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a b s t r a c t

We discuss a comprehensive process for designing the material properties of three-dimensional
periodic structures that are tasked to exhibit user-defined omnidirectional band gaps. To this end,
we build upon the framework first posited in Goh and Kallivokas (2019) for two-dimensional
metamaterials, and aim at engineering the dispersive properties of a metamaterial’s 3D unit cell using
an inverse medium approach. The inversion is driven by forcing the vanishing of trial group velocities
at the target band gap frequencies, subject to the satisfaction of the Floquet–Bloch eigenvalue problem
defined over the unit cell’s IBZ. Omnidirectionality is controlled by enforcing the vanishing of the group
velocities along the IBZ’s high-symmetry lines. Using an adjoint method, the unit cell’s properties are
iteratively updated until the design goal is attained. Numerical examples for acoustic metamaterials
and metasurfaces demonstrate the methodology.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

The need for controlling the propagation of waves in engi-
eered or natural systems arises commonly across the acoustics,
lectromagnetics, and mechanical wave regimes. Applications of
nterest across all regimes include cloaking [1–4], lensing [5,6],
teering [7,8], shielding [9–12], band-gapping [13], and, more
ecently, extend to analog computing [14], with as yet untapped
otential in dynamic adaptability, and cross-regime applications.
Wave control is typically accomplished by engineering the

ispersive properties of periodic structures and their subperiodic
erivatives (e.g., metasurfaces) to attain a user-specified design
bjective. Engineering the periodic assembly’s properties requires
hat the topology, or the constituent materials, or both, be de-
igned. To date, this is mostly done on an ad hoc basis, with only
ew systematic approaches appearing in the literature.

In this paper, we discuss the extension in three dimensions of
recently developed systematic procedure [15,16] for the design
f acoustic metasurfaces to impart a user-defined band gap. Our
pproach relies on the design of the unit cell using an inverse
edium constrained optimization methodology, with the unit
ell’s Floquet–Bloch eigenvalue problem (FBEP) acting as a con-
traint. Omnidirectional band gaps, i.e., metasurfaces exhibiting
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band gaps independent of wave incidence are of particular inter-
est, because of their ability to be used as filters and wave shields.
In the following, we describe the methodology, complimented
by numerical examples demonstrating the algorithm’s success in
attaining the design goals.

2. The FBEP

We are concerned with a structure that consists of periodically
arranged unit cells: Fig. 1 depicts, in the reciprocal space, simple
cubic, orthorhombic, and tetragonal unit cells, which could be
used as the building blocks of the periodic structure. Highlighted
in the same figure (red lines) are the Irreducible Brillouin Zones
(IBZs) of each depicted unit cell. We appeal first to the fully-
periodic problem. Accordingly, we consider the propagation of
SH waves, which, in the unit cell Ωcell ⊂ R3, is governed by the
three-dimensional scalar Helmholtz equation:

∇ · [µ(x)∇U(x)] + ω2ρ(x)U(x) = 0, x ∈ Ωcell , (1)

here x denotes position vector, U(x) is the anti-plane dis-
lacement, ω is circular frequency, and µ and ρ are the elastic
edium’s shear modulus and mass density, respectively. With

hese definitions, the phase velocity is defined as c =
√

µ/ρ.
e note that the acoustic case is governed by the same Eq. (1),

ubject to a reinterpretation of the physical variables: in the
coustic case U would denote total pressure, the reciprocal of µ
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Fig. 1. Irreducible Brillouin Zones of three commonly encountered periodic
structure unit cells (left-to-right: cubic, orthorhombic, tetragonal).

would be the acoustic fluid’s density, while the velocity would
retain its physical meaning.

We assume that the unit cells are topologically arranged in a
eriodic manner, as dictated by three primitive vectors pi ∈ R3,

with each defining the periodicity in the ith spatial direction;
then, ∀x ∈ R3 and ∀mi ∈ Z,

µ(x) = µ

(
x+

3∑
i=1

mipi

)
, ρ(x) = ρ

(
x+

3∑
i=1

mipi

)
. (2)

Under the periodic hypothesis (2), the general solution to (1) is
provided by the Floquet–Bloch theorem [17] as:

U(x) = eik·xu(x), (3)

where k denotes the Floquet–Bloch wavevector, and u(x) is a
calar displacement-like variable satisfying the same periodicity
s in (2). Substituting (3) into (1) results in the strong form of the
BEP. Here, to aid the subsequent numerical procedure that rests
n finite elements, we are interested in constructing the weak
orm of the FBEP; to this end, we introduce a test function V (x)
–counterpart to the trial solution U(x)–, defined as:

V (x) = eik̄·xv(x), (4)

where [·] denotes complex-conjugation of the subtended quan-
tity. We then multiply the strong form of the FBEP by V (x),
ntegrate over the unit cell domain Ωcell, and use the divergence
heorem, to arrive at:

(v, u; k) ≡ a0(v, u)+ ka1(v, u)+ k2a2(v, u) = 0,∀v ∈ V, (5)

where

a0(v, u) =
∫

Ωcell

(
∇v̄ · µ∇u− v̄ ω2 ρ u

)
dΩcell

+ i
∫

Ωcell

(∇v̄ · µ d0 u− d0 v̄ · µ∇u) dΩcell (6a)

+

∫
Ωcell

d0 v̄ · µ d0 u dΩcell,

a1(v, u) = i
∫

Ωcell

(∇v̄ · µ d u− d v̄ · µ∇u) dΩcell (6b)

+

∫
Ωcell

(d v̄ · µ d0 u+ d0 v̄ · µdu) dΩcell,

a2(v, u) =
∫

Ωcell

d v̄ · µ d u dΩcell. (6c)

and

V =
{
w ∈ H1(Ωcell)

⏐⏐⏐⏐w(x)

= w

(
x+

3∑
i=1

mipi

)
, ∀x ∈ ∂Ωcell

}
, (7)

with ∂Ωcell denoting the boundary of Ωcell.

Remarks
2

Table 1
CUB IBZ high-symmetry line directions (d) and offset directions (d0).
Directions d d0

Γ –M (1/
√
2, 1/
√
2, 0) (0, 0, 0)

Γ –X (0, 1, 0) (0, 0, 0)
Γ –R (1/

√
3, 1/
√
3, 1/
√
3) (0, 0, 0)

M–R (0, 0, 1) (π/p1, π/p2, 0)
X–M (1, 0, 0) (0, π/p2, 0)
X–R (1/

√
2, 0, 1/

√
2) (0, π/p2, 0)

1. Eq. (5) fully describes the dispersive properties of the unit
cell, and by extension, of the periodic structure.

2. Eq. (5) is the weak form of the FBEP cast as a quadratic
eigenvalue problem in the, generally, complex Floquet–
Bloch wavenumber k. While it is possible to cast both the
strong and the weak form of the FBEP as a linear eigenvalue
problem in ω2, form (5) is preferred for band gap design.

3. In deriving (5), we set k = kd+ d0, where d represents an
arbitrary direction within the unit cell, and d0 represents
an offset direction vector required when computing the
band structure along the high-symmetry lines that are not
connected to the IBZ’s center (Γ ). For example, Table 1
provides the values for the vectors d and d0 along the
high-symmetry lines of the cubic unit cell of Fig. 1(a).

4. Upon solution, Eq. (5) will result in the unit cell’s complex
band structure and/or dispersion surfaces, for given direc-
tions d in Ωcell or in the IBZ. For example, using the values
in Table 1, the band structure along the six high-symmetry
lines Γ − X , Γ −M , Γ − R, M − R, X −M , and X − R of the
tetrahedral IBZ can be readily obtained.

. Relation between the FBEP and band gaps

A band gap G is defined as the frequency range for which there
re no propagating waves. Mathematically, band gaps are associ-
ted with Floquet–Bloch wavenumbers with nonzero imaginary
art, i.e, with Im{k} ̸= 0, ∀ω ∈ G. Despite its simplicity, such a
and gap criterion is impossible to use in order to systematically
rive the design of a unit cell, for, at a minimum, it requires an
xhaustive search of the wavenumber space for each trial design,
nd lacks an adaptive mechanism for trial design updates. Thus,
ext, we turn to an alternate criterion, which requires that the
roup velocity vg vanish within the band gap G: of central im-

portance to the sequel is the ability to connect the group velocity
to the FBEP. To this end, we appeal to the Hellman–Feynman
theorem and replace v with u in (5), and, then differentiate the
resulting expression with respect to the wavenumber k; there
results [15]:

0 =
∂

∂k
P (u, u; k)

= 2ω
∂ω

∂k
a0,2 (u, u)+ a1 (u, u)+ 2ka2 (u, u)

+ 2Re
{
a0,0

(
∂u
∂k

, u
)}
+ 2ω2Re

{
a0,2

(
∂u
∂k

, k
)}

+ 2kRe
{
a1

(
∂u
∂k

, u
)}
+ 2k2Re

{
a2

(
∂u
∂k

, u
)}

. (8)

In the above,

a0,2(v, u) = −
∫

Ωcell

v̄ ρ u dΩcell and (9a)

a0,0(v, u) = a0(v, u)− ω2a0,2(v, u). (9b)
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ssuming ∂u/∂k ∈ V , we take the real part of the (8) and obtain

g ≡
∂ω

∂k
= −

a1(u, u)+ 2 Re{k} a2(u, u)
2ω a0,2(u, u)

. (10)

q. (10) is the necessary ingredient for the systematic design of
he unit cell of periodic structures and metasurfaces, for it is
he glue between the dispersive properties of the medium (as
xpressed by the FBEP) and the design objective — the band gap
as expressed by the vanishing of the group velocity). In effect, the
onnection between the FBEP (5) and vg afforded by (10) allows
for far more general design objectives than band gaps, by, for
example, allowing the tailoring of parts of the spectrum to slow
or fast group velocities, as an application may warrant.

4. Periodic structure and metasurface design

To drive the unit cell design, we adopt an inverse medium
methodology and define a Lagrangian L, comprising an objective
functional M that encompasses the design objective, and the side
imposition of the FBEP to account for the underlying physics.
The steps were first described in [15], and are repeated here for
completeness. Accordingly, let:

L[u, k, v, ξ ; ρ, µ] = M[u, k; ρ, µ] + E[u, k, v, ξ ; ρ, µ], (11a)

M[u, k; ρ, µ] =

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

1
2
v2
g,αβγ , (11b)

E[u, k, v, ξ ; ρ, µ] =

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

[
Re{P(v, u; k)} (11c)

+
ξ

2
{a2(u, u)− 1}

]
αβγ

,

here Nfreq denotes the number of discrete circular frequencies
ithin the band gap G; Nmode denotes the number of modes; and
dir is the number of directions along which the band gap should
e attained. For omnidirectional band gaps, directions along all
ymmetry lines of the IBZ should be considered. Eq. (11c) is
he side-imposed FBEP, enhanced with an orthonormality condi-
ion to ensure the uniqueness of the eigenfunctions. Specifically,
n (11c), the u, k are the eigenfunction and eigenvalue of the
orward FBEP, respectively, while v, ξ denote the adjoint eigen-
unction and the adjoint eigenvalue, respectively. The term vg,αβγ

n the objective functional M of (11b) denotes the group velocity
orresponding to a circular frequency ωa, a direction dβ , and a
ode γ , for trial distributions of the material parameters µ and
. The band gap design goal can then be cast as the minimization
tatement: find ρ ∈ W and µ ∈ W such that

in L[u, k, v, ξ ; ρ, µ] (12)

here

W =
{

w ∈ H0(Ωcell)
⏐⏐⏐⏐w(x)

= w

(
x+

3∑
i=1

mipi

)
,∀x ∈ ∂Ωcell

} (13)

To solve the dispersion-constrained inverse problem (12), we
eek to satisfy the first-order optimality conditions, which result
n the triad of a state, adjoint, and control problems. Accordingly:

1. State problem - forward FBEP: given trial design variables
ρ ∈ W and µ ∈ W , find state variables u ∈ V\{0} and
k ∈ C such that

P(k)(ṽ, u) = 0, ∀ṽ ∈ V, (14a)

ξ̃
{a2(u, u)− 1} = 0, ∀ξ̃ ∈ R. (14b)
2
3

2. Adjoint problem: given the solutions to the state problem
u ∈ V\{0} and k ∈ C, and trial design variables ρ ∈ W and
µ ∈ W , find adjoint variables v ∈ V and ξ ∈ R such that

P(v, ũ; k)+ ξa2(u, ũ) = (A− B) vg , ∀ũ ∈ V (15a)

k̃a1(v, u)+ 2kk̃a2(v, u) = Cvg , ∀k̃ ∈ C, (15b)

where

A =
a1(u, ũ)+ 2Re{k}a2(u, ũ)

ω a0,2(u, u)
, (16a)

B =
a1(u, u)+ 2Re{k}a2(u, u)

ω[a0,2(u, u)]2
a0,2(u, ũ), (16b)

C =
k̃a2(u, u)

ω a0,2(u, u)
. (16c)

3. Control problem: given the state solutions u ∈ V\{0} and
k ∈ C, the adjoint solutions v ∈ V and ξ ∈ R, and
trial design variables ρ ∈ W and µ ∈ W , the Gâteaux
derivatives of L with respect to the design variables ρ and
µ become:

δρL[· · · ](ρ̃) = δρM[· · · ](ρ̃)+ δρE[· · · ](ρ̃), (17a)

δµL[· · · ](µ̃) = δµM[· · · ](µ̃)+ δµE[· · · ](µ̃), (17b)

where

δρM[· · · ](ρ̃) = D
(
−

∫
Ωcell

ū ρ̃ u dΩcell

)
vg , (18a)

δρE[· · · ](ρ̃) = Re
{
−

∫
Ωcell

v̄ ρ̃ ω2 u dΩcell

}
, (18b)

δµM[· · · ](µ̃) = −(F + G)vg , (18c)

δµE[· · · ](µ̃) = Re
{∫

Ωcell

∇v̄ · µ̃∇u dΩcell

}
+ Re

{
ik
∫

Ωcell

(∇v̄ · µ̃du− dv̄ · µ̃∇u) dΩcell

}
+ Re

{
k2
∫

Ωcell

v̄ µ̃ u dΩcell +
ξ

2

∫
Ωcell

ū µ̃ u dΩcell

}
, (18d)

ith

=
a1(u, u)+ 2Re{k}a2(u, u)

2ω
[
a0,2(u, u)

]2 , (19a)

F =
i
∫

Ωcell
(∇ū · µ̃du− dū · µ̃∇u) dΩcell

2ωa0,2(u, u)
, (19b)

=

2Re{k}
∫

Ωcell
ūµ̃u dΩcell

2ωa0,2(u, u)
. (19c)

In the above, the summation over the frequencies, directions,
and modes is implied, but has been omitted to reduce notational
congestion.

We use standard Lagrange-family approximations for the state
u(x) and adjoint v(x) eigenfunctions, and solve first the forward
BEP (14) using an initial guess for the properties µ(x) and ρ(x)

of the unit cell. Next, using the state eigenpair (u, k) and the
trial properties, we compute group velocities at the Nfreq gap
frequencies, and use them to drive the adjoint problem (15).
Then, armed with the state and adjoint eigenpairs, we compute
the Lagrangian’s reduced gradient components (18), which are
subsequently used in a conjugate gradient method [18], enhanced
with a backtracking algorithm [19], in order to drive the material
property updates. The updated material properties are then used
in the next iteration of the problem triad; we consider that the
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Fig. 2. (a) Unit cell geometry; (b) sample unit cell finite element mesh using
20-noded hexahedral elements (only the nodes are shown).

process converged when the objective functional Mi at the ith
iteration satisfies:

Ei =
|Mi −Mi−1|

|M0|
< δtol, (20)

here δtol is a tolerance, usually set to 10−6 in our numerical
xperiments. The inverse-medium-inspired design methodology
s summarily captured in Algorithm 1.

Algorithm 1 Inverse metasurface design
Define the unit cell (geometry, properties, IBZ, etc.)
Define the target band gap G
Set initial guess for the material properties ρ0 and µ0
Initialize the iteration counter i← 0
Set E0 = 1
while Ei > δtol do

Use ρi, µi to solve the forward FBEP (14)
Evaluate group velocities vg along G
Solve the adjoint eigenvalue problem (15)
Compute the Lagrangian’s reduced gradient (18)
Use the reduced gradient to update the material proper-

ties to ρi+1 and µi+1 using backtracking algorithm; stop if
sufficient-decrease condition is violated

Set i← i+ 1
compute Mi; compute Ei

end while

We note that while the described process is aimed at the
esign of a unit cell under infinite periodicity assumptions, it
s equally applicable to metasurfaces without any appreciable
odification.

. Numerical experiments

To demonstrate the methodology, we use a cubic unit cell con-
isting of three concentric cubes with sides 6.0 m, 4.8 m, 3.6 m,
or the outer, middle, and inner cube, respectively, as shown in
ig. 2(a); Fig. 2(b) depicts a representative finite element mesh.
ach of the three concentric cubes is composed of a different
aterial. We consider two possible material arrangements, one
onsisting of an initial soft–hard–soft (S–H–S) distribution, and
second one consisting of an initial hard–soft–hard (H–S–H)
aterial configuration.

.1. Periodic structures with omnidirectional band gaps

In the first case (S–H–S), the initial densities have all been
et to 3000 kg/m3 for all three concentric cubes of the unit cell,
while the shear moduli have been set to 30 MPa for the inner and
outer cubes, and to 30 GPa for the middle cube. In the second
case (H–S–H), the initial densities and shear moduli have been
4

set to 8000 kg/m3 and 80 GPa for the inner and outer cubes,
respectively, and to 1000 kg/m3 and 80 MPa for the middle core.

In the S–H–S case we drive the unit cell design by requiring
that an omnidirectional band gap be attained in the range of 70–
120 rad/s, while in the H–S–H we require that an omnidirectional
band gap be realized in the 220–250 rad/s range. To effect the
omnidirectional gap, we drive the inversion using only three out
of the six IBZ high-symmetry lines (Ndir = 3), namely along
directions Γ −X , Γ −M , and Γ −R, since they were proven to be
sufficient for inversion. We note that the number of modes Nmode
varies, as it depends on the circular frequency and the number of
wavenumbers computed per frequency.

To effect the omnidirectional target band gap, we use a con-
tinuation scheme. For example, for the 70 to 120 rad/s target
gap of the S–H–S case, we use a five-stage process, whereby
the inversion is first driven by a narrower 70–80 rad/s target
gap; once converged, the converged properties are then used as
initial guesses to drive a wider gap during the next stage by
opening the previous-stage gap each time by 10 rad/s, i.e., from
70 to 90 rad/s, then from 70 to 100 rad/s, and so on and so
forth. Fig. 3 depicts the convergence of the densities and shear
moduli for the S–H–S case (left column), and for the H–S–H
case (right column) during a 5- and 3-stage continuation scheme,
respectively. The last row in Fig. 3 shows the convergence of the
objective functional, which exhibits a 9- to 11-order reduction
from the initial guess. Also shown along the right edge of the plots
in the same figure are the converged material property values: for
the S–H–S case, and from the inner to the outer cube, they are
6530 kg/m3, 4377 kg/m3, 3328 kg/m3 for the densities, and 39
MPa, 30 GPa, and 14 MPa for the shear moduli. Similarly, for the
H–S–H case, the corresponding values are 6735 kg/m3, 37 kg/m3,
7855 kg/m3 for the densities, and 80 GPa, 95 MPa, and 80 GPa for
the shear moduli.

Fig. 4(a) depicts the band structure drawn along all the IBZ
high-symmetry lines for the initial properties (purple square), an
intermediate inversion stage (blue circles), and the final prop-
erties (green diamond) of the S–H–S case. The shaded area is
the target band gap (70–120 rad/s), and, as it can be seen, it is
attained by the final-stage properties. Similarly, Fig. 4(b) shows
the band structure’s evolution during the inversion iterations
for the H–S–H case and for a target band gap (shaded) in the
220–250 rad/s range. We note that, as is customary, the band
structure is shown along the high-symmetry lines only; a more
complete picture is offered in Fig. 5, which depicts a slice of the
four-dimensional dispersion surface for the S–H–S case along the
(kx, ky) plane, and clearly shows the attained gap. We note that
the process can also accommodate multiple gaps: consider the
same three-material design, with initial densities of 3000 kg/m3

for all cubes, and shear moduli of 30 MPa, 30 GPa, and 30 MPa,
driven by two gaps set at 70–90 rad/s and 120–140 rad/s. Fig. 6
depicts the initial and final band structure, showing that the
target gaps have been realized; to attain the two gaps, the moduli
were only slightly changed, whereas the final density values were
9780 kg/m3, 5143 kg/m3, and 3942 kg/m3, respectively.

5.2. A metasurface with an omnidirectional band gap

The numerical examples of the preceding section are predi-
cated on the assumption of infinite periodicity. Of interest herein
is whether the converged designs can be used to realize a meta-
surface without significant loss of their intended functionality,
i.e., to still realize an omnidirectional band gap at the targeted
frequency ranges. To test the hypothesis, we embed a single-cell-
high metasurface in a background host with density 3000 kg/m3

and shear modulus of 30 MPa. As shown in Fig. 7, the metasurface
is assumed to be periodic in the x and y directions, while it
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Fig. 3. Material properties and objective functional M convergence; left column: S–H–S case; right column: H–S–H case.
Fig. 4. Evolution of band structure during inversion iterations; left: S–H–S case; target gap at 70–120 rad/s; right: H–S–H case; target gap at 220–250 rad/s; the
band gaps are shown as shaded areas.
Fig. 5. S–H–S case dispersion surfaces.

Fig. 6. Initial and final band structure, for a 2-band-gap design.
5

Fig. 7. A single-cell-high metasurface embedded in a background host.
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Fig. 8. Performance of a metasurface when insonified by a monochromatic incident plane wave of 95 rad/s at various angles of incidence; left-to-right: incident and
total motion at 0◦ , 30◦ , 45◦ and 60◦ incidence; for each pair the left column shows the incident field, and the right column shows the total field.
Fig. 9. Performance of a metasurface when insonified by monochromatic vertically incident plane waves at non-band-gap frequencies; left-to-right: 20 rad/s, 50
rad/s, 140 rad/s and 170 rad/s; for each pair the left column shows the incident field, and the right column shows the total field.
consists of only a single cell along the z direction. The cells’
roperties are borrowed from the S–H–S case of the preceding
ection, which resulted in an omnidirectional band gap in the
0–120 rad/s range. The background host’s domain is terminated
ith Perfectly-Matched-Layers (PMLs). We note that for simu-

ation purposes it would have been sufficient to model a single
olumn of the PML-host-metasurface-host-PML ensemble, but,
nstead, chose to model a 9-column ensemble for visualization
urposes. Floquet–Bloch periodicity conditions have been applied
o all lateral surfaces, and the general-purpose finite element
ackage [20] was used for the simulations.
To test the metasurface’s band-gapping omnidirectional capa-

ilities we subject the metasurface to a monochromatic incident
lane wave emanating from the lower section of the background
ost and impinging upon the unit cells at various angles of
ncidence, namely at 0o (vertical incidence), 30o, 45o, and 60o

egrees. We observe the response at the forward scatter region,
.e., north of the metasurface. The frequency is set at 95 rad/s,
hich corresponds to the central frequency of the design band
ap. Fig. 8 shows the response for the four incidence angles:
or each angle, the associated pair 9-column-ensembles depicts
he incident field (left) and the total field (right). As it can be
een, the metasurface has successfully arrested the propagation
f the plane wave at all angles of incidence, attesting to its
mnidirectional capabilities; we note that there is weak motion
enetration in the forward scatter region for 0 ◦ and 30 ◦ inci-
ence, which would be completed eliminated if the metasurface
ere to consist of two cells. In contrast, when the metasurface

s subjected to plane waves operating at frequencies outside the
ap, the metasurface will allow passage, as shown in Fig. 9 for
ertical incidence at 20, 50, 140, and 170 rad/s.
6

6. Conclusions

We discussed a comprehensive procedure for designing the
material properties of periodic structures in three dimensions
in order to realize user-defined band gap targets. The presented
systematic procedure rests on a dispersion-constrained inverse
medium problem. Numerical experiments demonstrated the
methodology’s versatility in producing omnidirectional band gaps
that are otherwise hard-to-realize by ad hoc procedures. Exten-
sions of the methodology to encompass topological optimization
in addition to, or at the exclusion of, material optimization are
possible [21]. In this case, the Lagrangian would remain the
same as the one we introduced herein, the geometry would
be parameterized, and the only modification would affect the
control problem, which will now rest on derivatives with respect
to the parameters of the unit cell’s geometry. Such geometric
parameterization can be efficiently handled and benefit from the
increased continuity afforded by B-Splines or NURBS [22,23].
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