation for the PML buffer, coupled with a standard displacement-only formulation in the
interior domain.2 This approach results in a computationally cost-efficient scheme, due to the treatment of the interior
domain with a standard displacement-only elastodynamics formulation. We refer to [26] and references therein for
the complete development and parallel implementation of the method. Herein, we only outline the resulting coupled
system of equations.

Accordingly, find u(x, t) in ΩRD
∪ΩPML, and S(x, t) in ΩPML (see Fig. 3 for domain and boundary designations),

where u and S reside in appropriate function spaces and:

div

µ


∇u+ (∇u)T


+ λ(div u)I


+ b = ρü in ΩRD

× J, (1a)

div


ṠT Λe + ST Λp + S̄T Λw


= ρ (aü+ bu̇+ cu+ dū) in ΩPML

× J, (1b)

aS̈+ bṠ+ cS+ dS̄

= µ

(∇u̇)Λe + Λe(∇u̇)T

+ (∇u)Λp + Λp(∇u)T
+ (∇ū)Λw + Λw(∇ū)T


+ λ


div (Λeu̇)+ div (Λpu)+ div (Λwū)


I in ΩPML

× J. (1c)

The system is initially at rest, and subject to the following boundary and interface conditions:
µ


∇u+ (∇u)T


+ λ(div u)I


n = gn on ΓRD

N × J, (2a)

(ṠT Λe + ST Λp + S̄T Λw)n = 0 on Γ PML
N × J, (2b)

u = 0 on Γ PML
D × J, (2c)

uRD
= uPML on Γ I

× J, (2d)
µ


∇u+ (∇u)T


+ λ(div u)I


n = (ṠT Λe + ST Λp + S̄T Λw)n on Γ I

× J, (2e)

where temporal and spatial dependencies are suppressed for brevity; u is the displacement vector, ρ denotes mass
density of the medium, λ and µ are the two Lamé parameters, I is the second-order identity tensor, Ṡ represents
the Cauchy stress tensor, a dot (˙) denotes differentiation with respect to time, and a bar (¯) indicates history of the
subtended variable3; ΩRD denotes the interior (regular) domain, ΩPML represents the region occupied by the PML
buffer zone, Γ I is the interface boundary between the interior and PML domains, ΓRD

N and Γ PML
N denote the free (top

2 The terms “interior domain” and “regular domain” are used interchangeably throughout this article.
3 For instance, ū(x, t) =

 t
0 u(x, τ ) dτ .
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surface) boundary of the interior domain and PML, respectively, J = (0, T ] is the time interval of interest, b denotes
body force per unit volume, and gn is the prescribed surface traction. Moreover, Λe, Λp, and Λw are the so-called
stretch tensors, which enforce dissipation of waves in ΩPML, and a, b, c, and d are products of certain elements of the
stretch tensors [26]. Eq. (1a) is the governing PDE for the interior elastodynamic problem, whereas Eqs. (1b) and (1c)
are the equilibrium and combined kinematic and constitutive equations, respectively, for the PML buffer.

Next, we seek a weak solution, corresponding to the strong form of (1) and (2), in the Galerkin sense. Specifically,
we take the inner products of (1a) and (1b) with (vector) test function w̃(x), and integrate by parts over their
corresponding domains. Incorporating (2d)–(2e) eliminates the interface boundary terms and results in (3a). Next,
we take the inner product of (1c) with (tensor) test function T̃(x); there results (3b). We refer to [26] for details.

Accordingly, find u ∈ H1
d(Ω)× J, and S ∈ L2(Ω)× J, such that:

ΩRD
∇w̃ :


µ


∇u+ (∇u)T


+ λ(div u)I


dΩ +


ΩPML
∇w̃ :


ṠT Λe + ST Λp + S̄T Λw


dΩ

+


ΩRD

w̃ · ρü dΩ +

ΩPML

w̃ · ρ (aü+ bu̇+ cu+ dū) dΩ =

ΓRD

N

w̃ · gndΓ +

ΩRD

w̃ · b dΩ , (3a)
ΩPML

T̃ :

aS̈+ bṠ+ cS+ dS̄


dΩ

=


ΩPML

T̃ : µ

(∇u̇)Λe + Λe(∇u̇)T

+ (∇u)Λp + Λp(∇u)T
+ (∇ū)Λw + Λw(∇ū)T


+ T̃ : λ


div (Λeu̇)+ div (Λpu)+ div (Λwū)


I dΩ , (3b)

for every w̃ ∈ H1
d(Ω) and T̃ ∈ L2(Ω), where gn ∈ L2(Ω)× J, and b ∈ L2(Ω)× J. Function spaces for scalar-valued

(v), vector-valued (v), and tensor-valued (A) functions are defined as:

L2(Ω) =


v :


Ω
|v|2dx <∞


, (4a)

L2(Ω) =


v : v ∈ (L2(Ω))3


, (4b)

L2(Ω) =


A : A ∈ (L2(Ω))3×3


, (4c)

H1
d (Ω) =


v :


Ω


|v|2 + |∇v|2


dx <∞, v|Γ PML

D
= 0


, (4d)

H1
d(Ω) =


v : v ∈ (H1

d (Ω))3


. (4e)

In order to resolve (3) numerically, we use standard finite-dimensional subspaces. Specifically, we introduce finite-
dimensional subspaces Ξ h ⊂ H1

d(Ω) and Υh ⊂ L2(Ω), with basis Φ = (Φ1,Φ2, . . . ,ΦN )T and Ψ = (Ψ1,Ψ2,

. . . ,ΨM )T , respectively, where N and M denote the dimension of the corresponding vector space. We then
approximate u(x, t) with uh(x, t) ∈ Ξ h×J, and S(x, t) with Sh(x, t) ∈ Υh×J. In a similar fashion, we approximate
the test functions, w̃(x) with w̃h(x) ∈ Ξ h , and T̃(x) with T̃h(x) ∈ Υh . It can be shown [26] that the following
semi-discrete form results:

Md̈st
+ Cḋst

+Kdst
+Gd̄st

= fst, (5a)

d̄st
=

 t

0
dst(τ )|PML dτ, (5b)

where spatial and temporal dependencies are suppressed for brevity; M, C, K, G, are system matrices, dst
=

(uT
h , ST

h )T is the vector of nodal unknowns comprising displacements in Ω̄RD
∪ Ω̄PML, and stress components only in

Ω̄PML, and fst is the vector of applied forces.

Throughout we use quadratic spectral elements for discretizing the displacements, the stress-history terms, and the
material parameters. Consequently, the matrix M, which has a block-diagonal structure, is rendered diagonal, which
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then enables explicit time integration of (5). In this regard, we express (5) as a first-order system:

d

dt

 x0
x1

Mx2

 =
 0 I 0

0 0 I
−G −K −C

 x0
x1
x2

+
 0

0
fst

 , (6)

where x0 = d̄st, x1 = dst, and x2 = ḋst. We then use an explicit fourth-order Runge–Kutta (RK-4) method for
integrating (6) in time.

3. The inverse medium problem

Our goal is to find the distribution of the Lamé parameters λ(x) and µ(x) within the elastic soil medium. We
consider sources, and the response recorded at receivers on the ground surface, as known. The inverse medium
problem can thus be formulated as the minimization of the difference (or misfit) between the measured response
at receiver locations, and a computed response corresponding to a trial distribution of the material parameters. The
misfit minimization should honor the physics of the problem, which is idealized by the forward problem, stated in the
preceding section. Mathematically, this can be cast as a PDE-constrained optimization problem:

min
λ,µ

J (λ, µ) :=
1
2

Nr
j=1

 T

0


Γm

(u− um) · (u− um) δ(x− x j ) dΓ dt +R(λ, µ), (7)

where u is the solution of the forward problem governed by the initial- and boundary-value problem (1), (2).
In the above, J is the objective functional,4 Nr denotes the total number of receivers, T is the total observation

time, Γm is the part of the ground surface where the receiver response, um , has been recorded, δ(x− x j ) is the Dirac
delta function, which enables measurements at receiver locations x j , and R(λ, µ) is the regularization term, which is
discussed below.

Inverse problems suffer from solution multiplicity, which, in general, is due to the presence of insufficient data.
This makes the problem ill-posed in the Hadamard sense. Regularization of the solution by using the Tikhonov
(TN) [30], or, the Total Variation (TV) [31] scheme is among common strategies to alleviate ill-posedness. The
Tikhonov regularization, denoted by RT N (λ, µ), penalizes large material gradients and, thus, precludes spatially
rapid material variations from becoming solutions to the inverse medium problem. It is defined as:

RT N (λ, µ) =
Rλ

2


ΩRD
∇λ · ∇λ dΩ +

Rµ

2


ΩRD
∇µ · ∇µ dΩ , (8)

where Rλ and Rµ are the so-called λ- and µ-regularization factor, respectively, and control the amount of penalty
imposed via (8) on the gradients of λ and µ. By construction, TN regularization results in material reconstructions
with smooth variations. Consequently, sharp interfaces may not be captured well when using the TN scheme. The TV
regularization, however, works better for imaging profiles involving sharp interfaces, as it typically preserves edges.
It is defined as:

RT V (λ, µ) =
Rλ

2


ΩRD

(∇λ · ∇λ+ ϵ)
1
2 dΩ +

Rµ

2


ΩRD

(∇µ · ∇µ+ ϵ)
1
2 dΩ , (9)

where the parameter ϵ makes RT V differentiable when either ∇λ · ∇λ = 0, or, ∇µ · ∇µ = 0.
For computing the first-order optimality conditions for (7), we use the (formal) Lagrangian approach [32] to

impose the PDE-constraint in its weak form. These are necessary conditions that must be satisfied at a solution
of (7). Specifically, we introduce Lagrange multiplier vector function w ∈ H1

d(Ω), and Lagrange multiplier tensor
function T ∈ L2(Ω) to enforce the initial- and boundary-value problem (1), (2), which admits the weak form (3). The

4 We use J to indicate the corresponding discrete objective functional. See [28,29] for other possibilities.
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Lagrangian functional becomes:

L(u, S, w, T, λ, µ) =
1
2

Nr
j=1

 T

0


Γm

(u− um) · (u− um) δ(x− x j ) dΓ dt +R(λ, µ)

−

 T

0


ΩRD
∇w :


µ


∇u+ (∇u)T


+ λ(div u)I


dΩ dt

−

 T

0


ΩPML
∇w :


ṠT Λe + ST Λp + S̄T Λw


dΩ dt −

 T

0


ΩRD

w · ρü dΩ dt

−

 T

0


ΩPML

w · ρ (aü+ bu̇+ cu+ dū) dΩ dt +
 T

0


ΓRD

N

w · gndΓ dt

+

 T

0


ΩRD

w · b dΩ dt −
 T

0


ΩPML

T :

aS̈+ bṠ+ cS+ dS̄


dΩ dt

+

 T

0


ΩPML

T : µ

(∇u̇)Λe + Λe(∇u̇)T

+ (∇u)Λp + Λp(∇u)T
+ (∇ū)Λw + Λw(∇ū)T


+T : λ


div (Λeu̇)+ div (Λpu)+ div (Λwū)


I dΩ dt, (10)

where now u, S, λ, and µ are treated as independent variables.

3.1. Optimality system

We now use the Lagrangian functional (10) as a tool to compute the optimality system for (7). To this end, the
Gâteaux derivative5 (or first variation) of the Lagrangian functional with respect to all variables must vanish. This
process is discussed next.

3.1.1. The state problem
Taking the derivatives of the Lagrangian functional L with respect to w and T in directions w̃ ∈ H1

d(Ω) and
T̃ ∈ L2(Ω), and setting it to zero, results in the state problem, which is identical to (3). That is:

L′(u, S, w, T, λ, µ)(w̃, T̃) = 0. (11)

3.1.2. The adjoint problem
We now take the derivative of L with respect to u and S in directions ũ ∈ H1

d(Ω) and S̃ ∈ L2(Ω). This yields:

L′(u, S, w, T, λ, µ)(ũ, S̃) =

Nr
j=1

 T

0


Γm

ũ · (u− um) δ(x− x j ) dΓ dt

−

 T

0


ΩRD
∇w :


µ


∇ũ+ (∇ũ)T


+ λ(div ũ)I


dΩ dt

−

 T

0


ΩPML
∇w :


˙̃S

T
Λe + S̃T Λp +

¯̃S
T
Λw


dΩ dt −

 T

0


ΩRD

w · ρ ¨̃u dΩ dt

−

 T

0


ΩPML

w · ρ


a ¨̃u+ b ˙̃u+ cũ+ d ¯̃u


dΩ dt

−

 T

0


ΩPML

T :


a ¨̃S+ b ˙̃S+ cS̃+ d ¯̃S


dΩ dt

5 See Appendix A for the definition and notation.
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+

 T

0


ΩPML

T : µ

(∇ ˙̃u)Λe + Λe(∇ ˙̃u)T

+ (∇ũ)Λp + Λp(∇ũ)T
+ (∇ ¯̃u)Λw + Λw(∇ ¯̃u)T


+T : λ


div (Λe ˙̃u)+ div (Λpũ)+ div (Λw

¯̃u)


I dΩ dt. (12)

Setting the above derivative to zero, and performing integration by parts in time, results in the statement of the weak
form of the adjoint problem. That is, find w ∈ H1

d(Ω)× J, and T ∈ L2(Ω)× J, such that:
ΩRD
∇ũ :


µ


∇w+ (∇w)T


+ λ(div w)I


dΩ

+


ΩRD

ũ · ρẅ dΩ +

ΩPML

ũ · ρ (aẅ− bẇ+ cw− dw̄) dΩ

−


ΩPML
∇ũ : µ


−ṪΛe − ṪT Λe + TΛp + TT Λp − T̄Λw − T̄T Λw


+ λ


−Ṫ : div (Λeũ)+ T : div (Λpũ)− T̄ : div (Λwũ)


I dΩ

=

Nr
j=1


Γm

ũ · (u− um) δ(x− x j ) dΓ , (13a)


ΩPML
∇ẇ : S̃T Λe −∇w : S̃T Λp +∇w̄ : S̃T ΛwdΩ =


ΩPML

S̃ :

aT̈− bṪ+ cS− dT̄


dΩ (13b)

for every ũ ∈ H1
d(Ω) and S̃ ∈ L2(Ω), where w(x, T ) = 0, and T(x, T ) = 0.

We remark that the adjoint problem (13) is a final-value problem and, thus, is solved backwards in time6; it is
driven by the misfit between a computed response, and the measured response at receiver locations. Moreover, the
operators implicated in the adjoint problem are very similar to those of the state problem: they involve transposition
of the system matrices, and sign reversal for terms involving history, and first-order time derivatives. In this regard,
we obtain the following semi-discrete form for the adjoint problem:

Md̈adj
− CT ḋadj

+KT dadj
−GT d̄adj

= fadj, (14a)

d̄adj
=

 t

0
dadj(τ )|PML dτ, (14b)

where superscript “adj” refers to the adjoint problem, dadj
= (wT

h , TT
h )T is the vector of nodal unknowns comprising

discrete values of w in Ω̄RD
∪ Ω̄PML and discrete values of T only in Ω̄PML, and fadj is a vector comprising the misfit

at receiver locations. Moreover, system matrices M, C, K, G, are identical to those of the forward problem and, thus,
with minor adjustments, an implementation of the forward problem can also be used for the solution of the adjoint
problem.

The matrix M in (14) is again diagonalized by using spectral elements with a Legendre–Gauss–Lobatto (LGL)
quadrature rule, similar to what we did in (6). We rewrite (14) as a first-order system:

d

dt

 y0
y1

My2

 =
 0 I 0

0 0 I
GT

−KT CT

 y0
y1
y2

+
 0

0
fadj

 , (15)

where y0 = d̄adj, y1 = dadj, y2 = ḋadj, with final values y0(T ) = 0, y1(T ) = 0, and y2(T ) = 0. We use an explicit
RK-4 method to integrate (15) in time. The scheme is outlined in Appendix B.

3.1.3. The control problems
Lastly, we take the derivative of L with respect to λ and µ in directions λ̃ and µ̃, which yields the reduced gradients

with respect to λ and µ, respectively. We restrict the reduced gradients to ΩRD (the material properties at the interfaces

6 See [33] for other possibilities, and [34–36] for alternative approaches.
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Γ I are extended into the PML buffer). For the TN regularization, this yields:

(G(λ, µ), λ̃)L2 = L′(u, S, w, T, λ, µ)(λ̃) = Rλ


ΩRD
∇λ̃ · ∇λ dΩ

−

 T

0


ΩRD

λ̃ ∇w : (div u)I dΩ dt, (16a)

(G(λ, µ), µ̃)L2 = L′(u, S, w, T, λ, µ)(µ̃) = Rµ


ΩRD
∇µ̃ · ∇µ dΩ

−

 T

0


ΩRD

µ̃ ∇u :

∇w+ (∇w)T


dΩ dt, (16b)

where the gradient G is defined in Appendix A. Setting the above derivatives to zero, results in the control problems.
Similarly, for the TV regularization, the control problems read:

(G(λ, µ), λ̃)L2 = L′(u, S, w, T, λ, µ)(λ̃) = Rλ


ΩRD

∇λ̃ · ∇λ

(∇λ · ∇λ+ ϵ)
1
2

dΩ

−

 T

0


ΩRD

λ̃ ∇w : (div u)I dΩ dt, (17a)

(G(λ, µ), µ̃)L2 = L′(u, S, w, T, λ, µ)(µ̃) = Rµ


ΩRD

∇µ̃ · ∇µ

(∇µ · ∇µ+ ϵ)
1
2

dΩ

−

 T

0


ΩRD

µ̃ ∇u :

∇w+ (∇w)T


dΩ dt. (17b)

Discretization of either (16) or (17) results in the following form:

M̃gλ
= Rλ gλ

reg + gλ
mis, (18a)

M̃gµ
= Rµ gµ

reg + gµ
mis, (18b)

where M̃ is a mass-like matrix, gλ and gµ is the vector of discrete values of the (reduced) gradient for λ and µ,
respectively, and gλ

reg, gµ
reg and gλ

mis, gµ
mis are the associated vectors corresponding to the regularization-part and misfit-

part of gλ and gµ. We refer to Appendix C for matrix and vector definitions, and discretization details.

3.2. The inversion process

A solution of (7) requires simultaneous satisfaction of the state problem (6), the adjoint problem (15), and the
control problems (18). This approach – a full-space method – is, in principle, possible [37]; however, the associated
computational cost can be substantial. Alternatively, a reduced-space method may be adopted, in which, discrete
material properties are updated iteratively, using a gradient-based minimization scheme. The latter approach is
employed here, and is discussed next.

We start with an assumed initial spatial distribution of the control parameters (λ and µ), and solve the state problem
(6) to obtain dst

= (uT
h , ST

h )T . With the misfit known, we solve the adjoint problem (15) and obtain dadj
= (wT

h , TT
h )T .

With uh and wh known, the (reduced) material gradients, i.e., gλ and gµ, can be computed from (18). Thus, the vector
of material values, at iteration k + 1, can be computed by using a search direction via:

λk+1 = λk + αλ
k sλ

k , (19a)

µk+1 = µk + α
µ
k sµ

k , (19b)

where λ and µ comprise the vector of discrete values for λ and µ, respectively, αλ
k , α

µ
k are step lengths, and sλ

k , sµ
k are

the search directions for λk and µk . Herein, we use the L-BFGS method to compute the search directions [38].7

7 In the numerical experiments that we perform, we store m = 15 L-BFGS vectors.
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Moreover, to ensure sufficient decrease of the objective functional at each inversion iteration, we employ an
Armijo backtracking line search [38], which is outlined in Algorithm 1. The inversion process discussed thus far
is summarized in Algorithm 2.

Algorithm 1 Backtracking line search.

1: Choose αλ, αµ, c1, ρ ◃ e.g., αλ
= 1, αµ

= 1, c1 = 10−4, ρ = 0.5
2: while J(λk + αλ sλ

k , µk + αµ sµ
k ) ≥ J(λk, µk)+ c1(α

λ gλ
k · s

λ
k + αµ gµ

k · s
µ
k ) do

3: αλ
← ραλ

4: αµ
← ραµ

5: end while
6: Terminate with αλ

k = αλ, α
µ
k = αµ

Algorithm 2 Inversion for Lamé parameters.
1: k ← 0
2: Set initial guess for material property vectors λk , µk
3: Compute J(λk, µk) ◃ Eq. (7)
4: Set convergence tolerance tol
5: while {J(λk, µk) > tol} do
6: Solve the state problem for dst

= (uT
h , ST

h )T
◃ Eq. (6)

7: Solve the adjoint problem for dadj
= (wT

h , TT
h )T

◃ Eq. (15)
8: Evaluate the discrete reduced gradients gλ

k , gµ
k ◃ Eqs. (18)

9: Compute search directions sλ
k , sµ

k ◃ L-BFGS
10: Choose step lengths αλ

k , α
µ
k ◃ Algorithm 1

11: Update material property vectors λk , µk ◃ Eq. (19)
12: k ← k + 1
13: end while

We remark that for the reduced-space method, either (16) or (17) can also be expressed as:

L′(u, S, w, T, λ, µ)(λ̃) = J ′(λ, µ)(λ̃), (20a)

L′(u, S, w, T, λ, µ)(µ̃) = J ′(λ, µ)(µ̃), (20b)

where the equality in (20) is due to the satisfaction of the state problem. Therefore, the reduced gradients in (18), are,
indeed, the gradients of the objective functional with respect to λ and µ.

3.3. Buttressing schemes

Inverse medium problems are notoriously ill-posed. They suffer from solution multiplicity; that is, material profiles
that are very different from each other, and, potentially non-physical, can become solutions to the misfit minimization
problem. Regularization of the control parameters alleviates the ill-posedness; however, this alone, may not be
adequate when dealing with large-scale complex problems. In this part, we discuss additional strategies that further
assist the inversion process, outlined in Algorithm 2, to image complex profiles.

3.3.1. Regularization factor selection and continuation
Computation of the (reduced) gradients (18) necessitates selection of the regularization factors Rλ and Rµ. A

common strategy is to use Morozov’s discrepancy principle [39], where a constant value for the regularization factor
is used throughout the inversion process. Here, we discuss a simple and practical approach that was initially developed
for acoustic inversion [11], and, later, was successfully applied to problems involving elastic inversion [14].

We start by rewriting the discrete control problem (18), either for λ or µ, in the following generic form:

M̃g = R greg + gmis, (21)
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where g refers to the vector of discrete values of the (reduced) gradient, either for λ or µ, greg and gmis are the
associated vectors corresponding to the regularization-part and misfit-part of g, and R is the regularization factor yet
to be determined. The main idea is that the “size” of R greg should be proportional to that of gmis at each inversion
iteration. We define the following unit vectors for the two components of the gradient vector:

nreg =
greg

∥greg∥
, nmis =

gmis

∥gmis∥
, (22)

where ∥ · ∥ denotes the Euclidean norm. Eq. (21) can then be written as:

M̃g = R ∥greg∥ nreg + ∥gmis∥ nmis (23a)

= ∥gmis∥


R
∥greg∥

∥gmis∥
nreg + nmis


= ∥gmis∥


℘ nreg + nmis


, (23b)

where,

℘ = R
∥greg∥

∥gmis∥
. (23c)

In (23b), for the “size” of ℘ nreg to be proportional to nmis throughout the entire inversion process, one may choose
0 < ℘ ≤ 1. Once a value for ℘ has been decided on, R can be computed via:

R = ℘
∥gmis∥

∥greg∥
, (24)

where ℘ takes values in the range 0.5–0.3. Since we normalize the regularization part and misfit part of the gradient
in (23b), ℘ = 0.5 implies that the misfit weighs twice as much as the regularization on the gradient at early stages
of inversion and, thus, narrow down the initial search space. As inversion evolves, ℘ can be continuously reduced
(e.g., down to 0.3) to allow for profile refinement. The suggested values for ℘ are based on our experience with
various numerical experiments that provided quality solutions for different test cases, and seem to be independent of
the dimensionality, size, and discretization of the considered cases.

3.3.2. Source-frequency continuation
Using loading sources with low-frequency content results in an overall image of the medium that lacks fine features.

To allow for more details, and fine-tune the profile, one needs to use sources with higher frequency content. Thus, the
inversion process can be initiated with a signal having a low-frequency content and, then, the frequency range can be
increased progressively as inversion evolves. This can be achieved by using a set of probing signals, ordered such that
each signal has a broader range of frequencies than the previous ones. The inversion process then begins with using
the first signal. Upon convergence, the profile is used as a starting point with the second signal, and the process is
repeated for all signals.

3.3.3. Biased search direction for λ

Simultaneous inversion for both λ and µ is remarkably challenging [18]. As we demonstrate in Section 4.2,
the objective functional (7) is more sensitive to µ, than to λ. Consequently, as the inversion evolves, the µ-profile
converges faster than that of λ. In [14], a biasing scheme was proposed to accelerate the convergence of the λ-profile,
such that, at the early stages of inversion, the search direction for λ is biased according to that of µ.

The main idea is that due to physical considerations, the λ-profile should be, more or less, similar to the µ-profile.
Hence, during the early inversion iterations, the search direction for λ is biased according to:

sλ
k ← ∥s

λ
k∥


W

sµ
k

∥sµ
k ∥
+ (1−W )

sλ
k

∥sλ
k∥


, (25)

where W is a weight that imposes the biasing amount. We assign full weight (W = 1) on µ at the first inversion
iteration, and reduce it linearly down to zero as iterates evolve (say at k = 50). After that, we let λ evolve on its own,
according to the original, unbiased search direction.
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Table 1
Characterization of Gaussian pulses.

Name fmax µ̄ σ̄ tend

p20 20 0.11 0.0014 0.20
p30 30 0.08 0.0007 0.15
p40 40 0.06 0.0004 0.12

Fig. 4. Time history of the Gaussian pulses and their Fourier spectrum.

4. Numerical experiments

We present numerical experiments8 with increasing complexity to test the proposed inversion scheme. In the first
example, we verify the accuracy of the gradients, computed by using Algorithm 2. Next, we focus on material profile
reconstruction for heterogeneous hosts, using synthetic data at measurement locations. Specifically, we consider: (a) a
medium with smoothly varying material properties along depth, to study various aspects of the inversion scheme; (b) a
horizontally layered profile with sharp interfaces; (c) a horizontally layered profile with an ellipsoidal inclusion, using
highly noisy data; and (d) a layered profile with three inclusions in an attempt to implicate arbitrary heterogeneity.
When verifying the accuracy of the gradients in our first example, we generated synthetic data at receiver locations
based on a fine mesh, and projected them to a coarser grid that was actually used for the numerical comparison of
the gradients. The second and third examples serve to introduce a physics-based biasing scheme, whereby the search
directions of one distributed parameter are initially biased by the search directions of the second parameter, and
demonstrate its efficacy for both smoothly-varying and sharp profiles. For both of these examples, we used the same
mesh to generate the synthetic receiver data as the mesh we used for inversion, thus committing an inverse crime,
which, however, does not affect the validity of the biasing concept. For the fourth example, the synthetic receiver data
were generated on a fine mesh and then projected onto the coarser mesh that was used for inversion, thus avoiding an
inverse crime. For the last example, we used identical meshes for generating the receiver data and for the inversion.
Throughout, we use Gaussian pulses to probe the considered domains:

f (t) = e−(
t−µ̄
σ̄

)2
,

where the parameters that characterize the load are given in Table 1; µ̄ is the mean, σ̄ is the deviation, fmax is the
maximal frequency content of the pulse, tend is the active duration of the Gaussian pulse, and the load has an amplitude
of 1 kPa. The time history of the loads and their corresponding Fourier spectrum are shown in Fig. 4.

4.1. Numerical verification of the material gradients

Accurate computation of the discrete gradients is crucial for the robustness of Algorithm 2. The gradients of the
objective functional with respect to the control parameters can be computed either by the optimize-then-discretize,

8 We developed a code in Fortran, using PETSc [40] to facilitate parallel implementation.
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Fig. 5. Problem configuration for the verification of the gradients.

or, the discretize-then-optimize approach [27]. While the discretize-then-optimize method yields the exact discrete
gradients of the discrete objective functional [41], this is not always the case with the optimize-then-discretize scheme
[42].

In this part, through a numerical experiment, we demonstrate that the discrete gradients that we compute via
the optimize-then-discretize technique, are accurate, and equal to the discrete gradients of the discrete objective
functional. To this end, we compare directional finite differences of the discrete objective functional, with directional
gradients obtained from (18). We start by defining the finite difference directional derivatives:

dfd
h (λ, µ)(λ̃) :=

J(λ+ hλ̃, µ)− J(λ, µ)

h
, (26a)

dfd
h (λ, µ)(µ̃) :=

J(λ, µ+ hµ̃)− J(λ, µ)

h
, (26b)

where λ̃ and µ̃ is the discrete direction vector for λ and µ, respectively. The directional derivatives obtained via the
control problems (18) are:

dco(λ, µ)(λ̃) = λ̃
T

M̃ gλ, (27a)

dco(λ, µ)(µ̃) = µ̃T M̃ gµ. (27b)

Next, we verify that (26) and (27) produce identical values for several choices that we make for λ̃ and µ̃, by
considering a test problem displayed in Fig. 5, and detailed below, with regularization factors Rλ = Rµ = 0.9 We
consider perturbations λ̃ or µ̃: the unit vector is zero everywhere except at the component corresponding to coordinate
(x, y, z) where the directional derivatives are being computed. The derivatives dco and dfd

h with respect to either λ or
µ, for points with coordinates (x, y, z), are presented in Table 2. Digits where dfd

h coincides with dco are shown in
bold. Since pointwise perturbations result in small changes in the objective functional, numerical roundoff influences
the accuracy of the finite difference directional derivatives, as it has also been reported in [42].

We remark that the agreement between the two derivatives is remarkable, both for cases 1–4, where the wavefield
is well-resolved, and for cases 5 and 6, where only 10 points per wavelength are used for spatial discretization.

9 Zero values are considered since convergence difficulties that may arise stem from the misfit part of the objective functional, and not from the
regularization part. Nevertheless, we have also successfully verified the accuracy of the regularization component of the gradients.
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Table 2
Comparison of the directional derivatives.

Case fmax (x, y, z) Pert. dco dfd
h

field h = 10−3 h = 10−4 h = 10−5

1 20 Hz (1, 1, 0) λ −3.03500e−9 −3.03416e−9 −3.03496e−9 −3.03501e−9
2 20 Hz (1, 1, 0) µ −2.78908e−9 −2.78875e−9 −2.78917e−9 −2.78921e−9
3 20 Hz (1, 1, −40) λ −5.14848e−11 −5.14711e−11 −5.14647e−11 −5.14996e−11
4 20 Hz (1, 1, −40) µ +4.97666e−10 +4.97411e−10 +4.97512e−10 +4.97366e−10
5 40 Hz (1, 1, 0) λ −1.07645e−9 −1.07623e−9 −1.07652e−9 −1.07656e−9
6 40 Hz (1, 1, 0) µ −1.56155e−9 −1.56153e−9 −1.56178e−9 −1.56180e−9

The considered test problem is a heterogeneous half-space with a smoothly varying material profile along depth,
given in (28), and mass density ρ = 2000 kg/m3, which, after truncation, is reduced to a cubic computational domain
of length and width 24 m× 24 m, and 45 m depth. A 5 m-thick PML is placed at the truncation boundaries, as shown
in Fig. 5. The material properties at the interfaces Γ I are extended into the PML. The interior and PML domains
are discretized by quadratic hexahedral spectral elements (i.e., 27-noded bricks, and quadratic–quadratic pairs of
approximation for displacement and stress components in the PML, and, also, quadratic approximation for material
properties) of size 1 m, and ∆t = 9×10−4 s. Throughout, for the PML parameters, we choose αo = 5, βo = 400 s−1,
and a quadratic profile for the attenuation functions, i.e., m = 2. See [26] for notation and other details. To probe
the medium, we consider vertical stress loads with Gaussian pulse temporal signatures (see Table 1), applied on the
surface of the domain over a region (−11 m ≤ x, y ≤ 11 m), whereas receivers that collect displacement response
um(x, t) are also located in the same region, at every grid point. To obtain synthetic data at the receiver locations,
we use a model with identical characteristics and dimensions as detailed above, but, with a refined discretization; i.e.,
element size of 0.5 m, and ∆t = 4.5× 10−4 s. The total duration of the simulation is T = 0.5 s.

4.2. Smoothly varying heterogeneous medium

We consider a heterogeneous half-space with a smoothly varying material profile along depth, given by:

λ(z) = µ(z) = 80+ 0.45 |z| + 35 exp

−

(|z| − 22.5)2

150


(MPa), (28)

and mass density ρ = 2000 kg/m3, which, after truncation, is reduced to a cubic computational domain of length
and width 40 m× 40 m, and 45 m depth. A 6.25 m-thick PML is placed at the truncation boundaries, as illustrated in
Fig. 6. The target profiles are shown in Fig. 7. The material properties at the interfaces Γ I are extended into the PML.
The interior and PML domains are discretized by quadratic hexahedral spectral elements (i.e., 27-noded bricks, and
quadratic–quadratic pairs of approximation for displacement and stress components in the PML, and, also, quadratic
approximation for material properties) of size 1.25 m, and ∆t = 10−3 s. This leads to 3,578,136 state unknowns, and
616, 850 material parameters. To probe the medium, we consider vertical stress loads with Gaussian pulse temporal
signatures (see Table 1), applied on the surface of the domain over a region (−17.5 m ≤ x, y ≤ 17.5 m), whereas
receivers that collect displacement response um(x, t) are placed at every grid point, in the same region.

Before attempting simultaneous inversion for the two Lamé parameters, we perform single parameter inversion for
(a) µ only, assuming λ is a priori known and fixing it to the target profile; and (b) λ only, assuming distribution of µ

is known.

4.2.1. Single parameter inversion
First, we assume λ is a priori known, and fix it to the target profile. We start inverting for µ, with a homogeneous

initial guess of 80 MPa, exploiting Tikhonov regularization for taming ill-posedness and solution multiplicity. We
use the Gaussian pulse p20 with maximal frequency content fmax = 20 Hz (see Table 1) for 50 iterations, and, then,
switch to p30 with fmax = 30 Hz. After 156 iterations, µ converges to the target profile, as shown in Fig. 8(b).
We compare the inverted cross-sectional profiles of µ with the target profile at three different locations, as shown in
Fig. 8(c)–(e). The agreement between the two profiles is excellent. Reduction of the misfit functional with respect to
inversion iterations is shown in Fig. 10(a), which is almost 7 orders of magnitude.
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Fig. 6. Problem configuration: material profile reconstruction of a smoothly varying medium.

Fig. 7. Smoothly varying medium: (a) target λ and µ (MPa); and (b) profile at (x, y) = (0, 0).

Next, we fix µ to the target profile, and invert for λ, starting with a homogeneous initial guess of 80 MPa. We
use the Gaussian pulse p20 for 160 iterations, p30 up to the 300th iteration, and then switch to p40. After 456
iterations, the optimizer converges to the profile displayed in Fig. 9(a). The agreement between the target profile and
the inverted profile is remarkable. We compare the two profiles at three different cross-sections shown in Fig. 9(c)–(e):
the agreement between the two profiles is excellent. The misfit history is shown in Fig. 10(b); the optimizer reduced
the misfit almost 6 orders of magnitude.

We remark that the initial value of the misfit in the first experiment is almost 2 orders of magnitude more than
that of the second experiment. This indicates that the objective functional is not equally sensitive to both control
parameters, as it has also been reported in [14]: the objective functional is more sensitive to µ.

4.2.2. Simultaneous inversion
We start with a homogeneous initial guess of 80 MPa for both λ and µ and attempt simultaneous inversion. The

target profiles are shown in Fig. 7, and the inverted profiles are displayed in Fig. 11(a) and (b). We also compare the
cross-sectional values of the target and inverted profiles at three different locations, shown in Fig. 12. Although the
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(a) λ (a priori known). (b) µ (inverted).

(c) µ at (x, y) = (0, 0). (d) µ at (x, y) = (10, 10). (e) µ at (x, y) = (20, 20).

Fig. 8. Single-parameter inversion (µ only) for a smoothly varying medium.

inverted µ profile agrees reasonably well with the target profile, inversion for λ is not satisfactory, and the inverted
profile departs from the target as depth increases.

Due to the unsuccessful inversion of the λ profile in the case of simultaneous inversion, in the next experiment,
we bias the search direction of λ based on that of µ, at the very early stages of inversion, according to the procedure
detailed in Section 3.3.3. This leads to the successful reconstruction of the two profiles, as is shown in Fig. 13(a)
and (b). In Fig. 14, we compare the cross-sectional values of the target and the inverted profiles. The agreement of
the inverted µ profile with the target is remarkable. Moreover, the inverted λ profile agrees reasonably well with the
target, with some discrepancies in depth. The misfit history is shown in Fig. 15(b), where the kink in the misfit curve
at the 50th iteration corresponds to the termination point of the biasing scheme.

We remark that in practical applications, one is more interested in the shear wave velocity (cs) and compression
wave velocity (cp) profiles. Once the Lamé parameters have been determined, the wave velocities can be readily
computed via:

cs =


µ

ρ
, cp =


λ+ 2µ

ρ
. (29)

In Fig. 16, we compare the compression wave velocities at three different cross-sectional locations, where the
agreement between the reconstructed cp profile and the target is remarkable. The shear wave velocity does not depend
on λ, and, therefore, its quality is similar to that of the µ profile.

4.3. Layered medium

We consider a 40 m × 40 m × 45 m layered medium, where a 6.25 m-thick PML is placed at its truncation
boundaries. The properties of the medium are:
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(a) λ (inverted). (b) µ (a priori known).

(c) λ at (x, y) = (0, 0). (d) λ at (x, y) = (10, 10). (e) λ at (x, y) = (20, 20).

Fig. 9. Single-parameter inversion (λ only) for a smoothly varying medium.

(a) Reconstruction for µ only. (b) Reconstruction for λ only.

Fig. 10. Variation of the misfit functional with respect to inversion iterations (single parameter inversion).

λ(z) = µ(z) =

80 MPa, for −12 m ≤ z ≤ 0 m,

101.25 MPa, for −27 m ≤ z < −12 m,

125 MPa, for −50 m ≤ z < −27 m,

(30)

and are shown in Fig. 17, with mass density ρ = 2000 kg/m3. The material properties at the interfaces Γ I are extended
into the PML buffer. The interior and PML domains are discretized by quadratic hexahedral spectral elements (i.e.,
27-noded bricks, and quadratic–quadratic pairs of approximation for displacement and stress components in the PML,
and, also, quadratic approximation for material properties) of size 1.25 m, and ∆t = 10−3 s. For probing the medium,
we use vertical stress loads with Gaussian pulse temporal signatures, applied on the surface of the domain over a
region (−17.5 m ≤ x, y ≤ 17.5 m), whereas receivers that collect displacement response um(x, t) are also located in
the same region, at every grid point.
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(a) λ (inverted). (b) µ (inverted).

Fig. 11. Simultaneous inversion for λ and µ using unbiased search directions.

(a) λ at (x, y) = (0, 0). (b) λ at (x, y) = (10, 10). (c) λ at (x, y) = (20, 20).

(d) µ at (x, y) = (0, 0). (e) µ at (x, y) = (10, 10). (f) µ at (x, y) = (20, 20).

Fig. 12. Cross-sectional profiles of λ and µ using unbiased search directions.

We start the inversion process with a homogeneous initial guess of 80 MPa for the Lamé parameters, and attempt
simultaneous inversion for both λ and µ, using the biasing scheme outlined in Section 3.3.3. We use the Total Variation
regularization scheme, with ϵ = 0.01, to capture the sharp interfaces of the target profiles. We use the Gaussian pulse
p20, with fmax = 20 Hz, and final simulation time T = 0.45 s, for 310 iterations. We note that the final simulation time
is chosen such that it is long enough to probe the medium effectively, but not too long to increase the computational
cost, unnecessarily. To this end, we run a forward simulation by using the target profile, and monitor the time when the
total energy of the system (see [26]) dies out. We then use this time duration for the inversion process. Reference [8]
provides guidelines for choosing the source duration when inversion is performed by using field data. The resulting
profiles are shown in Fig. 18(a) and (b), where the layering of the medium is clearly visible in the inverted profiles.
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(a) λ (inverted). (b) µ (inverted).

Fig. 13. Simultaneous inversion for λ and µ using biased search directions.

(a) λ at (x, y) = (0, 0). (b) λ at (x, y) = (10, 10). (c) λ at (x, y) = (20, 20).

(d) µ at (x, y) = (0, 0). (e) µ at (x, y) = (10, 10). (f) µ at (x, y) = (20, 20).

Fig. 14. Cross-sectional profiles of λ and µ using biased search directions.

To improve the quality of the inverted profiles, we use them as an initial guess with the Gaussian pulse p30, and
final simulation time of T = 0.4 s, for up to the 860th iteration, and, then, switch to p40, with final simulation time
of T = 0.4 s. After 1112 iterations, the optimizer converges to the profiles displayed in Fig. 18(c) and (d). There
is excellent agreement between the inverted µ profile and the target profile. The inverted λ profile is also in good
agreement with the target profile: the two top layers have been reconstructed quite well, whereas the bottom layer is
slightly “stiffer” in its middle zone. We compare the inverted profiles with the targets at three different cross-sections,
shown in Fig. 19. Due to the TV regularization, sharp interfaces have been captured quite successfully. In Fig. 20,
we compare the cp profile with the target, at the same cross-sections; the agreement between the two profiles is
impressive. Fig. 21 shows the misfit history: the optimizer reduced the misfit almost 7 orders of magnitude.
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(a) Unbiased search directions. (b) Biased search direction for λ.

Fig. 15. Variation of the misfit functional with respect to inversion iterations (simultaneous inversion).

(a) cp at (x, y) = (0, 0). (b) cp at (x, y) = (10, 10). (c) cp at (x, y) = (20, 20).

Fig. 16. Cross-sectional profiles of cp using biased search directions.

Fig. 17. Layered medium: (a) target λ and µ (MPa); and (b) profile at (x, y) = (0, 0).

4.4. Layered medium with inclusion

We consider a layered medium with an inclusion. The problem consists of a 40 m× 40 m× 45 m layered medium
with an ellipsoidal inclusion, where a 6.25 m-thick PML is placed at its truncation boundaries. The material profiles
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(a) λ ( fmax = 10 Hz). (b) µ ( fmax = 10 Hz).

(c) λ ( fmax = 40 Hz). (d) µ ( fmax = 40 Hz).

Fig. 18. Simultaneous inversion for λ and µ (layered medium).

are given by:

λ(z) = µ(z) =


80 MPa, for −12 m ≤ z ≤ 0 m,

101.25 MPa, for −27 m ≤ z < −12 m,

125 MPa, for −50 m ≤ z < −27 m,

156.8 MPa, for ellipsoidal inclusion,

(31)

and are shown in Fig. 22, with constant mass density ρ = 2000 kg/m3. The ellipsoidal inclusion occupies the
region ( x−7.5

7.5 )2
+ (

y
5 )2
+ ( z+12

5.5 )2
≤ 1. The material properties at the interfaces Γ I are extended into the PML

buffer. The interior and PML domains are discretized by quadratic hexahedral spectral elements (i.e., 27-noded
bricks, and quadratic–quadratic pairs of approximation for displacement and stress components in the PML, and,
also, quadratic approximation for material properties) of size 1.25 m, and ∆t = 10−3 s. To illuminate the domain,
we use vertical stress loads with Gaussian pulse temporal signatures, applied on the surface of the medium over a
region (−17.5 m ≤ x, y ≤ 17.5 m), whereas the receivers are also placed at every grid point in the same region. To
obtain synthetic data at the receiver locations, we use a model with identical characteristics and dimensions as detailed
above, but, with a finer discretization in space and time; i.e., element size of 0.625 m, and ∆t = 5× 10−4 s. The thus
computed synthetic receiver data were then mapped onto the coarser mesh that was used for the inversion.

We use the Total Variation regularization scheme to alleviate ill-posedness and solution multiplicity, with ϵ = 0.01.
Similar to the previous examples, we use a source-frequency continuation scheme, starting with the Gaussian pulse
p20 with maximal frequency content of 20 Hz for T = 0.45 s, and, when updates in the material profiles become
practically insignificant, we switch to the next load in Table 1, which contains a broader range of frequencies, and,
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(a) λ at (x, y) = (0, 0). (b) λ at (x, y) = (10, 10). (c) λ at (x, y) = (20, 20).

(d) µ at (x, y) = (0, 0). (e) µ at (x, y) = (10, 10). (f) µ at (x, y) = (20, 20).

Fig. 19. Cross-sectional profiles of λ and µ (layered medium).

(a) cp at (x, y) = (0, 0). (b) cp at (x, y) = (10, 10). (c) cp at (x, y) = (20, 20).

Fig. 20. Cross-sectional profiles of cp (layered medium).

therefore, is able to image finer features. Fig. 23(a) and (b) show the material profiles after 410 iterations, which
adequately capture the layering of the domain as well as the ellipsoidal inclusion. To improve the quality of the
reconstructed profiles, we use them as an initial guess with the Gaussian pulse p30, and final simulation time of
T = 0.4 s, for up to the 940th iteration, and, then, switch to p40, with final simulation time of T = 0.4 s. Fig. 23(c)
and (d) show the inverted profiles after 1200 iterations. The sharp interfaces between the three layers and around the
ellipsoidal inclusion are very well captured for the µ profile. The λ profile agrees reasonably well with the target,
showing some “stiff” features at the center of the bottom layer, similar to the previous example.

Figs. 24 and 25 compare the inverted profiles with the target profiles at three different cross-sectional lines of the
domain, indicating successful imaging of both the layering and the inclusion. The variation of the misfit functional
with respect to the inversion iterations is shown in Fig. 26, where, again, a kink at the 50th iteration of the misfit curve,
corresponds to the termination point of the biasing scheme.
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Fig. 21. Variation of the misfit functional with respect to inversion iterations (layered medium).

Fig. 22. Layered medium with inclusion: (a) target λ and µ; and (b) profile at (x, y) = (7.5, 0).

Encouraged by the successful performance of the proposed inversion algorithm with noise-free data, next, we
consider adding different levels of Gaussian noise to the measured synthetic response at the receiver locations, and
investigate its effect on the inversion. Figs. 27(a)–(d) show the measured displacement response of the system at
(x, y, z) = (3.125,−13.75, 0) m, subjected to the p20 pulse, contaminated with 1%, 5%, 10%, and 20% Gaussian
noise, respectively. Using the source-frequency continuation scheme, the optimizer converges after 1220 and 760
iterations, respectively, for cases corresponding to the 1% and 5% Gaussian noise levels. The inverted profiles are
shown in Fig. 28. The reconstruction is successful, with minor discrepancies on the top surface. Next, we increase
the noise level to 10% and 20%, and attempt inversion; after 615 and 690 iterations, respectively, we converge to the
profiles shown in Fig. 29. The quality of the inverted profiles decreases as the noise level increases. However, similarly
to the previous case, except for a thin layer on the top surface, inversion is satisfactory. In Fig. 30, we compare cross-
sectional profiles of λ and µ with the target, at different noise levels, at (x, y) = (7.5, 0) m, which passes through the
center of the ellipsoidal inclusion. Sharp interfaces are captured remarkably well for the µ profile, even at the presence
of 20% noise. The inversion for λ is also satisfactory.

4.5. Layered medium with three inclusions

In the last example, we consider a layered medium, with three inclusions, to study the performance of our inversion
scheme for a more complex material profile. The problem consists of an 80 m × 80 m × 45 m medium, where a
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(a) λ ( fmax = 10 Hz). (b) µ ( fmax = 10 Hz).

(c) λ ( fmax = 40 Hz). (d) µ ( fmax = 40 Hz).

Fig. 23. Simultaneous inversion for λ and µ (layered medium with inclusion).

6.25 m-thick PML is placed at its truncation boundaries. The material profiles are given by:

λ(z) = µ(z) =



80 MPa, for −15 m ≤ z ≤ 0 m,

101.25 MPa, for −30 m ≤ z < −15 m,

125 MPa, for −50 m ≤ z < −30 m,

156.8 MPa, for spheroidal:


x + 20
3.75

2

+


y + 20

20

2

+


z + 8.75

3.75

2

≤ 1,

156.8 MPa, for ellipsoidal:


x − 20
15

2

+


y − 20

7.5

2

+


z + 30

5

2

≤ 1,

80 MPa, for sphere: (x − 20)2
+ (y + 20)2

+ (z + 35)2
≤ 6.25,

and are shown in Fig. 31, with constant mass density ρ = 2000 kg/m3. Fig. 32(a) and (b) depict the target profiles on
a cross-section through the domain situated at 8.75 m and 35 m from the top surface, going through the ellipsoid’s and
sphere’s midplane, respectively. In terms of the smallest wavelength10 the prescribed geometry comprises a domain
of 16×16×9 wavelengths long, wide, and deep, a spherical inclusion with a diameter 2.5 wavelengths, an ellipsoidal
inclusion of 6× 3× 2 wavelengths, and a spheroidal inclusion of 1.5× 8× 1.5 wavelengths. The material properties
at the interfaces Γ I are extended into the PML buffer. The interior and PML domains are discretized by quadratic
hexahedral spectral elements (i.e., 27-noded bricks, and quadratic–quadratic pairs of approximation for displacement
and stress components in the PML, and, also, quadratic approximation for material properties) of size 1.25 m, and
∆t = 10−3 s. This leads to 9,404,184 state unknowns, and 2,429,586 material parameters. To illuminate the domain,

10 The smallest wavelength is equal to the smallest velocity in the formation 200 m/s, divided by the largest probing frequency 40 Hz, i.e., 5 m.
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(a) λ at (x, y) = (7.5, 0). (b) λ at (x, y) = (7.5, 10). (c) λ at (x, y) = (20, 20).

(d) µ at (x, y) = (7.5, 0). (e) µ at (x, y) = (7.5, 10). (f) µ at (x, y) = (20, 20).

Fig. 24. Cross-sectional profiles of λ and µ (layered medium with inclusion).

(a) cp at (x, y) = (7.5, 0). (b) cp at (x, y) = (7.5, 10). (c) cp at (x, y) = (20, 20).

Fig. 25. Cross-sectional profiles of cp (layered medium with inclusion).

we use vertical stress loads with Gaussian pulse temporal signatures, applied on the surface of the medium over a
region (−37.5 m ≤ x, y ≤ 37.5 m), whereas receivers are placed at every grid point, within the same region as the
load.

To narrow the feasibility space and alleviate difficulties with solution multiplicity, we use the Total Variation
regularization, with ϵ = 0.01, combined with the regularization factor continuation scheme outlined in Section 3.3.1,
the source-frequency continuation scheme in Section 3.3.2, and the biasing scheme for λ search directions in
Section 3.3.3. Specifically, we use the regularization parameter ϱ = 0.5 when illuminating the medium with pulse p20
for 60 iterations. Next, we use ϱ = 0.4 with pulse p30 up to the 290th iteration. Finally, we use ϱ = 0.3 with pulse
p40 and stop at the 741st iteration. In all the three cases, the total simulation time is T = 0.7 s.

Fig. 33 shows the inverted profile along a cross-section that cuts through the domain from (x, y) = (−20,−46.5)

to (−20, 20) to (46.5, 20). The cross section passes through the larger semi-principal axes of both ellipsoids, and
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Fig. 26. Variation of the misfit functional with respect to inversion iterations (layered medium with inclusion).

(a) with 1% Gaussian noise. (b) with 5% Gaussian noise.

(c) with 10% Gaussian noise. (d) with 20% Gaussian noise.

Fig. 27. Measured displacement response of the layered medium with inclusion, at (x, y, z) = (3.125,−13.75, 0) m, due to the Gaussian pulse
p20, contaminated with Gaussian noise.

shows very good reconstruction of the µ profile, and satisfactory inversion of the λ profile. The layering is sharp,
and the ellipsoids are captured well. In Fig. 34, a cross section of the inverted profiles from (x, y) = (20, 46.5) to
(20,−20) to (−46.5,−20) is displayed, where it passes through the smaller semi-principal axes of the ellipsoids and
the center of the sphere. The ellipsoids are well captured; however, the sphere, which consists of “soft” materials, can
hardly be noticed, especially, in the λ profile. Fig. 35(a) and (b) show the inverted profiles on a cross-section through
the domain, situated at 8.75 m from the surface, going through the top ellipsoid’s midplane, and show satisfactory
reconstruction of the ellipsoid. To see the reconstruction of the sphere in more detail, we consider a cross-section,
which goes through the sphere’s midplane, situated at 35 m from the top surface; this is shown in Fig. 35(c) and (d).
The sphere’s footprint is visible in the λ profile, whereas it is more conspicuous in the µ profile.

We also compare cross sections of the inverted profiles with the target along three different lines, which pass
through the ellipsoids and the sphere. These are shown in Fig. 36. Overall, the inverted profiles are satisfactory.
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(a) λ (1% Gaussian noise). (b) µ (1% Gaussian noise).

(c) λ (5% Gaussian noise). (d) µ (5% Gaussian noise).

Fig. 28. Simultaneous inversion for λ and µ using measured data contaminated with 1% and 5% Gaussian noise (layered medium with inclusion).

5. Conclusions

We discussed a full-waveform-based inversion methodology for imaging the elastic properties of a soil medium
in three-dimensional, arbitrarily heterogeneous, semi-infinite domains. The problem typically arises in geotechnical
site characterization and geophysical explorations, where high-fidelity imaging of the two Lamé parameters (or an
equivalent pair) is of interest. Elastic waves are used as probing agents to interrogate the soil medium, and the response
of the medium to these waves is collected at receivers located on the ground surface. The inversion process relies on
minimizing a misfit between the collected response at receiver locations, and a computed response based on a trial
distribution of the Lamé parameters. We used the apparatus of PDE-constrained optimization to impose the forward
wave propagation equations to the minimization problem, directly in the time-domain. Moreover, PMLs were used to
limit the extent of the computational domain.

To alleviate the ill-posedness, associated with inverse problems, we used regularization schemes, along with a
regularization factor continuation scheme, which tunes the regularization factor adaptively at each inversion iteration.
We discussed additional strategies to robustify the inversion algorithm: specifically, we used (a) a source-frequency
continuation scheme such that the inversion process evolves by using low-frequency sources, and, gradually, we use
sources with higher frequencies; and (b) a biasing scheme for the λ-profile, such that, at early iterations of inversion,
the search direction for λ is biased based on that of µ. The latter strategy, in particular, improves the reconstruction
of the material profiles when simultaneous inversion of the two Lamé parameters is exercised. To the best of our
knowledge, this is the first attempt that the two Lamé parameters have been successfully reconstructed in three-
dimensional PML-truncated domains.
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(a) λ (10% Gaussian noise). (b) µ (10% Gaussian noise).

(c) λ (20% Gaussian noise). (d) µ (20% Gaussian noise).

Fig. 29. Simultaneous inversion for λ and µ using measured data contaminated with 10% and 20% Gaussian noise (layered medium with inclusion).

(a) λ at (x, y) = (7.5, 0). (b) µ at (x, y) = (7.5, 0).

Fig. 30. Cross-sectional profiles of λ and µ at different noise levels (layered medium with inclusion).

In order to resolve the forward wave propagation problem, we used a recently developed hybrid finite element
approach, where a displacement–stress formulation for the PML is coupled to a standard displacement-only
formulation for the interior domain, resulting in a scheme with optimal computational cost. Time-integration is
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Fig. 31. Layered medium with three inclusions: target λ and µ (a) along a cross-section that cuts through the domain from (x, y) = (−20,−46.5)

to (−20, 20) to (46.5, 20); (b) along a cross-section that cuts through the medium from (x, y) = (20, 46.5) to (20,−20) to (−46.5,−20);
(c) profile at (x, y) = (−20,−20); (d) profile at (x, y) = (20, 20); and (e) profile at (x, y) = (20,−20).

Fig. 32. Layered medium with three inclusions: target λ and µ on (a) the z = −8.75 m cross-section; and (b) the z = −35 m cross-section.

accomplished by using an explicit Runge–Kutta scheme, which is well-suited for large-scale problems on parallel
computers.

By comparing directional finite differences of the discrete objective functional, and directional derivatives obtained
via the control problems, we verified the accuracy and correctness of the material gradients. We reported numerical
results demonstrating successful reconstruction of both Lamé parameters for smooth and sharp profiles. Overall, the
framework discussed in this paper seems practical, and promising.

Acknowledgments

The first author wishes to thank Dr. Georg Stadler of Courant Institute of Mathematical Sciences for fruitful
discussions and helpful comments. We would also like to thank the two anonymous reviewers whose comments
improved the quality of this paper. Partial support for the authors’ research has been provided by the National Science



68 A. Fathi et al. / Comput. Methods Appl. Mech. Engrg. 296 (2015) 39–72

(a) λ ( fmax = 40 Hz). (b) µ ( fmax = 40 Hz).

Fig. 33. Simultaneous inversion for λ and µ: cross-section cuts through the domain from (x, y) = (−20,−46.5) to (−20, 20) to (46.5, 20) (layered
medium with three inclusions).

(a) λ ( fmax = 40 Hz). (b) µ ( fmax = 40 Hz).

Fig. 34. Simultaneous inversion for λ and µ: cross-section cuts through the domain from (x, y) = (20, 46.5) to (20,−20) to (−46.5,−20) (layered
medium with three inclusions).

Foundation under grant awards CMMI-0619078 and CMMI-1030728, and through an Academic Alliance Excellence
grant between the King Abdullah University of Science and Technology in Saudi Arabia (KAUST) and the University
of Texas at Austin. This support is gratefully acknowledged.

Appendix A. Gradient of a functional

The gradient of a functional F : H → R, where H is a Hilbert space, is defined as the Riesz-representation of the
derivative F ′(q)(q̃), such that:

(G(q), q̃)H = F ′(q)(q̃) ∀q̃ ∈ H, (A.1)

where G denotes the gradient, and we use the following notation for the Gâteaux derivative of F at q in a direction q̃:

F ′(q)(q̃) = lim
h→0

F (q+ hq̃)− F (q)

h
. (A.2)

With this definition, it is not possible to talk about the gradient, without specifying the inner-product utilized to
represent the derivative [43].

Appendix B. The adjoint problem time-integration scheme

We outline the explicit 4th-order Runge–Kutta method (RK-4) for the reverse time-integration of the adjoint
problem. Upon using spectral elements, with Legendre–Gauss–Lobatto (LGL) quadrature rule, the mass-like matrix
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(a) λ ( fmax = 40 Hz). (b) µ ( fmax = 40 Hz).

(c) λ ( fmax = 40 Hz). (d) µ ( fmax = 40 Hz).

Fig. 35. Layered medium with three inclusions: (a) inverted λ profile on the z = −8.75 m cross-section; (b) inverted µ profile on the z = −8.75 m
cross-section; (c) inverted λ profile on the z = −35 m cross-section; and (d) inverted µ profile on the z = −35 m cross-section.

M becomes diagonal; therefore, its inverse can be readily computed. We use the following notation:

Ĉ = C M−1, K̂ = K M−1, (B.1a)

Ĝ = G M−1, f̂ =M−1 fadj. (B.1b)

Using (B.1), (15) becomes:

d

dt

y0
y1
y2

 =
 0 I 0

0 0 I
ĜT

−K̂T ĈT

 y0
y1
y2

+
0

0
f̂

 . (B.2)

The scheme entails computing the following vectors:

k10 = yn
1,

k11 = yn
2,

k12 = Ĉyn
2 − K̂yn

1 + Ĝyn
0 + f̂n,

k20 = yn
1 −

∆t

2
k11,

k21 = yn
2 −

∆t

2
k12,

k22 = Ĉ


yn
2 −

∆t

2
k12


− K̂


yn

1 −
∆t

2
k11


+ Ĝ


yn

0 −
∆t

2
k10


+ f̂n− 1

2 ,

k30 = yn
1 −

∆t

2
k21,
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(a) λ at (x, y) = (−20,−20). (b) λ at (x, y) = (20, 20). (c) λ at (x, y) = (20,−20).

(d) µ at (x, y) = (−20,−20). (e) µ at (x, y) = (20, 20). (f) µ at (x, y) = (20,−20).

Fig. 36. Cross-sectional profiles of λ and µ (layered medium with three inclusions).

k31 = yn
2 −

∆t

2
k22,

k32 = Ĉ


yn
2 −

∆t

2
k22


− K̂


yn

1 −
∆t

2
k21


+ Ĝ


yn

0 −
∆t

2
k20


+ f̂n− 1

2 ,

k40 = yn
1 −∆t k31,

k41 = yn
2 −∆t k32,

k42 = Ĉ(yn
2 −∆t k32)− K̂(yn

1 −∆t k31)+ Ĝ(yn
0 −∆t k30)+ f̂n−1.

Finally, the solution at time step (n − 1) can be updated via:y0
y1
y2

n−1

=

y0
y1
y2

n

−
∆t

6

k10 + 2 k20 + 2 k30 + k40
k11 + 2 k21 + 2 k31 + k41
k12 + 2 k22 + 2 k32 + k42

 . (B.3)

Appendix C. Discretization of the control problems

In Section 3.1.3, we discussed the λ- and µ-control problems. In this part, we consider their spatial discretization.
As discussed in [26], we use the basis Φ for the spatial discretization of w(x, t) and u(x, t), and χ is the basis
for discretizing λ(x) and µ(x). For instance, if we approximate λ(x) with λh(x), then λh(x) = χT λ, where λ

comprises the vector of nodal values for λ. In the following, subscripts in the basis functions indicate derivatives,
and uh = (uT

x , uT
y , uT

z )T and wh = (wT
x , wT

y , wT
z )T is the vector of discrete values of the state and adjoint variables,

respectively. Accordingly:

M̃ =

ΩRD

χχT dΩ . (C.1a)
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For Tikhonov regularization:

gλ
reg =


ΩRD

(χ xχ
T
x + χ yχ

T
y + χ zχ

T
z )λ dΩ , (C.1b)

gµ
reg =


ΩRD

(χ xχ
T
x + χ yχ

T
y + χ zχ

T
z )µ dΩ . (C.1c)

For Total Variation regularization:

gλ
reg =


ΩRD

(χ xχ
T
x + χ yχ

T
y + χ zχ

T
z )λ

λT (χ xχ
T
x + χ yχ

T
y + χ zχ

T
z )λ+ ϵ

 1
2

dΩ , (C.1d)

gµ
reg =


ΩRD

(χ xχ
T
x + χ yχ

T
y + χ zχ

T
z )µ

µT (χ xχ
T
x + χ yχ

T
y + χ zχ

T
z )µ+ ϵ

 1
2

dΩ . (C.1e)

Moreover,

gλ
mis = −

 T

0


ΩRD

χ (ΦT
x wx +ΦT

y wy +ΦT
z wz)(Φ

T
x ux +ΦT

y uy +ΦT
z uz) dΩ dt, (C.1f)

gµ
mis = −

 T

0


ΩRD

χ


2 (ΦT
x wx ΦT

x ux +ΦT
y wy ΦT

y uy +ΦT
z wz ΦT

z uz)

+ (ΦT
y wx +ΦT

x wy)(Φ
T
x uy +ΦT

y ux )+ (ΦT
z wx +ΦT

x wz)(Φ
T
x uz +ΦT

z ux )

+ (ΦT
z wy +ΦT

y wz)(Φ
T
y uz +ΦT

z uy)


dΩ dt. (C.1g)

In (C.1a), upon using spectral elements with LGL quadrature rule, M̃ becomes diagonal; thus, its inverse can be
computed easily.
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