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We discuss a total wavefield-based inversion approach for the reconstruction of the material
profile of heterogeneous semi-infinite domains, directly in the time domain, based on surficial
measurements of the domain’s response to prescribed wave illumination. Of particular interest
is the ability to recover the in-depth profile of moduli/wave velocities typically associated with
geotechnical site characterization applications.

We address four key issues associated with the wavefield-based inversion: a) to limit the
semi-infinite extent of the heterogeneous physical domain, a perfectly-matched-layer (PML) is
introduced at the truncation interface; b) to account for the introduction of the PML, we use
a mixed unsplit-field PML formulation for the coupled PML-regular-domain problem; c) to
tackle the inversion, we adopt a partial-differential-equation (PDE)-constrained optimization
framework that formally leads to a classic KKT (Karush-Kuhn-Tucker) system comprising
the initial-value state, final-value adjoint, and time-independent control problems; and d)
to narrow the feasibility space and alleviate the inherent solution multiplicity, we discuss
Tikhonov and Total Variation regularization schemes, endowed with a regularization factor
continuation algorithm. We also limit the total observation time to optimally account for the
domain’s heterogeneity during inversion iterations. We report on the theory and results that
lead efficiently to the reconstruction of both sharp and smooth profiles in one dimension.
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1. Introduction

We are concerned with the reconstruction of the spatially-distributed material
properties of a heterogeneous elastic medium occupying a semi-infinite domain, by
leveraging the medium’s response to interrogating waves. The problem is commonly
encountered in many science and engineering disciplines, including medical imag-
ing, non-destructive testing, geophysical probing applications, etc. In particular,
the problem is of primary importance in geotechnical site characterization investi-
gations for evaluating the mechanical properties (e.g. elastic moduli, attenuation
characteristics) of near-surface materials. The latter application is the focus of this
article: here, in particular, we describe a systematic methodology and associated
numerical results for the one-dimensional case that arises when the stratigraphy is
laterally homogeneous, but heterogeneous in depth. Waves are used to probe the
stratigraphy by means of an applied excitation (known) at the soil’s surface, and
the response is recorded directly in the time-domain, also on the surface.
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Mathematically, the problem entails the identification of the spatially dependent
coefficients of the (one-dimensional) hyperbolic partial differential equation (PDE)
governing the physics of the problem (wave equation). The PDE coefficients may
be either continuous or piecewise discontinuous. The problem is often referred to as
the inverse medium problem, for it is through knowledge of the source terms (loads)
and the medium’s response that one seeks to recover the medium’s properties. In
the last twenty years, such problems have received considerable attention, owing
primarily to increased and affordable computational power, as well as to advances
in regularization ideas that lend some robustness to the reconstruction algorithms.
To date, much of the focus has been on elliptic problems (e.g. see [1]), with only
scant attention to hyperbolic problems (e.g. see though [2–5]).

Treatment of the problem at hand can be reduced to addressing two major issues:
first, the semi-infinite extent of the physical domain needs to be negotiated in order
to arrive at a finite computational domain, especially in light of the heterogeneity
and the use of domain numerical methods for resolving the medium’s response
(here, finite elements). The second issue is the inversion algorithm itself.

To address the first issue, two distinctly different strategies are possible: either to
truncate the semi-infinite extent by introducing a transparent condition at the trun-
cation interface, or to truncate by introducing an absorbing condition or absorbing
buffer. A transparent condition allows the passage of waves with, ideally, no or min-
imal reflections from the interface. An absorbing condition will typically force the
decay of the wave motion within a buffer zone 1. There are various developments
on transparent conditions, broadly classified as either non-local or local, where the
non-locality refers to the temporal (convolution) and spatial (boundary integral)
response coupling at the truncation interface. Whereas local conditions (e.g. [6–
8]) could be cast for arbitrary truncation boundary geometries, exact non-local
conditions are only possible for geometries for which the wave equation becomes
separable, and of these only a few have been developed (e.g. [9–11]). Both local and
non-local transparent conditions are constructed based on the rather constraining
assumption of a homogeneous exterior domain (the part of the domain that will
be excluded from subsequent computations), which is seldom the case in realistic
settings.

By contrast, wave absorbing buffer zones do not suffer from this limitation, and
are better able to handle heterogeneity. Among those, the perfectly-matched-layer
(PML) is the most widely used absorbing layer scheme, since it has been shown to
absorb outgoing waves without generating reflections for all frequencies and angles
of incidence [12, 13], even when the medium is heterogeneous. Thus, in this work
we favor the PML, and discuss the casting of the inverse problem over a finite
computational domain using the PML at the truncation interface boundary. Di-
rect time-domain developments on the PML, which are of interest herein, could be
roughly classified as approaches based on split-field (e.g. split[12–14]), and unsplit-
field schemes (e.g. [15]). However, none of the prior developments could be easily
accommodated within a PDE-constrained optimization framework, which we favor
here for dealing with the inverse problem (see discussion below). Specifically, the
difficulty with past PML developments arises with adjoint formulations and pre-
vents a systematic treatment. Motivated by this need, we have recently developed
([16]) a new formulation of a mixed unsplit-field PML for one-dimensional elas-
tic, and two-dimensional SH waves, which we adopt here for the resolution of the
inverse medium problem.

1Transparent conditions are sometimes termed absorbing too, and also, silent, non-transmitting, non-
reflecting, etc. Here, we adhere to a terminology based on whether there is a zone where the waves are
forcibly absorbed (absorbing) or not (transparent).
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The second technical issue is the treatment of the inverse problem: here we dis-
cuss a partial-differential-equation (PDE)-constrained optimization approach for
recovering the spatial variation of the soil’s wave velocity profile. We start with
the typical misfit between computed and measured responses (in the least-squares
sense). The computed response refers to that calculated for a given estimate of the
material profile. To satisfy the underlying physics, we construct a Lagrangian func-
tional by augmenting the misfit through the weak imposition of the governing PDEs
for the system comprising the regular domain and the PML. This approach is simi-
lar to the works by Akcelik et al [2–5], and was originally suggested by Lions [17] in
the 1970s. Following classical lines, we seek to reconstruct the profile by requiring
that the first-order optimality conditions be satisfied. There result time-dependent
state, adjoint, and time-independent control problems, which, upon discretization
lead to a classic KKT (Karush-Kuhn-Tucker) system. Here, the state and adjoint
problems are initial and final-valued problems, respectively, and both are resolved
using a mixed finite element method. We use a reduced-space approach to solve
the KKT system, and thus iteratively update the soil’s wave velocity profile until
convergence. In general, as is usually the case, neither convexity of the Lagrangian
functional, nor solution existence and/or uniqueness is guaranteed. Thus, it is nec-
essary to employ specialized regularization schemes to narrow the feasibility space
and alleviate difficulties with solution multiplicity. In this work, we report on the
performance of Tikhonov (TN) and Total Variation (TV) regularization schemes.
We also report numerical results that exhibit successful reconstruction of both
smooth and sharp wave velocity profiles based on both noise-free and noisy data.

The combination of a PML in the context of full waveform inversion, with the
underlying numerical treatment based on a mixed finite element method, is, to
the best of our knowledge, presented here for the first time. Despite the increased
computational cost associated with the use of stresses as unknowns (in addition to
displacements), a key benefit is the systematic nature of the approach that makes
the formulation directly extensible to higher dimensions.

2. Forward wave modeling in a 1D PML-truncated domain

Consider a horizontally-layered, vertically heterogeneous semi-infinite soil medium
(Figure 1(a)). We are interested in compressional waves traveling in the layered soil
when a uniform stress load p(t) is applied on the entire (two-dimensional) surface.
In this setting, the problem can be formally reduced to a one-dimensional problem
along the direction of the applied excitation. Similar problems arise if one were
to consider only shear waves in the same medium, or compressional waves in a
rod. We truncate the semi-infinite domain at x = L as shown in figure 1(b), and
introduce a PML wave-absorbing buffer, to arrive at a computationally finite region
truncated at x = Lt. Figure 1(c) depicts the PML-truncated domain. Typically,
the truncation location (x = L) is chosen so that it coincides with the region of
interest. The outer boundary (x = Lt) of the PML is fixed.

In [16], we discussed a mixed displacement-stress formulation that leads to a
system of coupled PDEs in the time-domain. Their solution accurately captures
the wave motion within the regular domain, while simultaneously enforcing rapid
motion attenuation within the PML buffer zone. Here, we repeat for completeness,
the main ingredients of the mixed approach to the forward modeling problem. Much
of the development hinges on a complex-coordinate stretching concept, whereby the
physical coordinate x, is “stretched” to become x̃ = x− i c

ω

∫ x
0 g(s)ds, where g(x)
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Figure 1. Prototype 1D problem (a) Original domain: horizontally-layered heterogeneous semi-infinite
soil medium. (b) PML-truncated finite soil domain. (c) One-dimensional schematic of the PML-truncated
domain (PML is placed at x = L and the PML’s outer boundary is fixed at x = Lt).

is an attenuation function, defined as:

g(x) =





0, 0 ≤ x ≤ L

3
2LPML

log
(

1
|R|

)(
x−L
LPML

)2
, L ≤ x ≤ Lt.

(1)

LPML = Lt − L is the length of the PML zone, and c ≡ c(x) is the soil’s com-
pressional wave velocity, assumed constant within the PML. R is a user-tunable
reflection coefficient that controls the amount of reflection from the fixed PML end
(x = Lt) (see [16] for details). In other words, x̃ is such that x̃ ≡ x within the
regular domain, is continuous across the interface between the regular and PML
domains (at x = L), and is “stretched” within the PML. Then, the forward problem
becomes:
Find v ≡ v(x, t) and σ ≡ σ(x, t), such that:

∂2v

∂t2
+ cg

∂v

∂t
− ∂σ

∂x
= 0, for x ∈ (0, Lt) , t ∈ (0, T ] , (2a)

∂σ

∂t
+ cgσ − c2 ∂2v

∂x∂t
= 0, for x ∈ (0, Lt) , t ∈ (0, T ] , (2b)

subject to:

v(Lt, t) = 0, (3)

σ(0, t) = p(t), (4)

v(x, 0) = 0, (5)

∂v

∂t
(x, 0) = 0, (6)

σ(x, 0) = 0, (7)

where x denotes location and t denotes time. In the above, v(x, t) is a normalized
(scalar) displacement with respect to the soil’s density ρ, i.e., v(x, t) = ρu(x, t), in
which u(x, t) is the physical displacement. Throughout we assume that the material
density is constant (a reasonable assumption in geotechnical site investigations).
σ(x, t) denotes stress, whose Fourier transform is defined as:
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σ̂(x, ω) = ρc2 1
λ(x)

∂û(x, ω)
∂x

, (8)

with λ(x) denoting the stretch factor:

λ(x) = 1− i
g(x)
ω

. (9)

Equations (2a) and (2b) are the displacement (v) - stress (σ) mixed PML equations
governing one-dimensional wave motion in a PML-truncated domain. Within the
regular domain, and upon elimination of the stress, the equations reduce to the
familiar form of the one-dimensional wave equation. Notice that the mixed PML
equations maintain the second-order temporal character of the original wave equa-
tion. Condition (3) implies that the PML is fixed at x = Lt, whereas condition (4)
represents the source excitation p(t) applied at origin. The system is initially at
rest by virtue of conditions (5)–(7).

3. The inverse medium problem in a PML-truncated domain

3.1. The misfit problem

The inverse problem targets the reconstruction of the one-dimensional wave veloc-
ity profile c(x) within the PML-truncated domain, when given measurements of
the medium’s response to a known excitation. Accordingly:
Minimize:

F :=
1
2

∫ T

0
[v(0, t)− vm(0, t)]2 dt +R(c), (10)

subject to (2a), (2b), and (3)–(7).
In (10), F is the response misfit (in the least-squares sense) augmented by a reg-
ularization term R(c). vm(0, t) is the measured surface response to the known
excitation p(t), and v(0, t) is the computed response corresponding to an assumed
model profile c(x). We seek to minimize F , that is, to force the computed response
to match the observation, in an attempt to reconstruct the soil’s unknown wave
velocity profile c(x). Notice that the minimization problem is subject to the satis-
faction of the governing PDEs, initial, and boundary conditions, which describe the
underlying physics of the problem. As is well-known, one of the major difficulties
of such an inverse problem derives from the fact that there are usually multiple
solutions for c(x). Following classical lines, to alleviate the solution multiplicity,
we add a regularization term R(c) to the misfit functional in (10). Two candidate
regularization schemes are discussed in the next section.

3.2. Regularization

If data were measured throughout the entire domain, then, the inverse problem
could be viewed as a point-to-point matching control problem for which there is a
unique solution owing to the linearity of the constraints and the strict convexity of
the objective functional [18, 19]. In most inverse problems, however, the observed
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data are limited, and the insufficient information will, in general, lead to multiple
solutions. The model inverse problem defined in section 3.1 suffers similarly from
limited information, since the data are measured only on the top surface of the
soil domain. We explore both Tikhonov (TN) [20], and Total Variation (TV) [21]
regularization schemes, in an attempt to alleviate ill-posedness.

3.2.1. Tikhonov (TN) regularization:

The Tikhonov-type regularization [20] is one of the most widely-used regulariza-
tion schemes. It is defined as the L2-norm of the gradient of the model parameters.
Let RTN (c) denote the Tikhonov regularization term; then:

RTN (c) :=
Rc

2

∫ Lt

0

(
dc

dx

)2

dx, (11)

where Rc is a scalar, user-defined, regularization factor, which controls the amount
of penalty on the gradient of the material parameter c(x). The TN scheme typically
enforces smooth spatial variation of the model parameters, since it penalizes the
”high-frequency” oscillations of the parameter. Therefore, it is expected that the
TN scheme will reconstruct smooth target profiles, but is not expected to perform
well in the presence of sharply-varying target profiles, since it tends to smoothen
discontinuities.

3.2.2. Total Variation (TV) regularization:

The Total Variation regularization RTV (c) is defined as:

RTV := Rc

∫ Lt

0

[(
dc

dx

)2

+ ε

] 1
2

dx, (12)

where Rc is, again, a regularization factor. RTV is the bounded variation semi-
norm of the material parameter c(x), modified by the parameter ε. The addition
of ε makes RTV differentiable when dc/dx = 0. The TV scheme typically preserves
jump discontinuities of the material parameter c(x) since, unlike TN, the first
variation of RTV is bounded. At the same time, it penalizes spurious oscillations
in smooth regions. Therefore, the TV scheme is expected to perform better when
reconstructing sharply-varying profiles than the TN scheme. For both the TN and
TV schemes it is important to be able to determine appropriate values for Rc,
since the amount of regularization is controlled by the regularization factor (See
[22] chapter 7 for a related discussion).

3.3. PDE-constrained optimization

We recast the inverse problem as an unconstrained optimization problem by defin-
ing a Lagrangian functional L, where the objective functional F is augmented via
the weak imposition of the governing PDEs, boundary, and initial conditions:
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L (v, σ, λv, λσ, λB, λI, c)

=
1
2

∫ T

0
[v(0, t)− vm(0, t)]2 dt +Rc (c)

+
∫ Lt

0

∫ T

0
λv

(
∂2v

∂t2
+ cg

∂v

∂t
− ∂σ

∂x

)
dxdt

+
∫ Lt

0

∫ T

0
λσ

(
∂σ

∂t
+ cgσ − c2 ∂2v

∂x∂t

)
dxdt

+
∫ T

0
λB [σ(0, t)− f(t)] dt

+
∫ Lt

0
λI

∂v

∂t
(x, 0)dx. (13)

In (13), only Neumann-type boundary and initial conditions have been side-
imposed. The remaining boundary condition v(Lt, t) = 0, and the two initial condi-
tions v(x, 0) = 0, σ(x, 0) = 0 will be explicitly imposed in the semi-discrete forms.
We then seek to satisfy the stationarity of L, by requiring that the first variations
of L vanish. There result the following first-order optimality conditions:

3.3.1. The first optimality condition:

We enforce the vanishing of the variation of L with respect to the Lagrange
multipliers λv, λσ, λB, λI, i.e.,

δλv
L = 0,

δλσ
L = 0,

δλB
L = 0,

δλI
L = 0. (14)

Equations (14) result in the following mixed state (or forward) problem, which is
the same as the IBVP given by (2a), (2b), and (3)–(7).
State problem

∂2v

∂t2
+ cg

∂v

∂t
− ∂σ

∂x
= 0, for x ∈ (0, Lt) , t ∈ (0, T ] , (15a)

∂σ

∂t
+ cgσ − c2 ∂2v

∂x∂t
= 0, for x ∈ (0, Lt) , t ∈ (0, T ] , (15b)

subject to:

v(Lt, t) = 0, (16)

σ(0, t) = p(t), (17)

v(x, 0) = 0, (18)

∂v

∂t
(x, 0) = 0, (19)

σ(x, 0) = 0. (20)
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3.3.2. The second optimality condition:

Similarly, we require the vanishing of the variation of L with respect to the state
variables v and σ, i.e.,

δvL = 0,
δσL = 0, (21)

which result in the following mixed adjoint problem:
Adjoint problem

∂2λv

∂t2
− cg

∂λv

∂t
− ∂

∂x

(
c2 ∂λσ

∂t

)
= 0, for x ∈ (0, Lt) , t ∈ [0, T ) , (22a)

∂λσ

∂t
− cgλσ − ∂λv

∂x
= 0, for x ∈ (0, Lt) , t ∈ [0, T ) , (22b)

subject to:

λv(Lt, t) = 0, (23)

c(0)2
∂λσ

∂t
(0, t) = v(0, t)− vm(0, t), (24)

λv(x, T ) = 0, (25)

∂λv

∂t
(x, T ) = 0, (26)

λσ(x, T ) = 0. (27)

We remark that the adjoint PDEs (22a) and (22b) have governing operators iden-
tical to the state operators in (15a) and (15b), despite the sign reversal of the
second terms, and the interchange of the coupling terms (third terms in (22a) and
(22b)). Notice also that the adjoint problem is driven by the misfit between the
computed and observed responses (24). Therefore, one can solve the adjoint prob-
lem for λv and λσ, once a state solution v(x, t) has been obtained. Lastly, notice
from (25)–(27) that the adjoint problem is a final-value problem, as opposed to the
initial-value state problem. The adjoint equations are also mixed (λv and λσ) and
PML-endowed.

3.3.3. The third optimality condition:

Lastly, we impose the vanishing of the variation of L with respect to the material
parameter c, i.e.,

δcL = 0, (28)

which entails the following time-independent control problem:
Control problem

−Rc
d2c

dx2
+

∫ T

0

(
gλv

∂v

∂t
+ gσλσ − 2cλσ

∂2v

∂x∂t

)
dt = 0. (29)
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In (29), the first term arises when the Tikhonov regularization is used in the aug-
mented Lagrangian functional (13). If, instead, the Total Variation regularization
scheme is adopted, the first term in (29) is modified, and the control problem reads:

−Rcε
d2c

dx2

[(
dc

dx

)2

+ ε

]− 3
2

+
∫ T

0

(
gλv

∂v

∂t
+ gσλσ − 2cλσ

∂2v

∂x∂t

)
dt = 0. (30)

Notice that, once the state and adjoint solutions are obtained, the control equation
(29) can be used to update the material distribution c(x). We discuss next an
iterative procedure, for satisfying the optimality conditions.

4. The inversion process

The stationarity of the augmented Lagrangian functional (13) requires solving
the coupled state, adjoint, and control problems defined in the previous section.
Whereas all three problems could be solved simultaneously, here we opt for a
reduced-space method, whereby the state problem (15a), (15b), (16)–(20) is solved
first for a given material property profile. Then, we solve the adjoint problem (22a),
(22b), (23)–(27) using the state solutions computed in the previous step, to obtain
the adjoint variables λv, λσ that satisfy the second optimality condition. We use
mixed finite elements to solve both state and adjoint problems. As a last step, the
material property c(x) is updated in order for the control equation to be satisfied.
Notice that the left-hand side of (29) (or (30)) implies the continuous form of the
reduced gradient (∇L). We use a conjugate gradient method with an inexact line
search to iteratively update the material property c(x) using the most recent state
and adjoint solutions. The details are discussed in section 4.4.

4.1. Semi-discrete form of the state problem

We employ a mixed finite element method [23–25] to obtain the approximate so-
lutions for the displacement (v) and stress (σ) in the state problem described by
the IBVP (15a), (15b), and (16)–(20), where both v and σ are treated as inde-
pendent variables that need to be approximated separately. We remark that there
are two possible variational forms derivable from the mixed equations (15a) and
(15b): in the first variational form only the last term in (15a) is integrated by
parts. In a second possible variational form it is only the last term in (15b) that
is integrated by parts. The resulting two forms differ decidedly in the smoothness
requirements they impose on the test and trial functions, with the former requiring
less regularity on the stress than the latter. For this reason alone, in this work we
opt for the first variational form: accordingly we seek v ' vh ∈ Hh ⊂ H1(Ω) and
σ ' σh ∈ Qh ⊂ L2(Ω) such that (15a) and (15b) be satisfied. Next, we multiply
(15a) and (15b) by appropriate test functions w(x) and q(x), and then integrate
over the entire domain (0, Lt) in order to arrive at the corresponding weak forms:

∫ Lt

0
w

{
∂2v

∂t2
+ cg

∂v

∂t

}
dx +

∫ Lt

0

dw

dx
σdx = −w(0)p(t), (31a)

−
∫ Lt

0
c2q

∂2v

∂x∂t
dx +

∫ Lt

0
q
∂σ

∂t
dx +

∫ Lt

0
cgqσdx = 0. (31b)
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In (31a) and (31b), v and σ are approximated as

v(x, t) ' φ(x)Tv(t), σ(x, t) ' ψ(x)Tσ(t), (32)

where φ and ψ are vectors of approximants associated with nodal displacements
v(= ρu) and nodal stresses σ, respectively. The two test functions w(x) and q(x)
are similarly approximated by the same approximants φ and ψ, respectively, i.e.,

w(x) ' wTφ(x), q(x) ' qTψ(x). (33)

To ensure solution stability, the choice of the approximants φ and ψ cannot be
arbitrary [23, 24]: here we opted for piecewise linear basis functions φ and piecewise
constant basis functions ψ, which numerically have been seen to satisfy the LBB
condition [24]. Introducing the approximants in (31a) and (31b) results in the
following semi-discrete form1




∫ Lt
0 φφTdx 0

0 0







v̈

σ̈


 +




∫ Lt

0 cgφφTdx 0

∫ Lt
0 −c2ψ ∂φT

∂x dx
∫ Lt
0 ψψTdx







v̇

σ̇




+




0
∫ Lt
0

∂φ
∂x ψTdx

0
∫ Lt

0 cgψψTdx







v

σ


 = −p(t)




φ(0)

0


 , (34)

Equation (34) can be recast as:

Mstüst + Cstu̇st + Kstust = Rst, (35)

where

Mst ≡



M11
st M12

st

M21
st M22

st


 =




∫ Lt
0 φφTdx 0

0 0


 , (36)

Cst ≡



C11
st C12

st

C21
st C22

st


 =




∫ Lt

0 cgφφTdx 0

∫ Lt
0 −c2ψ ∂φT

∂x dx
∫ Lt
0 ψψTdx


 , (37)

Kst ≡



K11
st K12

st

K21
st K22

st


 =




0
∫ Lt
0

∂φ
∂x ψTdx

0
∫ Lt

0 cgψψTdx


 , (38)

1We use an overdot to denote differentiation with respect to time when the subtended quantity is a vector
(e.g. v).
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Rst = −p(t)




φ(0)

0


 , (39)

ust =




v

σ


 . (40)

In (35)–(39), Mst, Cst, and Kst represent the mass-like, damping-like, and stiffness-
like matrices of the semi-discrete form of the state problem. Rst denotes a load
vector. ust is a vector of nodal unknowns comprising nodal displacement v and
stress σ. The subscript ‘st’ stands for the state problem.

4.2. Semi-discrete form of the adjoint problem

We use again mixed finite elements to resolve the adjoint problem, whereby both
λv and λσ are treated as independent unknowns, and are approximated separately.
We use for λv and λσ the same pair of approximants (linear-constant) as the one
we used for v and σ, owing to the similarity of the operators implicated in the state
and adjoint problems. In a variational form, only the last term in (22a) is integrated
by parts in order to impose less regularity requirement on λσ. Accordingly, we seek
λv ' (λv)h ∈ Hh ⊂ H1(Ω) and λσ ' (λσ)h ∈ Qh ⊂ L2(Ω) such that (22a) and
(22b) be satisfied. We multiply (22a) and (22b) by appropriate test functions w(x)
and q(x), and then integrate over the entire domain (0, Lt) in order to arrive at
the corresponding weak forms:

∫ Lt

0
w

{
∂2λv

∂t2
− cg

∂λv

∂t

}
dx +

∫ Lt

0
c2 ∂λσ

∂t

∂w

∂x
dx = −w(0) [v(0, t)− vm(0, t)] ,(41a)

∫ Lt

0
q
∂λσ

∂t
dx−

∫ Lt

0
q
∂λv

∂x
dx−

∫ Lt

0
cgqλσdx = 0, (41b)

where we used w(Lt) = 0 and the boundary condition (24). In (41a) and (41b), λv

and λσ are approximated as

λv(x, t) ' φ(x)Tλv(t), λσ(x, t) ' ψ(x)Tλσ(t), (42)

where φ and ψ are vectors of approximants associated with nodal values of λv and
λσ, respectively. The two test functions w(x) and q(x) are similarly approximated
by the same approximants φ and ψ, respectively, i.e.,

w(x) ' wTφ(x), q(x) ' qTψ(x). (43)

Introducing the approximants in (41a) and (41b) results in the following semi-
discrete form for the adjoint problem:
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


∫ Lt
0 φφTdx 0

0 0







λ̈v

λ̈σ


 +



− ∫ Lt

0 cgφφTdx
∫ Lt

0 c2 ∂φ
∂x ψTdx

0
∫ Lt
0 ψψTdx







λ̇v

λ̇σ




+




0 0

− ∫ Lt

0 ψ ∂φT

∂x dx − ∫ Lt

0 cgψψTdx







λv

λσ


 = − [v(0, t)− vm(0, t)]




φ(0)

0


 .(44)

Equation (44) can be recast as:

Madjüadj + Cadju̇adj + Kadjuadj = Radj, (45)

where

Madj ≡



M11
adj M12

adj

M21
adj M22

adj


 =




∫ Lt
0 φφTdx 0

0 0


 , (46)

Cadj ≡



C11
adj C12

adj

C21
adj C22

adj


 =



− ∫ Lt

0 cgφφTdx
∫ Lt

0 c2 ∂φ
∂x ψTdx

0
∫ Lt
0 ψψTdx


 , (47)

Kadj ≡



K11
adj K12

adj

K21
adj K22

adj


 =




0 0

− ∫ Lt

0 ψ ∂φT

∂x dx − ∫ Lt

0 cgψψTdx


 , (48)

Radj = − [v(0, t)− vm(0, t)]




φ(0)

0


 , (49)

uadj =




λv

λσ,


 , (50)

where the subscript ‘adj’ stands for the adjoint problem. Madj, Cadj, and Kadj rep-
resent the mass-like, damping-like, and stiffness-like matrices of the adjoint semi-
discrete equations. Radj denotes the adjoint load vector. uadj is a vector of nodal
unknowns comprising Lagrange multipliers λv and λσ. We remark that all adjoint-
problem matrices can be constructed from their state-problem counterparts, since:
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Mij
adj = Mij

st , (i, j) = (1, 1), (1, 2), (2, 1), (2, 2),

Cij
adj = −

(
Cji

st

)T
, (i, j) = (1, 1), (1, 2), (2, 1),

C22
adj = C22

st ,

K11
adj = K11

st ,

Kij
adj = −

(
Kji

st

)T
, (i, j) = (1, 2), (2, 1), (2, 2). (51)

The above relations greatly aid in reducing the computational cost of the entire
inversion process, since the assembly of the adjoint matrices at every inversion
iteration is readily available. Despite the lack of symmetry of Kst/adj and Cst/adj,
the semi-discrete forms can be easily integrated using standard schemes; we discuss
the time integration next.

4.3. State and adjoint problem time integration

4.3.1. Integration of the state semi-discrete forms:

Use of Newmark’s average acceleration scheme yields the following linear system
of equations for the state unknowns ust at the (n + 1)-th time step:

Keff
st un+1

st =
[
Reff

st

]n+1
, (52)

where the state effective stiffness matrix Keff
st and the effective load vector

[
Reff

st

]n+1

are given as:

Keff
st =

4
∆t2

Mst +
2

∆t
Cst + Kst, (53)

[
Reff

st

]n+1
= Rn+1

st +Mst

(
4

∆t2 u
n
st + 4

∆t u̇
n
st + ün

st

)

+Cst

(
2

∆tu
n
st + u̇n

st

)
, (54)

In the above ∆t denotes time step. Once un+1
st is obtained from (52), the velocities

u̇n+1
st and accelerations ün+1

st can be computed as:

u̇n+1
st = 2

∆t

(
un+1

st − un
st

)− u̇n
st, (55)

ün+1
st = 4

∆t2

(
un+1

st − un
st

)− 4
∆t u̇

n
st − ün

st. (56)

4.3.2. Integration of the adjoint semi-discrete forms:

We use the average acceleration rule for the time integration of semi-discrete
adjoint equations as well. Starting from the final conditions (25)–(27), the semi-
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discrete form (44) should be resolved for nodal adjoint unknowns uadj at each time
step, by marching in decreasing times along the time line. We set:

un−1
adj = un

adj −
∆t

2

(
u̇n

adj + u̇n−1
adj

)
, (57)

u̇n−1
adj = u̇n

adj −
∆t

2

(
ün

adj + ün−1
adj

)
. (58)

Equations (57) and (58) can be solved for u̇n−1
adj and ün−1

adj , respectively, to provide:

u̇n−1
adj = − 2

∆t

(
un−1

adj − un
adj

)
− u̇n

adj, (59)

ün−1
adj =

4
∆t2

(
un−1

adj − un
adj

)
+

4
∆t

u̇n
adj − ün

adj. (60)

On the other hand, the equations of motion (45) at the (n − 1)-th time step can
be written as:

Madjün−1
adj + Cadju̇n−1

adj + Kadjun−1
adj = Rn−1

adj . (61)

Substituting (59) and (60) into (61) and rearranging the terms, we arrive at the
following system of equations at the (n− 1)-th time step:

Keff
adju

n−1
adj =

[
Reff

adj

]n−1
, (62)

where the adjoint effective stiffness matrix Keff
adj and the effective load vector[

Reff
adj

]n−1
are:

Keff
adj =

4
∆t2

Madj − 2
∆t

Cadj + Kadj, (63)

[
Reff

adj

]n−1
= Rn−1

adj +Madj

(
4

∆t2 u
n
adj − 4

∆t u̇
n
adj + ün

adj

)

+Cadj

(
− 2

∆tu
n
adj + u̇n

adj

)
. (64)

Notice that Keff
adj and

[
Reff

adj

]n−1
are identical to Keff

st and
[
Reff

st

]n+1 in (53) and

(54), provided ∆t is set to −∆t. Once un−1
adj is obtained from (62), the adjoint

velocities u̇n−1
adj and accelerations ün−1

adj can be computed using (59) and (60).

4.4. Material parameter updates

By solving the state and adjoint problems as described in section 4.3, the first
and second optimality conditions are automatically satisfied. There remains to
update the material property in order to satisfy the third optimality condition
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(control problem). Clearly, only the true/target profile satisfies exactly the control
equations (29) (or, (30), if the Total Variation regularization is used). We note
though that the left-hand side of the control equation is the reduced gradient of
the augmented Lagrangian functional (∇cL), which is equal to the gradient of the
objective functional (∇cF), since the side constraints in (13) have already vanished
owing to the satisfaction of the state problem. Thus, the reduced gradient has the
following continuous form derivable from (29) (g ≡ 0 in the regular domain):

∇cL = −Rc
d2c
dx2 − 2c

∫ T
0

(
λσ

∂2v
∂x∂t

)
dt

= −Rc
d2c
dx2 − 2

c

∫ T
0

(
λσ

∂σ
∂t

)
dt, (65)

in the case of Tikhonov regularization, and is replaced by the left-hand side of
(30) if the Total Variation regularization scheme is used. The continuous form of
the reduced gradient is discretized by evaluating it at each nodal point. Since we
use linear basis functions to interpolate v and λv, nodal values for v, v̇, and λv are
directly available from the state and adjoint discrete solutions. However, the values
of σ and λσ are available only per element since constant basis functions are used
to approximate them. Therefore, we evaluate nodal values of σ and λσ by taking
the average of the values from the elements surrounding the node. For the left-most
and right-most nodes, the nodal stress term is taken to be one half of the value of
the element adjacent to the node. The nodal g value can be directly calculated by
its definition (1). The second derivative d2c/dx2 and the first derivative ∂v̇/∂x at
each nodal point are evaluated by second-order accurate finite difference schemes.
Once the discrete reduced gradient is calculated, we seek the nodal values of the
material property c(x), such that the objective functional F be minimized. De-
tails on how to iteratively approach the solution are discussed below based on a
conjugate gradient method with inexact line search.

4.4.1. Conjugate gradient method

Let us denote by gk the discrete reduced gradient at the k-th inversion iteration:

gk = (∇cL)k . (66)

We also denote by ck the material property vector comprising nodal values of
c(x) at the k-th iteration. The number of elements in gk and ck is the same as the
number of nodes. We use a conjugate gradient method (Fletcher-Reeves) to update
ck; accordingly:

ck+1 = ck + αdk, (67)

where dk is the search direction at ck, and α is the step length in the direction of
dk. The search direction dk is determined as:

dk =




−gk (k = 0),

−gk + gk·gk

gk−1·gk−1
dk−1 (k ≥ 1).

(68)

We evaluate the misfit functional (10) using the updated material property ck+1,
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Table 1. Algorithm 1: Backtracking line search

procedure

Choose ᾱ > 0, ρ, µ ∈ (0, 1); set α ← ᾱ;
repeat

α ← ρα;
until F (ck + αdk) ≤ F (ck) + µαgk · dk

Terminate with αk = α

Table 2. Algorithm 2: Inversion algorithm using a mixed unsplit-field PML scheme;

reduced space approach

1: Choose ᾱ, ρ, µ, and Rc; Set α = ᾱ
2: Set k=0 and convergence tolerance tol
3: Set initial guess of material property vector ck

4: Set Fm = tol + 1
5: while (Fm > tol) do
6: Solve the state problem (15a), (15b), (16)–(20) and obtain v and σ
7: Solve the adjoint problem (22a), (22b), (23)–(27) and obtain λv and λσ

8: Compute the discrete form of the reduced gradient gk = (∇cL)k
9: Compute the search direction dk ((68))
10: while [F (ck + αdk) ≥ F (ck) + µαgk · dk] do
11: α ← ρα
12: end while
13: Update material property vector by ck+1 = ck + αdk

14: k = k + 1
15: end while

and compare it against a preset tolerance. If the tolerance threshold is not met, we
set k ← k + 1, and proceed to the next iteration. As is known, the search direction
dk will be progressively contaminated by errors resulting from the inaccuracies
involved in the determination of α, and by the round-off error involved in the
accumulation of the gk · gk/gk−1 · gk−1 terms in (68) [26]. Hence, in practice, it is
necessary that dm+1 be set equal to −gm+1 after every m step instead of the usual
form (we used m = 10).

One can also find an optimal step length α as the local minimizer in the direction
of dk, but it is generally too expensive to compute it. More practical strategies
perform an inexact line search to determine a step length that achieves adequate
reductions in the objective functional F .

4.4.2. Inexact line search – sufficient decrease and backtracking

A popular inexact line search condition requires that α force sufficient decrease
in the objective functional F , as measured by the following inequality:

F (ck + αdk) ≤ F (ck) + µ α gk · dk, (69)

(Armijo condition or sufficient decrease condition). In practice, µ is chosen to be
quite small ([27]; herein, we used µ = 10−8). In order to opt for a step length
α satisfying (69), we use the so-called backtracking approach as summarized in
Table 1. In this procedure, the initial step length ᾱ is usually fixed. If (69) is
violated, an acceptable step length α will be found after a finite number of trials by
setting α ← ρα, such that α becomes small enough to satisfy the Armijo condition
(ρ = 0.5 is a typical value). We summarize the entire inversion process discussed
so far in Table 2.



June 5, 2009 18:17 Inverse Problems in Science and Engineering ipse-jwk-lfk

The inverse medium problem in PML-truncated domains 17

4.5. Regularization factor continuation

When calculating the reduced gradient ∇cL in (65), the choice of the regularization
factor (Rc) is of importance since it controls the amount of imposed penalty on
high frequency oscillations of the material properties. Though mindful of various
developments (e.g. L-curve [28, 29]), here we opted for a simple and practical
approach, which we describe next. The objective functional F (10) can be formally
re-written as:

F = Fm +R(c), (70)

where

Fm = 1
2

∫ T
0 [v(0, t)− vm(0, t)]2 dt, (71)

R(c) = RcFr(c). (72)

Here, Fm and Fr denote the misfit and the regularization functional, respectively,
and Rc is the regularization factor. Recall that the reduced gradient of the aug-
mented Lagrangian functional (∇cL) is tantamount to the gradient of the objective
functional (∇cF). With this in mind, we can recast equation (65) as:

∇cL = Rc (∇cFr) + (∇cFm) , (73)

where

∇cFr = − d2c

dx2
, (74)

∇cFm = −2
c

∫ T

0

(
λσ

∂σ

∂t

)
dt. (75)

In (75), ∇cFr is the gradient of the regularization functional, and ∇cFm is the
gradient of the misfit functional. ∇cFr penalizes high frequency fluctuations in the
recovered profile, such that, the higher Rc is, the smoother the reconstructed pro-
file becomes. Rc can have a fixed value throughout the inversion process. However,
sharp profiles may not be recoverable if Rc is too large, or the inversion process
may suffer from solution multiplicity if Rc is too small. Therefore, there is a need
to continuously modify the regularization factor to avoid such difficulties. We sug-
gest the following criterion to determine the regularization factor at each inversion
iteration:

Impose Rc|∇Fr| < |∇Fm| ⇒ Rc <
|∇Fm|
|∇Fr| . (76)

In this work, Rc is chosen, at each iteration, to be:

Rc =
1
2
|∇Fm|
|∇Fr| . (77)

Equation (77) enables the regularization part (first term) in (73) to compete with
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the misfit part (second term) through the entire inversion process without hin-
dering the overall direction of the material property. By the continuation scheme,
the regularization factor can take a large value at the beginning of the inversion
process to assist in narrowing down the initial feasibility space of the solution. It
is also continuously reduced as the inversion process progresses so as to enable the
reconstruction of sharply varying profiles.

5. Numerical examples

We discuss next numerical results obtained using the procedure outlined in the
preceding sections. We consider first a heterogeneous semi-infinite soil medium
as shown in figure 2(a), and assume that the soil’s material property varies only
with depth as is the case with horizontally-layered media. We model the medium
as a one-dimensional PML-truncated domain, with the regular domain occupying
0m ≤ x < 100m, and the PML layer placed at 100m ≤ x ≤ 110m, as shown in
figure 2(b). Figure 2(c) is the target wave velocity profile, which has a smooth
variation along the entire domain. Notice that the profile is homogeneous within
the PML. We apply a stress p(t) on the surface (x = 0), realized via a short pulse-
type load as depicted in figure 3(a). Figure 3(b) depicts the frequency spectrum
of the excitation. Figure 3(c) shows the measured displacement response v(0, t) on
the surface, which we obtained by solving the forward problem using a fine mesh
density, and a distant placement of the truncation boundary to avoid committing
an inverse “crime.”

x

p t( )

(a)

Regular
domain

p t( )

x
0

100

110 PML

(b)

100 200 300 400 500 600

0
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60

80

100

c(x) (m/s)

x 
(m

)

(c)

Figure 2. (a) Heterogeneous semi-infinite soil medium; (b) corresponding one-dimensional PML-truncated
semi-infinite domain; (c) target, smooth, wave velocity profile c(x)

Figure 4 shows the reconstructed wave velocity profiles (red dots) of the lay-
ered soil medium using the Tikhonov regularization scheme. The inversion process
started with a homogeneous initial guess of 200 (m/s) (green dots) and regular-
ization factors (a) Rc = 10−6, and (b) Rc = 10−8. The true profile (blue line) is
recovered fairly well for both regularization cases with a relatively better outcome
in the case of the smaller regularization factor (Rc = 10−8). Figure 5 shows similar
inversion results when the Total Variation regularization scheme is used. We re-
mark that both the TN and TV schemes capture the smooth target velocity profile
very well.

We turn next to sharp profiles. Figure 6 depicts a 5-layer soil with sharp interfaces
between the layers. We apply the same stress load p(t) on the surface (x = 0) as
before, and obtain again the measured displacement response v(0, t) (Figure 7). We
use again a homogeneous initial guess of 200 m/s, and recover the 5-layer velocity
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Figure 3. (a) Time history of the applied stress p(t). (b) Frequency spectrum of the applied stress p(t). (c)
Measured displacement response v(0, t) (= ρu(0, t)).
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Figure 4. Initial guess, target, and inverted wave velocity profiles using Tikhonov regularization with: (a)
Rc = 10−6, and (b) Rc = 10−8; both results were obtained using 3760 iterations.

profile using TN and TV regularization schemes with two different regularization
factors (Rc = 10−6 and Rc = 10−8), as shown in figure 8. Both schemes recovered
the true profile fairly well. Of interest here is the ability to recover the sharp
discontinuities in the target profile. Notice that, as shown in figure 8(a), the TV
regularization scheme captures the sharply varying profile reasonably well, while
the TN regularization scheme smoothens out discontinuities. This is due to the
fact that the TN regularization scheme imposes higher penalty on the gradient of
the properties than the TV regularization when the regularization factor (Rc) is
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Figure 5. Initial guess, target, and inverted wave velocity profiles using Total Variation regularization
with: (a) Rc = 10−6, and (b) Rc = 10−8; both results were obtained using 5000 iterations.
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Figure 6. A target wave velocity profile with 5 layers.

the same. If the regularization factor becomes smaller, the penalty effect on the
gradient of the properties is diminished so that both schemes show little difference,
as it can be seen in figure 8(b) (Rc = 10−8). In this case, however, the recovered
profile exhibits more oscillation, especially in flat regions, than in the case of a
larger regularization factor.

In general, the regularization factor Rc needs to be large at the beginning of the
inversion process to assist in narrowing down the initial feasibility space of the so-
lution. However, as it can be seen in figure 8(a), if the regularization factor does not
change, the reconstruction of sharply varying profiles will be somewhat hindered.
We use the regularization factor continuation scheme described in section 4.5 to
overcome this difficulty. Figure 9 compares the fixed regularization scheme against
the continuous regularization, by attempting to reconstruct again the target lay-
ered profile shown in figure 6. The initial guess is again a homogeneous 200 m/s,
and the TN regularization is used. The continuation scheme starts with the same
Rc = 10−6 as the fixed scheme, but shows better performance in recovering the
layered profile.

We consider next the effect of noise in the inversion process. To this end, Figure 10
depicts the measured displacement response v(0, t) with 20% Gaussian noise. The
target velocity profile is again the 5-layer profile shown in figure 6(b), and the
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Figure 7. Measured displacement response v(0, t). Data are obtained by applying the stress load p(t)
presented in figure 3(a) on the 5-layer profile depicted in figure 6(b).
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Figure 8. Inverted sharp 5-layer profile using Tikhonov and Total Variation regularization with: (a) Rc =
10−6, and (b) Rc = 10−8; both results were obtained using 2660 iterations.

applied load is the one depicted in figures 3(a) and 3(b). We explore again the
TN and TV regularization schemes with two different fixed regularization factors
(Rc = 10−6, 10−8). Figure 11 shows the inverted profiles for each regularization
factor. It is interesting to note that, for Rc = 10−6, the TN scheme captures the
layered profile as a smooth interpolant would do, without allowing much fluctuation
in the properties even in the presence of as much as 20% noise in the measured
data. By contrast, the TV scheme is affected highly by noise. For Rc = 10−8, both
schemes exhibit material oscillations, since the effect of the regularization has been
lessened owing to the smaller Rc.

5.1. PML placement

It is of interest to explore the effect the PML location has on the quality of the
reconstructed profiles. Ideally, the PML should be placed at a depth beyond which
one could ascertain homogeneity, since in this way the entire heterogeneous region
will be contained within the computational domain. However, such a priori knowl-
edge is rarely available. If, on the other hand, the PML is placed at a location
that leaves portion of the heterogeneous region outside the computational domain,
and if the observation period is such that information from the deeper layers are
accounted for in the surface response, then the profile reconstruction stands to be
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Figure 9. Inverted sharp 5-layer profile using Tikhonov regularization; fixed regularization factor versus
regularization factor continuation scheme.
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Figure 10. Measured displacement response v(0, t) with 20% Gaussian noise. Data are obtained by ap-
plying the stress load p(t) presented in figure 3(a) on the 5-layer profile depicted in figure 6(b).

polluted.
In [30], it was shown that by limiting the observation period, and by iteratively

relocating the truncation interface, convergence to a common profile is attainable.
Here, we show that limiting the observation period is sufficient for attaining quality
profiles, without having to iteratively relocate the PML. This is, by and large, due
to the wave-absorbing nature of the PML, as opposed to the truncating (wave-
passing) nature of the local truncation conditions we used in [30], which causes
reflections in the presence of heterogeneity. Specifically:

Given a measured response vm(0, t), we seek to limit the observation period
based on wave travel times. The optimal observation period is set equal to the
travel time it will take for the wave to travel down and up the truncated (regular)
domain, augmented by the excitation duration td. In this way, we expect that,
roughly, information up to only the truncation depth will be taken into account
when working with the measured response1. The detailed process is summarized
below:

(1) First, we truncate the domain and place the PML at an arbitrary depth
x = L. The target profile is assumed to be homogeneous, i.e., c(x) = c(0),

1This is not entirely true during the early inversion iterations due to the difference between the working
and true profiles.
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Figure 11. Inverted 5-layer profile using measured data with 20% Gaussian noise. Both TN and TV
regularization schemes were used with: (a) Rc = 10−6, and (b) Rc = 10−8.

and the observation period T (0) is defined as:

T = T (0) = td + 2
L

c(0)
. (78)

(2) Next, we invert for the material profile by using the observation period T ,
and obtain the, in general, inhomogeneous distribution c(1)(x).

(3) Next, using the new profile, we update the observation period such that:

T (k) = td + 2
∫ L

0

1
c(k)(x)

dx, (79)

where k denotes the k-th inversion iteration (k ≥ 1). The last two steps are
repeated until convergence.

We seek to reconstruct the layered profile depicted in figure 6 using the above
scheme for various truncation depths, without making any a priori assumption
on profile homogeneity beyond the truncation depth. We use the same stress load
p(t) as before (Fig. 3(a)) and use both noise-free and noisy data (Figs. 7 and 10,
respectively). We place the PML at various depths (l = 30m, 50m, 70m, 100m) and
set the observation time based on (79). Figure 12 depicts the inverted profiles for
each of the truncation cases starting with an initial (homogeneous) guess of 200
m/s and noise-free data. The results of the profile reconstruction are remarkably
good regardless of the truncation depth. Clearly, limiting the observation period,
per the outlined scheme, allows the arbitrary placement of the PML, at the trunca-
tion depth of choice/interest. When there is 20% Gaussian noise in the measured
response, the reconstructed profiles become polluted, especially near the surface.
Nevertheless, as depicted in figure 13, the reconstructed profiles still follow quite
closely, albeit roughly, the target profiles.
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Figure 12. Target, initial guess, and estimated wave velocity profiles c(x) with PML location at (a) 30m;
(b) 50m; (c) 70m; (d) 100m; observation period T is optimized; measured data are noise-free.

6. Conclusions

We discussed a PDE-constrained optimization approach for reconstructing the ma-
terial profile of a one-dimensional heterogeneous semi-infinite medium, truncated
by a Perfectly-Matched-Layer (PML), based on surface measurements of its re-
sponse to surface excitation. The PML was introduced to accommodate the trun-
cation of the semi-infinite extent and absorb the outgoing waves traveling beyond
the truncation interface. The underlying numerical scheme was based on a new
displacement-stress mixed finite element formulation in the time domain developed
recently [16]. As discussed therein, the mixed PML formulation results in nearly
perfect wave absorbing performance, avoiding convoluted time integration schemes,
which arise when conventional displacement-based finite elements are used.

The PML-endowed PDEs are used within a PDE-constrained optimization frame-
work to resolve the inverse medium problem. In order to alleviate the inherent
ill-posedness of the inverse problem, we explored both Tikhonov (TN) and Total
Variation (TV) regularization. Both schemes recovered smooth target profiles excel-
lently. For sharply-varying profiles, the TN scheme exhibited limitations, whereas
the TV scheme showed good performance. To improve on the ability to recover
sharp profiles, we suggested a regularization factor continuation scheme, which
tunes the regularization factor at each inversion iteration. The continuation scheme
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Figure 13. Target, initial guess, and estimated wave velocity profiles c(x) with PML location at (a) 30m;
(b) 50m; (c) 70m; (d) 100m; observation period T is optimized; measured data with 20% Gaussian noise.

works quite effectively in recovering sharp profiles even when the regularization fac-
tor is initially large. We used both noise-free and noisy data to demonstrate the
algorithmic performance. Finally, we showed that, as long as the observation pe-
riod remains limited, per (79), the PML can be placed anywhere, without concern
about the presence of homogeneity past the truncation interface. This is a signifi-
cant advantage over local absorbing boundaries, which, by construction, result in
reflections from the truncation interface, and call for additional and costly treat-
ment in order to ensure the validity of the recovered profiles. Extensions to higher
dimensions follow the very lines described herein and will be reported in the future.
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