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Abstract

The numerical simulation of wave propagation in heterogeneous unbounded media using domain discretization techniques
equires truncation of the physical domain: at the truncation boundary, Perfectly Matched Layers (PMLs) – buffers wherein
ave attenuation is imposed – are often used to mimic outgoing wave motion and prevent waves from re-entering the interior

omputational domain. The PML’s wave-dissipative properties derive from a coordinate mapping concept, where the physical
oordinate is mapped onto a frequency-dependent complex coordinate in the PML via a complex stretching function. The
hoice of the stretching function controls not only the spectral character and the absorptive properties of the PML, but also,
ore critically, the long-time stability when the computational domain-PML ensemble is used for transient wave simulations.

The standard PML stretching function can lead to error growth, particularly when propagating waves impinge at grazing
ncidence on the truncation boundary. By contrast, a modification to the standard stretching function that has led to the Complex-
requency-Shifted CFS-PML has been shown to alleviate the temporal instability. However, whereas PML formulations using

he standard stretching function can lead to second-order in time semi-discrete forms, affording multifaceted benefits, all CFS-
ML formulations to date require the evaluation of convolutions. In this paper, we discuss a new CFS-PML formulation that
voids the evaluation of convolutions, while preserving the second-order temporal character of elastic waves. It is shown that,
pon spatial discretization, the CFS-PML can be completely described by a triad of stiffness, damping, and mass matrices,
hich can be readily incorporated into existing finite element codes originally designed for interior problems, to endow them
ith wave simulation capabilities on unbounded domains. Numerical experiments in the time-domain demonstrate the efficacy
f the proposed approach; we also report long-time stability for problems involving waveguides and grazing wave incidence.
c 2021 Elsevier B.V. All rights reserved.

eywords: Elastodynamics; Wave propagation; Perfectly matched layers; Multi-field finite elements; Unsplit-field non-convolutional CFS-PML

1. Introduction

The numerical simulation of elastic wave propagation in arbitrarily heterogeneous unbounded media is com-
utationally challenging: the central difficulties stem from the material heterogeneity and the need to satisfy
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Sommerfeld–Kupradze’s radiation conditions at infinity [1–5]. For homogeneous domains, boundary element
approaches, which benefit from the fact that the Green’s functions satisfy by construction the radiation conditions,
offer, possibly, the most elegant, albeit not necessarily the most efficient, way to model elastic wave motion in
unbounded domains. However, in the presence of heterogeneity, domain discretization methods (and their surrogates)
offer the only modeling path. Their use necessitates the truncation of the unbounded physical domain in order to
make the computational domain finite. Such truncation introduces artificial, non-physical, boundaries that require
special treatment to prevent spurious reflections from the waves impinging on the truncation boundary.

Techniques to render the truncation boundary transparent, reflectionless, or absorptive to the traveling waves
ould be broadly divided into two categories: methods that attempt to approximate the exact (transparent) condition
n the truncation boundary, and methods that introduce a buffer past the truncation boundary, wherein wave decay
s enforced. Both non-local and local treatments have been proposed for the former category: a non-local treatment
efers to implementations of the exact Dirichlet-to-Neumann (DtN) truncation condition, and a local treatment refers
o approximations of the exact DtN, which may relax either the DtN’s spatial non-locality, its temporal non-locality,
r both. The literature addressing issues and refinements related to either exact or approximate DtN implementations
s vast and covers acoustic, electromagnetic, and, the more onerous, elastic waves in both the frequency- and the
ime-domains; invariably, however, all such attempts we are aware of suffer from the “curse” of homogeneity, and
breakthrough to extend developments to the all-important heterogeneous case is unlikely.
Developments in the second category – the buffer zone approach – are fewer and far apart. One of the earliest

evelopments is the sponge layers proposed by Israeli and Orszag [6]; it was not until the pioneering idea of
érenger [7], cast first for electromagnetic waves, that the buffer approach to wave absorption gained renewed
ttention. Bérenger’s approach gave birth to the Perfectly-Matched-Layer (PML) – an absorptive buffer zone – where
aves are forced to decay, and whose interface with the interior domain (the truncation boundary) is “perfectly“
atched, allowing, theoretically, for reflectionless propagation into the buffer zone at all angles of incidence and

or all frequencies. To date, the PMLs remain the only viable strategy for numerically simulating wave propagation
n arbitrarily heterogeneous domains.

In [8], the authors showed that the PML can be constructed by mapping the physical coordinate along the
irection perpendicular to the truncation boundary (interface between the interior domain and the PML buffer)
nto a complex coordinate, using a frequency-dependent, complex-valued, so-called, stretching function. It should
e noted that the complex coordinate map transforms the equations of equilibrium and the kinematic conditions,
hus giving rise to a new non-physical medium within which the waves decay. As discussed by Kausel [9,10], this
rtificial PML medium cannot be viewed as a standard viscoelastic medium, since the associated elasticity tensor
acks the minor symmetries.

Chew and Liu [11] were the first to derive a PML for elastic waves using a split-field approach. We note that
he vast majority of the formulations, whether for electromagnetics, acoustics, or elastodynamics, were based on
plit-field formulations, where the displacement (or velocity) components were split into components that were
ropagating perpendicular to the truncation boundary and components that were tangential to it, thereby significantly
ncreasing the number of unknowns and the computational cost. Basu and Chopra [12] were the first to formulate
n unsplit-field PML, initially for time-harmonic problems [12], and later for transient elastodynamics [13–15]:
owever, the resulting semi-discrete forms include an internal force term, in addition to mass-, stiffness-, and
amping-like matrices, requiring the storage of strains, as well as the temporal integration of the strains at every
ime step –a convoluted scheme that also destroyed the, originally, second-order in time character of the elastic
aves.
To preserve the second-order character, Kucukcoban and Kallivokas [16,17] developed a symmetric formulation

n 2D using a mixed-field approach for the PML, whereby both displacements and stresses were treated as unknowns,
et were approximated by standard Lagrange-family finite elements, without the need to resort to specialized mixed
lements. Their approach led to the easy coupling of the PML with a conventional displacement-only formulation
or the interior domain, which also allowed the use of the standard Newmark method for time integration. The
ixed-field formulation was later extended to the 3D case [18]; more recently, it was augmented with the addition

f Rayleigh damping, and its versatility was demonstrated with the development of user-defined elements for
ncorporation into commercial finite element software codes [19,20].

While the above developments advanced the goal of numerically simulating propagating elastic waves in
nbounded heterogeneous domains, they were not entirely problem-free: a key difficulty is related to the long-
ime stability in time-domain simulations. Error growth has been observed, which sometimes has been attributed to
2
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waves impinging at grazing incidence on the PML [21,22], other times to the interaction of evanescent waves with
body waves in the PML [23], but is always associated with the use of the original stretching function. An early
conjecture [24] attributed the error growth to the fact that the standard stretching function exhibits a singularity
at zero frequency, but a definitive proof remains elusive. Nevertheless, the conjecture led to a modified stretching
function that removed the singularity through a frequency shift, and gave rise to the complex-frequency-shifted
CFS-PML [25,26]. The presence of the frequency shift in the stretching function alters the spectral properties of
the PML (compared to the standard stretching function), and, more importantly, increases the temporal complexity
when the formulation is inverted in the time-domain: to date, all CFS-PML implementations require the evaluation
of convolutions. More recently, Matzen [27] discussed a displacement-based, unsplit-field, convolutional CFS-PML
finite element formulation in 2D, which was later extended by Xie et al. [28] in 3D: whereas in both [27,28], the
explicit computations of convolutions was avoided, an auxiliary differential equation approach had to be adopted
to reduce the computational burden related to the convolutions. A similar approach has been recently pursued by
Zhuang et al. [29] in the framework of a Nearly PML (N-PML) technique [30]. The N-PML technique differs from
the PML technique by an inexact variable change in the definition of the stretched coordinates. As a result, the
governing differential equation has the same form in the N-PML as in the regular medium. Theoretically, N-PMLs
are not perfectly matched, since the inexact variable change is only correct if the stretching functions are spatially
constant.

It should be noted that not all implementations or parameterizations of the CFS-PML are capable of eliminating
he long-time instabilities: Meza-Fajardo and Papageorgiou [31] showed that both the standard PML and the CFS-
ML suffer from long-time instability, albeit the CFS-PML can alleviate it by delaying its onset when compared to

he standard PML. Based on numerical experiments, we conjecture that, in fact, careful parameterization of the PML
an indeed delay the onset but not completely eliminate the instability, whereas, by contrast, careful parameterization
f the CFS-PML can in fact eliminate the instability.

The objective of this paper is to extend the unsplit mixed-field formulation proposed by Kucukcoban and
allivokas [16,17] to the CFS-PML: with stability, computational efficacy, and implementational ease in mind,
e aim at a non-convolutional formulation that results in a second-order semi-discrete form, readily amenable to

tandard integration schemes, and, thus, easy to incorporate in existing codes. To this end, we show that through
he introduction of auxiliary fields, local to the CFS-PML only, it is possible to retain the second-order temporal
haracter of the original problem, avoiding convolutions. The result is a CFS-PML fully described by a triad of
ass, damping, and element matrices, derivable by standard finite element approximations. We note that a detailed

iscussion of the aforementioned stability conjecture is beyond the scope of this article, but numerical experiments
ill attest to the conjecture.
The rest of the paper is organized as follows: in Section 2, we review the PML/CFS-PML fundamentals; in

ection 3, we derive the strong form of the governing equations of the CFS-PML. In Section 4, we reduce
he convolutional CFS-PML to second-order via the introduction of auxiliary fields, and derive the associated
emi-discrete form, following suitable approximation choices. Results of numerical experiments are discussed in
ection 5, and conclusions are drawn in Section 6.

. The PML and the CFS-PML stretching functions

Consider, without loss of generality, the domain depicted in Fig. 1a, excerpted from a two-dimensional, originally
nbounded, heterogeneous elastic domain. The unboundedness of the physical domain is interrupted at s = s0

through the introduction of an artificial truncation boundary. A PML buffer of width LPML, terminated at s = st , is
attached to the truncation boundary at s = s0, where s denotes the coordinate normal to the truncation boundary.
The physical domain is henceforth limited to the interior domain (s < s0). We denote with ns the outward unit
normal on the interior domain-PML interface at s0, pointing away from the interior domain.

To endow the PML buffer with wave-dissipative properties, the Navier equations governing the wave motion
in the interior domain are assumed to hold in the PML, albeit the physical coordinate s is mapped onto a
frequency-dependent complex coordinate s̃ as per the map [11,32]:

s ↦→ s̃ = s0 +

∫ s

λs(s ′, ω) ds ′, (1)

s0

3
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Fig. 1. Originally unbounded physical domain truncated through the introduction of a PML buffer: (a) PML concept; and (b) 2D PML
uffer corner detail. The waves pass through the interface s0 without reflections, and decay with distance within the PML.

here ω denotes circular frequency, and λs(s, ω) is the, so-called, stretching function. Differentiation of Eq. (1)
ields:

ds̃
ds

=
d
ds

∫ s

s0

λs(s ′, ω) ds ′
= λs(s, ω), (2)

here it also holds that:
d
ds̃

=
1

λs(s, ω)
d
ds

. (3)

arious forms have been proposed for the stretching function λs . Of concern here are the standard (PML) and the
omplex-frequency-shifted (CFS-PML) stretching functions, defined as:

λs(s, ω) =

{
αs(s) +

βs (s)
iω (PML),

αs(s) +
βs (s)

ωs (s)+iω (CFS-PML).
(4)

n the above, αs is referred to as the scaling function that physically stretches the coordinate s, and, thereby, is
esponsible for the amplitude decay of the evanescent waves; βs is referred to as the attenuation function that
nforces amplitude decay of the propagating waves; and ωs enforces a frequency shift that removes the frequency
ingularity at the origin for the second term of the stretching function, and, in principle, it too may depend on the
patial coordinate s. Clearly, when ωs ≡ 0, the CFS-PML stretching function reduces to the stretching function of
he standard PML.

For the interface at s0 to be reflectionless for all waves entering the PML, αs(s0, ω) = 1 and βs(s0, ω) = 0.
onsequently:

λs(s0, ω) = 1, ∀ ω. (5)

oreover, αs and βs should be positive, non-decreasing functions of s; common choices satisfying the above
equirements include:

αs(s) = 1 + α0

[
(s − s0)ns

LPML

]m

, (6)

βs(s) = β0

[
(s − s0)ns

LPML

]m

, (7)

here α0 and β0 are parameters that control amplitude decay, and m denotes polynomial degree. Usually, β0 should
e chosen large enough to minimize the reflections from the fixed boundary of the PML buffer (at st ). In practice,
he choice of the scaling and attenuation functions is not straightforward and is closely related to the finite element
iscretization. For example, a large value of β0 would require a finer mesh close to the interface at s0 due to the

rapid amplitude decay it imposes, but would, otherwise, allow for a coarser mesh close to the fixed boundary at s :
t

4
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Fig. 2. PML-truncated semi-infinite domain Ω comprised of the regular elastic domain Ω ID and the PML domain ΩPML.

such requirements may be more onerous than the typical meshing guidelines associated with accuracy and numerical
dispersion considerations in wave propagation problems.

While polynomial expressions similar to the ones used for the scaling and attenuation functions αs(s) and βs(s)
re also possible for the frequency shift function ωs(s), the most common choice is a constant shift [21,24,33].

spatially varying shift has been proposed by Roden and Gedney [34], and has been used in elastodynamics by
atzen [27] and Xie et al. [28] in the form of a decaying profile away from the interface s0, as in:

ωs(s) = ω0

[
(LPML + s0 − s)ns

LPML

]m2

, (8)

here ω0 is a parameter that controls the amplitude decay of ωs(s), and m2 is the polynomial degree (m2 = 1 is a
ommon choice).

We note that the complex coordinate stretching implied by the map (1) is uni-directional everywhere within the
ML buffer, except at the corner subdomains (Fig. 1b), where the stretching extends along both ns 1 and ns 2.

. The 2D unsplit-field CFS-PML for elastodynamics

Fig. 2 depicts a semi-infinite physical domain, truncated through the introduction of the PML buffer ΩPML:
he physical domain Ω ID is now of finite extent, and henceforth referred to as the interior domain. The interface
etween the PML buffer and the interior domain is denoted by ΓI; Γ ID

N denotes the interior domain’s free surface,
and Γ PML

D and Γ PML
N denote the Dirichlet and Neumann portions of the outer PML boundaries, respectively. We

ssume that Ω ID is occupied by an elastic, arbitrarily heterogeneous material: we are interested in modeling the
ropagation of elastic waves in Ω ID, including bulk and surface waves, when, for example, the free surface is

subjected to prescribed time-dependent tractions. To address the time-domain formulation, we turn first to the dual
frequency-domain problem.

3.1. Governing equations in the interior domain Ω ID

The in-plane propagation of waves in the elastic domain Ω ID is governed by the conservation of linear momentum
(equilibrium), the kinematic conditions, and the constitutive relation. In the absence of body forces, the conservation
of linear momentum reads1:

LTσ̂ + ρ ω2 û = 0, (9)

here ρ denotes mass density. The vectors σ̂ =
{
σ̂xx , σ̂yy, σ̂xy

}T, and û =
{
ûx , û y

}T collect stress and displacement
omponents, respectively; a hat above a variable denotes the Fourier transform of the subtended quantity; and the

1 Voigt notation, commonly used is standard finite element textbooks (e.g., [35–38]), is adopted in this paper.
5
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functional dependence of σ̂ and û on the spatial coordinates x = (x, y) and the frequency ω is implied, but has
een dropped to reduce symbol congestion. The matrix L consists of differential operators, per:

L =

⎡⎢⎣
∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤⎥⎦ . (10)

he strain vector ϵ̂ =
{
ϵ̂xx , ϵ̂yy, γ̂xy

}T is defined through the kinematic conditions2:

ϵ̂ = Lû, (11)

nd the constitutive relation for the linear elastic medium reads:

σ̂ = Cϵ̂, (12)

here C is the plane strain elasticity matrix, written in terms of the Lamé parameters λ and µ as:

C =

⎡⎣λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

⎤⎦ . (13)

.2. Governing equations in the PML buffer

In order to attenuate the waves in the PML buffer ΩPML, the equilibrium equations (9) are transformed using the
omplex coordinate map (1): the transformation is applied to the partial derivatives of (10), by first setting s = x
n (1), and then s = y. There results:(

1
λx

Lx +
1
λy

Ly

)T

σ̂ + ρ ω2 û = 0, (14)

where the matrices of differential operators Lx , Ly are defined as:

Lx =

⎡⎣ ∂
∂x 0
0 0
0 ∂

∂x

⎤⎦ and Ly =

⎡⎣ 0 0
0 ∂

∂y
∂
∂y 0

⎤⎦ . (15)

learly, it holds that L = Lx + Ly . Next, the transformed equilibrium equations (14) are multiplied by the product
f the stretching functions λxλy to yield:(

λy Lx + λx Ly
)T

σ̂ + ρ λxλyω
2 û = 0, (16)

he kinematic conditions (11) are similarly transformed to yield:

ϵ̂ =

(
1
λx

Lx +
1
λy

Ly

)
û. (17)

As the constitutive law has no explicit spatial dependency, Eq. (12) holds also in the PML buffer ΩPML. Thus,
he set of the stretched equilibrium equations (16), the stretched kinematic conditions (17), and the constitutive
elation (11) describe the dissipative governing equations for the PML.

.3. Boundary and interface conditions

To complete the strong form of the boundary value problems for the interior domain Ω ID and the PML buffer
PML, the following boundary and interface conditions also hold; first, on the fixed exterior PML boundary:

û = 0, x ∈ Γ PML
D , (18)

2 Here, γ denotes the engineering shear strain.
xy

6
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while on the free surface Γ PML
N of the PML buffer we require that:

λxλy t̂(n)
= 0, x ∈ Γ PML

N . (19)

n the free surface of the interior domain Γ ID
N , it holds:

t̂(n)
= 0, x ∈ Γ ID

N \ Γ ID
L , and t̂(n)

= p̂, x ∈ Γ ID
L , (20)

where p̂ denotes applied load on Γ ID
L ⊂ Γ ID

N , and t̂(n) is the traction vector defined, using customary notation, as:

t̂(n)
=

[
σ̂xx nx + σ̂yx ny

σ̂xynx + σ̂yyny

]
. (21)

Lastly, on the interface ΓI between the interior domain and the PML buffer, continuity of displacements and of the
tractions must hold:

û
⏐⏐
Γ−

I
= û

⏐⏐
Γ+

I
, and t̂(n)

⏐⏐
Γ−

I
= −t̂(n)

⏐⏐
Γ+

I
(22)

where the notations Γ−

I and Γ+

I denote limits as the interface ΓI is approached from the interior domain, and the
PML, respectively.

4. Multi-field finite element implementation

4.1. Weak forms

Following standard Galerkin weighted residual lines, the equilibrium equations (9) are first multiplied by
kinematically admissible test functions v̂, and then integrated over the interior domain Ω ID; after integration by
parts and use of the divergence theorem, there results:∫

Ω ID

(
Lv̂
)T

σ̂ dV − ω2
∫
Ω ID

ρ v̂Tû dV =

∫
ΓI

v̂T t̂(n) d A +

∫
Γ ID

L

v̂Tp̂ d A. (23)

perating similarly on the equilibrium equations (16) of the PML buffer ΩPML, and after taking into account the
oundary conditions (18)–(19), we obtain:∫

ΩPML

(
λy Lx v̂ + λx Ly v̂

)T
σ̂ dV − ω2

∫
ΩPML

ρ λxλy v̂Tû dV = −

∫
ΓI

λxλy v̂T t̂(n) d A = −

∫
ΓI

v̂T t̂(n) d A, (24)

here the last equality is due to (5), which ensured that (by construction) λx = λy = 1 on ΓI. Adding (23) and (24),
hile noting that the traction terms on ΓI on the right-hand-side of (23) and (24) cancel out due to the continuity

onditions (22), yields the sought weak form for the entire domain Ω ID
∪ ΩPML:∫

Ω ID

(
Lv̂
)T

σ̂ dV − ω2
∫
Ω ID

ρ v̂Tû dV +

∫
ΩPML

(
λy Lx v̂ + λx Ly v̂

)T
σ̂ dV − ω2

∫
ΩPML

ρ λxλy v̂Tû dV

=

∫
Γ ID

L

v̂Tp̂ d A. (25)

pon substitution of the constitutive law (12) and the kinematic conditions (11) in (25), and the subsequent
ntroduction of approximations for the trial û and the test functions v̂, the first two terms of (25) will return the
tandard stiffness and consistent mass matrices of a displacement-based elastodynamics formulation for the interior
omain. Of interest are the remaining two terms on the left-hand-side of (25), which are defined over the PML
uffer only; to discuss their effect, we collect both terms in SPML, defined as:

SPML
=

∫
ΩPML

(
λy Lx v̂ + λx Ly v̂

)T
σ̂ dV − ω2

∫
ΩPML

ρ λxλy v̂Tû dV . (26)

ext, introduction of the constitutive law (12) and of the stretched kinematic conditions (17) in (26) yields:

SPML
=

∫ (
λy Lx v̂ + λx Ly v̂

)T C
(

1
Lx +

1
Ly

)
û dV − ω2

∫
ρ λxλy v̂Tû dV, (27)
ΩPML λx λy ΩPML

7
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which can be rewritten as:

SPML
=

∫
ΩPML

[
λy

λx

(
Lx v̂

)T C Lx +
λx

λy

(
Ly v̂

)T C Ly +
(
Lx v̂

)T C Ly +
(
Ly v̂

)T C Lx

]
û dV

− ω2
∫
ΩPML

ρ λxλy v̂Tû dV . (28)

As cast, (28), upon introduction of approximations for the trial function û and the test function v̂, will contain dis-
placement degrees-of-freedom within the PML buffer only. However, as discussed next, to remove the convolutions
associated with time-domain implementations of (28), we introduce auxiliary fields that, though they add to the
degrees-of-freedom within the PML, they also succeed in reducing the temporal complexity to advantage.

4.2. Multi-field CFS-PML decomposition

Eq. (28) describes fully the effect of the CFS-PML buffer. Due to the presence of the terms involving the
stretching functions λx and λy , inverting SPML in the time-domain would result in a convolutional form (see, for
example, [28]). In order to bypass the undesirable numerical evaluations of convolutions and arrive at a second-
order form, consistent with the interior domain’s temporal order, we decompose the various terms implicated in the
CFS-PML through the introduction of auxiliary variables, in a manner similar to the formulation of Kucukcoban and
Kallivokas for the standard PML [16,17]. In the following, we introduce auxiliary strain-like and displacement-like
variables: their introduction entails particular advantages, which will be discussed in detail once the discrete form
is obtained.

To aid in subsequent algebraic operations, consider again the definitions of the stretching function λs , with
s ∈ {x, y}, which we recast as:

λs(s, ω) = αs +
βs

ωs + iω
=

αsωs + βs + iω αs

ωs + iω
=

As(s, ω)
Bs(s, ω)

. (29)

herefore:

Ax = αxωx + βx + iωαx , Bx = ωx + iω, Ay = αyωy + βy + iωαy, By = ωy + iω. (30)

oreover, the various cross-products of Ax , Ay, Bx and By are given as:

Ax Ay = (αxωx + βx )
(
αyωy + βy

)  
a0

+
(
αx
(
αyωy + βy

)
+ αy (αxωx + βx )

)  
a1

(iω) + αxαy
a2

(iω)2

= a0 + a1 (iω) + a2 (iω)2 , (31)

Bx By = ωxωy  
b0

+
(
ωx + ωy

)  
b1

(iω) + 1
b2

(iω)2

= b0 + b1 (iω) + b2 (iω)2 , (32)

Ax By = (αxωx + βx ) ωy  
γ0

+
(
αx
(
ωx + ωy

)
+ βx

)  
γ1

(iω) + αx
γ2

(iω)2

= γ0 + γ1 (iω) + γ2 (iω)2 , (33)

Ay Bx =
(
αyωy + βy

)
ωx  

δ0

+
(
αy
(
ωx + ωy

)
+ βy

)  
δ1

(iω) + αy
δ2

(iω)2

= δ0 + δ1 (iω) + δ2 (iω)2 , (34)

here the parameters a0, a1, a2, b0, b1, γ0, γ1, γ2, δ0, δ1, and δ2, depend on both x and y, due to the spatial
ariability of the stretching function components (αx , βx , ωx and αy , βy , ωy), but are otherwise independent of the
requency ω.
8
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Next, we introduce auxiliary strain-like fields ξ̂ and η̂ by subtracting and adding like terms to λy/λx Lx û and
λx/λyLy û, respectively:

λy

λx
Lx û = Lξ

(
λy

λx
−

αy

αx

)
∂û
∂x  

ξ̂

+
αy

αx
Lx û, (35)

and similarly:

λx

λy
Ly û = Lη

(
λx

λy
−

αx

αy

)
∂û
∂y  

η̂

+
αx

αy
Ly û, (36)

here the strain-like fields ξ̂ and η̂ are defined as:

ξ̂ =

(
λy

λx
−

αy

αx

)
∂û
∂x

, (37)

nd

η̂ =

(
λx

λy
−

αx

αy

)
∂û
∂y

, (38)

ith

Lξ =

⎡⎣1 0
0 0
0 1

⎤⎦ and Lη =

⎡⎣0 0
1 0
0 1

⎤⎦ (39)

enoting selection matrices. We note that, while ξ̂ and η̂ contain derivatives of the displacement vector, and are
herefore strain-like quantities, they possess only two components. Next, in addition to (37)–(38), we introduce an
uxiliary displacement-like field û, defined as:

û =

[
(iω)2

Bx By
− 1

]
û. (40)

he bracketed term in Eq. (40) can be interpreted as a filter, and, thus, û can be seen as a filtered displacement.
Eq. (40), with the aid of (30), allows us to rewrite the term (iω)2 λxλy û that appears in Eq. (28) as:

(iω)2 λxλy û = Ax Ay
(
û + û

)
. (41)

ext, we introduce (41) and the auxiliary fields ξ̂ , η̂, and û into SPML of (28), which becomes:

SPML
=

∫
ΩPML

[
αy

αx

(
Lx v̂

)T CLx +
αx

αy

(
Ly v̂

)T CLy +
(
Lx v̂

)T CLy +
(
Ly v̂

)T CLx + ρ Ax Ay v̂T
]

û dV

+

∫
ΩPML

[(
Lx v̂

)T CLξ

]
ξ̂ dV +

∫
ΩPML

[(
Ly v̂

)T CLη

]
η̂ dV +

∫
ΩPML

ρ Ax Ay v̂Tû dV . (42)

Eq. (42), together with the weak imposition of definitions (37), (38), and (40) constitute the multi-field CFS-PML
equivalent to the displacement-only CFS-PML of (28). To complete the equivalence, we conclude with the weak
forms of (37), (38), and (40), using test functions v̂ξ , v̂η, and v̂u, respectively:∫

ΩPML
Ax By v̂T

ξ ξ̂ dV −

∫
ΩPML

(
Ay Bx −

αy

αx
Ax By

)
v̂T

ξ

∂û
∂x

dV = 0, (43)∫
ΩPML

Ay Bx v̂T
η η̂ dV −

∫
ΩPML

(
Ax By −

αx

αy
Ay Bx

)
v̂T

η

∂û
∂y

dV = 0, (44)∫
ΩPML

Bx By v̂T
uû dV −

∫
PML

[
(iω)2

− Bx By
]

v̂T
uû dV = 0. (45)
Ω

9
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4.3. The discrete form of the CFS-PML

Following a standard Galerkin procedure, we use the same standard approximants (e.g., Lagrange, spectral,
erendipity, etc.) for both the trial and test functions implicated in the multi-field CFS-PML weak forms (42)–(45).
ccordingly, let3:

û(x, ω) ≈ Nu(x)Û, v̂(x, ω) ≈ Nu(x)V̂, (46)

ξ̂ (x, ω) ≈ Nξ (x)Ξ̂, v̂ξ (x, ω) ≈ Nξ (x)V̂ξ , (47)

η̂(x, ω) ≈ Nη(x)Ĥ, v̂η(x, ω) ≈ Nη(x)V̂η, (48)

û(x, ω) ≈ Nu(x) ˆ

¯
U, v̂u(x, ω) ≈ Nu(x)V̂u, (49)

here Nu(x), Nξ (x), Nη(x), and Nu(x) are (global) shape functions and Û, Ξ̂, Ĥ, and Û collect nodal displacements
nd auxiliary variables. Introducing (46)–(49) into (42)–(45) results in:

SPML
= VT

[∫
ΩPML

(
αy

αx
BT

x CBx +
αx

αy
BT

y CBy + BT
x CBy + BT

y CBx + ρ Ax Ay NT
u Nu

)
dV
]

Û.

+ VT
ξ

[∫
ΩPML

BT
x CBξ dV

]
Ξ̂ + VT

η

[∫
ΩPML

BT
y CBη dV

]
Ĥ + VT

u

[∫
ΩPML

ρ Ax Ay NT
u Nu dV

]
Û. (50)

VT
ξ

[∫
ΩPML

Ax ByNT
ξ Nξ dV

]
Ξ̂ − VT

ξ

[∫
ΩPML

(
Ay Bx −

αy

αx
Ax By

)
NT

ξ LT
ξ Bx dV

]
Û = 0. (51)

VT
η

[∫
ΩPML

Ay Bx NT
ηNη dV

]
Ĥ − VT

η

[∫
ΩPML

(
Ax By −

αx

αy
Ax By

)
NT

ηLT
ηBy dV

]
Û = 0. (52)

VT
u

[∫
ΩPML

Bx ByNT
uNu dV

]
Û − VT

u

[∫
ΩPML

(
(iω)2

− Bx By
)

NT
uNu dV

]
Û = 0. (53)

here Bx = Lx Nu, By = LyNu, Bξ = Lξ Nξ , and Bη = LηNη. Eqs. (50)–(53) are the discretized governing equations
f the CFS-PML buffer zone. We note that using the definitions (30)–(34) of the various coefficients implicated in
he CFS-PML discrete form, the frequency ω in (50)–(53) appears to, at most, second power. Thus, reintroducing
50)–(53) into Eq. (25), yields the discrete form for the interior-domain-PML ensemble as:(

K + iωC − ω2M
)

d̂ = f̂, (54)

here the vector of nodal unknowns d̂ includes displacements, auxiliary strain fields, and the filtered displacements,
.e.:

d̂ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Û
Ξ̂

Ĥ
Û

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (55)

e note again that the nodal displacement vector Û is defined over the entire domain Ω ID
∪ ΩPML, whereas the

odal auxiliary vectors Ξ̂, Ĥ, and Û are defined over the PML buffer only. The stiffness K, damping C, and mass
atrices M are defined as:

K = KID + KPML, C = CPML, and M = MID + MPML. (56)

he contributions KID and MID to the global stiffness and mass matrices, respectively, are the standard stiffness
nd consistent mass matrices of a displacement-based finite element method for the interior domain ΩID, and are
dded to the global system matrices through a standard finite element assembly procedure. Similarly, the load vector

=

{∫
Γ ID

L
NT

u p̂ d A, 0, 0, 0
}T

corresponds to the loading vector along the boundary Γ ID
L of the interior domain. The

3 While û and v̂ are defined over Ω ID
∪ ΩPML, the auxiliary fields ξ̂ , η̂, û, and the corresponding test functions are defined over ΩPML
nly.
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stiffness matrix KPML is defined as:

KPML =

∫
ΩPML

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αy
αx

BT
x CBx +

αx
αy

BT
y CBy + BT

x CBy BT
x CBξ BT

y CBη ρa0NT
u Nu

+BT
y CBx + ρa0NT

u Nu

−

(
δ0 −

αy
αx

γ0

)
NT

ξ LT
ξ Bx γ0NT

ξ Nξ 0 0

−

(
γ0 −

αx
αy

δ0

)
NT

ηLT
ηBy 0 δ0NT

ηNη 0

b0NT
uNu 0 0 b0NT

uNu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dV . (57)

imilarly, the damping matrix CPML is:

CPML =

∫
ΩPML

⎡⎢⎢⎢⎢⎢⎣
ρa1NT

u Nu 0 0 ρa1NT
u Nu

−

(
δ1 −

αy
αx

γ1

)
NT

ξ LT
ξ Bx γ1NT

ξ Nξ 0 0

−

(
γ1 −

αx
αy

δ1

)
NT

ηLT
ηBy 0 δ1NT

ηNη 0

b1NT
uNu 0 0 b1NT

uNu

⎤⎥⎥⎥⎥⎥⎦ dV, (58)

nd the mass matrix MPML is defined as:

MPML =

∫
ΩPML

⎡⎢⎢⎢⎢⎢⎣
ρa2NT

u Nu 0 0 ρa2NT
u Nu

−

(
δ2 −

αy
αx

γ2

)
NT

ξ LT
ξ Bx γ2NT

ξ Nξ 0 0

−

(
γ2 −

αx
αy

δ2

)
NT

ηLT
ηBy 0 δ2NT

ηNη 0

(b2 − 1)NT
uNu 0 0 b2NT

uNu

⎤⎥⎥⎥⎥⎥⎦ dV . (59)

n the above, the volume integrals over ΩPML are evaluated using standard (full) Gaussian integration within the
ramework of isoparametric finite elements. Since the system matrices are frequency-independent, the frequency-
omain system of equations (54) can be readily transformed back into the time-domain, resulting in:

(MID + MPML)d̈ + CPMLḋ + (KID + KPML)d = f, (60)

here a dot above a variable implies time differentiation. The resulting discretized system of equations (54) in the
requency-domain, or its counterpart (60) in the time-domain, recovered the familiar elastodynamics or structural
ynamics form, and, thus the new formulation can be easily incorporated into existing finite element packages that
llow for user-defined elements. Furthermore, Eq. (60) is non-convolutional and can be numerically integrated in
ime using standard implicit (e.g., Newmark’s method) or explicit time integration schemes, readily available in

ost commercial software packages.

.3.1. Relation to standard PML and to an elastic medium
Rewritten succinctly, the CFS-PML matrices admit the following structure:

KPML =

⎡⎢⎢⎣
Kuu Kuξ Kuη Kuu
Kξu Kξξ 0 0
Kηu 0 Kηη 0
Kuu 0 0 Kuu

⎤⎥⎥⎦ , CPML =

⎡⎢⎢⎣
Cuu 0 0 Cuu
Cξu Cξξ 0 0
Cηu 0 Cηη 0
Cuu 0 0 Cuu

⎤⎥⎥⎦ ,

and MPML =

⎡⎢⎢⎣
Muu 0 0 Muu
Mξu Mξξ 0 0
Mηu 0 Mηη 0
Muu 0 0 Muu

⎤⎥⎥⎦ , (61)

where the definitions of the individual submatrices can be directly inferred from (57)–(59). We note that, in the
case of a standard PML, for which it holds that ω = ω = 0, the filtered displacement (40) vanishes identically,
x y

11
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and the parameters a0, a1, a2, b0, b1, γ0, γ1, γ2, δ0, δ1, and δ2 reduce to:

a0 = βxβy, a1 = αxβy + αyβx , a2 = αxαy,

b0 = 0, b1 = 0, b2 = 1,

γ0 = 0, γ1 = βx , γ2 = αx ,

δ0 = 0, δ1 = βy, δ2 = αy .

(62)

This leads to the following matrix structure, valid for the standard PML:

KPML =

⎡⎣Kuu Kuξ Kuη

0 0 0
0 0 0

⎤⎦ , CPML =

⎡⎣Cuu 0 0
Cξu Cξξ 0
Cηu 0 Cηη

⎤⎦ , MPML =

⎡⎣Muu 0 0
0 Mξξ 0
0 0 Mηη

⎤⎦ . (63)

The matrices in Eq. (63) give rise to a new element for the standard PML, which entails advantages over the earlier
(standard) PML elements derived in [16,17]. To compare, we first note that the matrices of the new PML element
are non-symmetric and indefinite, whereas in [17] two PML elements were proposed, one defined by symmetric,
yet indefinite, matrices, and a second characterized by non-symmetric, yet positive-definite, matrices. Moreover,
the elements in [17] required 3 auxiliary fields (stress components), whereas herein we use 4 auxiliary fields (ξ
and η, with 2 components each). Thus, at first glance it appears that the earlier developed elements may have a
computational advantage: however, the elements in [17] require same-order approximants for both the displacements
and the stresses, whereas, as will be discussed in the next section, reduced-order approximants are possible for the
auxiliary fields used herein, thus realizing a modest improvement on the computational cost over the earlier PML
elements. It is noted that the overarching advantage of the present formulation is that the desired second-order
character is enjoyed not only by the standard PML, but also has now been extended to the CFS-PML.

We note that in the case of a regular elastic medium, for which αx = αy = 1, βx = βy = 0, ωx = ωy = 0, the
parameters a0, a1, a2, b0, b1, γ0, γ1, γ2, δ0, δ1, and δ2 take the following values:

a0 = 0, a1 = 0, a2 = 1,

b0 = 0, b1 = 0, b2 = 1,

γ0 = 0, γ1 = 0, γ2 = 1,

δ0 = 0, δ1 = 0, δ2 = 1.

(64)

Accordingly, all auxiliary variables vanish identically, and the PML matrices (57)–(59) reduce to:

KPML = Kuu, CPML = 0, and MPML = Muu, (65)

whose structure is identical to the interior problem’s matrices.

4.4. CFS-PML element technology

Given the mixed-field implementation of the CFS-PML, it is of interest to minimize the number of additional
degrees-of-freedom (DOF) introduced by the auxiliary fields. To this end, we explore the use of approximants Nξ ,
Nη, and Nu for the auxiliary fields (Eqs. (47)–(49)) of order lower than the order of the approximants Nu used for the
displacements (Eq. (46)). As is typically the case, of concern is that the choices of the particular approximant orders
do not introduce spurious zero-energy modes [39], due to rank deficiency of the element stiffness matrix. Typically,
this rank deficiency would result in spurious hourglass-shaped deformations, which in transient simulations would
lead to instability. If realized, these zero-energy modes would require specialized stabilization schemes in order to
avoid hourglassing, as first established by Belytschko et al. [40,41].

To address the concern, we turn to the structure of the system matrices (61), and note that the stiffness submatrix
Kuu has full rank, and, therefore the displacement solution will always remain free of spurious zero-energy modes,
irrespective of the order of the approximants for the auxiliary fields: the benefit lent by Kuu can be traced to
the mixed-field formulation and the particular choices for the auxiliary fields (Eqs. (35) and (36)). It is important
to note that the use of reduced-order approximants for the stresses in our earlier mixed-field displacement–stress
formulation [16,17] would have triggered spurious zero-energy modes, resulting in hourglass instabilities in the
computed response: therein lies an additional modest computational advantage the present mixed-field formulation
has over the earlier one.
12
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Fig. 3. Discretization of the displacement and auxiliary fields: (a) the Q41 element with a linear variation of û and a constant ξ̂ , η̂, and û;
b) the Q44 element with a bilinear variation of all variables; (c) the Q81 serendipity element with a quadratic variation of û and a constant
ˆ , η̂, and û; and (d) the Q84 serendipity element with a quadratic variation of û and a bilinear variation of ξ̂ , η̂, and û.

Table 1
Degrees-of-freedom for various multi-field CFS-PML elements; the degrees-
of-freedom for a standard single-field Q4 and Q8 element are indicated in
gray.

With the above thoughts in mind, we consider next four different CFS-PML element types (Fig. 3). The first
lement type, henceforth referred to as the Q41 element, combines standard bilinear 4-noded shape functions (Q4)
or the displacement field (shown with solid circles in Fig. 3) with a constant shape function for each of the auxiliary
ariables (shown with open circles in Fig. 3). A second CFS-PML element type – the Q44 element – employs
ilinear shape functions for the displacements and the auxiliary variables. Similarly, CFS-PML elements Q81 and
84 use 8-noded serendipity shape functions for the displacement field with a constant or bilinear approximations

or the auxiliary variables, respectively.
The number of DOF for each of the CFS-PML multi-field elements is listed in Table 1 and is compared to the

tandard single-field Q4 and Q8 elements. As it can be seen, the Q41 and Q81 elements result in a modest increase
f the number of DOF with respect to the Q4 and Q8 elements, respectively, whereas the number of DOF for the
44 and Q84 elements is notably larger. Shown in Table 1 is also the average number of DOF per element in a,

heoretically, infinite 2D mesh of rectangular elements: it appears that the Q81 element is particularly attractive,
ince it only doubles the number of DOF per element with respect to the standard Q8 element. We note that the
onstruction of triangular CFS-PML elements follows lines similar to those pursued for the development of the
uadrilateral elements.

. Numerical examples

In this section, we demonstrate the use of the new CFS-PML elements with three case studies: a homogeneous
alfspace, a waveguide, and a three-layered medium overlain a halfspace. The performance of the various CFS-PML
lement types of Section 4.4 is discussed, while results for both the standard PML and the CFS-PML are presented
nd compared.

.1. Case 1: homogeneous halfspace

In the first case study, we model the response of a homogeneous solid occupying a halfspace, under plane strain

onditions, when subjected to a vertical line load on the surface at the origin (Fig. 4). The solid has shear wave

13
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Fig. 4. PML-truncated semi-infinite domain.

Fig. 5. (a) Time history; and (b) frequency content of a Ricker pulse with a characteristic period td = 0.2 s and time shift ts = 0.3 s.

elocity Cs = 100 m
s , dilatational wave speed Cp = 200 m

s (Poisson ratio ν =
1
3 ), and mass density ρ = 1800 kg

m3 .
The computational domain consists of an interior domain with a size of 200 m × 200 m, surrounded by a 10
m-thick PML buffer at the bottom and left side (LPML = 10 m). The PML buffer is fixed along its outer edges,
xcept along the free surface, while symmetry conditions are applied along the x = 0 edge. The line load p(x, y, t)

is driven by a Ricker wavelet of unit amplitude, defined as:

p(x, y, t) =

(
0, −δ(x − 0, y − 0)

[
1 − 2

(
π (t − ts)

2 − td

)2
]

exp

[
−

(
π (t − ts)

td

)2
])

, (66)

here td = 0.2 s is the characteristic period, and ts = 0.3 s is the time shift. Fig. 5 depicts the time history and
requency content of the Ricker pulse, which has a dominant frequency of 1/td = 5 Hz, and a spectral bandwidth
f about 15 Hz.

To define the PML, we use a quadratic function for both βx , and βy (m = 2 in Eq. (7)), and set β0 = 20 Cs/LPML.
onversely, α0 is set to 0 (no physical stretching of the coordinates). Both the standard PML and the CFS-PML

tretching function are considered: to obtain the standard PML, we set ωx = ωy = 0, and for the CFS-PML we set
x = ωy = ω0 = 5π rad/s. We note that, even though the formulation allows for spatially variable frequency shifts,
erein we restrict the computational experiments to the use of a constant frequency shift ω0 (m2 = 0 in Eq. (8));

the selected value corresponds to the cut-off frequency of an elastic layer with a thickness equal to the PML’s width
L = 10 m and a shear wave velocity C = 100 m (ω =

π Cs ).
PML s s 0 2 LPML
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Fig. 6. Vertical displacement in the semi-infinite domain at (a) t = 2 s, (b) t = 4 s, and (c) t = 6 s for the Q81 element and CFS-PML
shape function.

A mesh of 210 × 210 square elements of edge size equal to 1 m is used to discretize the computational domain.
Standard displacement-based Q4 or Q8 finite elements are employed in the interior domain; the Q4 elements are
enhanced with incompatible bending shape functions to preclude shear locking [42,43]. When the interior domain
is meshed with the Q4 elements, then the PML buffer is meshed with either the Q41 or Q44 CFS-PML elements,
and similarly, Q8 interior domain elements are coupled with Q81 or Q84 CFS-PML elements. The Newmark-β
method is used for integrating the equations of motion in time, with the Newmark parameters set to β =

1
4 and

γ =
1
2 (constant average acceleration) — a scheme that is energy conserving. A time step ∆t = 0.01 s is used to

compute the response for all element types and for both the standard PML and the CFS-PML stretching functions.
Fig. 6 shows the amplitude of the vertical displacement component at various time instances when the CFS-PML

Q81 element is used4: at t = 2 s, the P-wave front, the S-wave front, the head wave, and the Rayleigh wave are
clearly seen; at t = 4 s, the P-wave front has already been attenuated by the CFS-PML, as has a portion of the
head wave; at t = 6 s the Rayleigh wave have been absorbed, while the tail end of the S-wave front is about
to exit the computational domain. Thus, all waves are efficiently absorbed by the PML buffer with no discernible
reflections; in addition, no spurious growth is observed. To complement the pictorial depiction of the reflectionless
wave absorption, Fig. 7 shows the time histories of the horizontal and vertical displacement components at receivers
R1 and R2 (Fig. 4), for all element types (Q81, Q84, Q41, and Q44): the Q41 and Q44 responses are virtually
indistinguishable, as are the Q81 and Q84 traces. However, small differences exist between the different-order
elements (e.g., Q81 versus Q41) due to numerical dispersion — typical of wave simulations where no special
dispersion treatment has been implemented.

In order to further quantify the performance of the CFS-PML, we consider next an enlarged domain ΩED of size
410 m × 410 m with fixed exterior boundaries. The extended domain is discretized with the displacement-based Q4
and Q8 elements, respectively, and the response is recorded up to times that are prior to the arrival of any waves
to ΩRD from the part of the domain that is exterior to ΩRD. The results uED of the extended domain computation
are compared against those obtained from the CFS-PML-truncated domain. In particular, in Fig. 8 we consider the
normalized error histories

ui − uED
i

 / max
uED

i

 of the displacement components at the receiver locations R1 and
R2. As it can be seen therein, the error is approximately 3–7 orders smaller than the displacement amplitude, for
all element types, and it can be further controlled by increasing the amplitude decay in the PML parameter through
the value of the parameter β0. As discussed by Kucukcoban and Kallivokas [17], this should be accompanied by a
mesh refinement of the PML buffer to reduce numerical reflections.

To better quantify the PML’s wave-absorptive behavior and its long-time behavior, we compute next the energy
in the interior domain. Fig. 9 depicts the energy as a function of time for the four element types Q41, Q44, Q81,

4 The results, using elements Q41, Q44, and Q84, are, visually, identical.
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Fig. 7. Time history of the horizontal (left) and vertical (right) displacement components at receivers R1 (top) and R2 (bottom). The results
are shown for the Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84 (dotted black) elements.

Fig. 8. Time history of the normalized error
ui − uED

i

 / max
uED

i

 of the horizontal (left) and vertical (right) displacements at receivers
R1 (top row), and R2 (bottom row). The results are shown for the Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84 (dotted
black) elements.

and Q88, and for both the standard PML (left column) and the CFS-PML (right column). The top figure row shows
the energy using a linear scale between 0 s and 10 s, while the plots of the second figure row have been drawn in
logarithmic scale for a much longer observation period (200 s). From the top figure row, the responses, using either
the standard PML or the CFS-PML, appear identical. Specifically, it can be seen that after the pulse has entered its
silent state at about t = 0.5 s, the energy plateaus until the P-wave exits the interior domain propagating into the
PML buffer (1 s < t < 2 s); the energy then drops to a second plateau, which is subsequently maintained until the

Rayleigh and S-waves reach the PML buffer and get themselves absorbed, starting at about t = 3 s.
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Fig. 9. Energy in the interior domain (case 1) for: (a) standard PML (ω0 = 0); and (b) CFS-PML (ω0 = 5 rad/s). Results are shown for
he Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84 (solid black) elements. The results are plotted on a linear scale for
≤ t ≤ 10 s (top row), and on a logarithmic scale for 0 ≤ t ≤ 200 s (second row).

Fig. 10. PML-truncated semi-infinite shallow domain occupied by a homogeneous elastic solid.

While the responses obtained using the standard PML and the CFS-PML match well at early times, long-time
instabilities arise for the standard PML: for example, using the Q84 PML element, spurious growth of the energy
is observed from about t = 10 s (Fig. 9). By contrast, in this experiment, the Q41, Q44, and Q81 standard PML
lements do not suffer from instabilities, but may be unstable for other domain geometries and loading, as will
e shown in the next example. We note that the long-time instability of the standard PML has been reported
lsewhere [21,22], though its origins, to date, have not been adequately traced or articulated. By contrast, the
FS-PML mitigates the spurious growth, resulting in a long-time energy decay for all element types.

.2. Case 2: Homogeneous waveguide

In order to further study the spurious energy growth in the PML, we consider next the response of a shallow and
ong homogeneous domain (Fig. 10), bearing the same physical properties and loading as those of the preceding
ection’s case. The interior domain is 500 m long and 20 m deep, and is surrounded by a 10 m-thick PML: the
eometry is similar to one described by Festa and Vilotte in [21], and it is particularly prone to instabilities when
vanescent (e.g. Rayleigh) waves enter the PML buffer at near-grazing angles. Thus, the numerical experiment of
his section has been designed to trigger the reported instability, by setting the domain’s depth to be approximately
qual to the dominant Rayleigh wavelength (corresponding to the Ricker pulse’s central frequency), thereby allowing
ower-frequency Rayleigh waves to penetrate the PML buffer. The interior domain is meshed using 510 × 30 square
elements with 1 m sides. The displacement-based Q4 or Q8 finite elements are employed in the interior domain,
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t

w
N

Fig. 11. Wavefield snapshots in a shallow elastic domain terminated by a standard PML buffer (ω0 = 0): (a) t = 0.5 s, (b) t = 2.0 s, (c)
= 3.5 s, and (d) t = 5.0 s.

hereas Q41, Q44, Q81, or Q84 elements are used for the PML buffer, and, similarly to the preceding case, the
ewmark-β method is used with β =

1
4 and γ =

1
2 for marching in time.

Figs. 11 and 12 show snapshots of the response when the standard PML and the CFS-PML are used, respectively.
The corresponding energy plots are shown in Fig. 15. We note that in the standard PML case (Fig. 11), the Rayleigh
waves that penetrate the PML show amplitude growth as the waves travel to the right: the amplitude growth is
particularly apparent near the fixed boundary of the PML, and, in turn, results in energy growth in the interior
domain. This can also be seen in the time history at receiver R1 depicted in Fig. 13, where the amplitude growth
results in spurious oscillations at about t = 6 s. By contrast, the use of the CFS-PML mitigates the spurious
oscillations, as it can be seen in the time history depicted in Fig. 14.

As it can be seen in Fig. 15 (top left), the energy increases from t = 1 s to t = 6 s, prior to the waves exiting into
the side PML buffer, and the energy no longer exhibits the plateau described in the preceding section. By contrast,
the wavefield snapshots depicted in Fig. 12, which were obtained using the CFS-PML, do not exhibit growth: in
particular, the motion amplitudes as the fixed PML boundary is approached have clearly decayed. Moreover, the
energy has now plateaued, as shown in Fig. 15 (top right).

When the motion is recorded over long times, the exponential energy growth associated with the standard PML
becomes plainly obvious, as shown in Fig. 15 (bottom left): the Q41, Q81, and Q84, endowed with the standard
PML stretching function, exhibit error growth. The standard PML Q44 element also results in spurious energy
growth, but, in the Q44 case, the PML corner is more effective than in the Q41, Q81, and Q84 cases in limiting
the growth.

By contrast, all four of the new CFS-PML elements do not cause energy growth, resulting in stable long-time
behavior, as it can be seen in Fig. 12 (bottom right). In addition, and similarly to the preceding section’s case, the
results for the Q41 and Q44 elements, and the Q81 and Q84 elements, respectively, are virtually indistinguishable,
indicating that the additional DOF of the Q44 and Q84 elements contribute little to the absorptive capabilities of
the elements.

5.3. Case 3: Layered medium

We consider next the response of a layered elastic medium, comprising two layers of 40 m and 80 m thickness,
respectively, overlain on a homogeneous halfspace, as shown in Fig. 16. The shear wave velocity is C = 100 m
s s
18
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(

Fig. 12. Wavefield snapshots in a shallow elastic domain terminated by a CFS-PML buffer (ω0 = 5π rad/s): (a) t = 0.5 s, (b) t = 2.0 s,
c) t = 3.5 s, and (d) t = 5.0 s.

Fig. 13. Time history of: (a) horizontal; and (b) vertical displacement components at receiver R1 in a shallow elastic domain terminated by
a standard PML buffer (ω0 = 0). The results are shown for the Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84 (dotted
black) elements.

Fig. 14. Time history of: (a) horizontal; and (b) vertical displacement components at receiver R1 in a shallow elastic domain terminated by
a CFS-PML buffer (ω0 = 5π rad/s). The results are shown for the Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84 (dotted
black) elements.
19
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a
l

Fig. 15. Energy in the interior of the shallow domain (case 2) for: (a) standard PML (ω0 = 0); and (b) CFS-PML (ω0 = 5π rad/s). Results
re shown for the Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84 (dotted black) elements. The results are plotted on a
inear scale for 0 ≤ t ≤ 10 s (top row), and on a logarithmic scale for 0 ≤ t ≤ 200 s (second row).

Fig. 16. PML-truncated semi-infinite layered medium.

for the top layer, Cs = 200 m
s for the second layer, and Cs = 400 m

s for the underlying halfspace. The Poisson ratio

ν =
1
3 and the mass density ρ = 1800 kg

m3 are assumed constant for the layers and the halfspace. Furthermore, we
consider the same Ricker pulse loading as in the preceding cases (Eq. (66)), and the same mesh and time-integration
scheme as those used for the case 1 experiment.

Fig. 17 depicts wavefield snapshots of the vertical displacement component at various times, where the reflections
from the layer interfaces create a complicated wave pattern. Fig. 18 shows the corresponding time histories of the
horizontal and vertical displacement components at receiver R1. Despite the complexity, both the standard PML and

the CFS-PML result in a similarly effective absorption of the elastic waves at early times. However, as shown in
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Fig. 17. Wavefield snapshots of the vertical displacement component in a layered elastic medium terminated by a CFS-PML buffer with
0 = 5π rad/s: (a) t = 2 s; (b) t = 4 s; and (c) t = 6 s.

Fig. 18. Time history of: (a) horizontal; and (b) vertical displacement components at receiver R1 in a layered elastic medium terminated
by a CFS-PML buffer with ω0 = 5π rad/s. The results are shown for the Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84
dotted black) elements.

ig. 19 (bottom left), among the standard PML elements, it is now the Q84 that exhibits exponential error growth.
y contrast all of the new CFS-PML elements, including the Q84, appear to be stable, as shown in Fig. 19 (bottom

ight).

. Conclusions

In this paper we discussed a new non-convolutional, second-order, unsplit-field, finite element formulation of
he CFS-PML. The desirable second-order temporal character of the resulting formulation was achieved through
he introduction of auxiliary fields, local to the PML buffer only. Using low-order polynomial approximations for
he displacement components and the auxiliary fields, we derived the first four members of a family of CFS-PML
lements that are fully defined by a triad of element stiffness, damping, and mass matrices, which could be readily
ncorporated into existing codes.

The performance of the proposed multi-field CFS-PML elements was numerically tested in homogeneous and
eterogeneous domains, including layered and arbitrarily heterogeneous media: a subset of these experiments was
resented herein to demonstrate the relative performance of the various CFS-PML elements, and to compare their
erformance against the standard PML. While both the PML and CFS-PML force the rapid and effective wave
ecay within the PML buffer, the standard PML is plagued by long-time instability, even for isotropic, homogeneous
edia. To date, the standard PML’s instability can be delayed through judicious parameterization of the PML, but

annot be completely eliminated; by contrast, the CFS-PML, using any of the four developed elements, appears to
esult in stable long-time behavior.

The low-order interpolation of the auxiliary fields of the Q41 and Q81 CFS-PML elements entails only a small

rror compared to its higher-order counterparts (Q44 and Q84, respectively), while significantly reducing the number
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Fig. 19. Energy in the interior of the layered medium (case 3) for: (a) standard PML (ω0 = 0); and (b) CFS-PML (ω0 = 5π rad/s). Results
re shown for the Q41 (solid gray), Q44 (dotted gray), Q81 (solid black), and Q84 (dotted black) elements. The results are plotted on a
inear scale for 0 ≤ t ≤ 10 s (top row), and on a logarithmic scale for 0 ≤ t ≤ 200 s (second row).

f degrees-of-freedom: for a typical mesh, the new CFS-PML Q81 element only doubles the number of degrees-
f-freedom with respect to an elastic Q8 element, while providing the needed wave attenuation within the PML
uffer. In summary, the new CFS-PML formulation and associated elements offer an efficient and robust scheme
or numerically modeling transient elastic wave propagation in arbitrarily heterogeneous unbounded domains, while
lso retaining the second-order character of the elastic wave equations.
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